

D5.1

March 2022

Data integration, harmonisation,

sharing and security – v1

Multidisciplinary Expert System

for the Assessment & Management

of Complex Brain Disorders

www.mes-cobrad.eu

The MES-CoBraD project has received funding from the European

Union’s Horizon 2020 Research and Innovation Programme under

grant agreement No 965422

PREFACE

The Multidisciplinary Expert System for the Assessment & Management of Complex Brain

Disorders (MES-CoBraD) is an interdisciplinary project combining Real-World Data (RWD) from

multiple clinical and consumer sources through comprehensive, cost-efficient, and fast

protocols towards improving diagnostic accuracy and therapeutic outcomes in people with

Complex Brain Disorders (CoBraD), as reflected in Neurocognitive (Dementia), Sleep, and

Seizure (Epilepsy) disorders and their interdependence.

It brings together internationally recognized experts in medicine,

engineering, computer science, social health science, law, and marketing

and communication from across Europe, and combines clinical information

and scientific research in CoBraD with technical innovation in secure data-

sharing platforms, artificial intelligence algorithms, and expert systems of

precision and personalized care, with a primary focus on improving the

quality of life of patients, their caregivers, and the society at large.

It leverages RWD from diverse CoBraD populations across cultural,

socioeconomic, educational, and health system backgrounds, with

special attention on including vulnerable populations and minorities

in an equitable manner and engaging key stakeholders to maximize

project impact.

The project will deliver a rigorous and self-standing

methodology that will drive the MES-CoBraD

implementation and define its operational

principles; The MES-CoBraD solution, through the

implementation of novel, self-standing AI based

components and their integration under a common

platform for scientific exploitation will assist

focusing on the evaluation and validation of the

solution, the spread of the excellence gained, the

expansion of its ecosystem and the real-life

sustainability.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

3

NTUA National Technical University of Athens EL

NIA Neurological Institute of Athens EL

HSCSP
Fundació privada Institut de Recerca de l’Hospital de la Santa Creu i

Sant Pau
IR

VUB - LSTS VRIJE UNIVERSITEIT BRUSSEL BE

UU UPPSALA UNIVERSITY SE

CHS-RMC
Clalit Health Services- Rabin Medical Center Cognitive

Neurology and Epilepsy Clinics
IL

KCL King’s College London UK

HOLISTIC HOLISTIC P.C. EL

SIMAVI Software Imagination & Vision RO

LIBER STICHTING LIBER NL

ENG Engineering - Ingegneria Informatica S.p.A. EN

EVOLUTION MICHOPOULOS I. & CH. G.P. EL

UE University of Edinburgh UK

CEL CyberEthics Lab IT

CONSORTIUM

http://www.epu.ntua.gr/
http://www.nioa.gr/
http://www.recercasantpau.cat/
https://lsts.research.vub.be/
https://www.uu.se/
https://hospitals.clalit.co.il/rabin/he/departments-and-clinics/neurology/Pages/neurology_dept_beilinson.aspx
http://www.klc.ac.uk/ioppn
http://www.holisticsa.gr/
http://www.simavi.ro/
http://www.libereurope.eu/
https://www.eng.it/en/
https://www.evolutionprojects.gr/
https://ghpu.sps.ed.ac.uk/
http://www.cyberethicslab.com/

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

4

MULTIDISCIPLINARY EXPERT SYSTEM FOR THE ASSESSMENT & MANAGEMENT OF

COMPLEX BRAIN DISORDERS

GA#: 965422 Start Date: 01/04/2021

Topic: SC1-DTH-12-2020 Duration: 36 months

Type of Action: RIA Coordinator: NTUA

Deliverable Number D5.1

Deliverable Title Data integration, harmonisation, sharing and security – v1

Work Package Number WP5

Task Number T5.1, T5.2, T5.3

Date of Delivery 31/03/2022

Dissemination Level Confidential

Work Package Leader ENG

Lead Beneficiary ENG

Authors ENG

Contributors NIA, VUB

Reviewers NTUA, SIMAVI

Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the

opinion of the European Union. Neither the EASME nor the European Commission is responsible for any use that

may be made of the information contained therein.

Copyright Message

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are free to share (copy and

redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any

purpose, even commercially) under the following terms: (i) attribution (you must give appropriate credit, provide a

link to the license, and indicate if changes were made; you may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use); (ii) no additional restrictions (you may not apply legal terms or

technological measures that legally restrict others from doing anything the license permits).

https://creativecommons.org/licenses/by/4.0/

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

5

Document History

Version Date Author (Partner) Remarks/Changes

0.10 28/01/2022 Antonino Sirchia (ENG) ToC

0.11 31/01/2022 Christos Ntanos (NTUA) ToC Review

0.20 08/03/2022

Antonino Sirchia (ENG),

Danilo Trombino (ENG),

Igor Molnar (ENG)

Partner contributions

0.31 15/03/2022 George Doukas (NTUA) Peer Review

0.32 15/03/2022 Andrei Ogrezeanu (SIMAVI) Peer Review

0.40 22/03/2022 Antonino Sirchia (ENG) Review feedbacks resolution

0.50 23/03/2022 Michael Kontoulis (NTUA) Quality Control

1.00 30/03/2022 Christos Ntanos (NTUA)
Final Version to be

Submitted

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

6

Executive Summary

This deliverable (D5.1) is a technical document that has the purpose of presenting the design and the

implementation of the MES-CoBraD platform components intended for the data management.

The document starts with an analysis of the data management in the healthcare and medical research

landscape, then continues with a comparison among several already available IT solutions that could

cover the requirements necessary for the purposes of the MES-CoBraD project.

The platform components discussed in this document are:

 Edge module

 Anonymisation module

 Data collection component

 Data Lake

 Data harmonisation component

For each of the up-mentioned tools, the entire design process is described across the document, starting

from the requirements analysis, the planned API specifications and even the intended UI mock-ups. Once

described in detail the desired design, the technological implementation is analysed along with the

integration among the components.

Finally, a plan for the User acceptance tests for each component is presented.

The document is intended as reference for all the stakeholders, for what concern the technical

specification of the components belonging to the data management layer of the MES-CoBraD platform

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

7

Table of Contents

Table of Contents .. 7

LIST OF Figures ... 10

LIST OF Tables .. 11

LIST OF Abbreviations ... 12

1 INTRODUCTION ... 13

1.1 Purpose and Scope ... 13

1.2 Structure of the Deliverable ... 13

1.3 Relation to other deliverables/WPs/Tasks .. 14

2 Data management landscape analysis ... 15

2.1 In Healthcare ... 17

2.2 In Medical Research ... 17

3 State-Of-The-Art Analysis ... 18

3.1 Data Lake – Comparative Analysis .. 18

3.1.1 Tools for Data Lakes ... 18

3.2 Data Harmonisation – Comparative Analysis .. 19

3.2.1 Tools for Data Harmonisation .. 20

3.3 Data Security – Comparative Analysis ... 22

3.3.1 Tools for Data security .. 22

3.4 Data Sharing – Comparative Analysis.. 26

3.4.1 Tools for Data sharing .. 26

3.4.2 REST APIs .. 26

3.4.3 Streaming services ... 27

3.4.4 Human-to-machine readable data ... 28

4 Requirements’ Elaboration ... 29

4.1 Edge module .. 29

4.1.1 Anonymisation module ... 29

4.2 Data Collection component .. 30

4.3 Data lake ... 33

4.4 Data Harmonisation component .. 34

4.5 API Gateway ... 36

5 Data management Architecture .. 38

5.1 Overall Architecture ... 38

5.2 Components .. 39

5.2.1 Edge Module ... 39

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

8

5.2.2 Anonymisation module ... 39

5.2.3 Data Collection component .. 42

5.2.4 Data lake ... 45

5.2.5 Data Harmonisation component .. 46

5.2.6 API Gateway... 47

6 Data management Mock-ups .. 49

6.1 User Interface .. 49

6.1.1 Edge module ... 49

6.1.2 Anonymisation module ... 51

6.1.3 Data Collection component .. 51

6.1.4 Data lake ... 55

6.1.5 Data Harmonisation component .. 57

6.1.6 API Gateway... 57

7 APIs’ Specification ... 58

7.1 Edge Module Plugins .. 58

7.2 Data Collection Component .. 61

7.3 Data Lake .. 70

7.4 Data Harmonisation Component ... 75

7.5 API Gateway ... 77

8 Implementation ... 78

8.1 Edge module .. 78

8.2 Anonymisation module ... 78

8.3 Data Collection component .. 79

8.4 Data lake ... 81

8.5 Data Harmonisation component .. 83

8.6 API Gateway ... 84

9 Integration ... 86

9.1 Integration between components .. 86

9.2 Integration with the other MES-CoBraD Platform components .. 87

10 Testing .. 89

10.1 Edge Module .. 89

10.2 Anonymisation Module ... 90

10.3 Data Collection Component .. 90

10.4 Data Lake .. 93

10.5 Data Harmonisation Component ... 95

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

9

10.6 API Gateway ... 96

10.7 Integration Testing .. 97

11 Conclusions and Next Steps .. 99

12 References ... 100

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

10

LIST OF FIGURES

Figure 1 - MES-CoBraD data management architecture.. 38

Figure 2 - Edge module internal architecture ... 39

Figure 3 - Basic anonymisation flow .. 40

Figure 4 - Anonym data verification is an iterative process ... 40

Figure 5 - Original submitters are the only users able to recover raw data with sensitive data 41

Figure 6 - Overall anonymisation flow ... 42

Figure 7 - Directed Acyclic Graph (DAG) .. 43

Figure 8 - Scheduler architecture .. 44

Figure 9 - A cluster is a set of logically connected nodes .. 44

Figure 10 - Data collection component architecture .. 45

Figure 11 - Data lake components .. 46

Figure 12 - Architecture of the Data harmonisation tool ... 47

Figure 13 - Architecture of the API gateway .. 48

Figure 14 – Mock-up of the edge module (I) .. 49

Figure 15 – Mock-up of the edge module (II) ... 50

Figure 16 – Mock-up of the edge module (III) .. 51

Figure 17 - DAG View .. 52

Figure 18 - Workflow details .. 53

Figure 19 - Data collection component allows to compare execution times .. 53

Figure 20 - DAG logs ... 54

Figure 21 - Data collection component allows to define connections by using the user interface 54

Figure 22 - Configuration management .. 55

Figure 23 - Bucket view .. 55

Figure 24 - Folder structure ... 56

Figure 25 - Object storage allows to define credentials for programmatic access 56

Figure 26 - Policy form ... 57

Figure 27 - Mock-up of the Data harmonisation tool ... 57

Figure 28 - Technical implementation of the edge module ... 78

Figure 29 - Data collection component implementation details (Airflow based) 81

Figure 30 - Data lake object storage implementation details (MinIO based) ... 83

Figure 31 - Data harmonisation tool implementation details (Data Mashup Editor based) 84

Figure 32 - Integration between the components .. 87

Figure 33 - Integration with other MES-CoBraD components .. 88

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

11

LIST OF TABLES

Table 1 Edge module requirements’ elaboration ... 29

Table 2 Data collection module requirements’ elaboration .. 30

Table 3 Data lake module requirements’ elaboration ... 33

Table 4 Data Harmonisation module requirements’ elaboration .. 34

Table 5 API Gateway module requirements’ elaboration... 36

Table 6 - Edge module UAT plan .. 89

Table 7 - Anonymisation module UAT plan ... 90

Table 8 - Data collection component UAT plan ... 90

Table 9 - Data Lake UAT plan ... 93

Table 10 - Data harmonisation component UAT plan .. 95

Table 11 - API Gateway UAT plan ... 96

Table 12 - Integration tests plan ... 97

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

12

LIST OF ABBREVIATIONS

Abbreviation / Acronym Description

Dx.y Deliverable number y belonging to WP x

Tx.y Task number y belonging to WP x

GA General Assembly

ToC Table of Contents

WP Work Package

MES-CoBraD
Multidisciplinary Expert System for the Assessment & Management of

Complex Brain Disorders

DoA Description of Action

WP Work Package

WPL Work Package Leader

UAT User Acceptance Test

DE Digital Enabler

DME Data Mashup Editor

REST Representational State Transfer

API Application Programming Interface

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

13

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The MES-CoBraD project has the goal of creating a clinical research platform that relies on Real World

Data. The platform planned data lifecycle is composed by several steps: a non-exhaustive list

encompasses the collection, the integration, the harmonisation and the sharing of them. Since most of

such data is patients’ clinical information, it definitely falls into the category of personal data and, as

such, must be managed through the top-of-range security patterns and practices, following a security by

design approach.

The purpose of this deliverable is to present and discuss the data management strategy within the MES-

CoBraD platform. The requirements that have been defined for each of the up-mentioned steps and how

they are implemented.

1.2 STRUCTURE OF THE DELIVERABLE

This document, through the various chapters, will incrementally describe the rationale that steered the

implementation of the data management components.

The Chapter 2 presents a data management landscape analysis with a particular focus on the data

management in healthcare and in medical research. This chapter has the purpose of presenting the

domain the platform components will work over. Then, the Chapter 3 presents the technological state-of-

the-art for the high-level requirements of the platform.

From the Chapter 4 on, each of the planned technological components has a dedicated sub-paragraph

for a detailed analysis from the specific point of view of each chapter; the list of components discussed

in this document are:

 Edge module (also called “Local back end”)

 De-personalisation module

 Data Collection Component

 Data Lake

 Data harmonisation component

 API Gateway

In particular, the Chapter 4 presents the elaboration of the requirements, originally listed in the D7.1 –

System requirements and architecture, along with some new requirement described here in order to deep

dive a little bit in more details for all the components.

Once clarified which are the requirements for each tool, the Chapter 5 presents the designed architecture;

it presents the overall architecture – in order to describe how all the components interact with each-other

– and also with the internal architecture of each single tool.

Since the components present both a UI and (all of them) at least one API, Chapters 6 and 7 are intended

to discuss these aspects. Chapter 6 is about the indented user experience: it presents some mock-ups,

to give a clearer idea about the functionality of the tools and, ultimately, of the platform; Chapter 7,

instead is about the APIs and their specifications.

Chapter 8 describes the specific implementation of each component, putting together all the

requirements and specifications discussed until then. The chosen technologies and the rationale behind

them are presented in a fine-grained way.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

14

How the tools interact with each other, from a technological point of view, is the subject of the discussion

of Chapter 9. The chapter is divided into two sections: the first one that investigates the interaction

between the data management components, and the second that presents the integration with other

platform components, not related to data management, like data analytics and data visualisation.

Finally, Chapter 10 presents a first list of user acceptance tests for the components.

1.3 RELATION TO OTHER DELIVERABLES/WPS/TASKS

This document presents the following relations with other MES-CoBraD deliverables:

Work package 1:

 D1.1 – Project Handbook: the project handbook presents the methodological guidelines that

the contributors respected during the writing of the current document. In particular, the

template used for the document has been defined Annex I of the handbook along with the

quality assurance plan that the current document will follow before being submitted to the

EC.

 D1.2 - Scientific, Technical and Innovation Roadmap: the roadmaps described in D1.2 are the

guidelines followed in the definition of the contents of this document. The goals (both

scientific, societal, and technological) were always kept in mind while describing the

component requirements and even the challenges have been analysed while defining the

architecture and the implementations.

Work package 2:

 D2.3 – Ethical and regulatory framework: the ethical aspects, along with the compliance ones,

are key point across the entire project execution. D2.3 and this document have several cross

references, especially in the sections related to the data collection, de-personalisation and

persistence.

Work package 6:

 D6.1 – MES-CoBraD Advanced Analytics Prototype: the Advanced Analytics Prototype is one

of the consumers of the data collected on the platform. The data sharing functionality is the

most relevant one for this integration; so, all the sections related to the Data Lake and the

API Gateway are particularly relevant for Advanced Analytics purposes. Finally, the integration

between the two parts is described in Chapter 9.

Work package 7:

 D7.1 – System requirements and architecture: the requirements and the overall architecture,

that tracked the roadmap for the entire project – and, consequently, also for the components

described in this document – are described in D7.1 that is, then, frequently referenced

throughout the current document.

Work package 8:

 D8.2 – Validation framework: the software produced on top of what is written in this document

will be validated according to the framework described in the D8.2. In particular, Chapter 10

is about the testing of the components and picks up what has been presented and discussed

in D8.2; also, the template used for the definition of the UAT is described in the Annex I of the

same deliverable.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

15

2 DATA MANAGEMENT LANDSCAPE ANALYSIS

In the recent years the healthcare management around the world has changed from disease-centred to

a patient-centred model. The outdated data management systems are not powerful enough to analyse

big data as variety and volume of data sources have increased in the past two decades [12]. Such “Big

Data” are generated from clinical and research historical activities and has significant effects on the

medical industry. For instance, the processing and analysis of such big data can assist in planning

treatment paths for patients, give support to clinical decisions, and improve healthcare technologies and

systems [12]. Big data in healthcare involves collecting large collections of data from various healthcare

data sources followed by storing, managing, analysing, visualizing, and delivering information for effective

decision making. Such volume of data responds to the “Big Data Six Vs” [12].

1. Volume – Today’s healthcare data are in the order of exabytes and are constantly growing.

2. Variety – Data comes in different data formats and protocols from different data sources.

3. Velocity – Wearables and sensors generate data with high frequency. Indeed, due to the rising

of number of patients data rate is increasing 55-60% every year.

4. Veracity – Big data can never be 100% accurate and it is difficult to validate them.

5. Variability – Data usually fluctuates during their lifecycle; this has impact to patterns and

hidden characteristics.

6. Value – Extracting value from such big data is the main goal of data analytics.

Modern data management platforms need to handle, validate, and maintain scattered data that comes

from heterogenous data silos. Some of them are:

 Electronic Health Records (EHRs) – Within such a platform, data comes from physicians’

notes, lab reports, ECGs, Scans, X-RAYs, health sensor devices, medical prescriptions etc.

They represent the core of the patient’s medical data, including any basic demographic

information, like name, profession, addresses, age, gender etc.

 Laboratory results – Laboratory tests include many biochemical tests, such haematological

tests. Their results can help in monitoring the progress of a disease or evaluating new

treatments.

 Medical sensors – Medical devices that measure specific patient’s bio-signals.

 Wearables – Such IoT devices are usually low-cost, and their aim is continuous monitoring of

a patient’s health condition for home rehabilitation purposes, as well as the secure transfer

of individual-related health information directly to a central data repository for clinical

evaluation and further analysis.

 Historical clinical activities – Historical data is often used as a reference to start new clinical

trials, analyse the evolution of a disease and as a reference for side effects and treatments.

 Patient Registries (PRs) – Research-oriented collections of health information from patients

for clinical or scientific purposes in the form of an observational study

 Cohort studies – A clinical cohort study comprises data from group of people who share

common disease occurrences and medical conditions and are useful for measuring the

disease occurrence and progress.

 Open data – Health open data portals are important as starting points for research studies

and for developing new treatments and cures. Moreover, metadata of clinical studies are

publicly available and can be used as additional data sources.

 Social media – Data coming from social media like Facebook, Instagram and Twitter is usually

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

16

used for analysing disease spreading/ transmission and to predict future illness.

Data coming from such heterogenous data sources is often difficult to process due to the variety of its

format. Moreover, some of those datasets, such as doctors’ notes and handwritten medication

prescriptions, need to be digitalised and imported to medical data platforms before the harmonisation

processes. Others, like bio-images, bio-signals or cohort studies results must be treated with advanced

tools like statistical models, mathematical operations, or AI-algorithms.

Such preliminary operations are some of the pre-requisites for the data harmonisation phase.

It is possible to identify a sequence of steps that are applied in health data harmonisation. Such steps

can be summarised as follow:

1. Data curation
2. Metadata extraction

3. Data model identification
4. Data integration

Data curation refers to the techniques applied to enhance the overall data quality. Such techniques can

be categorised into the fields of data normalisation, data standardisation, missing data imputation and

outlier treatments. Formally, missing data imputation is only part of the medical research processes, since

it’s common to have missing values in cohort studies or clinical trials. Moreover, also outlier detection is

a practice mainly used in medical research, where researchers decide if and how to handle such values

or collect them to conduct specific studies.

The implementation of a standardized metadata template for medical data can make their content fairer

(dealing with heterogeneous and vendor-dependent metadata templates brings complexity at

computational level and make the metadata difficult to understand and analyse), expand their audience,

and extend their applications. Indexing such data transforms otherwise isolated observations into

interpretable patterns that can be used to identify new diseases, treatments or other fields of research.

Usually, Heterogeneous data is difficult to process and analyse. In such situations data models can

provide high quality, consistent and structured data for running business processes and to allow

scientists and researchers to explore data widely. In this phase data harmonisation involves several

mechanisms including dataset transformation to a common format, dataset description, similarity

detection, terminology detection, and alignment. The mapping between the field coming from raw data

and the ones that are part of the data model (also called field matching) is usually made using two

different approaches: semantic matching and the lexical matching.

Data integration can reveal valuable clinical information regarding a disease’s onset and progress over

time. Indeed, the integration of harmonised data from multiple data sources can yield more powerful

patient stratification models which are able to precisely identify groups of people that are more prone to

the development of a disease outcome.

Once harmonised and integrated data must satisfy several medical standards to ensure interoperability

between health systems [19]. Some of them are:

 Health Level 7 (HL7)

 Continuity of Care Record (CCR)

 Continuity of Care Document (CCD)

 Controlled Medical Vocabulary (CMV)

 Computerized Provider Order Entry (CPOE)

Such sensitive information needs to be extracted, processed, and analysed using a set of policies, rules

and processes that define the Data Governance (GC) of those health data. One of the most important

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

17

aspects of the GC is the anonymisation and pseudo-anonymisation. The anonymisation process involves

the complete removal of any information that can lead to the identification of the individual, whereas

pseudonymization involves the partial removal of the individual data with an additional storage of

information that can indirectly lead to the identification of the individual. These steps ensure to have

systems compliant with the different data protection laws such as Health Insurance Portability and

Accountability Act (HIPAA) and General Data Protection Regulation (GDPR).

Healthcare and medical research share almost all the up mentioned data management practices. They

differ in the goals and in how such data is analysed and used.

2.1 IN HEALTHCARE

Data management in healthcare puts the patient as the main actor of all the processes, decisions and

initiatives that are taken for medical purposes. This patient-centric approach uses the outputs coming

from medical research as source of knowledge to pre-identify diseases, give better medications and

pursuing prevention initiatives. Moreover, experts’ opinions provide guidelines based on research and

their own experience to help patients with severe issues and situations that are difficult to manage.

Indeed, the available information is used to apply the evidence-based medicine principles (EBM). The

practice of EBM involves five essential steps [20]:

1. converting information needs into answerable questions
2. finding the best evidence with which to answer the questions

3. critically appraising the evidence for its validity and usefulness

4. applying the results of the appraisal into clinical practice

5. evaluating performance

In healthcare patients' condition can change rapidly depending on the severity of the disease, it’s nature

and the medical treatments provided to the patients. Doctors use the adaptive reasoning to iteratively

‘adapt’ their decision based on cause-effect reactions triggered by new medications, patient’s conditions

change etc. The whole process generates multi-dimensional information that are used to answer specific

questions or hypothesis.

2.2 IN MEDICAL RESEARCH

Unlike healthcare, the aim in medical research is not to treat a specific patient, instead it is to discover

new information, processes or mechanism that can bring new solutions to patients’ problems. The data

strategies’ goal in such scenario is to discover what is true, by confirming or rejecting hypotheses. Such

hypotheses, usually first being theorised, are then tested by developing experiments, where data is

collected through trials and cohort studies conducted on a part of the population selected by using

specific sampling methods. The process generates a high-volume scattered data that needs to be

managed as described in the previous section. Once harmonised, such data is analysed using statistical

tools like correlations, regression models and classification algorithms, summarise the results and bring

new value to the health community.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

18

3 STATE-OF-THE-ART ANALYSIS

With the main interest being in processing medical data there are a lot of tools to consider. One of the

first requirements is to have a large database where all of the data can be stored and most suitable for

this purpose are Data Lakes.

After securely storing the data, it should be properly formatted for further usage. This requires a data

harmonisation tool.

All this must be done while taking in consideration the security of the data, as well as the need to share

curated data and make it available for data analytics.

In this chapter we will identify, analyse, and compare the theory and approaches behind these tools.

3.1 DATA LAKE – COMPARATIVE ANALYSIS

A Data Lake is best described as a highly scalable environment, rather than a giant collection of data,

which may contain structured, unstructured or semi-structured data from various sources organised in a

logically centralised and well architected unit.

The scalability of the data lake comes from the fact that it is almost always based on a cloud solution,

which also offers the benefit of the pay-as-you-go prices.

The ability to store heterogenous types of data is supported by a different approach as opposed to data

warehouses, where data is inserted using the ETL (Extract, Transform, Load) technique. This means that

when using data warehouses, data needs to be transformed upon the insert phase, which requires a

specific organisational structure of the data warehouse itself. Instead, data lakes rely on the ELT (Extract,

Load, Transform) technique, which means that the data is inserted in its raw form and transformed only

upon being used.

Data lake storage can be divided into four zones:

 Raw data zone – data extracted from various sources without modification

 Cleansed data zone – data that went through a process of treatment and harmonization

 Data model zone – data grouped and restructured to be used in long-term analytics

 Experimental zone – data for short-term analytics from any of the other zones

3.1.1 TOOLS FOR DATA LAKES

It is important to remember that, although logically centralised, Data Lakes are physically distributed

among numerous servers which serve as data storage. The tools used for this kind of data management

are based on two different approaches:

1. Distributed File Systems (Hadoop)

2. Object Storage Based Systems (Amazon S3, MinIO, Azure Data Lake Storage, Google Cloud

Storage)

3.1.1.1 Distributed File Systems

A Distributed File System is a file system that uses servers to store data which could be accessed and

transformed in the same way as if it were present on a local client machine.

The best-known example of a distributed file system is the Hadoop Distributed File System (HDFS). It is

highly fault-tolerant and is designed to be deployed on low-cost hardware while providing high throughput

access to application data and being suitable for applications that have large data sets [1].

HDFS allows simultaneous processing of data which is broken into segments and distributed through

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

19

different nodes in a cluster.

Distributed file systems offer high scalability at a low cost and can work with various data types with a

high fault tolerance. On the other hand, they face various security problems which must be alleviated with

additional tools and due to the fact that they work with large size data, it is hard to provide results with

low latency and without processing overhead.

Benefits:

 has good file availability and access time

 can easily change the size of data

 enables multiple users to access date at once

Limitations:

 hard to maintain the database

 possible problems with the transfer of data between nodes

Object Storage Based Systems

An Object Storage System is one which manages data as objects, instead of using a file hierarchy. These

objects act as data containers and may include other information such as metadata or identifiers. There

are several implementations of the object storage system, but the most notable are Amazon Simple

Storage Service (S3), Microsoft Azure Data Lake Storage (ADLS), Google Cloud Storage (GCS) and MinIO.

As with distributed file systems, object storage systems also provide great scalability at a low cost.

Additionally, as opposed to file systems which use fixed metadata, object storage systems use custom

metadata, which enables them to leverage better indexing capabilities, to easily move data between

storage tiers and to centralise data between multiple data clusters.

Benefits:

 simple API adaptable for all programming languages

 highly scalable

 low cost

 data loss resistant

 easily integrated with IoT devices

Limitations:

 not recommended for backing up traditional databases

 not ideal for very frequent data changes

3.2 DATA HARMONISATION – COMPARATIVE ANALYSIS

Usage of data lakes consequently leads to a heap of raw data that may or may not be useful. In order to

extract useful data from the data lake, a type of data harmonization must be used.

Data harmonisation encompasses all methods that gather data from multiple diverse sources and as a

result provide a cohesive dataset.

Harmonisation involves several mechanisms including dataset transformation to a common format,

dataset description, similarity detection, terminology detection, and alignment [2].

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

20

3.2.1 TOOLS FOR DATA HARMONISATION

In cases where it is necessary to process huge amounts of data, it is impossible to accomplish data

harmonization manually. The solution is to use already existing automated workflows and processors.

There are a couple of different approaches to this solution:

1. Workflow management
2. Batch data processing

3. Stream data processing

3.2.1.1 Workflow management

To completely leverage the power of automation using data harmonization and to establish that data is

not corrupted or incomplete, it is of the essence to ensure that every scheduled task is successful.

This can be accomplished by using Workflow management. Workflows can be set up for a specific task

or process and they can be automated in a way that one task can depend on another, but also to run a

task only if the previous task has been successful or if all prerequired tasks have been finished.

An example of this approach can be found in tools like Airflow, Luigi, Pinball or Chronos.

Airflow: a platform that can programmatically create, schedule and manage workflows. The management

of workflows is done using Directed Acyclic Graphs (DAGs). Each DAG can be viewed as a group of tasks

to run, which is organized in a pipeline. Airflow is able to manage data pipelines from multiple sources

and export the result data for later consumption by machine learning models or creating visualizations.

The tasks it performs can be scheduled and usually depend one on another in order to develop fine-tuned

data models.

Benefits:

 completely free to use

 has a growing community with more than 1000 contributors

 has a great extensibility due to the fact it can use different custom plugins that can cover

almost any use case. It is also constantly extended by the community

 since it is written in Python, anything that can be done in Python can be done in Airflow too

Limitations:

 requires extensive knowledge of Python

Luigi: a python package for building complex data pipelines. Its main goal is to tackle long-running batch

processes by orchestrating a group of tasks. Each task has a target because of computation and oversees

computing and consuming targets made by other tasks.

Benefits:

 good Hadoop support

 open-source

 modular code (easy to update)

 python-based

Limitations

 user-interface hard to navigate

 scalability issues

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

21

Pinball: created by Pinterest to address their workflow management needs. It is based on a master-worker

paradigm. The workers are in charge of periodically contacting master in order to perform allocated tasks.

Benefits:

 python-based

 ability to retry failed jobs, abort workflows or resume execution

 dynamic resizing (workers can be added or removed)

Limitations:

 runs on python 2

 challenging user interface

3.2.1.2 Batch data processing

To process a very large amount of data at once in a repetitive manner, it is common to use an approach

called Batch data processing. It is completely automated and can be scheduled as well.

However, one of its drawbacks in case of an error, is the needed effort to debug the process, which usually

can be overseen only by an IT expert [3].

Most notable tool that uses this approach is Talend.

Benefits:

 can work fast with large amounts of data

 easy to setup environment

Limitations:

 not adequate for integration with machine learning processes

 hard to debug

3.2.1.3 Stream data processing

Contrary to batch data processing, Stream data processing can work with continuous data and produce

results almost instantly, which makes it the most appropriate choice for analysing real-time data. This

kind of approach is most efficient in cases where events emerge in short time frames and it is necessary

to react as soon as the results are visible (e.g., cybersecurity).

The main challenge it faces is the amount of data that should be stored and handled, as well as the speed

of the data processing, which must be at least as fast as the data input [3].

One of the tools that uses stream data processing is NiFi.

Benefits:

 supports clustering

 able to fetch data from remote machines via SFTP

 has security policies on user level

 able to use custom plugins

Limitations:

 not robust when handling data

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

22

3.3 DATA SECURITY – COMPARATIVE ANALYSIS

When medical data is being processed, data security is of utmost importance since personal data can be

exposed. By personal data, it is referred to any type of physical information which could be used to

unequivocally identify a specific individual (name, date of birth etc.). Another often used term is personal

sensitive data, which refers to any type of physical information which might be used to directly identify an

individual (credit card number, phone number etc.).

Other than following all the known regulations, there are numerous technical challenges to secure this

kind of data which include effective de-identification mechanisms, reducing needed information or use

of the encrypted communication mechanisms to collect data [2].

3.3.1 TOOLS FOR DATA SECURITY

Implementing data security in healthcare is a tedious issue. However, during the years a few methods

have emerged as useful to protect sensitive information from data breaches [4]. In summary they are:

1. Authentication and Authorisation

2. Access control
3. Encryption

4. Data masking

3.3.1.1 Authentication and Authorisation

Authentication, or direct identification of the user trying to access a resource, must not be confused with

authorisation, or decision whether the user who tried to access the resource has a permission to perform

a specific action. By resource, it is referred to any data that could be accessed from the web.

To authenticate a user, an application must confirm its identity. This includes the registration of a user,

which in turn enables them to access the application by signing in. Once signed in, the user creates a

session, which lasts while user is signed in and expires after user signs out or after a certain amount of

time. Then, the user must sign in again in order to access the application.

However, even when the users are signed in, they are not able to access every part of the application, as

they must first be authorised to do so. Authorisation of users is usually done through their user accounts.

Depending on the type and structure of resources they want to access to, users can be identified as

resource owners. An owner of a resource may edit or delete their resource, but is not authorised to edit

or delete a resource that does not belong to them. These restrictions are most often implemented using

roles or policies.

Suffice to say, today there are many tools that handle authentication and authorisation and there is no

need for any kind of development on that field. They are called Identity Access Managers (IAM). However,

it is necessary to choose the tool which most adequately suits the needs of an organization.

Most popular identity access managers include:

 Cloud services IAM (e.g. AWS IAM, Azure AD, Google IAM)

 WSO2 Identity Server

 Auth0

 Keycloak

3.3.1.2 Cloud services IAM

Although there are different implementations, all cloud identity managers rely on more or less the same

principles. They all have a single access point interface for all cloud platforms where it is possible to

handle users, roles, policies and permissions. Also, they all support the Single Sign-On (SSO) mechanism

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

23

and Multifactor Authentication (MFA). Examples of cloud services IAM are AWS IAM, Azure AD and Google

IAM.

Benefits:

 pre-integrated with the rest of the platform services

 high level of reliability and scalability

 easy to patch and upgrade

Limitations:

 optimised for specific platforms

3.3.1.3 WSO2 Identity Server

Besides cloud identity managers, there are others that are very popular in the community. One of them

is WSO2 Identity server, an open-source identity manager based on open standards such as SAML, OIDC

and OAuth. WSO2 is perfect for providing identity management for enterprise web applications, services

or APIs. It is easily customizable and extendable and has a useful management console.

Benefits:

 uses role-based access control (RBAC)

 supports SSO and MFA

 identity federation

Limitations:

 complex integration

3.3.1.4 Auth0

Auth0 is another tool that offers identity management with high customization and is easy to implement.

As other tools, it provides a good SSO and MFA support. What makes it different is its centralised

authentication server, which immediately notifies users if their credentials have been compromised and

prevents them from logging in until they change their password.

Benefits:

 easy to implement and use

 centralised authentication server

Limitations:

 inadequate search feature

 not good for multitenancy

3.3.1.5 Keycloak

Keycloak is an open-source identity and access management solution that supports OpenID and SAML

2.0 open protocol standards and is able to secure applications easily with little to no code.

It supports multiple features including SSO, MFA, identity and social brokering, user federation etc.

At the moment, Keycloak has a growing community and is being improved often with new features. It can

be easily integrated with many social logins including Google, GitHub, Facebook and others. Also, it can

be adapted to any database.

Apart from its security features, it is worth noting that Keycloak is also natively supported by Kubernetes,

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

24

meaning it can be used as an operator.

Benefits:

• easy to integrate

• adaptable and customizable

• highly scalable

• good with multitenancy

Limitations:

• unreliable documentation

• theme customization takes some practice

3.3.1.6 Access control

Although authenticated, not all users should have permission to all available information. Access control

is a suitable way to grant specific permissions based on privilege to some users who are allowed to handle

certain data.

Most often used solutions are Role-based access control (RBAC) and Attribute-based access control

(ABAC). The main difference between them is how they grant access to the users.

For RBAC, the user is granted access using roles. Roles define what the user is able to see, add or delete,

how long he is able to use the system etc.

On the other hand, ABAC grants access by appointing resource attributes. Attributes could be related to

the user information, type of resource they are accessing or from which environment.

RBAC rules are easier to use and faster to execute, while ABAC rules provide greater granularity without

increasing complexity.

Access control has not proved as reliable when used on its own, so it is recommended to combine it with

other data security solutions.

3.3.1.7 Encryption

Encryption is a reliable way to protect sensitive data from data breaches because it protects it through its

whole lifecycle, either when data is in rest or in transit.

By data at rest, we refer to the data that is stored in memory (hard drive, flash drive etc.).

On the other side, data in transit is the one that is actively moving through network (e.g., from local storage

to cloud storage).

Data requires protection in both of these cases since unprotected data is vulnerable to potential attacks

of the hackers.

When protecting data at rest, it is common to encrypt the sensitive data before storing it and/or encrypt

the storage itself.

Protection of data in transit is often done by encrypting data before moving it and/or through encrypted

connection, for example through Transport Layer Security (TLS) protocol. TLS is a cryptographic protocol

most widely known for its use in securing web through HTTPS.

Encryption algorithms are usually separated in two groups: symmetric and asymmetric. In the symmetric

algorithms, the same key is used for both encryption and decryption and each pair must be changed often

to avoid attacks. The latter use different keys, public for encryption and private for decryption. Public key

is available to everyone, while the private key is available only to the receiver of the encrypted message.

Three best known and widely used encryption algorithms are RSA, DES, and AES.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

25

RSA is a strong, asymmetric type encryption, most often used to verify digital signatures.

DES was one of the first algorithms and was used in many different financial and business organisations,

but is considered a bit slow for modern standards.

AES is considered to be the most secure encryption type available and is often used by governments and

security organizations.

3.3.1.8 Data masking

Regardless of the goal of collecting medical data, usually there are legal or ethical limitations to its

dissemination.

Sometimes it is not enough to only remove obvious identifiers such as name or address because of

metadata which may point to geographical details or some other data that could be used to identify the

individual.

The main goal of data masking is to obscure sensitive data by replacing them with other unidentifiable

information. This must be done in a way that the statistical value of the information remains intact.

Contrary to encryption, with data masking it is not possible to extract the value which was replaced. This

is one of the most preferred methods of data anonymisation as it is also the least expensive.

The organisation can mask data from the original source data in two fundamentally distinct ways [5]:

1. Disclosure-limiting masks. Modifications of the data that will be used to create results that

pose an acceptable level of risk of exposure while sustaining the usefulness of data

2. Synthetic data. Estimated statistical model that is based on the source data and used to

create simulated data

The main difference between masked data and synthetic data is that the latter has an additional step of

creating a statistically estimated probability model, which is then used to simulate the data.

3.3.1.8.1 Disclosure-limiting masks

It can be valuable to partition data attributes into those that may be considered key variables and those

that can be considered sensitive. The key variables present the connection to an external database and

as such pose a threat to be the connection to sensitive variables. To best maintain the usefulness of data,

it is recommended to mask the key variables.

Depending on the method of covering up the data variables, there are four typical approaches [5]:

 Suppression: decrease the possibility of confidentiality leak by suppressing an amount of data

(deleting records or specific variables such as date of birth)

 Perturbation: intentional distortion of values in data records by replacing a part of data with

some substitute values. The main goal is to generate similar results as using the original data,

but to reduce the possibility that an outside source can link the information

 Sampling: includes creating a data product from a probability sample

 Aggregation: includes merging of attributes for some records, mixing the values of multiple

attributes or the combination of both

3.3.1.8.2 Synthetic data

The concept of using synthetic data involves the creation of a model that fits the original data and the

usage of samples from the generated model.

The advantage of synthetic data as opposed to masked data is that it is easy to analyse, but may also

produce less accurate results in some cases.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

26

3.4 DATA SHARING – COMPARATIVE ANALYSIS

When it comes to data sharing, the most important thing is to ensure that the data is in compliance with

the corresponding data regulations, as well as that it is useful in terms of quality and completeness.

In order to achieve this, data should undergo a number of processes, after which it can be exposed in a

manner useful for other analytical purposes.

3.4.1 TOOLS FOR DATA SHARING

Exposing data may be performed in many different ways, including REST (Representational state transfer)

APIs (Application programming interfaces), message and context brokers, as well as software

development kits (SDK), depending mainly on the format of data as a result of data harmonisation.

3.4.2 REST APIS

REST web services are the most often used method of retrieving data in the form of objects (JSON or XML)

using HTTP requests. This is especially useful when developing applications as it is not important which

programming language is used to process the data.

In essence, REST APIs represent a collection of methods used to retrieve, create, update or delete data.

This collection can be created as user-friendly using tools like Kong, Apigee, Traefik, Istio.

Kong

Kong is an open-source tool based on Nginx’s HTTP proxy server and written in the Lua programming

language. It includes many features such as load balancing and service discovery. Kong is comprised of

two layers, public and private. Public layer is responsible for exposing APIs to the final users and for

routing requests to the backend, while the private layer manages the configuration of APIs and plugins in

the backend.

One of its greatest abilities is flexibility and possibility to extend it through different modules or plugins,

which is why it is often used to decentralise applications into microservices.

Benefits:

 flexible and customisable with plugins

 native integration with Kubernetes

 good scalability

 good community support

 has GUI

Limitations:

 requires some Lua language experience

 relies on third-party components

Apigee

Apigee is a gateway management tool that is robust and easy to use. It is written in Java and it was

primarily made to deal with the legacy monolithic systems, while its focus on microservices is very low. It

has a very complex architecture and requires a lot of planning before being deployed. Since it was

acquired by Google, they also introduced the cloud hosted solution.

Benefits:

 full API gateway solution

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

27

 possible cloud hosting

Limitations:

 complex architecture

 not open-source

Traefik

Traefik is another open-source HTTP reverse proxy and load balancer with a focus on microservices. It is

easy to integrate and has a good support for Docker and Kubernetes.

Benefits:

 good integration with Kubernetes

 several possible backends to use

Limitations:

 complicated setup

 not very good performance

Istio

Istio is an open platform based on service mesh architecture that is able to maintain microservices’ traffic

on a cluster management platform such as Kubernetes. Inside a service mesh, each microservice has its

own individual proxy called “envoy” and each of them communicates with one another, forming their own

mesh network. This type of architecture simplifies configuration and makes it easier to perform tests or

debug problems.

Benefits:

 good integration with Kubernetes

 decentralized architecture

Limitations:

 complex setup

 still in early development

3.4.3 STREAMING SERVICES

To straighten the shortcomings of REST APIs, it is common to use streaming services, which enable users

to create a sort of a data pipeline and make data analysis more efficient. In other words, with streaming

services it is possible to deliver the data in real-time. A typical medical example would be to monitor the

state of a patient and being able to respond immediately with adequate treatment in case of emergency.

Streaming services operate using events in a publish/subscribe paradigm. One entity is publishing events

and the other is listening to the published events. These events can be organised and stored until it is

confirmed that they have been received by the listening entity.

One of the most notable examples of a streaming service is Apache Kafka, but other solutions are

available like: RabbitMQ, HornetQ, Cloud message queues (AWS SQS, Google PubSub, Azure Service Bus).

Apache Kafka

Kafka is a publish/subscribe tool based on message queue mechanism, developed by Apache. It is an

open-source software and it is widely used for the exposure of streaming data. Due to its ability to use

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

28

multiple nodes, it is highly scalable and it can process large amounts of real-time data.

Benefits:

 high scalability

 works with real-time data

 robustness

 low latency and high throughput

Limitations:

 compression and decompression of data may reduce performance

 incomplete monitoring tools

3.4.4 HUMAN-TO-MACHINE READABLE DATA

There are cases in which exposing data via API is unacceptable. However, it is possible to provide data in

a format which is easily readable by machines, and it is called CSV (comma separated values).

CSV is a format commonly used to present tabular data and is made up of lines and columns, where each

line represents a data record.

One of its disadvantages is that it must be in a precisely defined format in order to be readable.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

29

4 REQUIREMENTS’ ELABORATION

4.1 EDGE MODULE

Table 1 Edge module requirements’ elaboration

Code LBE-1

Title Pluggable system

User Facing Yes

User Roles Scientist; Clinician

Priority Must have

Description and Rationale

The edge module (also called “Local back end”)

is a lightweight system that allows to plug-in,

configure and remove modules in fast and easy

way.

Code LBE-2

Title Data workflow definition

User Facing Yes

User Roles Scientist; Clinician

Priority Must have

Description and Rationale

The edge module should allow to define workflows

over the incoming data. Each step of a workflow

should be supported by a plugged module.

Code LBE-3

Title Workflow assignment to input data

User Facing Yes

User Roles Scientist; Clinician

Priority Must have

Description and Rationale
The user is able to assign one or more workflow to

the data.

4.1.1 ANONYMISATION MODULE

Code AM-1

Title Local RWD anonymisation

User Facing No

User Roles -

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

30

Priority Must have

Description and Rationale

The Anonymisation module is one of the modules

pluggable into the Local back end. It will allow to

use a local script/app/executable for

automatically anonymising/defacing/etc. local

RWD before they are uploaded in the system.

Code AM-1

Title Anonymised data validation

User Facing Yes

User Roles Scientist; Clinician

Priority Must have

Description and Rationale
The module will prompt back to the user the

anonymised data for validation purposes.

Code AM-3

Title Anonymised data sharing

User Facing No

User Roles -

Priority Must have

Description and Rationale
Once anonymised, the module will send the data

to the cloud platform for analytical purposes.

4.2 DATA COLLECTION COMPONENT

Table 2 Data collection module requirements’ elaboration

Code DCO-1

Title Data collection

User Facing No

User Roles None

Priority Must have

Description and Rationale

The system shall collect and integrate data from

various legacy and external systems using a

common and standard based data framework.

Code DCO-2

Title Data collection configuration

User Facing Yes

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

31

User Roles System admin; Science coordinator; Patients

Priority Should have

Description and Rationale
The system shall allow users to configure the data

being collected.

Code DCO-3

Title Manage DAG

User Facing Yes

User Roles System admin

Priority Must have

Description and Rationale

The system allows the user to create, delete and

edit a DAG (a DAG is a Direct Acyclic Graph that

represents a data flow with ingestion purposes).

The business logic of a mashup is defined entirely

in a low-code way, according to a python-based

language.

Code DCO-4

Title Monitor a DAG

User Facing Yes

User Roles System admin

Priority Must have

Description and Rationale

The system allows the user to track the log of each

mashup execution and the status of each step of

the data flow

Code DCO-5

Title Developer tool – new RWD type

User Facing Yes

User Roles Clinician-scientist; Platform developer

Priority Would be nice

Description and Rationale

The system shall allow to introduce new RWD

types (e.g, cardiac Holter). This type of data can

also be used in a flexible platform.

Code DCO-6

Title Developer tool – recurrent executions

User Facing Yes

User Roles System admin; Platform developer

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

32

Priority Would be nice

Description and Rationale

The system allows to schedule DAGs by specifying

time frequencies. The system will automatically

trigger the specific DAGs keeping track of their

execution.

Code DCO-7

Title Developer tool – new data sources

User Facing Yes

User Roles System admin; Platform developer

Priority Would be nice

Description and Rationale

The system shall allow to introduce new Data

source connectors (e.g., RedCap, MySQL

databases). Such connectors can be used then to

build or enrich DAGs.

Code DCO-8

Title Activate/Deactivate DAG

User Facing Yes

User Roles System admin; Platform developer

Priority Must have

Description and Rationale

The system allows the user suspend or restore the

scheduling of a specific DAG. If a DAG is

suspended it will not be executed or automatically

trigger anymore.

Code DCO-9

Title Handle sensitive configuration

User Facing Yes

User Roles System admin; Platform developer

Priority Must have

Description and Rationale

The system allows to securely handle sensitive

configurations like password or access tokens.

Such configuration will not be shown in the UI and

can be only accessed by the DAGs.

Code DCO-10

Title Developer tool – Connection pools

User Facing Yes

User Roles System admin; Platform developer

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

33

Priority Must have

Description and Rationale

The system allows the user to limit the number of

active connections toward a specific data source,

by reducing his workload and reducing its

response time.

4.3 DATA LAKE

Table 3 Data lake module requirements’ elaboration

Code DLK-1

Title Data storage

User Facing No

User Roles None

Priority Must have

Description and Rationale

The system shall store data collected from

heterogenous outside data sources (RWD) and

from outputs of the system in Data Lake solution.

Code DLK-2

Title Management of stored data

User Facing Yes

User Roles System admin

Priority Must have

Description and Rationale

The system shall allow users to manage data

stored from heterogeneous external data sources

(RWD).

Code DLK-3

Title Push data

User Facing Yes

User Roles System admin; Components

Priority Must have

Description and Rationale The system shall create a new file in a bucket.

Code DLK-4

Title Get data

User Facing Yes

User Roles System admin; Components

Priority Must have

Description and Rationale The system shall get an already existing file in a

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

34

bucket.

Code DLK-5

Title Delete data

User Facing Yes

User Roles System admin; Components

Priority Must have

Description and Rationale The system shall remove a file the user owns.

Code DLK-6

Title Update data

User Facing Yes

User Roles System admin; Components

Priority Must have

Description and Rationale
The system shall update a file with a newer

version.

Code DLK-7

Title Create credentials for programmatic access

User Facing Yes

User Roles System admin

Priority Would be nice

Description and Rationale

The system allows the user to create credentials

with specific roles on different levels

(bucket/folder/file) that will enable programmatic

access on specific areas of the data lake.

4.4 DATA HARMONISATION COMPONENT

Table 4 Data Harmonisation module requirements’ elaboration

Code DHA-1

Title Data Harmonisation

User Facing No

User Roles None

Priority Must have

Description and Rationale

The system shall harmonise and transform the

collected data into a standard format, using an

internal data model that will be defined during the

project.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

35

Code DHA-2

Title Data Harmonisation Configuration

User Facing Yes

User Roles System admin; Science coordinator

Priority Should have

Description and Rationale
The system shall provide users with an interface

to configure and view process of harmonisation.

Code DHA-3

Title Manage a Mashup

User Facing Yes

User Roles System admin; Science coordinator; Scientist

Priority Must have

Description and Rationale

The system shall allow the user to create, delete

and edit a mashup (a mashup is a process that

manipulates data with harmonisation purposes).

The business logic of a mashup is defined entirely

in a no-code way; it can be done by simply

dragging and dropping operators on a working

area.

Code DHA-4

Title Monitor a Mashup

User Facing Yes

User Roles System admin; Science coordinator; Scientist

Priority Would be nice

Description and Rationale
The system shall allow the user to track the log of

each mashup execution.

Code DHA-5

Title Manage datasources

User Facing Yes

User Roles System admin; Science coordinator; Scientist

Priority Must have

Description and Rationale

The system shall allow the user to create, delete

and edit a data source to use it in a mashup. (e.g.

a rest api to be invoked during the mashup

execution flow).

Code DHA-6

Title Create a mashup trigger

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

36

User Facing Yes

User Roles System admin; Science coordinator; Scientist

Priority Must have

Description and Rationale

The system shall allow the user to define which are

the possible triggers for a mashup. The

possibilities are: schedule interval, http call, mqtt

message, kafka message.

Code DHA-7

Title Create a mashup sink

User Facing Yes

User Roles System admin; Science coordinator; Scientist

Priority Would be nice

Description and Rationale

The system shall allow the user to define where

the mashup result should be published. The

possibilities are: HTTP endpoint, MQTT Topic,

KAFKA Topic, FIWARE Orion Context Broker.

Code DHA-8

Title Common contextual data framework

User Facing No

User Roles None

Priority Must have

Description and Rationale

The system shall design and develop in a common

contextual framework the collected, harmonised

and RWD data, integrating and connecting them

efficiently to ensure the interoperability of the

data.

Code DHA-9

Title Missing data treatment

User Facing Yes

User Roles Scientist/Clinician

Priority Should have

Description and Rationale
The system shall provide functions to impute

missing data.

4.5 API GATEWAY

Table 5 API Gateway module requirements’ elaboration

Code APG-1

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

37

Title API Gateway

User Facing No

User Roles None

Priority Must have

Description and Rationale

The system shall make available an API Gateway

according to OpenAPI specifications, exposing

project information and allowing data collection in

a standard and simple way to facilitate access.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

38

5 DATA MANAGEMENT ARCHITECTURE

5.1 OVERALL ARCHITECTURE

The data management architecture in MES-CoBraD platform is depicted in the following image.

Figure 1 - MES-CoBraD data management architecture

The image shows the data lifecycle in the MES-CoBraD platform, from the ingestion to the sharing towards

other components both internal to the MES-CoBraD platform and external ones, going through

anonymisation, persistence and harmonisation steps.

The edge module (a.k.a. Local Back end) is the main entry point for the real-world data (RWD). It’s a

pluggable system that, out of the box, contains a mandatory plugin in charge for de-personalise the input

data. The de-personalisation process is described in more details in the upcoming paragraphs and, even

better, in the deliverable Ethical and Normative Framework for MES-CoBraD project.

As clearly depicted in the image above, each clinic has his own local instance of such an edge module to

guarantee the restriction of the personal data availability only within the clinic Local Area Network. This

would allow also to retrieve RWD from other local systems that, otherwise would not be available on the

public internet.

The output of the edge module (i.e. the anonymised version of the data) is then written, across the

internet, on the cloud. The cloud-side entry point for the data is the Data Collection Component that is in

charge of receiving the data from all the local back ends and store them in the proper portion of the Data

Lake.

The Data Lake is the focal point of the entire data management architecture since it stores both the

original anonymised version of the RWD as well as their harmonised counterpart. The harmonised version

of the data is created through the Data harmonisation component that allows to manipulate whichever

original format of the data to convert them into a data-model known by all the other platform components.

This tool both reads the raw data from the Data Lake and writes the harmonised version back.

All the data available in the platform, both raw and harmonised, as well as historical and real-time ones,

is shared with the other platform components through the API Gateway. Such a gateway allows to read

data from the Data Lake, for example for analytics and visualization purposes, and also to write back data

onto the Data Lake, for example to track logs and relevant events for GDPR compliance purposes.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

39

In the upcoming section, the internal architecture of each of the just mentioned components will be

described in more detail.

5.2 COMPONENTS

5.2.1 EDGE MODULE

The idea behind the Edge module is to create a pluggable system, available only within the LAN of the

hospital, that allows the scientists to install autonomously software modules in order to process the

patients’ data according to different business logics.

The up-mentioned software modules are, actually, plugins that must be installed in the system in a fast

and easy way. Hence, the internal architecture of the edge module should be able to deal with the

management of several plugins and their lifecyle. A Plugin Manager is in charge of importing and installing

plugins in the local system, getting the plugin reference metadata from a remote (cloud) Plugin Catalogue.

The publication of plugins in the catalogue is ruled and validated by the MES-CoBraD community that

ensures that all the plugins available in the catalogue are safe, performant, and not malicious at all. The

plugin manager is also in charge of the entire lifecyle of the installed plugins: it takes in charge the

updates, the trustfulness and the, eventual, deletion of the plugins.

Once installed, a plugin could be part of one or more workflows. A workflow is intended as a set of steps

each of which manipulates the input data according to the internal implementation of the associated

plugin. The workflows are managed through a Workflow Manager that is in charge of dealing with the

creation, configuration and deletion of workflows.

Through the API layer, it’s possible to access and inspect all the available edge modules assets (i.e.

workflows and plugins) and also trigger specific workflows, submitting the necessary input data.

In order to deal with the limited resources that, most probably, the underneath hardware will have, the

edge module is also enriched with a Resource Negotiator that is in charge for the assignment of resources

to the workflows and the planning of the executions in order to both maximise the performance and

minimise the delays of each run.

Figure 2 - Edge module internal architecture

5.2.2 ANONYMISATION MODULE

The anonymisation module, is the component responsible for anonymising patients’ personal data before

to be submitted to the MES-CoBraD platform. It will be used by scientists and clinicians as a tool to

prepare the patients’ data they collect (or produce) by running the anonymisation process accordingly to

the existent configuration. The anonymisation will ensure to remove any patient-related information from

the raw data (anonymisation phase) to avoid users’ identification in case of data leaks or undesired data

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

40

access. The following diagram shows the high-level flow:

Figure 3 - Basic anonymisation flow

Once anonymised the output data will be verified by the original submitter. After the final approval the

data could be uploaded within the MES-CoBraD platform to be anonymously available to other end-users

and other components of the platform. The anonymisation module will be extendible through plug-and-

play plugins that could be made available by other scientists and developers. The plugins enhance the

power of the anonymisation component by bringing additional functionalities such as advanced

anonymisation algorithms, support for different data formats and new protocols.

Figure 4 - Anonym data verification is an iterative process

Security is one of the most important aspects of the component and, in general, of the entire MES-CoBraD

platform. Patients’ information are intrinsically sensible data, for this reason the anonymity must be

ensured. At the same time the submitter might want to access the original information with all the

patients’ data back (e.g. to update the file with a newer version or to simply check the patients’ health

status). Only the authorised user(s) will be able to see raw data containing the sensitive information,

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

41

making the whole system compliant with several security and privacy standards.

Figure 5 - Original submitters are the only users able to recover raw data with sensitive data

The overall process flow is described as follow:

1. Anonymisation module configuration – The anonymisation module is available locally and

could be extended with plugins provided by developers and scientists. Scientists and

clinicians can configure the anonymisation module by using the available plugins.

2. Patients’ data collection – Scientists and Clinicians prepare patients’ data to be submitted to

the anonymisation module.

3. Data anonymisation through the module – Patients’ data along with the module configuration

are the input for the component.

4. Manual verification of the anonymised data – Once data are anonymised, they are manually

verified by the submitter that will determine if the data has been correctly anonymised

accordingly with the requirements.

5. Verified data submission – Verified data could be uploaded within the platform to make them

available to other components and users.

Moreover, as described in the previous steps anonymised data can be de-anonymised only by the user

who originally submitted the data within the MES-CoBraD platform.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

42

Figure 6 - Overall anonymisation flow

5.2.3 DATA COLLECTION COMPONENT

The data sources that contain all the information needed to make the platform working usually use

different technology stacks. Dealing with them imply having several ways of connecting with the correct

protocol, limiting the number of connections, correctly handling parallelisms and being able to efficiently

query them. The data collection component is the tool responsible to extract information from

heterogeneous data sources independently from their technology stack, perform operations from the

extracted data and store the result in a set of target systems, ready to be analysed and used. Its main

goal is to provide a set of building block to create ETL pipeline easily, without taking care of some low-

level technical details like performance optimisations and connections handling. Such component will act

as workflow orchestrator, where users can define a (complex) sequence of steps, like connections to

databases, processing operations and script executions, their order and, if necessary, a schedule interval

to automatically trigger the pipeline based on datetime or events. Such executions will be monitored at

different level: for each DAG execution will be possible to monitor its status, the execution time, and check

the artifacts produced within the staging area (DAG level monitoring). Since each DAG could be composed

by several tasks they can be monitored as well (Task level monitoring). Indeed, it will be possible to access

tasks’ status and logs in order to monitor its behaviour or to debug anomalies. The component will also

be able to scale the workload across several instances to reduce execution time of DAG and to efficiently

allocate resources among the underlying hardware. To accomplish such goal the data collection

component will run on top of latest cloud technologies, to ensure high-availability, isolation and security.

The core concept within the component is the Directed Acyclic Graph (or DAG) that defines a workflow.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

43

Each DAG is composed by “tasks” that can interact with external systems and run some logic on top of

data (e.g., run a script, perform joins, clean data, …). A typical DAG looks like the following:

Figure 7 - Directed Acyclic Graph (DAG)

Each task is an instance of an operator, a provided building block that can perform different types of

operations. There are mainly five kinds of operations:

 Sensors – Such operators wait for some events before to move forward to next tasks. The

events could be an HTTP request, a new file within a remote folder, a notification or any alert

that can notify the component.

 Extract operators – These operators use the underlying connectors (provided or custom) to

interact with external sources in order to extract data from.

 Migration operators – Like the extract operators also the migration ones use the connectors

to communicate with external sources. Here the sources are usually two and the operator

allow the data migration from sources A to source B, allowing users to specify configurations

for both the external systems.

 Processors – Such operators implement the real business logic of the workflow. They can be

written in whatever programming language giving teams the flexibility to choose the right

technology for the right purpose.

 Utilities – All the operators that help in the maintenance, the organisation and the proper

execution of the pipelines are considered utility operators and are available too as building

blocks for composing the workflows.

Each DAG can be run manually or scheduled to be executed on specific time interval, e.g., one day, one

hour, twice a day, etc... The scheduler is the component responsible for checking the schedule interval of

each DAG and eventually start it. Once a DAG status is set to running the “executor” create the processes

among the underlying hardware. Specifically, each process run on a worker, that is a special process that

can create, manage and delete operator instances.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

44

Figure 8 - Scheduler architecture

Workers can run inside ad-hoc hardware or inside a cluster if the data collection component is deployed

using cloud technologies. They are strictly related to the type of executor the component is configured

with. If the component is deployed on a single server, then the executer will be a local executor that will

spawn process in the same machine. Within the MES-CoBraD project the data collection component will

be deployed in a cloud environment composed by multiple nodes, where each node is a machine that

can run software and that is connected to the other nodes to act as a single entity. In such scenario the

executor is strictly related to the cloud technology, that is powered by Kubernetes.

Figure 9 - A cluster is a set of logically connected nodes

The overall component’s architecture includes a web server that serves a UI to the end user to check

DAGs execution, manually trigger DAGs, monitoring workflows and managing connections and

configurations. All these information is stored within a Metadata DB, that is accessed also by the

scheduler, the actual executor (In case of cloud deployment it will be a Kubernetes executor) and the

processes. The complete architecture is shown in the next diagram:

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

45

Figure 10 - Data collection component architecture

5.2.4 DATA LAKE

Dealing with real-world data implies managing high-volume heterogeneous data. As described in section

2 health data are intrinsically Big Data and must be managed with the correct techniques and tools.

Within the MES-CoBraD platform the persistence layer will be composed by a Data Lake, where the

different actors of the platform can push and extract information or generate analytical reports.

The data lake architecture is composed by three types of storage:

 Object Storage – It allows to manage whatever object (e.g., documents, videos, audios and

binary files) by allowing versioning and encryption of each file uploaded within the object

storage. Files can be associated with metadata, that can be used to query data, group them

and perform analytics based them. Such storage layer will be used to store anonymised

patients’ data and the outcomes of the harmonisation process. Data can be organised in

folders that relies on same the “bucket”, where a backet is a cloud resources that usually

reflect a specific use case or business sector. The tool allows also to define access policies

to specific files, folders and buckets by defining the king of permitted/denied actions. In order

to ensure high-availability and replicability the object storage is replicated across the cluster

and can be scaled elastically if needed.

 Relational Databases – Such databases will contain all the necessary data to make the

platform working, and to allow analytical components to be able to efficiently query data to

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

46

create reports, machine learning models and to identify patterns and insights. Relational

databases usually are partitioned into multiple database instances to ensure to have fast

performance on read/write operations and to better handle replicability and security.

 NoSQL Databases – Those are used to store non-relational data like health devices measures,

asynchronous events and logs. This layer is composed by two different databases: a time

series database to store time-dependent information and a logging database to collect

information about platform usage and to allow better monitoring/debugging of the MES-

CoBraD platform’s components. Depending on the workload NoSQL databases can scale up

and down elastically, by using the capabilities of the underlying cloud technology.

Figure 11 - Data lake components

5.2.5 DATA HARMONISATION COMPONENT

Data Harmonisation tool is the one which is used to extract and transform data from the data lake,

preparing it for further processing.

It consists of three main layers: core, shared and tenant.

The core layer contains the authentication management, key-value storage and message broker. The

authentication is used when accessed through the frontend UI. Key-value storage is used to store shared

configuration and the message broker is used for a communication between layers.

The shared layer contains the backend API, database, scheduler, workflow engine, logger and frontend

UI. Backend API is the microservice containing all of the exposed server APIs. Database is used to store

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

47

workflow information, as well as logs from all layers. Scheduler is used to manage deployment and

execution of workflows in tenant namespaces through the message broker. Workflow engine performs

the execution. It uses the received JSON descriptor to return transformed data in JSON format.

Core and shared layers are common to all the tenants, while the tenant layer should be unique for a

specific tenant.

On tenant layer, main component is the controller, which manages the deployment of workflows, using

the Kubernetes API to deploy and stop Kubernetes pods. These pods can be triggered or targeted from

the outside using HTTP, MQTT, KAFKA or ORION. In case of HTTP, the request must go through a proxy

which exposes a single ingress to all workflow pods, and must contain an execution flow id which is

forwarded to a specific pod.

Figure 12 - Architecture of the Data harmonisation tool

5.2.6 API GATEWAY

An API gateway is a management tool that collects all calls to the application, invokes all necessary

microservices and returns an appropriate result, behaving like an abstraction layer between the clients

and the server.

Usage of API gateways is becoming more popular since the rise of the microservices approach. It is not a

best practice to enable direct communication between clients and microservices because the API for each

microservice would need to be exposed and sometimes it can be hard to understand the complex network

of services behind the server. By using an API gateway, we ensure that there is only one entry point for

the consumers of the application.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

48

Figure 13 - Architecture of the API gateway

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

49

6 DATA MANAGEMENT MOCK-UPS

6.1 USER INTERFACE

6.1.1 EDGE MODULE

The edge module presents a web UI where the plugin management is possible. The following picture

presents a detailed wireframe of the plugin management page.

Figure 14 – Mock-up of the edge module (I)

The plugin management page presents the list of the plugins already installed in the system. For each

plugin are clearly visible:

 the name of the plugin

 the installed version

 a star badge to highlight the official plugins, released directly by the MES-CoBraD project

consortium

 the link to the documentation

 the link to the configuration page

 the button to uninstall the plugin from the system

The button “Install plugin” will open a new page, shown hereafter, to install a new plugin into the

system.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

50

Figure 15 – Mock-up of the edge module (II)

The installation page is populated from a central repository of available plugins. A search box allows to

search over the, potentially several, available plugins.

For each plugin available in the repository, the corresponding list item shows:

 the name and the version

 the star badge to highlight the official plugins

 the link to the documentation

 Either the “installed” label – for the already installed plugins – or the “Install” icon to trigger

the installation of the plugin in the current system

In case the user wants to install an unofficial plugin in the system there is also the possibility to upload

the plugin from the local hard drive of the user, through a dedicated button that will open an “upload”

prompt window.

Once installed a plugin can be incorporated into a workflow.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

51

Figure 16 – Mock-up of the edge module (III)

The workflow details page shows the end-to-end workflow elaboration for the input data. An activity

diagram will show the steps of the data processing. It’s possible to both configure and remove each of

the step already in the workflow and even add new steps.

For documentation purposes, especially for complex and log workflows, the bottom part of the page shows

a list of the plugins used in the current workflow.

6.1.2 ANONYMISATION MODULE

This component will not have a dedicated User interface since it will be a backend module.

6.1.3 DATA COLLECTION COMPONENT

The data collection component allows end-users to exploit its functionalities using both APIs and a user

interface. The focus of this section is to describe the component’s UI focusing on the functionalities of

each the application.

The component UI is divided into three different sections:

 DAGs

 Connections

 Configurations

The following picture represent a detailed wireframe of the DAG section:

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

52

Figure 17 - DAG View

The main section shows the list of the DAGs that has been published within the component. Each row

contains information like DAG’s name, its latest execution (Date time) and the last execution status. The

Execution status can assume the following values:

 Light green (Running) – The DAG is currently running.

 Green (Done) – The DAG has been executed correctly.

 Yellow (Warning) – Some of the tasks within a DAG could have been skipped for some reason.

 Red (Error) – One of the tasks failed during its execution.

DAG can be searchable by using a search bar that can filter them using part of the name or tags (if any).

From the same page DAGs can be enabled/disabled and triggered manually.

The DAG workflow is accessible by clicking one of the rows in the main page. It contains three different

sub-sections:

 Workflow

 Execution time

 Logs

The workflow view shows the DAG diagram with the interconnections between tasks. Each task is

highlighted using a colour-scheme that reflects the one described above for the DAG status. Tasks can

be searchable through a search bar by using their name or the operator’s name.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

53

Figure 18 - Workflow details

The execution time section shows a diagram where tasks’ execution time are compared. This section

allows developers to rapidly identify the tasks that act as bottleneck for the entire DAG to focus the

attention for further optimisations.

Figure 19 - Data collection component allows to compare execution times

The log sub-section shows the DAG execution’s details at different grains. It can help in debugging not-

working tasks or to identify unwanted behaviours.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

54

Figure 20 - DAG logs

The second component’s section shows the information about connections with the registered external

systems. As described in section 4.2 the component is able to connect with several data sources. New

source can be installed within the component in order to let system admin to create connections based

on such source. This page allows CRUD operations on connections and to search them by name or by

kind of connection (Database, Http endpoint, FTP server, etc.).

Figure 21 - Data collection component allows to define connections by using the user interface

The configuration section of the component is the configuration manager. Here users can define

configurations that will be used within the DAGs. The page shows the list of available configurations

against their value. Configurations can be searched using the search bar or consulted for modifications

by clicking on them.

If system admin needs to define configurations that contains sensitive information like password, tokens

or keys he can define secrets using this section. Secrets are hidden in the UI and can be accessed only

by DAGs without showing their content within the logs.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

55

Figure 22 - Configuration management

6.1.4 DATA LAKE

Data lake is mainly accessed programmatically by the components that need to read and write file within

specific areas of the storage. The tool comes with a bundled-in UI that enables end-users to access files

and folders using a web browser. The UI contains two sections:

 Bucket view

 Settings

The bucket view allows user to manage the object storage at bucket level. It shows the list of available

buckets, to create new buckets and to remove existing ones.

Figure 23 - Bucket view

Buckets contain a tree structure composed by folders (nodes) and files (leaves). Elements within a

bucket can be accessed also through the UI by clicking in the file/folder of interest. Moreover, The UI

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

56

allows also to create folders and upload files using a drag-and-drop approach.

Figure 24 - Folder structure

CRUD Operations (at different grains) can be performed only by users who are authorised by system

admin. Such authorisation can be also created for programmatic access of the object storage by defining

specific credentials. The setting section of the UI allows user to manage such credentials by doing CRD

operations on them. Indeed, this section allows to list the existing credentials, remove them and to create

new ones.

Figure 25 - Object storage allows to define credentials for programmatic access

Credentials can be created by specifying a set of permission using a meta-language easy to understand.

The picture below is a wireframe showing the credential creation view:

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

57

Figure 26 - Policy form

6.1.5 DATA HARMONISATION COMPONENT

Data harmonisation tools consist of a palette of transformation tools on the left side and a dashboard in

which these tools can be used. The tools can be dragged and dropped into the dashboard and then

connected to transform the data into the desired format. After each connection, the user should choose

the data which should be transformed.

Figure 27 - Mock-up of the Data harmonisation tool

6.1.6 API GATEWAY

The API gateway is a backend tool that, then, will not have any GUI.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

58

7 APIS’ SPECIFICATION

7.1 EDGE MODULE PLUGINS

GET /plugins

Path params -

Query params limit The numbers of items to return.

 Offset
The number of items to skip before starting to collect the

result set.

 Order_by
The name of the field to order the results by. Prefix a field

name with “-” to reverse the sort order.

Body -

Headers Authorization Bearer <token>

Success Response

Code 200; 401

Schema

[{

 “id”: “string”,

 “name”: “string”,

 “version”: “string”,

 “official”: true | false,

 “docs”: “string”

}, ...]

List all the installed plugins

POST /plugins

Path params -

Body

{

 “id”: “string”,

 “version”: “string”,

 “configuration”: object

}

Headers Authorization Bearer <token>

Success Response
Code 201; 401; 400

Schema -

Install a new plugin

GET /plugins/{id}

Path params id Identifier of the installed plugin to inspect

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

59

Body -

Headers Authorization Bearer <token>

Success Response

Code 200; 401; 404

Schema

{

 “id”: “string”,

 “name”: “string”,

 “version”: “string”,

 “official”: true | false,

 “docs”: “string”,

 “configuration”: object

}

Get details of an installed plugin. The configuration field is a generic object that depends on the

plugin.

DELETE /plugins/{id}

Path params id Identifier of the installed plugin to inspect

Body -

Headers Authorization Bearer <token>

Success Response

Code 204; 401; 404

Schema -

Uninstall a plugin from the system

GET /workflows

Path params -

Query params limit The numbers of items to return.

 Offset
The number of items to skip before starting to collect the

result set.

 Order_by
The name of the field to order the results by. Prefix a field

name with “-” to reverse the sort order.

Body -

Headers Authorization Bearer <token>

Success Response

Code 200; 401

Schema

[{

 “id”: “string”,

 “name”: “string”

}, ...]

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

60

List all the available workflows

POST /workflows

Path params -

Body

{

 “id”: “string”,

 “name”: “string”,

 “steps”: [{

 “plugin_id”: “string”,

 “configuration”: object

 }, …]

}

Headers Authorization Bearer <token>

Success Response
Code 201; 401; 400

Schema -

Create a new workflow.

GET /workflows/{id}

Path params id Identifier of the workflow to inspect

Body -

Headers Authorization Bearer <token>

Success Response

Code 200; 401; 404

Schema

{

 “id”: “string”,

 “name”: “string”,

 “steps”: [{

 “plugin_id”: “string”,

 “configuration”: object

 }, …]

}

Get details of an available workflow. The configuration field is a generic object that depends on the

plugin.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

61

DELETE /workflows/{id}

Path params id Identifier of the workflow to inspect

Body -

Headers Authorization Bearer <token>

Success Response

Code 204; 401; 404

Schema -

Delete a workflow.

POST /workflows/{id}/run

Path params id Identifier of the workflow to launch

Body Object (workflow specific)

Headers Authorization Bearer <token>

Success Response

Code 200; 401; 404

Schema Object (workflow specific)

Trigger a workflow run via API. Both the input and the output are workflow specific.

7.2 DATA COLLECTION COMPONENT

GET /dags

Path params -

Query params limit The numbers of items to return.

 Offset
The number of items to skip before starting to collect the

result set.

 Order_by
The name of the field to order the results by. Prefix a field

name with “-” to reverse the sort order.

 Tags List of tags to filter results.

 Only_active Only return active DAGs.

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 401

Schema

{

 “dags”: [

 {

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

62

 “dag_id”: “string”,

 “root_dag_id”: “string”,

 “is_paused”: true,

 “is_active”: true,

 “is_subdag”: true,

 “fileloc”: “string”,

 “file_token”: “string”,

 “owners”: [

 “string”

],

 “description”: “string”,

 “schedule_interval”: {

 “__type”: “string”,

 “days”: 0,

 “seconds”: 0,

 “microseconds”: 0

 },

 “tags”: [

 {

 “name”: “string”

 }

]

 }

],

 “total_entries”: 0

}

List all the DAGs

GET /dags/{dagId}

Path params dagId Id of the specified DAG

Query params -

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 401;403;404

Schema

{

 “dag_id”: “string”,

 “root_dag_id”: “string”,

 “is_paused”: true,

 “is_active”: true,

 “is_subdag”: true,

 “fileloc”: “string”,

 “file_token”: “string”,

 “owners”: [

 “string”

],

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

63

 “description”: “string”,

 “schedule_interval”: {

 “__type”: “string”,

 “days”: 0,

 “seconds”: 0,

 “microseconds”: 0

 },

 “tags”: [

 {

 “name”: “string”

 }

]

}

Get basic information about the specified DAG

GET /dags/{dagId}/tasks

Path params dagId Id of the specified DAG

Query params order_by
The name of the field to order the results by. Prefix a field

name with – to reverse the sort order.

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 401;403;404

Schema

{

 “tasks”: [

 {

 “class_ref”: {

 “module_path”: “string”,

 “class_name”: “string”

 },

 “task_id”: “string”,

 “owner”: “string”,

 “start_date”: “2019-08-24T14:15:22Z”,

 “end_date”: “2019-08-24T14:15:22Z”,

 “trigger_rule”: “all_success”,

 “extra_links”: [

 {

 “class_ref”: {

 “module_path”: “string”,

 “class_name”: “string”

 }

 }

],

 “depends_on_past”: true,

 “wait_for_downstream”: true,

 “retries”: 0,

 “queue”: “string”,

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

64

 “pool”: “string”,

 “pool_slots”: 0,

 “execution_timeout”: {

 “__type”: “string”,

 “days”: 0,

 “seconds”: 0,

 “microseconds”: 0

 },

 “retry_delay”: {

 “__type”: “string”,

 “days”: 0,

 “seconds”: 0,

 “microseconds”: 0

 },

 “retry_exponential_backoff”: true,

 “priority_weight”: 0,

 “weight_rule”: “downstream”,

 “ui_color”: “string”,

 “ui_fgcolor”: “string”,

 “template_fields”: [

 “string”

],

 “sub_dag”: {

 “dag_id”: “string”,

 “root_dag_id”: “string”,

 “is_paused”: true,

 “is_active”: true,

 “is_subdag”: true,

 “fileloc”: “string”,

 “file_token”: “string”,

 “owners”: [

 “string”

],

 “description”: “string”,

 “schedule_interval”: {

 “__type”: “string”,

 “days”: 0,

 “seconds”: 0,

 “microseconds”: 0

 },

 “tags”: [

 {

 “name”: “string”

 }

]

 },

 “downstream_task_ids”: [

 “string”

]

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

65

 }

]

}

List all the tasks within the specified DAG

GET /dags/{dagId}/tasks/{taskId}

Path params dagId Id of the specified DAG

 taskId Id of the specific task

Query params -

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 401;403;404

Schema

{

 “class_ref”: {

 “module_path”: “string”,

 “class_name”: “string”

 },

 “task_id”: “string”,

 “owner”: “string”,

 “start_date”: “2019-08-24T14:15:22Z”,

 “end_date”: “2019-08-24T14:15:22Z”,

 “trigger_rule”: “all_success”,

 “extra_links”: [

 {

 “class_ref”: {

 “module_path”: “string”,

 “class_name”: “string”

 }

 }

],

 “depends_on_past”: true,

 “wait_for_downstream”: true,

 “retries”: 0,

 “queue”: “string”,

 “pool”: “string”,

 “pool_slots”: 0,

 “execution_timeout”: {

 “__type”: “string”,

 “days”: 0,

 “seconds”: 0,

 “microseconds”: 0

 },

 “retry_delay”: {

 “__type”: “string”,

 “days”: 0,

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

66

 “seconds”: 0,

 “microseconds”: 0

 },

 “retry_exponential_backoff”: true,

 “priority_weight”: 0,

 “weight_rule”: “downstream”,

 “ui_color”: “string”,

 “ui_fgcolor”: “string”,

 “template_fields”: [

 “string”

],

 “sub_dag”: {

 “dag_id”: “string”,

 “root_dag_id”: “string”,

 “is_paused”: true,

 “is_active”: true,

 “is_subdag”: true,

 “fileloc”: “string”,

 “file_token”: “string”,

 “owners”: [

 “string”

],

 “description”: “string”,

 “schedule_interval”: {

 “__type”: “string”,

 “days”: 0,

 “seconds”: 0,

 “microseconds”: 0

 },

 “tags”: [

 {

 “name”: “string”

 }

]

 },

 “downstream_task_ids”: [

 “string”

]

}

Get basic information about a specific task within the specified DAG

GET /dags/{dagId}/dagRuns

Path params dagId Id of the specified DAG

Query params limit The numbers of items to return.

 Offset
The number of items to skip before starting to collect the

result set.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

67

 Execution_date_gte

Returns objects greater or equal to the specified date.

This can be combined with execution_date_lte parameter

to receive only the selected period.

 Execution_date_lte

Returns objects less than or equal to the specified date.

This can be combined with execution_date_gte parameter

to receive only the selected period.

 Start_date_gte

Returns objects greater or equal the specified date.

This can be combined with start_date_lte parameter to

receive only the selected period.

 Start_date_lte

Returns objects less or equal the specified date.

This can be combined with start_date_gte parameter to

receive only the selected period.

 End_date_gte

Returns objects greater or equal the specified date.

This can be combined with start_date_lte parameter to

receive only the selected period.

 End_date_lte

Returns objects less than or equal to the specified date.

This can be combined with start_date_gte parameter to

receive only the selected period.

 Order_by
The name of the field to order the results by. Prefix a field

name with “-” to reverse the sort order.

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 401

Schema

{

 “dag_runs”: [

 {

 “dag_run_id”: “string”,

 “dag_id”: “string”,

 “logical_date”: “2019-08-

24T14:15:22Z”,

 “execution_date”: “2019-08-

24T14:15:22Z”,

 “start_date”: “2019-08-24T14:15:22Z”,

 “end_date”: “2019-08-24T14:15:22Z”,

 “state”: “queued”,

 “external_trigger”: true,

 “conf”: {}

 }

],

 “total_entries”: 0

}

List all the runs for the specified DAG

GET /dags/{dagId}/dagRuns/{dagRunId}

Path params dagId Id of the specified DAG

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

68

 dagRunId Id of the specific DAG run

Query params -

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 401;403;404

Schema

{

 “dag_run_id”: “string”,

 “dag_id”: “string”,

 “logical_date”: “2019-08-24T14:15:22Z”,

 “execution_date”: “2019-08-24T14:15:22Z”,

 “start_date”: “2019-08-24T14:15:22Z”,

 “end_date”: “2019-08-24T14:15:22Z”,

 “state”: “queued”,

 “external_trigger”: true,

 “conf”: {}

}

List all the runs for the specified DAG

POST /dags/{dagId}/dagRuns

Path params dagId Id of the specified DAG

Query params -

Body

{

 “dag_run_id”: “string”,

 “logical_date”: “2019-08-24T14:15:22Z”,

 “execution_date”: “2019-08-24T14:15:22Z”,

 “state”: “queued”,

 “conf”: {}

}

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 400;401;403;404;409

Schema

{

 “dag_run_id”: “string”,

 “dag_id”: “string”,

 “logical_date”: “2019-08-24T14:15:22Z”,

 “execution_date”: “2019-08-24T14:15:22Z”,

 “start_date”: “2019-08-24T14:15:22Z”,

 “end_date”: “2019-08-24T14:15:22Z”,

 “state”: “queued”,

 “external_trigger”: true,

 “conf”: {}

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

69

}

Trigger a new run for the specified DAG

PATCH /dags/{dagId}/dagRuns/{dagRunId}

Path params dagId Id of the specified DAG

 dagRunId Id of the specific DAG run

Query params -

Body

{

 “state”: “success”

}

Headers Authorization Basic B64(username:password)

Success Response

Code 200; 400;401;403;404

Schema

{

 “dag_run_id”: “string”,

 “dag_id”: “string”,

 “logical_date”: “2019-08-24T14:15:22Z”,

 “execution_date”: “2019-08-24T14:15:22Z”,

 “start_date”: “2019-08-24T14:15:22Z”,

 “end_date”: “2019-08-24T14:15:22Z”,

 “state”: “queued”,

 “external_trigger”: true,

 “conf”: {}

}

Edit an existent DAG run

DELETE /dags/{dagId}/dagRuns/{dagRunId}

Path params dagId Id of the specified DAG

 dagRunId Id of the specific DAG run

Query params -

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200;400;401;403;404

Schema

{

 “type”: “string”,

 “title”: “string”,

 “status”: 0,

 “detail”: “string”,

 “instance”: “string”

}

Delete an existent DAG run

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

70

PATCH /dags/{dagId}

Path params dagId Id of the specified DAG

Query params -

Body

{

 “is_paused”: true

}

Headers Authorization Basic B64(username:password)

Success Response

Code 200;400;401;403;404

Schema

{

 “type”: “string”,

 “title”: “string”,

 “status”: 0,

 “detail”: “string”,

 “instance”: “string”

}

Update an existent DAG run

DELETE /dags/{dagId}

Path params dagId Id of the specified DAG

Query params -

Body -

Headers Authorization Basic B64(username:password)

Success Response

Code 200;400;401;403;404

Schema

{

 “type”: “string”,

 “title”: “string”,

 “status”: 0,

 “detail”: “string”,

 “instance”: “string”

}

Delete an existent DAG run

7.3 DATA LAKE

GET /

Path params -

Query params -

Body -

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

71

Headers Authorization HMAC Authorization-String

Success Response

Code 200

Schema

<?xml version=”1.0” encoding=”UTF-8”?>

<ListAllMyBucketsResult>

 <Buckets>

 <Bucket>

 <CreationDate>timestamp</CreationDate>

 <Name>string</Name>

 </Bucket>

 </Buckets>

 <Owner>

 <DisplayName>string</DisplayName>

 <ID>string</ID>

 </Owner>

</ListAllMyBucketsResult>

List all the buckets

PUT /bucket_name

Path params -

Query params -

Body

<CreateBucketConfiguration>

 <LocationConstraint>string</LocationConstraint>

</CreateBucketConfiguration>

Headers Authorization HMAC Authorization-String

Success Response
Code 200

Schema -

Create a bucket_name bucket

DELETE /bucket_name

Path params -

Query params -

Body -

Headers Authorization HMAC Authorization-String

Success Response
Code 204

Schema -

Delete a bucket_name bucket

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

72

PUT /bucket_name

Path params -

Query params versioning

Body

<VersioningConfiguration>

 <MfaDelete>Enabled|Disabled</MfaDelete>

 <Status>Enabled|Suspended</Status>

</VersioningConfiguration>

Headers Authorization HMAC Authorization-String

Success Response
Code 200

Schema -

Set versioning configuration for the specified bucket

GET /bucket_name/full_file_path

Path params -

Query params -

Body -

Headers Authorization HMAC Authorization-String

Success Response
Code 200

Schema File content

Return the latest version of the selected file

GET /bucket_name

Path params -

Query params versions

 prefix File prefix

Body -

Headers Authorization HMAC Authorization-String

Success

Response

Code 200

Schema

<?xml version=”1.0” encoding=”UTF-8”?>

<ListVersionsResult>

 <IsTruncated>72nteres</IsTruncated>

 <KeyMarker>string</KeyMarker>

 <VersionIdMarker>string</VersionIdMarker>

 <NextKeyMarker>string</NextKeyMarker>

<NextVersionIdMarker>string</NextVersionIdMarker>

 <Version>

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

73

<ChecksumAlgorithm>string</ChecksumAlgorithm>

 ...

 <Etag>string</Etag>

 <IsLatest>73nteres</IsLatest>

 <Key>string</Key>

 <LastModified>timestamp</LastModified>

 <Owner>

 <DisplayName>string</DisplayName>

 <ID>string</ID>

 </Owner>

 <Size>integer</Size>

 <StorageClass>string</StorageClass>

 <VersionId>string</VersionId>

 </Version>

 ...

 <DeleteMarker>

 <IsLatest>73nteres</IsLatest>

 <Key>string</Key>

 <LastModified>timestamp</LastModified>

 <Owner>

 <DisplayName>string</DisplayName>

 <ID>string</ID>

 </Owner>

 <VersionId>string</VersionId>

 </DeleteMarker>

 ...

 <Name>string</Name>

 <Prefix>string</Prefix>

 <Delimiter>string</Delimiter>

 <MaxKeys>integer</MaxKeys>

 <CommonPrefixes>

 <Prefix>string</Prefix>

 </CommonPrefixes>

 ...

 <EncodingType>string</EncodingType>

</ListVersionsResult>

Return all the versions of the files that start with the provided prefix

GET /bucket_name/full_file_path

Path params -

Query params versionId version_id

Body -

Headers Authorization HMAC Authorization-String

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

74

Success Response

Code 200

Schema File content

Return the specific version of the selected file

GET /bucket_name/full_file_path

Path params -

Query params attributes

Body -

Headers Authorization HMAC Authorization-String

Success

Response

Code 200

Schema

<GetObjectAttributesOutput>

 <Etag>string</Etag>

 <Checksum>

 <ChecksumCRC32>string</ChecksumCRC32>

 <ChecksumCRC32C>string</ChecksumCRC32C>

 <ChecksumSHA1>string</ChecksumSHA1>

 <ChecksumSHA256>string</ChecksumSHA256>

 </Checksum>

 <ObjectParts>

 <IsTruncated>74nteres</IsTruncated>

 <MaxParts>integer</MaxParts>

<NextPartNumberMarker>integer</NextPartNumberMarker>

 <PartNumberMarker>integer</PartNumberMarker>

 <Part>

 <ChecksumCRC32>string</ChecksumCRC32>

 <ChecksumCRC32C>string</ChecksumCRC32C>

 <ChecksumSHA1>string</ChecksumSHA1>

 <ChecksumSHA256>string</ChecksumSHA256>

 <PartNumber>integer</PartNumber>

 <Size>integer</Size>

 </Part>

 ...

 <PartsCount>integer</PartsCount>

 </ObjectParts>

 <StorageClass>string</StorageClass>

 <ObjectSize>long</ObjectSize>

</GetObjectAttributesOutput>

Return all the metadata associated with the selected file without returning it

PUT /bucket_name/full_file_path

Path params -

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

75

Query params -

Body File content

Headers Authorization HMAC Authorization-String

 ..Metadata Metadata value

Success Response
Code 200

Schema Valid XML

Put a file within the selected bucket with full_file_path name. If for the specified bucket the

versioning is enabled than the object storage will generate a new version id every time the same file

is put within the same bucket.

DELETE /bucket_name/full_file_path

Path params -

Query params -

Body -

Headers Authorization HMAC Authorization-String

Success Response
Code 200

Schema Valid XML

Delete a file within the selected bucket with full_file_path name

DELETE /bucket_name/full_file_path

Path params -

Query params versionId version_id

Body -

Headers Authorization HMAC Authorization-String

Success Response
Code 200

Schema Valid XML

Delete the specific version of the selected file

7.4 DATA HARMONISATION COMPONENT

POST /api/{tenantId}/projects/{projectId}/versions

Path params tenantId, projectId

Query params -

Body

{

 “name”: “string”,

 “project”: “string”,

 “description”: “string”,

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

76

 “inputs”: [

 {

 “name”: “string”,

 “alias”: “string”,

 “type”: “string”,

 “fixed”: false,

 “defaultValue”: {}

 }

],

 “dependencies”: {},

 “outputSchema”: {},

 “released”: false,

 “createdAt”: “string”,

 “updatedAt”: “string”,

 “releasedAt”: “string”

}

Headers Authorization Bearer token to authenticate and authorize the requestor

 Content-Type application/json

Success Response
Code 200

Schema Success

Create a new mashup

GET /api/{tenantId}/projects/{projectId}/versions/{versionId}/draw

Path params tenantId, projectId, versionId

Query params -

Body -

Headers Authorization Bearer token to authenticate and authorize the requestor

Success Response
Code 200

Schema {}

Get mashup graphical flow

POST /api/{tenantId}/projects/{projectId}/versions/{versionId}/draw

Path params tenantId, projectId, versionId

Query params -

Body -

Headers Authorization Bearer token to authenticate and authorize the requestor

Success Response
Code 200

Schema Success

Update mashup graphical flow

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

77

POST /api/{tenantId}/projects/{projectId}/versions/{versionId}/run

Path params tenantId, projectId, versionId

Query params -

Body

{

 “inputs”: {},

 “target”: “string”

}

Headers Authorization Bearer token to authenticate and authorize the requestor

 Content-Type application/json

Success Response
Code 200

Schema Success

Execute the mashup from the editor

POST /mashups/{execflowId}

Path params execflowId

Query params -

Body -

Headers Authorization Bearer token to authenticate and authorize the requestor

Success Response
Code 200

Schema Success

Trigger a mashup using HTTP request

7.5 API GATEWAY

OpenAPI specification (OAS) is a standard interface for presenting RESTful APIs in a manner that allows

both humans and computers to easily understand the logic behind the services.

By using document generation tools, it is possible to automatize the creation of the API display page.

Main definitions of the OpenAPI include one or more OpenAPI documents that describe the APIs, path

templates, media types, as well as http status codes.

By path templating, it is referred to the template expressions, most often represented by curly braces “{}”,

which serve to point out that this part of the URL can be replaced with a path parameter.

Media types definitions should be in accordance with the RFC6838.

To indicate the response status of the executed request, HTTP status codes are used and the available

ones are all defined in RFC7231.

In regards to versioning, OpenAPI is using Semantic Versioning 2.0.0 (semver).

By format, OpenAPI document is a .json or a .yaml file which contains the following information: OpenAPI

version, API metadata, server information, path definition, security configuration etc. It is also possible to

extend this list of fields with custom properties [6].

https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc7231#section-6
https://semver.org/spec/v2.0.0.html

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

78

8 IMPLEMENTATION

8.1 EDGE MODULE

The edge module is a key point for the entire MES-CoBraD platform. It ensures the compliance with the

GDPR and gives the scientists the possibility to exploit different plugins, also provided by third parties to

further manipulate the patients’ data.

The plugin mechanism is the focal point of the overall edge module implementation since it gives the

possibility to scale the functionalities as desired and required by the specific scientists’ needs.

The most suitable technology to implement such a mechanism is python that allows to extend the

capabilities of the system at runtime.

Python is also a good choice from the performance perspective because ensures to keep the system as

lightweight as possible without the overhead of languages like Java, Javascript and others.

In particular, the Plugin Manager will be implemented exploiting the capabilities of the pip package

manager that will allow to install packages (i.e. plugins) at runtime.

For the workflow manager the library workflow will be used that provides a method of running Finite State

Machines with memory.

Several python libraries are available for the implementation of a resource negotiator, but the chosen one

is multiprocessing that allows to spawn processes in parallel according to a predefined pool of resources

that can be configured dynamically basing on the system resource availability.

For the API implementation in python, the most spread framework is Flask. It ensures to be able to create

RESTful APIs in easy and safe way.

The following picture shows the association between each architectural component and the

corresponding technical implementation.

Figure 28 - Technical implementation of the edge module

The plugin catalogue is the only component of the edge module that is deployed on the cloud and it will

be implemented through the Github MES-CoBraD community.

8.2 ANONYMISATION MODULE

Sensitive information is the most critical part of a medical platform and in general of an IT system. Several

privacy and security-oriented practices will be implemented within the scope of the MES-CoBraD project.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

79

One of the most important of those is the patients’ data anonymisation. This will imply to keep sensitive

information on the edge of the platform, by giving the possibility to recover original data (with the patients’

information) only to the original submitters.

Within the project the anonymisation is intended as an iterative process. Where submitters, once data

are processed by the anonymisation module, are manually verified before to being uploaded within the

platform. Data that fails the manual check must be re-processed by the module by changing its

configurations. Indeed, the module allows to configure several parameters such us input columns,

sensitive columns, quasi-identifiers and to fine-tune the anonymisation algorithm.

The module in charge of such anonymisation process is the anonymisation module. This component,

available as a plugin for the edge module, provides configurable de-personification functionalities that

can be used together with the other plugins to compose data pipelines that run on the edge. As of other

plugins, the anonymisation module is simply installable within the edge module at runtime.

Such module will be implemented in Python due to the versatility in handling files in different formats, the

dynamic typing and the easiness to read and maintain.

Potential approaches to de-personalise patients’ data could be:

 Data masking

 K Anonymity

 L Diversity

 T Closeness

 Differential Privacy models

There are several open-source python libraries that implement such algorithms, like:

 Faker [8]

 Mimesis [9]

 PyARX [10]

 PyDP [11]

8.3 DATA COLLECTION COMPONENT

Scattered data coming from different data silos needs to be ingested and processed to extract value from

them and to allow analytical tools and artificial intelligence components to effectively make advantage

from such data. The data collection component represents the focal point of all the ingestion and

harmonisation operations, by allowing end-users to define, maintain and monitoring efficient data

pipelines that can scale horizontally on the underlying hardware. Such component will be implemented

by using Apache Airflow, an open-source modular workflow orchestrator that allows to schedule data

pipeline defined using a low-code approach.

Airflow provides the right amount of extendibility and flexibility thanks to a vast catalogue of operators

that can enrich the developer’s toolkit during the pipeline design phase. Such catalogue can be easily

extended with customs operators that better suit the aim of the project.

The high modularity of Airflow fits with the MES-CoBraD project requirements and make advantage from

the cloud native deployment approach used for the whole platform.

Moreover, it comes with a built-in UI that allows end-users to easily monitor workflow executions, restart

them partially, define new connections, configuration and check tasks logs. Such logs are only one of the

tools that Airflow provides to debug workflows and tasks. Indeed, the UI can show meaningful

visualisations to check the execution times at different grains and to compare executions over time.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

80

The key concept in Airflow is the DAG (Directed Acyclic Graph). As mentioned in the section 5.2.3 a DAG

represents a workflow composed by tasks. Each task is an instance of an operator, a function that focuses

on an atomic operation that involves one or more data sources. The operators to interact with the most

common external systems like relational databases, http endpoints and ftp servers. The catalogue of the

operators can be enriched by installing extensions coming from official vendors (e.g., Amazon, Google,

Microsoft) or by adding custom operators.

DAGs can be executed manually via API or by using the user interface. This functionality is particularly

useful for workflows whose aim is to clean environments, or to restore the system to a specific snapshot.

It is also useful to debug non-working DAGs by isolating the tasks and by running them in other

environments always within the component. Moreover, DAGs can be automatically scheduled by

specifying a CRON expression within the DAG file. Airflow supports also concurrent executions on the

same DAG, where each of these can work with subset of data or with specific data sources.

The scheduler is the architectural component that spin-up the tasks using an executor. Once a task is

scheduled a process is spawn to monitor task status. Once completed the scheduler checks task’s

dependencies and spawn next tasks.

Executor’s goal is to effectively execute a task instance. Airflow supports different executors; the main

ones are listed below:

 Debug Executor – This executor allows to debug DAGs within IDEs. It simply runs processes

inside the host machine one-by-one, without the need of a dedicated metadata database to

store executions data.

 Local Executor – Such executor can spawn concurrent processes within the host machine. It

is the most used executor for single-machine installations. It required a dedicated metadata

database (e.g., postgres) to enable concurrency.

 Remote Executor(s) – Airflow can run on multiple-machines by using remote executors. Such

architectural components load balance process across the available machines to efficiently

use the underlying hardware.

Within the MES-CoBraD project airflow will be configured to use Kubernetes executor. Such executor

allows to spawn Pods (that reflect the task instances within a DAG execution) in a Kubernetes

environment. The Digital Enabler, a Kubernetes-based ecosystem platform, offers Apache Airflow

instances already integrated with Kubernetes by allowing end-users to just upload their DAGs and defining

the connection without worrying about configurations and performance optimisation.

Airflow provides a set of tools to effectively monitor DAGs executions and to compare them each other.

Out-of-the box an end-user can check a DAG execution progress by visually following the specific tasks

execution. Moreover, the UI shows for each task details like technical description, input parameters and

real time logs. DAG execution times can be monitored from the UI as well. Indeed, the UI has a specific

section that contains tasks’ execution time and display such information in a timeline. Here end-users

can identify bottleneck, and focus optimisation activities to specific tasks.

Apache Airflow makes the connection with external data sources really easy. Within Airflow a connection

defines the technical details to connect with such external systems. By choosing the connection type, and

filling the endpoint and (eventually) the credentials the tool is able to connect with such external system

without make users worry about connection handling. Apache Airflow comes with a catalogue of already

installed connections. Such catalogue can be simply extended by installing additional connections,

thanks to the plug-and-play nature of Python.

Moreover, Airflow allows to define custom pools that can be assign to group of tasks to limit the

concurrency and better handling the execution flows. Pools can be created directly using the UI by simply

define a pool name and the slots number. Then, within a task definition (in the DAG file) it will be possible

to assign a pool let airflow to automatically increase/decrease the available slots within a pool during

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

81

task executions.

DAG can be generated dynamically based on pre-defined variables. Such variables can be modified in

any moment using the UI and can change or parametrize DAG executions. Variables can be simple texts

or JSONs that will be automatically parsed by the tasks within a DAG. Variables can be simply added from

the UI by defining a name and the value. If the configuration name contains special words (configurable)

like password or secret then the configuration becomes not visible from the UI and encrypted backend-

side. Only the tasks can access secrets, by making sensitive information securely stored and not visible

with tasks logs.

The following picture shows the association between each component of Airflow’s architecture and the

corresponding technical implementation:

Figure 29 - Data collection component implementation details (Airflow based)

8.4 DATA LAKE

The real-world data (RWD) are the hearth of the MES-CoBraD platform. Such data must be stored

efficiently and in a secure and anonymous way to be harmonised with other data source and to be

analysed by end-users and AI components. The platform’s data lake will be composed by several data

storage solutions in order to accomplish the different requirements that comes from the kind of data the

platform aim to store (real-time data, images, text files, etc...).

Anonymous data, medical images and signals will be store inside the platform’s object storage. This

component will be implemented by using MinIO, an open-source solution provided by the Digital Enabler

ecosystem platform. MinIO is a high-performance multi-cloud object storage that runs on any Kubernetes

distribution, compatible with S3 object storage. This ensures interoperability with other data lake

solutions and allows other components to use the same libraries for all the data-related operations.

High availability is granted thanks to the cloud nature of the component. In contrast to other solutions, it

is easy to scale the tool and to set-up data replication. Moreover, MinIO supports data encryption at-rest

and versioning, providing out-of-the-box a high level of security and reliability.

As previously mentioned, MinIO is 100% compliant with Amazon S3 APIs. This means that it is possible

to use AWS SDK to interact with the component, without having to deal with the complex REST APIs that

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

82

are available too for expert users. Moreover, MinIO comes with MinIO Console, a simple UI that allows

end-users to visually consult the object storage, upload resources and share them.

Within MinIO data are collected inside “buckets”, containers that are associated with a unique

namespace. Buckets can be associated with departments or group of users and are accessible by

granting specific permissions.

MinIO support versioning at bucket level. Once the versioning is enabled for a specific bucket, its objects

are associated with a versionID. Whenever a user uploads an object with an existent name, MinIO

generate a new version without removing the previous one. This ensures to being always able to retrieve

old versions of the same file, avoiding overwriting existing file by mistake.

Resources within the object storage can be shared in two ways:

 Public links

 Ad-hoc permissions

Public links can be generated for specific resources, granting access to whoever receive the link. Such

link contains special tokens to let the user without a MES-CoBraD account to access only that specific

resource. Despite it can be dangerous to expose data lake’s resources, this functionality could be helpful

to share public documents, open data or to temporarily giving access to specific files. Indeed, public links

can be generated giving an expiration date interval, to make a resource available publicly for a limited

period of time.

Resource can be accessed only if the user’s policy grants the access to it. Within MinIO each user has

associated one or more access policy that specify which operations the user is authorized to perform.

Such permissions can be defined at different grains (bucket, folder, file). As a consequence, a file can be

shared by creating an ad-hoc permission that grant access only to the specific resource.

As mentioned, elements can be accessed through the UI or programmatically by using an SDK or the

MinIO’s REST API. To access the object storage programmatically a pair of Client-key and Client-secret

must be generated. Service accounts are basically key/secret pairs that can be generated by end-users

by using the UI. Once generated, such credentials can be used within a script or a software to interact

with the object storage.

Service accounts by default are generated inheriting user’s permissions. Moreover, the UI allows to to

define custom policies to include subsets of user’s permissions for granting access to specific resources.

The following picture shows the association between each component of MinIO’s architecture and the

corresponding technical implementation:

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

83

Figure 30 - Data lake object storage implementation details (MinIO based)

The MES-CoBraD data lake includes also other storage solutions to persist real-time data, unstructured

data and to run analytical query:

 The platform will use a relational database (postgres) to store end-users’ information,

metadata and other data necessary to make the platform properly working.

 The data lake will include an OLAP database (postgres) to let analytical tools and expert to

perform fast queries and generate insights and reports.

 Time related data will be stored within an InfluxDB database, a storage solution optimised for

time series and analytics.

 Unstructured data will be stored in a MongoDB server, ensuring to have a solution change-

friendly thanks to its flexible schemas.

 MES-CoBraD components will stream system logs to a log server (Graylog). It acts as a central

point to analyse users’ behaviour and to debug platform’s components.

8.5 DATA HARMONISATION COMPONENT

To achieve the harmonisation process, Data Mashup Editor (DME) component of Digital Enabler will be

used.

There are two ways to communicate with DME. One includes synchronous triggers via HTTP request

through REST APIs, while the other is asynchronous and is done through different protocols such as MQTT,

Kafka, etc.

A process which involves a HTTP request to DME and as a result returns a transformed result is called a

mashup.

Mashup can be forwarded to other components like data bases, data lakes or context brokers and can

be scheduled to run the same flow periodically.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

84

DME has a graphical user interface which is a key point for creating mashups.

Before creating a mashup, the user should create a dataset or a data source which will be the starting

point of the mashup.

After that, the user can use the graphical UI to transform the data using many different operators,

including predefined data models, which can destructure data, add new properties or create new object

structures.

If the operators are applied to an array of objects, the operator will be applied for each of them, which is

very useful when working with the large amount of data.

It is very important to emphasize that no coding experience is needed to transform the data. All the

operators can be used in a drag and drop manner.

Each mashup’s logs are tracked and can be reviewed after each execution.

In cases where the original data source for the mashup is continually changed, it is possible to trigger the

harmonisation process over and over to receive transformed data from the new data. This can be done

from multiple sources, including HTTP requests, MQTT messages and Kafka messages.

The mashup result will be saved on the target chosen by user, which may include HTTP endpoint, MQTT

or Kafka topic and Fiware Orion Context Broker.

Figure 31 - Data harmonisation tool implementation details (Data Mashup Editor based)

8.6 API GATEWAY

It was decided to use Kong [7] as an API gateway because it is an open-source solution with many rich

features that include load balancing, Kubernetes support, scalability and customizability, but it also has

something that other tools do not – a graphical user interface.

Kong’s graphical user interface is called Kong Manager. It can be used to create routes, add or remove

plugins or monitor performance.

Kong can run natively on Kubernetes platforms, providing a single point of access for all the incoming

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

85

requests to a Kubernetes cluster.

For what concern the authentication, it is able to protect the APIs, as well as enable anonymous access

to selected users.

Also, if the application is unavailable, Kong is able to reroute the requests using load balancing.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

86

9 INTEGRATION

In this chapter we will encompass all mentioned components and explain in what way they are coupled

together.

9.1 INTEGRATION BETWEEN COMPONENTS

In order to better understand the architecture, we must explain how the components are intertwined.

The architecture is divided into multiple layers. The first layer is comprised of data sources, in this case,

medical data.

Medical data will be gathered from medical data centers or from medical devices. However, there are two

steps which must be taken before sending that data to the Data Lake.

Since most medical data centers are not connected to the outside world, primarily to protect sensitive

information, the first step is to upload the data to the edge module, located inside the medical center.

Once the data is in the edge module, the second step is to anonymise it.

There are two ways of introducing data to the edge module:

 synchronous data provisioning (using REST APIs)

 scheduled data retrieval (through periodic querying to other medical local systems)

Synchronous data provisioning will be provided by the medical staff who will use the edge module

autonomously, collect data from the patients and upload it using a specific form. They will also be

responsible to check if the anonymisation has been performed successfully.

Scheduled data retrieval will be performed using workflows defined by medical staff. The workflows will

gather data from medical devices periodically and send it to the edge module.

The edge module will then perform data anonymisation through the anonymisation module, which will be

added as a plugin, and forward the data to the MES-CoBraD platform.

All steps from the ingestion of the data into the edge module to the transmission of the anonymised data

belong to the second layer, security and anonymisation.

Once the data is secure and anonymised, they are sent to the third layer, the Data Lake, using the Data

collection component. The data ingestion process can be either synchronous or asynchronous.

Synchronous ingestion should be triggered directly from the edge module using authenticated REST APIs

with the data to be stored contained in the payload of the requests.

Asynchronous ingestion should be triggered using scheduled data processes that are able to retrieve data

from other data sources.

Data Lake is the component where all the raw, harmonised and curated data will be safely stored and

from which it will be shared to the other components. For the sharing of the data among components,

both synchronous and asynchronous integration patterns are available.

For data transmission between the Data Lake and the Data Harmonisation component, it is planned to

integrate a communication bus, which would be based on Apache Kafka, and a synchronous approach

which would be performed through the REST APIs.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

87

Figure 32 - Integration between the components

The integration between the Data Lake and the other MES-CoBraD platform components is subject of

discussion of the next section.

9.2 INTEGRATION WITH THE OTHER MES-COBRAD PLATFORM COMPONENTS

The overall architecture is imagined as a multi-layer component system based on orchestrated

Kubernetes containers in the same network.

The base of the infrastructure is presented by the MES-CoBraD platform, which consists of Hardware

platform and Software platform.

The hardware platform is comprised by seven Virtual Machines hosted by VMWare, while the software

platform is running on Ubuntu operating system on a virtual machine.

All the components shall use the Data Lake as a persistence layer. It is a multi-technology storage layer

capable of storing different types of data, including object type storage, relational and non-relational

databases, as well as time series and log server. Using this approach, Data Lake will be usable for

communication between all internal components.

The data ingestion will be done through the Dataflow component of Digital Enabler based on Apache

Airflow. It supports both synchronous and asynchronous ingestion through REST APIs and scheduled

batch processes, respectively.

The other platform components that will be integrated with the Data Lake are mainly, but not exclusively,

the Expert System’s modules: i.e. the Query Builder, Data Analytics, Data Visualisation.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

88

Figure 33 - Integration with other MES-CoBraD components

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

89

10 TESTING

In this chapter will be defined a set of user acceptance test (UAT) for each of the components discussed

in this deliverable. The UAT are described according to the templated in ANNEX I of the D8.2.

10.1 EDGE MODULE

Table 6 - Edge module UAT plan

Test Case ID Test Case Name Summary Expected UX Remarks

EDG_UAT_01 Install plugin The tester will install a

plugin already

available in the plugin

catalogue.

1. The UI shows the list of the

plugins available in the

catalogue.

2. The user choose a plugin to

install and click on it.

3. A configuration form (specific

for the selected plugin) pops

up.

4. The user submits the

configuration and starts the

installation.

5. When the installation ends

the just selected plugin is

available in the installed

plugins list

-

EDG_UAT_02 Delete plugin The tester will delete a

plugin already

installed.

1. The UI shows the list of the

plugins installed on the

instance

2. The user chooses a plugin

and click on the “delete”

icon

3. A confirmation prompt pops

up and the user confirms

4. The plugin is removed from

the system

The workflows

containing the

just removed

plugin are

labelled as

“unstable”

EDG_UAT_03 Create a

workflow
The tester will create a

workflow with two

steps

1. The user creates a new

workflow from the dedicated

form on the UI

2. The user chooses the

following steps:

 Data manual

submission

 Data de-

personalization

 Data aggregation

3. When the user submits the

workflow, it appears on the

workflows list

-

EDG_UAT_04 Trigger a

workflow
The tester will trigger a

workflow through

REST Api

1. The user invokes a workflow

through the dedicated API

2. The user checks the

response body and the

status code (200)

-

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

90

10.2 ANONYMISATION MODULE

Table 7 - Anonymisation module UAT plan

Test Case ID Test Case Name Summary Expected UX Remarks

AM_UAT_01 Anonymisation

process creation

The tester will upload

a csv containing

personal data to

obtain a reference to

the de-personalisation

process

1. The UI prompts a form

where the user can submit a

file

2. The user submits a file with

the following three columns:

• Name

• Surname

• exam_result

3. The user selects the chosen

de-personalisation protocol

(pseudo-anonymisation) and

submits the form

4. The UI confirm the upload of

the file and gives back a link

to the page where the

anonymised data will be

available.

At least a

workflow with the

anonymisation

plugin must be

available.

AM_UAT_02 Data pseudo-

anonymisation

The tester will check

that the pseudo

anonymisation has

been executed

correctly.

1. The user periodically checks

the link obtained during

AM_UAT_01

2. After some time, a new csv

with the following structure

is produced:

• patientid

• exam_result

The patientid

must be unique

for the same

name, surname

couple.

10.3 DATA COLLECTION COMPONENT

Table 8 - Data collection component UAT plan

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

91

Test Case ID Test Case Name Summary Expected UX Remarks

DCO_UAT_01 DAG visualisation The tester will access

the tool to consult the

Data pipelines

deployed within the

component

1. The user log-in within the

component

2. The UI shows the list of

available DAGs

-

DCO_UAT_02 Trigger DAG The tester will trigger

an existent DAG to

check if it run correctly

1. The user log-in within the

component

2. The UI shows the list of

available DAGs

3. The user clicks on the ‘play’

icon next to the DAG of

interest

4. (Optional) the user inserts

configurations for the DAG

execution

The tasks inside

the selected DAG

must start being

scheduled (their

contour become

light green)

DCO_UAT_03 Disable DAG The tester will disable

a DAG to stop the

scheduling of the

tasks the DAG is

composed by

1. The user log-in within the

component

2. The UI shows the list of

available DAGs

3. The user clicks on the switch

next to the DAG of interest

Tasks must not

be scheduled

after disabling

DAG

DCO_UAT_04 DAG logs

The tester will check

the log of a specific

DAG to ensure it has

been executed

correctly

1. The user log-in within the

component

2. The UI shows the list of

available DAGs

3. The user clicks on the DAG

of interest

4. The user clicks on one of the

tasks

5. The user selects the log

option

-

DCO_UAT_05 New connection

The tester will register

a new connection

within the component

1. The user log-in within the

component

2. The UI shows the list of

available DAGs

3. The user clicks on the

connection section

4. The user clicks on “new

connection”

5. The user defines a new

connection by specifying the

type of connection, endpoint

and credentials

6. The user submits the form

Connection

endpoint must be

reachable by the

component

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

92

DCO_UAT_06 New

configuration

The tester will add a

new configuration

within the component

1. The user log-in within the

component

2. The UI shows the list of

available DAGs

3. The user clicks on the

configuration section

4. The user clicks on “new

configuration”

5. The user defines a “new

connection by defining the

name and the value

6. The user submits the form

A new row must

be available in

the configuration

list

DCO_UAT_07 New secret

The tester will add a

new secret within the

component

1. The user log-in within the

component

2. The UI shows the list of

available DAGs

3. The user clicks on the

configuration section

4. The user clicks on “new

configuration”

5. The user defines a new

connection by defining the

name and the value

6. The user submits the form

Secret name

must contain the

words “secret” or

“password”;

Secret value

must not be

visible in the UI

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

93

10.4 DATA LAKE

Table 9 - Data Lake UAT plan

Test Case ID Test Case Name Summary Expected UX Remarks

DLK_UAT_01 Bucket creation The tester will create a

new bucket
1. The user log-in within the

component

2. The UI shows the list of

available buckets

3. The user clicks on “new

bucket”

4. The user type-in new

bucket’s name

Bucket name

must be unique

DLK_UAT_02 Folder creation The tester will create a

folder within a bucket

1. The user log-in within the

component

2. The UI shows the list of

available buckets

3. The user clicks on the

bucket of 93nterest

4. The user clicks on “New

folder”

Folder name

must be unique

within the same

folder; Folder

must contain at

least one file to

exist

DLK_UAT_03 File upload The tester will upload

a file within a bucket
1. The user log-in within the

component

2. The UI shows the list of

available buckets

3. The user clicks on the

bucket of interest

4. The user clicks on “New file”

5. The user selects a file from

his PC

File name must

be unique within

the same folder

DLK_UAT_04 Resource

deletion
The tester will delete a

resource within a

bucket

1. The user log-in within the

component

2. The UI shows the list of

available buckets

3. The user clicks on the

bucket of interest

4. The user clicks on the “X”

icon next to the file of

interest

If a folder is

deleted then also

its comment is

deleted as well

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

94

DLK_UAT_05 Service account

creation

The tester will create a

service account for the

programmatic access

of the object storage

1. The user log-in within the

component

2. The UI shows the list of

available buckets

3. The user clicks on the

Service Account section

4. The user clicks on “new

service account”

5. The user defines service

account permissions

6. The user submits the form

Once create

service accounts

must not be

modified, only

deleted; Service

accounts must

ensure the

programmatic

access with the

specified

permissions;

Service account

permissions

must be a subset

of the user’s

permissions

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

95

10.5 DATA HARMONISATION COMPONENT

Table 10 - Data harmonisation component UAT plan

Test Case ID Test Case Name Summary Expected UX Remarks

DHA_UAT_01 Dataset adding The tester will add a

dataset which will be

used for creating a

mashup.

1. The user logs in to the

platform

2. The user opens the Data

Mashup Editor component

3. The user chooses datasets

tab

4. The UI shows the list of

available datasets and the

option to create a new

dataset

5. The user clicks on a button

to create a new dataset and

a new window appears

6. The user chooses the

properties and saves the

dataset

7. The user can see the new

dataset in the dataset list

DHA_UAT_02 Mashup creation The tester will create a

mashup using the

provided UI.

1. The user logs in to the

platform

2. The user opens the Data

Mashup Editor component

3. The user chooses mashups

tab

4. The UI shows the list of

mashups and the option to

create a new mashup

5. The user clicks on a button

to create a new mashup and

a new window appears

6. The user chooses a starting

dataset to get data from

7. The user chooses operators

from the tab on the left and

drags and drops them to the

mashup grid

8. The user connects the data

and the operators to

transform the data

9. The user can see the

transformed data and can

save the mashup

DHA_UAT_03 Mashup trigger The tester will be able

to set a trigger for a

mashup.

1. The user logs in to the

platform

2. The user opens the Data

Mashup Editor component

3. The user chooses mashups

tab

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

96

4. The UI shows the list of

mashups

5. The user selects one of the

mashups and a new window

appears

6. The user finds the trigger

options on mashup details

7. The user adds the target and

the condition for the trigger

8. The user saves the mashup

with a trigger

10.6 API GATEWAY

Table 11 - API Gateway UAT plan

Test Case

ID

Test

Case

Name

Summary Expected UX Remarks

API_UAT_01 Retrieve

a specific

version

of a file

The tester

will be able

to retrieve

a specific

file

1. The user logs in to the platform

2. The user accesses the path

/bucket_name/full_file_path?versionId={versionId}

using browser or Postman tool, where

bucket_name is the name of the bucket where file

is stored, full_file_path is the path to the file and

versionId is the specific version to access

3. The user can view the data from the specific file

API_UAT_02 Retrieve

data via

API from

the data

lake

The tester

will be able

to access

the data

from the

data lake

1. The user logs in to the platform

2. The user submits a form using the Airflow

component and keeps note of the link where the

data should be available

3. The user accesses the link using browser

4. The user can access the raw data

API_UAT_03 Trigger a

mashup

via API

The tester

will be able

to trigger a

mashup

1. The user logs in to the platform

2. The user creates a mashup using the Data

Mashup Editor component

3. The user chooses a target for the mashup trigger

4. The user activates the trigger using REST API by

sending a POST request to /mashups/{execflowId}

5. The user can observe the new data by accessing

the target saved in the mashup

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

97

10.7 INTEGRATION TESTING

Table 12 - Integration tests plan

Test Case ID Test Case Name Summary Expected UX Remarks

ITE_UAT_01 Data adding The tester will insert

data which will be

properly anonymised

and saved in data

lake.

1. The user logs in to the

platform

2. The user opens the Airflow

component

3. The user clicks on the

connection section

4. The user clicks on “new

connection”

5. The user defines a new

connection by specifying the

type of connection, endpoint

and credentials

6. The UI prompts a form

where the user can submit a

file

7. The user submits a file with

the following three columns:

a. Name

b. Surname

c. exam_result

8. The user selects the chosen

de-personalisation protocol

(pseudo-anonymisation) and

submits the form

9. The UI confirm the upload of

the file and gives back a link

to the page where the

anonymised data will be

available.

10. The user can access the

raw, anonymised data via

REST API

ITE_UAT_02 Data

harmonisation
The tester will use the

data from the data

lake to create

harmonized datasets

which will be exposed

using APIs.

1. The user logs in to the

platform

2. The user opens the Data

Mashup Editor

3. The user chooses the

datasets tab

4. The user enters the url of

the dataset created in the

Airflow component

5. The user adds other

properties and saves the

dataset

6. The user chooses the

mashups tab

7. The user selects the newly

created dataset from the list

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

98

of datasets and adds it to

the mashup

8. The user transforms the

data using operators

9. The user saves the mashup

and is able to see the

transformed data

10. The user can access the

transformed data via API

ITE_UAT_03 Data analysis The tester will use the

harmonised data to

perform data analysis.

1. The user logs in to the

platform

2. The user opens the Airflow

component

3. The user can add the

dataset harmonized by Data

Mashup Editor using an API

4. The user is able to perform

analytics operations on the

dataset

5. The user can save the

workflow and schedule it

6. The user can access the

curated data via REST API

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

99

11 CONCLUSIONS AND NEXT STEPS

What discussed in this document is the version one of the Data integration, harmonisation, sharing and

security layers of the MES-CoBraD platform.

This document will be considered as a “guideline” for the rest of the project but a new, updated version

will be submitted in month 24 (march 2023) entitled: D5.2 Data integration, harmonisation, sharing and

security – final.

D5.1

Data integration, harmonisation, sharing and security – v1

The MES-CoBraD project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No 965422

100

References

[1] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction

[2] V.C Pezoulas, T.P. Exarchos, D.I. Fotiadis "Medical Data Sharing, Harmonization and Analytics"

2020

[3] https://www.bmc.com/blogs/batch-processing-stream-processing-real-time

[4] K. Abouelmehdi, A. Beni-Hssane, H. Khaloufi, M. Saadi "Big data security and privacy in healthcare:

A Review" 2017

[5] G. Duncan, L. Stokes, "Data masking for disclosure limitation" vol. 1, 2009

[6] https://swagger.io/specification/

[7] https://docs.konghq.com/

[8] https://github.com/joke2k/faker

[9] https://github.com/lk-geimfari/mimesis

[10] https://pyarxaas.readthedocs.io/en/latest/

[11] https://github.com/OpenMined/PyDP

[12] Liang Hong, Mengqi Luo, Ruixue Wang, Peixin Lu, Wei Lu*, Long Lu*; “Big Data in Healthcare:

Applications and Challenges”, 2018

[13] Senthilkumar SA, Bharatendara K Rai, Amruta A Meshram, Angappa Gunasekaran,

Chandrakumarmangalam S. Big Data in Healthcare Management: A Review of Literature.

American Journal of Theoretical and Applied Business. Vol. 4, No. 2, 2018, pp. 57-69. doi:

10.11648/j.ajtab.20180402.14

[14] Hian Chye Koh and Gerald Tan; “Data Mining Applications in healthcare”; Journal of Healthcare

Information Management — Vol. 19, No. 2

[15] Anam Sajid1 & Haider Abbas2,3; Data Privacy in Cloud-assisted Healthcare Systems: State of

the Art and Future Challenges; 2016

[16] Caufield, J.H., Liem, D.A., Garlid, A.O., Zhou, Y., Watson, K., Bui, A.A., Wang, W., Ping, P. A

Metadata Extraction Approach for Clinical Case Reports to Enable Advanced Understanding of

Biomedical Concepts. J. Vis. Exp. (139), e58392, doi:10.3791/58392 (2018)

[17] Jane S. Saczynski, Ph.D.1,2, David D. McManus, M.D.1,2, and Robert J. Goldberg, Ph.D.2 ;

Commonly Utilized Data Collection Approaches in Clinical Research; 2013

[18] Henry Anayo Okemiri, Alo Uzoma Rita, Achi Ifeany Isaiah, Oketa Kelechi Christian, Nnamene

Chizoba Christopher and Chima Chinazo I. ; Patient Data Integration: A Panacea for Effective

Healthcare; 2020

[19] https://www.altexsoft.com/blog/data-standards-healthcare/

[20] A K Akobeng; “Principles of evidence based medicine”; 2015

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction
https://www.bmc.com/blogs/batch-processing-stream-processing-real-time
https://swagger.io/specification/
https://docs.konghq.com/
https://github.com/joke2k/faker
https://github.com/lk-geimfari/mimesis
https://pyarxaas.readthedocs.io/en/latest/
https://github.com/OpenMined/PyDP

