Cortical folding model by Mota & Houzel (Science, 2015)
Applying the cortical folding from Mota & Houzel:




|
term
|
estimate
|
std.error
|
statistic
|
p.value
|
conf.low
|
conf.high
|
|
(Intercept)
|
-0.42
|
0.26
|
-1.59
|
0.11
|
-0.93
|
0.10
|
|
logExposedArea
|
1.23
|
0.06
|
21.65
|
0.00
|
1.12
|
1.34
|


## [1] "Verificando a diferenca entre o coeficiente obtido para a Sample e o teorico de 5/4, qual o valor p deste teste? 0.72983083070736"
## [1] "Total number of CTL subjects (Session 1) = 50"
## [1] "Age range CTL. Min age = 20 ; max age = 26"

##
## Pearson's product-moment correlation
##
## data: filter(dados, ROI == "hemisphere", Diagnostic == "CTL", Session == 1)$K and filter(dados, ROI == "hemisphere", Diagnostic == "CTL", Session == 1)$Age
## t = -3.0804, df = 98, p-value = 0.002683
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4663220 -0.1069411
## sample estimates:
## cor
## -0.2971182
##
## Pearson's product-moment correlation
##
## data: filter(dados, ROI == "hemisphere", Diagnostic == "CTL", Session == 1)$S and filter(dados, ROI == "hemisphere", Diagnostic == "CTL", Session == 1)$Age
## t = 0.53082, df = 98, p-value = 0.5967
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1443931 0.2473602
## sample estimates:
## cor
## 0.05354357
##
## Pearson's product-moment correlation
##
## data: filter(dados, ROI == "hemisphere", Diagnostic == "CTL", Session == 1)$I and filter(dados, ROI == "hemisphere", Diagnostic == "CTL", Session == 1)$Age
## t = -1.9857, df = 98, p-value = 0.04986
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3784688483 -0.0002629164
## sample estimates:
## cor
## -0.1966709
SUBJ variance
|
meanT
|
meanK
|
meanS
|
meanI
|
meanGI
|
sd_T
|
sd_K
|
sd_S
|
sd_I
|
sd_GI
|
SD_percent_T
|
SD_percent_K
|
SD_percent_S
|
SD_percent_I
|
SD_percent_GI
|
|
2.673792
|
-0.5058084
|
9.066871
|
10.47732
|
2.692996
|
0.0187468
|
0.0016854
|
0.0137674
|
0.0064288
|
0.006937
|
0.7011324
|
0.3332081
|
0.1518431
|
0.0613596
|
0.2575937
|
## [1] "Desvio padrão médio de AvgT = 0.019 , desvio padrao do desvio padrão = 0.013"
## [1] "Desvio padrão médio de K = 0.0017 , desvio padrao do desvio padrão = 0.0012"
## [1] "Desvio padrão médio de S = 0.014 , desvio padrao do desvio padrão = 0.01"
## [1] "Desvio padrão médio de I = 0.0064 , desvio padrao do desvio padrão = 0.0043"
## [1] "Desvio padrão médio de GI = 0.0069 , desvio padrao do desvio padrão = 0.0047"



AvgCortThickness ~ SUBJ
## Analysis of Variance Table
## npar Sum Sq Mean Sq F value
## Session 2 0.00049756 0.00024878 0.4626
## Linear mixed model fit by REML ['lmerMod']
## Formula: AvgThickness ~ Session + (1 | SUBJ)
## Data: filter(dados, ROI == "hemisphere")
##
## REML criterion at convergence: -1156.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.8173 -0.5144 -0.0243 0.5220 3.4278
##
## Random effects:
## Groups Name Variance Std.Dev.
## SUBJ (Intercept) 0.0082696 0.09094
## Residual 0.0005378 0.02319
## Number of obs: 300, groups: SUBJ, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.6731078 0.0130679 204.555
## Session2 -0.0004355 0.0032797 -0.133
## Session3 0.0024880 0.0032797 0.759
##
## Correlation of Fixed Effects:
## (Intr) Sessn2
## Session2 -0.125
## Session3 -0.125 0.500
## $sigma
## $sigma$data
## [1] 0.02319103
##
## $sigma$SUBJ
## (Intercept)
## 0.09093744
##
##
## $cors
## $cors$data
## [1] NA
##
## $cors$SUBJ
## [1] NA
## R2m R2c
## [1,] 0.0001889038 0.9389468
|
Session
|
N_SUBJ
|
mean
|
CI
|
|
1
|
50
|
2.7 ± 0.013
|
2.6 ; 2.7
|
|
2
|
50
|
2.7 ± 0.013
|
2.6 ; 2.7
|
|
3
|
50
|
2.7 ± 0.013
|
2.6 ; 2.7
|

## Estimate Std..Error t.value p.z
## (Intercept) 2.6731078135 0.013067922 204.5549192 0.0000000
## Session2 -0.0004354916 0.003279707 -0.1327837 0.8943645
## Session3 0.0024880127 0.003279707 0.7586082 0.4480870


K ~ SUBJ
## Analysis of Variance Table
## npar Sum Sq Mean Sq F value
## Session 2 1.1892e-06 5.9459e-07 0.0436
## Linear mixed model fit by REML ['lmerMod']
## Formula: K ~ Session + (1 | SUBJ)
## Data: filter(dados, ROI == "hemisphere")
##
## REML criterion at convergence: -2236.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7507 -0.5668 -0.0046 0.6140 3.5112
##
## Random effects:
## Groups Name Variance Std.Dev.
## SUBJ (Intercept) 2.675e-04 0.016356
## Residual 1.363e-05 0.003692
## Number of obs: 300, groups: SUBJ, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -5.059e-01 2.342e-03 -215.969
## Session2 4.939e-05 5.221e-04 0.095
## Session3 1.512e-04 5.221e-04 0.290
##
## Correlation of Fixed Effects:
## (Intr) Sessn2
## Session2 -0.111
## Session3 -0.111 0.500
## $sigma
## $sigma$data
## [1] 0.003691925
##
## $sigma$SUBJ
## (Intercept)
## 0.01635589
##
##
## $cors
## $cors$data
## [1] NA
##
## $cors$SUBJ
## [1] NA
## R2m R2c
## [1,] 1.414624e-05 0.9515193
|
Session
|
N_SUBJ
|
mean
|
CI
|
|
1
|
50
|
-0.51 ± 0.0023
|
-0.51 ; -0.5
|
|
2
|
50
|
-0.51 ± 0.0023
|
-0.51 ; -0.5
|
|
3
|
50
|
-0.51 ± 0.0023
|
-0.51 ; -0.5
|

## Estimate Std..Error t.value p.z
## (Intercept) -5.058753e-01 0.002342350 -215.96914123 0.0000000
## Session2 4.938863e-05 0.000522117 0.09459304 0.9246381
## Session3 1.512184e-04 0.000522117 0.28962549 0.7721028

S ~ SUBJ
## Analysis of Variance Table
## npar Sum Sq Mean Sq F value
## Session 2 0.00020462 0.00010231 0.2887
## Linear mixed model fit by REML ['lmerMod']
## Formula: S ~ Session + (1 | SUBJ)
## Data: filter(dados, ROI == "hemisphere")
##
## REML criterion at convergence: -1260
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3529 -0.5569 -0.0341 0.6093 4.9192
##
## Random effects:
## Groups Name Variance Std.Dev.
## SUBJ (Intercept) 0.0083676 0.09147
## Residual 0.0003544 0.01882
## Number of obs: 300, groups: SUBJ, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 9.0670569 0.0130727 693.59
## Session2 0.0007201 0.0026622 0.27
## Session3 -0.0012771 0.0026622 -0.48
##
## Correlation of Fixed Effects:
## (Intr) Sessn2
## Session2 -0.102
## Session3 -0.102 0.500
## $sigma
## $sigma$data
## [1] 0.01882455
##
## $sigma$SUBJ
## (Intercept)
## 0.09147459
##
##
## $cors
## $cors$data
## [1] NA
##
## $cors$SUBJ
## [1] NA
## R2m R2c
## [1,] 7.845553e-05 0.9593743
|
Session
|
N_SUBJ
|
mean
|
CI
|
|
1
|
50
|
9.1 ± 0.013
|
9 ; 9.1
|
|
2
|
50
|
9.1 ± 0.013
|
9 ; 9.1
|
|
3
|
50
|
9.1 ± 0.013
|
9 ; 9.1
|

## Estimate Std..Error t.value p.z
## (Intercept) 9.0670568552 0.013072706 693.5868428 0.0000000
## Session2 0.0007200822 0.002662194 0.2704845 0.7867875
## Session3 -0.0012771442 0.002662194 -0.4797337 0.6314167

I ~ SUBJ
## Analysis of Variance Table
## npar Sum Sq Mean Sq F value
## Session 2 9.2936e-05 4.6468e-05 0.6882
## Linear mixed model fit by REML ['lmerMod']
## Formula: I ~ Session + (1 | SUBJ)
## Data: filter(dados, ROI == "hemisphere")
##
## REML criterion at convergence: -1687.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0083 -0.5579 0.0350 0.5825 3.0375
##
## Random effects:
## Groups Name Variance Std.Dev.
## SUBJ (Intercept) 5.980e-03 0.077333
## Residual 6.753e-05 0.008217
## Number of obs: 300, groups: SUBJ, 50
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.048e+01 1.097e-02 955.272
## Session2 1.596e-04 1.162e-03 0.137
## Session3 1.252e-03 1.162e-03 1.078
##
## Correlation of Fixed Effects:
## (Intr) Sessn2
## Session2 -0.053
## Session3 -0.053 0.500
## $sigma
## $sigma$data
## [1] 0.008217418
##
## $sigma$SUBJ
## (Intercept)
## 0.07733324
##
##
## $cors
## $cors$data
## [1] NA
##
## $cors$SUBJ
## [1] NA
## R2m R2c
## [1,] 5.139036e-05 0.9888355
|
Session
|
N_SUBJ
|
mean
|
CI
|
|
1
|
50
|
10 ± 0.011
|
10 ; 10
|
|
2
|
50
|
10 ± 0.011
|
10 ; 10
|
|
3
|
50
|
10 ± 0.011
|
10 ; 11
|

## Estimate Std..Error t.value p.z
## (Intercept) 1.047685e+01 0.010967400 955.2723277 0.0000000
## Session2 1.596154e-04 0.001162118 0.1373486 0.8907552
## Session3 1.252383e-03 0.001162118 1.0776721 0.2811801
