7> Blue-Cloud

Piloting innovative services for Marine Research & the Blue Economy

D3.2 Demonstrator Implementation

Guidelines

Work Package WP3, Blue Cloud Pilot Demonstrators

Lead Partner IFREMER

Lead Author (Org) CNR

Contributing Author(s) Pasquale Pagano (CNR), Massimiliano Assante (CNR),
Leonardo Candela (CNR), Cécile Nys (IFREMER), Gilbert
Maudire (IFREMER)

. Sara Garavelli (TRUST IT)

Reviewers
Anton Ellenbroek (FAQ)
Guy Cochrane (EMBL-EBI)

Due Date 31.01.2020, M4

Submission Date 05.05.2020

Version 1.0

Dissemination Level

PU: Public

PP: Restricted to other programme participants (including the Commission)
RE: Restricted to a group specified by the consortium (including the Commission)

CO: Confidential, only for members of the consortium (including the Commission)

Blue-Cloud - Piloting Innovative services for Marine Research & the Blue Economy - has received funding from the European
Union's Horizon programme call BG-07-2019-2020, topic: [A] 2019 - Blue Cloud services, Grant Agreement n. 862409.

Blue-Cloud

-

DISCLAIMER

“Blue-Cloud, Piloting Innovative services for Marine Research & the Blue Economy” has received
funding from the European Union's Horizon programme call BG-07-2019-2020, topic: [A] 2019 - Blue
Cloud services, Grant Agreement n.862409.

This document contains information on Blue-Cloud core activities. Any reference to content in this
document should clearly indicate the authors, source, organisation, and publication date.

The document has been produced with the funding of the European Commission. The content of this
publication is the sole responsibility of the Blue-Cloud Consortium, and it cannot be considered to
reflect the views of the European Commission. The authors of this document have taken any available
measure in order for its content to be accurate, consistent and lawful. However, neither the project
consortium as a whole nor the individual partners that implicitly or explicitly participated in the
creation and publication of this document hold any sort of responsibility that might occur as a result
of using its content.

COPYRIGHT NOTICE

OMON

This work by Parties of the Blue-Cloud Consortium is licensed under a Creative Commons Attribution

4.0 International License (http://creativecommons.org/licenses/by/4.0/). “Blue-Cloud, Piloting

Innovative services for Marine Research & the Blue Economy” has received funding from the European
Union's Horizon programme call BG-07-2019-2020, topic: [A] 2019 - Blue Cloud services, Grant
Agreement n.862409.

VERSIONING AND CONTRIBUTION HISTORY

Version Date Authors Notes

0.1 06.03.2020 CNR First version

0.2 12.03.2020 Cécile Nys (IFREMER) First revision

0.3 07.04.2020 IFREMER Addition of text and revision

0.4 08.04.2020 Anton Ellenbroek (FAQ) Review

0.5 10.04.2020 Gilbert Maudire (IFREMER) Inclusion of a chapter about the

demonstrator roadmap

0.6 16.04.2020 IFREMER Versions concatenation

0.7 30.04.2020 Cécile Nys, Gilbert Maudire & Inclusion of illustrations and additions
Dominique Briand (IFREMER) = after WP3 tele-meeting

0.8 05.05.2020 Guy Cochrane (EMBL) Review

0.9 05.05.2020 IFREMER Corrections and update after review

1.0 05.05.2020 IFREMER Final version

D3.2 Demonstrator Implementation Guidelines

http://creativecommons.org/licenses/by/4.0/

Blue-Cloud

-

Contents

Glossary

Executive summary

1
2
3

4

7

Roadmap for demonstrators
Introduction to the Blue Cloud VRE
The D4Science Security
3.1 The Authorization Model
3.2 OAuth2.0
Provisioning, management and integration
4.1 Software Methods Provision and Integration
41.1 Functional specifications
4.1.2 Interface of the DataMiner system

4.1.3 Software Algorithms Integration

4.2 Services and Applications Provision and Integration

4.2.1 Gold level integration pattern
4.2.2 Silver level integration pattern
4.2.3 Bronze level integration pattern
4.3 Interactive Exploratory Computing
431 RStudio
4.3.2 JupyterlLab
Containerised Software Provision and Integration
5.1 Docker Applications
5.2 Shiny Applications
Appendix
6.1 Servlet-based container: SmartGears
6.2 Documentation

References

D3.2 Demonstrator Implementation Guidelines

0 N o u»n

10
11
13
14
14
15
16
18
20
20
21
22
22
22
24
26
26
28
30
30
32
34

Blue-Cloud

-

Table of illustrations

FIGURE 1. SECURITY CONTEXT OF THE VLABS ON THE BLUE-CLOUD VRE : MULTIPLE SCENARIOS AND DIFFERENT
SOLUTIONS. uveureuseusessessessssssessessessessessssssssssssssssasessessssssssssssssssssessssasssssasssssasssssssesanssssassssassssessesasssesssssssassasessesesssnssssssassassanessnsnesnsans 11
FIGURE 2. THE THREE AUTHENTICATION APPROACHES AVAILABLE ON THE BLUE-CLOUD VRE.....iurretrreeseeerseesseesssessnsesnns 11
FIGURE 3. DATAMINER (DATA PROCESSING PLATFORM), OPEN-SOURCE COMPUTATIONAL SYSTEM BUILT ON THE GCUBE
SYSTEM. DATAMINER IS FULLY INTEGRATED WITH THE D4SCIENCE E-INFRASTRUCTURE
FIGURE 4. DATAMINER ADMINISTRATOR AND USER INTERFACES.
FIGURE 5. INTERFACE TO IMPORT A R PROCESS ON DATAMINER
FIGURE 6. GOLD LEVEL INTEGRATION PATTERN.
FIGURE 7. SILVER LEVEL INTEGRATION PATTERN.
FIGURE 8. BRONZE LEVEL INTEGRATION PATTERN.
FIGURE 9. BLUE-BUTTON (MENU) BAR OF A VRE.
FIGURE 10. RSTUDIO INTERFACE WITH THE WORKSPACE FOLDER.
FIGURE 11. REQUEST SUPPORT INTERFACE ON THE D4SCIENCE GATEWAYS AND VRES......oomrmenerinenreinssssssssesessessessssssens
FIGURE 12. JUPYTERLAB IN BLUE-CLOUD VRES.
FIGURE 13. REQUEST SUPPORT INTERFACE ON THE D4SCIENCE GATEWAYS AND VRES......oooreirrereeereessmessssesssessessssessssssens
FIGURE 14. “REQUEST A NEW FUNCTIONALITY ON EXISTING VRE” SUPPORT INTERFACE FOR REQUESTING TO ADD A

“DOCKER APP” ...oeeuetretessesessssssssssssssesssstesssssssssssssssesssssassassasssssssesesssssassssssnsassssssesssssesssssansssssnesessssbssassansssssnstesssssessassansasssnssessanses 27
FIGURE 15. “REQUEST A NEW FUNCTIONALITY ON EXISTING VRE” SUPPORT INTERFACE FOR REQUESTING TO ADD A
“SHINYPROXY APP” ..o.otrtrereesessesnessesssssssesssssssssssssssssssassassasssssssssesssssasssssanssnsssssessssessassansssssnesessssessassansssssnstesssssessassansasssnssessenses 29

D3.2 Demonstrator Implementation Guidelines

Blue-Cloud
Glossary
ABAC Attribute-Based Access Control
API Application Programming Interfaces
CaR Container-as-Resource
CPU Container-as-Resource
DM DataMiner
DA4Science Digital for Science
GB Gigabyte
gHNs gCube Hosting Nodes
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IS Information System
RAM Random-access memory
SAl Software Algorithms Importer
S2S Service2Service
TLS Transport Level Security
u2s User2Service
Vlabs Virtual Labs
VM Virtual Machine
VRE Virtual Research Environment
WebUI Web User Interface
WP Work Package
WPS Web Processing Service
B Beta

D3.2 Demonstrator Implementation Guidelines

Blue-Cloud

Executive summary

This deliverable, D3.2 “Demonstrator Implementation Guidelines” draws first a roadmap towards the
hosting of the demonstrators’ technologies by the Blue-Cloud VRE, in order to set up the Blue-Cloud
Virtual Laboratory.

In a second part, this document proposes information about the services and capacities provided by
the Blue-Cloud VRE and gives guidelines to minimise the effort required to transform standalone
software components into services proposed by the Blue-Cloud Virtual Laboratory. Finally, its aim is
to illustrate how to maximise the exploitation of the services and capacities provided by the Blue-
Cloud VRE. Consequently, this second part starts with a short introduction about D4Science VRE. Then,
it reports on the different integration options that are available and their benefits. Each integration
option contains pointers to existing D4Science manuals and guidelines which can be found on the web
and which are regularly maintained.

However, the data access mechanisms are not part of the implementation guidelines. For the time
being, the demonstrators must bring some of their own data or retrieved external data to try out the
VRE and their workflows. The Blue-Cloud work package 2 (WP2) provides the Blue-Cloud Discovery
and Access service to obtain access to large and multidisciplinary datasets. Deliverable D2.6 “Blue
Cloud Architecture” will document this aspect as part of the description of the general architecture. It
will describe how to establish connections between data and the VRE using the data broker that will
facilitate and harmonize access to external sources. Moreover, a Data Taming service is planned,
whereby the aim will be to interoperate data formats to enable easier input for VRE processes.

This Deliverable, D3.2 “Demonstrator Implementation Guidelines”, starts with a roadmap for the
demonstrators followed up with a short introduction of D4Science VREs. It then reports on the various
integration options and their benefits. Each integration option contains pointers to existing D4Science
manuals and guidelines which can be found on the web and which are regularly maintained.

D3.2 Demonstrator Implementation Guidelines

Blue-Cloud

1 Roadmap for demonstrators

As defined in the project work plan, all demonstrators must adapt their technologies and tools with
the Blue-Cloud VRE in order to make them as integrated as possible in the Blue-Cloud Virtual Library.
However, some pre-processing computation, demanding huge computation capacity, will not have to
be integrated in the VRE. In addition, access to data, especially for very large datasets which cannot
be uploaded locally to the VRE, will be described by the WP2 in D2.6 “Blue Cloud Architecture”.

This integration is well advanced for some demonstrators, thanks to previous projects (e.g. Blue
Bridge), whenever these VRE technologies are really new for other demonstrators’ developers.

In order to align the level of knowledge of all demonstrator developers, this document provides, in a
second part, information about the provided environment and services.

However, it appears necessary to provide practical guidance during all the demonstrator integration
process in the VRE, taking benefit of the experience of the demonstrators which have already partly
completed this process.

The main objective of this roadmap is that, within the next 8 months, B-versions of the demonstrators
will make use of the VRE components and can be activated via the Blue-Cloud Virtual Library. This
roadmap will rely on the following incremental process:

e Work-package 3 meeting (Webinar format), on the 22" of April 2020, to present the
components the Blue-Cloud VRE to all demonstrators, presented in the second part of this
document, and the previous experience of already integrated demonstrators (Demonstrator
#4, Demonstrator #5);

e Homework within each demonstrator to elaborate a work plan for the integration: VRE
components to be used, integration planning, potential issues, more necessary information
(two months, before the next Blue-Cloud General Assembly). It will have to provide
preliminary feedback to technical work-packages 2 and 4;

e Series of per-demonstrator meetings (at least two meetings) to provide additional information
and to study and solve potential issues (4 months). In the meantime, homework by
demonstrators to update the technologies and tools used by the B-versions of the
demonstrators for integration in the Blue-Cloud VRE;

e Full work-package 3 meeting to summarize experiences from all demonstrators;

e Provision of the B-versions of the demonstrators (2 months).

D3.2 Demonstrator Implementation Guidelines

¢ Blue-Cloud

-

2 Introduction to the Blue Cloud VRE

The Blue-Cloud VRE is powered by the D4Science infrastructure. It exploits cloud-based hardware
resources (hardware layer) through the exploitation of a service layer organised in four software
frameworks.

The hardware layer is organized as a dynamic pool of virtual machines, supporting computation and
storage. It consists of an OpenStack® installation, supporting the deployment of services in the upper
layer by provision of computational and storage resources. The services layer is organized into e-
infrastructure middleware, storage, and end user services. This service layer is organised into four
service frameworks, which can be summarized as follow:

e Enabling Framework that includes support services for the operation of all services and the
VLabs. As such it includes:

O a resource registry service, to which all e-infrastructure resources (data sources,
services, computational nodes, etc.) can be dynamically (un)registered and
discovered by user and other services;

O Authentication and Authorization services;

O Auditing Services, capable of both granting and tracking access and usage actions
from users;

o a VRE manager, capable of deploying in the collaborative framework VREs inclusive
for a selected number of “applications”, generally intended as sets of interacting
services;

e Storage Framework which includes services for efficient, advanced, and on-demand
management of digital data, encoded as either files in a distributed file system, collections of
metadata records or time series in spatial databases. These services are used by all other
services in the architecture, except for the enabling framework;

e Analytics Framework that includes the services required for running user provided methods
and a plethora of pre-installed standard statistical methods, provided out of the box, to
compute over given input data. Both scenarios use, in a transparent way, the underlying
powerful computation Blue-Cloud services (e.g. parallel computing);

e Collaborative framework that supports all VLabs deployed by the scientists. It also provides,
for each VLab, social networking services, user management services, shared workspace
services, and analytical laboratory services, all accessible through a WebUI.

! OpenStack www.openstack.org

D3.2 Demonstrator Implementation Guidelines

https://www.openstack.org/

Blue-Cloud

These frameworks provide different integration options, all aimed to support user communities to
benefit from the power of the Blue-Cloud computing approach — scalability, availability, capacity
flexibility, security, enhanced collaboration, failover management, distributed and replicated storage,
etc. — without the need to know technical details, specific technologies, or specific working practices.

e The first integration option is related to the provisioning of software methods elaborated by
the community to prepare and harmonize data, which require an execution within the
infrastructure.

e The second integration option is related to the provisioning and integration of services and
applications into the infrastructure. Those services and applications are independent from the
infrastructure. However, thanks to their integration into the infrastructure they can improve
the service and performance quality.

e The third integration option is related to the provisioning of containerised software that can
be outsourced to the infrastructure to improve the application in terms of scalability while
promoting collaboration.

In this document, three separate sections will be encountered:

e Section 3 describes the secure context where all the integrated software will be executed. It
includes key information about the operation and the service to service connection.

e Section 4 describes the provisioning, management and integration of software methods,
services and applications.

e Section 5 describes the provisioning, management and integration of containerised software.

D3.2 Demonstrator Implementation Guidelines

10
Blue-Cloud

3 The D4Science Security

D4Science.org provides access to a set of services hosted by different organisations in the EU. The
connection between the sites is secured with Transport Level Security (TLS), which provides
communication security over the computer network.

D4Science.org ensures privacy and data integrity between two communicating computer applications.
In particular, any connection between a client (e.g., a web browser) and a D4Science.org server has
the following properties:

e Private (or secure) connection through the adoption of symmetric cryptography, which
encrypts the data transmitted. The keys for this symmetric encryption are generated uniquely
for each connection and are based on a shared secret (negotiated at the start of the session).
The server and client negotiate the details about which encryption algorithm and
cryptographic keys to use before the first byte of data is transmitted. The negotiation of a
shared secret is both secure, as the negotiated secret is unavailable to eavesdroppers and
cannot be obtained (even by an attacker who places himself in the middle of the connection)
and reliable, as no attacker can modify the communications during the negotiation without
being detected;

e Authentication of communicating parties using public-key cryptography. This authentication
can be made optional on the client’s side; however, it is ensured on the server’s side;

e Integrity for the connection is ensured because each message transmitted includes a message
integrity check using a message authentication code to prevent undetected loss or alteration
of the data during transmission;

e Forward secrecy ensures that a future disclosure of encryption keys cannot be used to decrypt
any TLS communications recorded in the past.

D4Science.org provides access to services and data via Virtual Environments, called Virtual
Laboratories in Blue-Cloud. Each VLab enables services and data exploitation to the users authorized
to access the VRE.

D4Science.org is empowered by a token-based authorization system compliant with Attribute-Based
Access Control (ABAC) and supports several patterns for the integration of tools, services, applications
and software that are presented in the following sections.

Alternative authentication models that could be used are illustrated in following figures (Figure 1 &
Figure 2) and the detailed in the following paragraphs (See 3.1 The Authorization Model & 3.2
OAuth2.0).

D3.2 Demonstrator Implementation Guidelines

11

Blue-Cloud

User Token g T ————
w Data Scenario 1: custom API
VRE Analytics D4Science
= User Token (User Tokér
o —I | Blue-Cloud Servi '
° N q
g "' I I
OAuth : N\
L= A N i
; (‘ _,)[Blue-Cloud Service Scenario 2: standard
i v,
2 User Token Application Tokén (
3 Blue-Cloud =T i | Blue-Cloud Service]
Service < — r);
~ - Mediator

Figure 1. Security context of the VLabs on the Blue-Cloud VRE : Multiple scenarios and different solutions

Custom Standard Delegation
(D4S API) (OAuth 2.0) (Mediator)

Easy to achieve for
Blue services not
compliant with
standards

Completely
transparent to the Ready to use
end-users

Blue Service has to The user has to Management costs

become login a first time Blue Services
interoperable with again to exploit the authorize the VRE
VRE Blue service more than the users

Figure 2. The three authentication approaches available on the Blue-Cloud VRE.

3.1 The Authorization Model

The D4Science Authorization framework is a token-based authorization system. This framework is
compliant with the Attribute-Based Access Control (ABAC)? that defines an access control paradigm
whereby access rights are granted to users through the use of policies which combine attributes. ABAC
defines access control based on attributes describing:

the requesting entity (either the user or the service);
the targeted resource (either the service or the resource);
the desired action (read, write, delete, execute);

the environmental or contextual information (either the VRE or the VO where the operation
is executed).

ABAC is a logical access control model that is distinguished by its access control to objects by
evaluating rules against the attributes of the entities (requesting entity or target resource). ABAC relies
on the evaluation of attributes of the requesting entity, attributes of the targeted resource,

2 https://en.wikipedia.org/wiki/Attribute-based access control

D3.2 Demonstrator Implementation Guidelines

https://en.wikipedia.org/wiki/Attribute-based_access_control

12

Blue-Cloud

environment conditions, and a formal relationship or access control rule defining the allowable

operations for entity-resource attribute and environment condition combinations.

The token is a string generated on request by the Authorization service for identification purposes and

associated with every entity belonging to the D4Science infrastructure (users or services). The token

is passed in every call and is automatically propagated in the lower layers. The token can be passed to

any service in 3 ways:

A personal token can be retrieved using the token widget deployed

using the HTTP-header by adding the value ("gcube-token","{your-token}") to the header
parameters;

using the query-string by adding gcube-token={your-token} to the existing query-string;
logging via the default authentication widget shown by the browser using your gcube
username as username and your token as password.

Authorisation Options

on every Virtual Laboratory of the Blue-Cloud VRE gateway.

Personal Token

The gCube Authorization Framework controls access to applications

to allow or prevent the clients to perform various operations in the

About Personal Token

The personal token has to be used for any

application. This is controlled by the Authorization Service programmatic interaction with the services
embedded in the SmartGears (See 6.1 Servlet-based container: BN S
SmartGears) framework with the help of authorization policies. The

purpose of authorization policies is to control clients' accesses. The

Your Token

authorization policies determine at runtime whether or not a

particular action is denied. You can define authorization policies that @ Show

satisfy the authorization requirements using the policy language.

All the policies created in the system are used to DENY to a client an operation in a specific context.

Two types of policy are supported:

User2Service (U2S)
Service2Service (52S)

The U2S policies are used to deny a user or a role the access to a specific service or class of services.

The S2S policies are used to deny a service or a class of services the access to specific service or class

of services. To facilitate the possibility to allow access only to few clients an ‘except restriction’ is

defined in the policies.

Three types of token are supported:

User Token: the user token has to be used by any user for any programmatic interaction with
the services.

Qualified Token: it is a token associated with a mnemonic label. All the operations performed
with this token are accounted for by the user. The mnemonic label will help the user in
identifying better the different exploitation patterns of the infrastructure services.
Application Token: It is a token associated with an application identifier. All the operations
performed with this token are accounted to the specified application and not to a user. It is
released by the D4Science Infrastructure Manager by any application requesting it. 2.2
Integration Patterns

D3.2 Demonstrator Implementation Guidelines

13
Blue-Cloud

-

3.2 OAuth2.0

By means of the OAuth 2.0 protocol (authorised) third party applications can operate on a user's
behalf over the D4Science infrastructure (while protecting the member's credentials). For more
information about the OAuth authorization framework please visit the official OAuth site. For
technical details also see the OAuth 2.0 RFC*.

This exploitation case makes it possible to integrate in the infrastructure: services, tools, and
applications that are not deployed on SmartGears powered containers.

To request the authorisation of a third party application it is sufficient for a member of an existing
Blue-Cloud Virtual Laboratory to open a support request by accessing the D4Science support web site
at https://support.d4science.org.

In the Request a new Functionality on existing VRE, the user Request anew

has to select 3rd Party App Registration®. This link opens a
Y App Teg P Functionality on existing

new interface where further information has to be

provided: VRE
Subject: the name of the third party application; A 5 ¢ VRE
Description: any information about the third party S membero any.) you
application that may be useful; can request additional
e Authorized Redirect URLs: at least one URL that functionality.

must be absolute, and without arguments;

] 3rd Party App Registration
e Logo URL (optional): absolute URL of the

.. Docker App
application logo. ShinyProxy App
The request is managed by the Blue-Cloud VRE support New Virtual Machine

team and processed in the shortest time possible. If all the
requested information is properly specified, the request is
managed in five working days.

More details about how the OAuth 2.0 service work can be exploited in D4Science can be found in the
set of dedicated wiki pages at the address: https://wiki.gcube-system.org/gcube/OAuth2.0 .

3 https://oauth.net/2/
4 https://tools.ietf.org/html/rfc6749%7C
5 https://support.d4science.org/projects/d4science-support/issues/new?issue%5Btracker id%5D=28

D3.2 Demonstrator Implementation Guidelines

https://oauth.net/2/
https://tools.ietf.org/html/rfc6749%7C
https://support.d4science.org/
https://support.d4science.org/projects/d4science-support/issues/new?issue%5Btracker_id%5D=28
https://wiki.gcube-system.org/gcube/OAuth2.0

14
Blue-Cloud

-

4 Provisioning, management and integration

4.1 Software Methods Provision and Integration

The data processing platform (named DataMiner) is an open-source computational system built on
the gCube system. The platform is fully integrated with the D4Science e-Infrastructure (Figure 3), and
meets the Open Science paradigm requirements, in order to promote collaborative experimentation
and open publication of scientific findings, while tackling Big Data challenges. DataMiner is able to
interoperate with the services of the D4Science e-Infrastructure, and to use the Web Processing
Service (WPS) standard to publish the hosted processes. Further, it saves the computational
provenance of an executed experiment using the Prov-O standard. DataMiner implements a Cloud
Computing Map-Reduce approach and is able to process Big Data and save outputs onto a
collaborative experimentation space. This space allows users to share computational information with
other colleagues. DataMiner was conceived to execute processes provided by communities of practice
in several domains, leveraging integration effort at the same time. The DataMiner deployment is fully
automatic through ANSIBLE scripts and is spread across different machines providers, including the
Italian GARR network.

HTML

D4Science e-Infrastructure - VRE

WPS Client/Http Client]

] HrTe-REST

WPS
DataMiner

- Master Cluster
—

e-Infrastructure resources

= ;];.EEE

|
[}
I
[}
I
[}
]
]
[}
I
I
I
]
i
|
[}
]
i
i
i
i
External e-infra. “ IS ,I(
S A A
!
!
i
|
[}
i
]
[}
|
]
]
]
I
]
]
]
[}
I
]

(i
I

‘ DataMiner

— Workers Cluster
—_—

—_—

" pgadada9
LACA— =

Geospatial data services

| I Distributed
J |‘ Storage

Workspace System

Figure 3. DataMiner (data processing platform), open-source computational system built on the gCube system. DataMiner
is fully integrated with the D4Science e-Infrastructure.

D3.2 Demonstrator Implementation Guidelines

15
Blue-Cloud

-

The DataMiner (DM) [References 2] architecture consists of two sets of machines (clusters) that
operate in a Virtual Research Environment [References 3]: the Master and the Worker cluster. In a
typical deployment scenario, the Master cluster is made up of a number of powerful machines (e.g.
Ubuntu 18 x86 64 with 16 virtual CPUs, 32 GB of random-access memory, 100 GB of disk) managed by
a load balancer that distributes the requests uniformly to the machines. Each machine is equipped
with a DM service that communicates with the D4Science Information System (IS), i.e. the central
registry of the e-Infrastructure resources, to notify its presence and capabilities. The balancer is
indexed on the IS and is the main access point to interact with the DMs. The machines of the Worker
cluster have the same computational power and serve Map-Reduce computations. DM is based on
the 52North WPS implementation, but extends it to meet D4Science e-Infrastructure requirements. It
is developed with Java and the Web service runs on an Apache Tomcat instance endowed with gCube
system libraries. Further, it offers a development framework to integrate new algorithms and interact
with the e-infrastructure.

Using the WPS standard in a Cloud computing system allows a number of thin clients to use the
processes. The DataMiner services use the security services of the D4Science e-Infrastructure and
require a user token to be provided for each operation. This token is passed via basic HTTPS-access
authentication, which is supported by most WPS and HTTP(S) clients. The token identifies both a user
and a Virtual Research Environment and this information is used by DM to query the IS about the
capabilities to be offered in that VRE, i.e. the processes the user will be able to invoke with that
authorization.

The DataMiner computations can take inputs from the D4Science Workspace. Inputs can also come
from Workspace folders shared among several users. This fosters collaborative experimentation
already at the input selection phase. Inputs can also come from external repositories, because a file
can be provided either as a HTTP link or embedded in a WPS execution request. The outputs of the
computations are written onto the D4Science Distributed Storage System and are immediately
returned to a client at the end of the computation. Afterwards, an independent thread also writes this
information on the Workspace. Indeed, after a completed computation, a Workspace folder is created
which contains the input, the output, the parameters of the computation, and a provenance
document summarizing this information. This folder can be shared with other people and used to
execute the process again. Thus, the complete information about the execution can be shared and
reused.

DataMiner can also import processes from other WPS services. If a WPS service is indexed on the IS
for a certain VRE, its processes descriptions are automatically harvested, imported, and published
among the DM capabilities for that VRE. During a computation, DM acts as a bridge towards the
external WPS systems. Nevertheless, DM adds provenance management, authorization, and
collaborative experimentation to the remote services.

4.1.1 Functional specifications

DataMiner (DM) meets functional specifications related to the processing of a large variety of data
types (including geospatial data) in the wider context of Big Data processing and Open Science. Other
computational systems used by e-Infrastructures also parallelise the computation on several available

D3.2 Demonstrator Implementation Guidelines

16
Blue-Cloud

-

cores/processors or machines. But DataMiner satisfies requirements requested by new Science
paradigms, which include:

® Publishing local-machine processes, provided by a community of practice (e.g. scripts,
compiled programs etc.), as-a-Service;

Managing several programming languages;

Interoperate with other services of an e-Infrastructure, possibly through a standard
representation of the processes and of their parameters;

e Saving the “provenance” of an executed experiment, i.e. the set of input/output data,
parameters, and metadata that would allow to reproduce and repeat the experiment;
Supporting data and parameters sharing through collaborative experimental spaces;

Being economically sustainable, e.g. easy to install and deploy on several partners’ machines;
Supporting security and accounting facilities;

Managing and analysing Data;

Designing and executing Workflows that combine different processes published as services.

One major advantage is that all DM services publish their capabilities using a standard, which enhances
the interoperability with other external services and software, compared to using custom clients.

The DM clusters are managed by fast load balancers that are able to dynamically add machines and
to ignore them when offline. Since the Worker nodes are exact replicas of the Master nodes, the
Worker cluster can be used directly from clients and fosters alternative usages of the Cloud computing
system. For example, external users of D4Science (authorised with proper tokens) may implement
their own Cloud computations by invoking the Worker cluster in custom workflows.

DM services can interact with data preparation and harmonisation services. This speeds up the typical
time-consuming phase of data preparation. Furthermore, a shared experimentation area allows for
the reuse of results of processes and also fosters multidisciplinary experiments.

DM users can also be services or external machines (e.g. sensors) that produce experimental data at
different frequencies and time scales, while other processes analyse these data and make decisions.

The WPS standard behind DM can also be used by external (including desktop) software that support
the WPS standard. Further, generating and storing provenance information, based on the PROV-O
standard, improves the possibility to repeat and reproduce any DM task, such as experiments
executed by other scientists.

Finally, since processes and service installation is fully automatic through ANSIBLE scripts, it is easy to
deploy DataMiner on a number of machines providers. The hosted processes currently hosted by
DataMiner are written with the R, Java, Fortran, Linux-compiled, .Net, Octave, Knime, and Python
programming languages and have been provided by developers with heterogeneous expertise (e.g.
biologists, mathematicians, agronomists, physicists, data analysts etc.).

4.1.2 Interface of the DataMiner system

DataMiner offers a Web GUI to the users of a VRE (Figure 4). On the left-hand panel (Figure 4 a), the
GUI presents the list of capabilities available in the VRE, which are semantically categorised (the
category is indicated by the process provider). For each capability, the interface calls the WPS

D3.2 Demonstrator Implementation Guidelines

17
Blue-Cloud

“Describe Process” operation to get the descriptions of the inputs and outputs. When a user selects a
process, in the right-hand panel the GUI on-the-fly generates different fields corresponding to the
inputs. Input data can be selected from the Workspace (the button associated to the input opens the
Workspace selection interface). The “Start Computation” button sends the request to the DM Master
cluster, which is managed as explained in the previous section. The usage and the complexity of the
Cloud computations are completely hidden to the user, but the type of the computation is reported
as a metadata in the provenance file. In the end, a view of the Workspace folders produced by the
computations is given in the “Check the Computations” area (Figure 4 b), where a summary sheet of
the provenance of the experiment can be obtained (“Show” button, Figure 4 c). From the same panel,
the computation can be also re-submitted. In this case, the Web interface reads the “Prov-O XML”
information associated to a computation and rebuilds a computation request with the same
parameters. The computation folders may also include computations executed and shared by other
users. Finally, the “Access to the Data Space” button allows the user to obtain a list of the overall input
and output datasets involved in the executed computations (Figure 4 d), with provenance information

attached that refers to the computation that used the dataset.

DataMiner ot a] : =t
L] i toem Pemrien s e [o e

T3 Sears o

Fa— . -f:-__

00 PRAGES S8

ars.

o CmmTAnGHE SPECEE DT,
Cimen Cwomerasrsonn Tremca s
Docasramid

b (i £ ouuaian (s

PRS0

e P
Ty sigoelibvs cow.aryd Wi diphy Prvslm,
Bt o o
.
e i o 1P i i . gt (SR} iy ey
pre——
d.
LA Lo pets s o FEED FORMAAALD & N N DUSTRIBUTION (D 77 gl 2-FEcg-Sedh-E 40312 1] BSCY
Lo P 1 VIR FORIAAE & M8 DOTRERTOR 0Tt i e e e i
0 Snom | Downioad (3 Debel 7 Fubech 23 Amssbrd (35 Cancel C-

i = Craated Copsa_rn sl anel_iliis e sEml

o e, A -) A L 0 8 M0 it
FEEL PORWARDL A WK DOSTR —— e e R 153 — S
e 8 hicw (133 P 354 FEFTL_PCEWARDL_A M_R_TIS TR 161136010 15304 THERRESE ot
A FEEC_PORWARD_S MWD TR 16712016 130081 THEHTREE comataa
it S 1, e] WA s, FET VG, i B i . 0
phnpipbniravieinsetiitl TEEC AR U] FEED,_FOMWARD_A_M_K_TIS TH 167110016 THIS 1BIEHE 122306 comgiuted
~ it i
DataMiner : (T s 2 e
aia Aaacs
G Dok Sen | B D
o Omiend 3 Dwme s et . ok ko
d.
) - Cralel cemiabiion_d ek deliclys DpSILL_riis VTE
im * FEED - FEED. M D TR . B4 \RO_ALHD = B
Sl ekt e o 4 - N p——

Figure 4. DataMiner Administrator and User interfaces.

D3.2 Demonstrator Implementation Guidelines

18
Blue-Cloud

-

4.1.3 Software Algorithms Integration

Prototype scripting is the basis of most models in environmental sciences. Scientists developing
prototype scripts (e.g. using R and Matlab) often need to share results and make their models available
to others for review or for exploitation with new data. To this aim, DM allows to publish scripts as-a-
Service, preferably under a recognized standard (e.g. WPS). The Software Algorithms Importer, SAl
[References 5], is an interface that allows to import scripts into DataMiner (DM). DataMiner in turn
publishes these scripts as a service and manages multi-tenancy and concurrency. Additionally, it allows
users to update their scripts without time-consuming software re-deploying procedures.

In summary, SAIl produces processes that run on the DataMiner Cloud computing platform and are
accessible via the WPS standard.

Project Res0wce Safware 12l

P, Creas | By Open| By Save &% Add @ Oitdub 3w Create [Publish zip Repackage 2 Help
M Save Man: AbsencesSpeciesList-p nput
Global Variables Interpreter Info

Name Deascription Type Default Vo

list kst of spea Fie speaes it nput

res resolution Doubia 1 nput
0oC_peroe. .. perceniay Doubike 01 Mnpat
ZIpOutput 7ip Nls con, File OURMA ZID Outpur
cles. Tt 7 ; R A 3 : SR -
<-reed, tesle(list, header=1,5ep) . ecie Project Explorer (%)
4 SetMain @ Open @ Delete) Reload
Name Creared
Target 24 Feb 12:26 PM 2015
" AbsencesSpeckesList prod annotatec r 02 Feb 06:29 PM 2016
S1ar_algo.project 02 Feb 05:34 PM 2015

<31 +8)7, ", TimeStart)
+1(#3)°, °*, TimeEng) -
’

Figure 5. Interface to import a R process on DataMiner.

The SAl interface for R scripts resembles the R Studio environment (Figure 5), a popular IDE for R
scripts, in order to make it accessible to script providers. The interface for software written in other
programming languages does not allow to edit the main script. However, SAl provides support for
scripts implemented in several languages as shown in the following picture.

The Project button allows creating, opening and
saving a working session. A user uploads a set of files

Project Create X
and data on the workspace area (lower-right panel). e
Upload can be done by dragging and dropping local

v

GCKDOX

desktop files. As next step, the user indicates the

“main script”, i.e. the script that will be executed on
DataMiner and that will use the other scripts and

files.
Python3.6
Windows-compiled
script, the left-side editor panel visualises it with R Pre-Installed

For R scripts integration, after selecting the main

syntax highlighting and allows modifying it.

D3.2 Demonstrator Implementation Guidelines

19
Blue-Cloud

-

Afterwards, the user indicates the input and output of the script by highlighting variable definitions in
the script and pressing the +Input (or +Output) button. In the case of other programming languages
than R, the Input and Output variables should be manually specified directly in the Input/Output panel.

For R scripts, SAl also supports WPS4R annotations inside the script to automatically generate inputs
and outputs. Other tabs in this interface area allow setting global variables and adding metadata to
the process. In particular, the “Interpreter tab” allows users to indicate the version of the R interpreter
and the packages required by the script and the “Info tab” allows users to indicate the name of the
algorithm and its description. In the “Info tab”, the user can also specify the algorithm’s name and
category.

Once the metadata and the variables information has been fulfilled, the user can create one
DataMiner as-a-Service version of the script by pressing the Create button in the Software panel. The
term “software”, in this case indicates a Java program that implements an as-a-Service version of the
user-provided scripts. The Java software contains instructions to automatically download the scripts
and the other required resources on the server that will execute it, configure the environment,
execute the main script and return the result to the user. The computations are orchestrated by the
DataMiner computing platform that ensures the program has one instance for each request and user.
The servers will manage concurrent requests by several users and execute code in a closed sandbox
folder, to avoid damage caused by malicious code.

Based on the SAI Input/Output definitions written in the generated Java program, DataMiner
automatically creates a Web GUI. By pressing the Publish button, the application notifies DataMiner
that a new process should be deployed. DataMiner will not own the source code, which is downloaded
on-the-fly by the computing machines and deleted after the execution.

This approach meets the policy requirements of those users who do not want to share their code. The
Repackage button re-creates the software so that the computational platform will be using the new
version of the script. The repackaging function allows a user to modify the script and to immediately
have the new code running on the computing system. This approach separates the script updating and
deployment phases, making the script producer completely independent on e-Infrastructure
deployment and maintenance issues. However, deployment is necessary again whenever
Input/Output or algorithm’s metadata are changed.

To summarise, the SAl Web application relies on the D4Science e-Infrastructure and enables a
software (R, Java, Fortran, Linux-compiled, .Net, Octave, Knime, Python), provided by a community of
practice working in a VRE, with as-a-Service features. SAl reduces integration time with respect to
direct Java code writing. Additionally, it adds (i) multi-tenancy and concurrent access, (ii) scope and
access management through Virtual Research Environments, (iii) output storage on a distributed,
high-availability file system, (iv) graphical user interface, (v) WPS interface, (vi) data sharing and
publication of results, (vii) provenance management and (viii) accounting facilities.

D3.2 Demonstrator Implementation Guidelines

20
Blue-Cloud

-

4.2 Services and Applications Provision and Integration

An application or service is defined as a stand-alone system running on a remote server and offering
one or more functionality either via web User Interfaces or via Application Programming Interfaces
(APIs).

A service or an application, hereafter service, can be integrated in the Blue-Cloud VRE via different
patterns, each pattern is characterized by an effort required for the implementation and a resulting
benefit. Integration is not achieved by only hosting the service in the infrastructure, there are mutual
benefits for both the service and the infrastructure in performing this integration: the service may
exploit the infrastructure frameworks and capabilities, such as the Analytics and Storage frameworks
and the hardware and data resources associated to them. The infrastructure, in turn, would gain in
terms of broadening its offering by making the integrated service part of it.

4.2.1 Gold level integration pattern

A gold level of integration is achieved by making the service available on an authorised SmartGears
node of the infrastructure. A SmartGears node (See Appendix 1) is a customised Java 8 Servlet
container (Apache Tomcat 8), this implies that in this integration pattern the service has to be able to
run on a Java Virtual Machine.

The benefits of this integration pattern are that the service becomes fully interoperable with the
infrastructure and can delegate the following functions:

Authorisation and Authentication;
Users and Roles Management;
Auditing and Tracing;

Monitoring.

qa‘% g

Us
M

SmartGears

User
Token
Your
«iéi ;
Ay Service

Figure 6. Gold level integration pattern.

Figure 6 depicts the higher level of integration, where the infrastructure provides the service with
authentication, authorization, monitoring and auditing. The User Token is passed transparently among
service calls and the calls arriving to the service are already authorized.

D3.2 Demonstrator Implementation Guidelines

21
Blue-Cloud

4.2.2 Silver level integration pattern

Assilver level of integration is achieved by passing the User Token to the service, which in this case runs
over its own technology server (inside or outside the infrastructure premises), by means of a HTTP
GET request over the HTTPS (HyperText Transfer Protocol Secure) protocol.

The User Token is not passed transparently among service calls, the service reads the User Token from
the HTTP GET request and uses it to perform the infrastructure service calls needed for its functions.
The very first request would be to validate and resolve (obtain user identifier and VLab identifier) the

token.
foes- 8 q B
User: Mister Blue SN —
‘T ' VLab Id: VLab X
Role: VLab-Manager
User
Token
Token
Your web server
VLab X
=

Figure 7. Silver level integration pattern.

The benefits of this integration pattern are that the service becomes interoperable with the
infrastructure and may delegate the following functions:

e Authorisation and Authentication;
e Users and Roles Management;
e Monitoring (only if the service is hosted within the infrastructure premises).

Figure 7 depicts the silver level of integration, where the infrastructure provides the service with the
User Token via a HTTP GET request. The User Token can be used to obtain user identifier (Mister Blue
in figure), the roles (VLab-Manager in figure) of the user and the VLab identifier (VLab X in figure) and
successively perform other service to service calls required for the service functions.

D3.2 Demonstrator Implementation Guidelines

22
Blue-Cloud

4.2.3 Bronze level integration pattern

A bronze level of integration is a lightweight integration with few benefits and can be used only in
particular cases where the service needs to contact some Blue-Cloud service but cannot perform
operations on behalf of the users. The figure below shows an example of a service needing
authorization to access the Storage service of the Blue-Cloud VRE for some of its functions.

f,}Blue-CGloud Your

ateway

Service

Lab
SmartGears
%5 Storage
k(.a)g(’i{‘:;;lication Token created by the user in Apache SCliEs
Viab X

Figure 8. Bronze level integration pattern.

Figure 8 depicts the bronze level of integration, where the infrastructure provides the service with an
Application token that can be stored in the service to perform service calls required for the service
functions.

4.3 Interactive Exploratory Computing

The Blue-Cloud VRE offers access to two environments providing a console, syntax-highlighting editor
that supports direct code execution, as well as tools for plotting, history, debugging and workspace
management: RStudio and JupyterLab.

43.1 RStudio

RStudio is the premier integrated development environment for R. It provides syntax highlighting,
code completion, and smart indentation allowing to execute R code directly from the source editor.

RStudio provided by the Blue-Cloud VRE is integrated within the Workspace making it possible to read,
store and update any content the user has previously stored in the Workspace. The connection to the
Workspace allows also to save computations executed in RStudio in the workspace and to share them
with other users or preserve it across RStudio sessions.

RStudio is available to all members of the Blue-CloudLab environment by a clicking on the RStudio
‘button’ in the blue-button bar (Figure 9).

Blue-CloudLab Home 9, Administration = & Software Importer I Analytics Engine A R Studio B Importer Documentation a% Members

Figure 9. Blue-button (menu) bar of a VRE.

D3.2 Demonstrator Implementation Guidelines

Blue-Cloud

-

23

One RStudio instance is assigned from the RStudio cluster of the Virtual Laboratory. This means that
the same user may be assigned different instances across user sessions. It is therefore fundamental to
save any file generated in the RStudio session in the personal Workspace.

The Workspace appears as a folder in the RStudio interface (Figure 10) and can be navigated as any

other local folder.

Files Plots Packages Help Viewer

@ NewFolder ' ©] Upload © Delete - Rename {é}More-

/l\ Home
A Name Size
.Rhistory 494 B
155ept2014-Carcharodon carcharias (scientific name) ... 1.2 MB
R
userconfig.csv 718
workspace

Modified
Nov 25, 201¢
Files Plots Packages Help Viewer
Feb 2: 20]7w © | New Folder © Upload © Delete «|Rename _}Mnrev
4 Home - workspace - VREFolders > Blue-CloudProject

A Name Size Modified
Mar 6, 2020, L.

1. Management

2. Work Packages Activities

3. Deliverables

\

4. Meetings
5. DECO Activities

6. Communications Kit

Blue-Cloud Contacts online sheet 1038 Oct 8, 2019,

Figure 10. RStudio interface with the Workspace folder.

The RStudio environment can be requested and activated in any Virtual Laboratory.

To request the provision of RStudio it is sufficient to be a member of an existing Blue-Cloud Virtual
Laboratory and open a support request by accessing the D4Science support web site at

https://support.d4science.org.

In the D4Science Gateways and VRES, the user has to select D4Science Gateways

Request Support. This link opens a new interface (Figure 11)

and VREs

where a number of information have to be provided:

® Subject: the name of the demonstrator;

Gateways are the access
point to infrastructure VREs.

e Description: any information about the R Visit D Seiseice o Batewsy ot
environment the user needs know. discover the D4Science Thematic
This description must include the list of R packages Guteviays.

that should be made available in any RStudio
instance of the RStudio cluster. This is particularly
relevant for the user since it will avoid the setup of
the RStudio instance at any session.

Request Support
Assign a Task

Report an Incident

The request is managed by the Blue-Cloud VRE support team and processed in the shortest time
possible. If all the requested information is properly specified, the request is managed in two working

days.

D3.2 Demonstrator Implementation Guidelines

https://support.d4science.org/

24

& Blue-Cloud
New issue
Tracker * [Support :] Private
Subject * ||
Description [y || 7 |8 |[c | [m|[m|[m] [=][E] (2] 2| |we| Q]|
Status * [New = Parent task
Priority * [Normal o) Start date 2020-03-06
Assignee [3) Due date
Estimated time Hours
% Done | 0% >
Files cpoose Files no files selected (Maximum size: 5 MB)

Watchers g search for watchers to add

Create Create and continue Preview

Figure 11. Request Support interface on the D4Science Gateways and VREs.

4.3.2 JupyterLab

Jupyter notebooks are useful for documenting and recording analytical processes. Notebooks are
documents that combine live runnable code with narrative text (Markdown), equations (LaTeX),
images, interactive visualizations and other rich output. The Blue-Cloud VRE notebook platform is
served by JupyterLab®.

The JupyterlLab provided by Blue-CLoud VRE is integrated with:

e the Workspace (appearing in the JupyterLab Ul) thus making it possible to seamlessly read,
store and update any content the user has previously stored in the Workspace directly
(including content stored into VRE folders). This integration allows to store the notebooks
produced by JupyterLab in the Workspace and from there they can be shared and published;

e the DataMiner thus making it possible to seamlessly invoke any DataMiner algorithm through
an extended version of the OWSLib library that takes care of interfacing with DataMiner via
the WPS protocol and the user authorization token (See 3.1 The Authorization Model);

JupyterlLab (Figure 12) is available to all members of any VRE where it has been deployed by clicking
on the button of the VRE menu.

6 https://jupyter.org/

D3.2 Demonstrator Implementation Guidelines

https://jupyter.org/
https://jupyter.org/

Blue-Cloud

File Edit View Run Kernel Tabs Settings Help

+ n b c @ Launcher X | W WPS.ipynb x
m/ B + X DO O » = ¢ Code v

Name - Last Modified

(1]: import os
import requests
[F] classification.ipynb 2 years ago import logging

W vorkspace 6 months ago

® 0

O Just for test.txt 6 months aga -
o import pandas as pd

O NbDemo.zip 6 months ago import matplotlib.pyplot as plt
A processing.ipynb 2 years ago import xnl.etree.ElementTree as etree

B provenance.ipynb § months ago from owslib.wps import WebPracessingService, ComplexDatalnput, printInputOutput, monitorExecution
« Al WPS.ipyrb & months ago

o »~

initialise logging to get debug output
logging. basicConfig()
logging. getLogger (). setLevel(logging. WARN)

O wps.out a year ago
P year age

configure with personal login and token
geube_vre_token = os.environ[GCUBE_TOKEN']
geube_vre_portal_login = "leonardo.candela”
geube_vre_token_header = {'gcube-token': gcube_vre_token}

init http header parameter and base folders for gCube REST API

gcube_vre_base_url = 'https://workspace-repository. ddscience. org/home-library-webapp'
acube_vre_workspace_url = '/Home/' + gcube_vre_partal_login + '/Morkspace'

gcube_vre_aginfra_folder = '/MySpecialFolders/d4science.research-infrastructures.eu-D4Research-AGINFRApLUs "

init WPS access for DataMiner algorithms
dataminer_url = 'http://dataminer-prototypes.ddscience.org/wps/WebProcessingService®
wps = WebProcessingService(dataminer_url, headers=gcube_vre_token_header)

describe the WPS
wps.getcapabilities()

print('Web Processing Services Identification:'}
print('-', wps.identification. type)

print('~', wps.identification. title)

print('-', wps.identification.abstract)

25

Python3 O

o @1 @ Pythond|ide Mode: Command & Ln1,Col1 WPS.ipynb

Figure 12. JupyterLab in Blue-Cloud VREs.

JupyterlLab can be requested and activated in any Virtual Laboratory.

To request the provision of JupyterLab it is sufficient to be a member of an existing Blue-Cloud Virtual

Laboratory and open a support request by accessing the D4Science support web site at

https://support.d4science.org.

D4Science Gateways

In the D4Science Gateways and VRES, the user has to select Request Support.
This link opens a new interface (Figure 13) where a number of information
have to be provided:

and VREs

Gateways are the access
point to infrastructure VREs.

e Subject: the name of the demonstrator; VisitDdSclenca.arg Gateway or

discover the D4Science Thematic

Description: any information about the JupyterLab environment the
user needs to know. This description must include the list of packages
and kernels the JupyterLab instance that are useful for the VRE to be
provided with.

Gateways.

Request Support
Assign a Task
Report an Incident

The Blue-Cloud VRE support manages and processes, in the shortest time possible, the requests made

by the users If all the requested information is properly specified, the request is managed in two

working days.

New issue
Subject * ||
Dascription (g | 7 | g |[¢ | [m]|[m][m] [=][E] (2] 2] [eve] [R]
N T — i
Priority * (Normal 1) start date 2020-0208
Assignee(3] Due date =
Estimated time Hours
% Done (7% 7]
Files choose Files o files selected (Maximum size: 5 MB)

Watchers o search for watchers to add

Create Create and continue Preview

Figure 13. Request Support interface on the D4Science Gateways and VREs.

D3.2 Demonstrator Implementation Guidelines

https://support.d4science.org/

26
Blue-Cloud

-

5 Containerised Software Provision and Integration

As reported in [References 6], containerization is an alternative virtualization. It encapsulates or
packages software code and all its dependencies so that it can run on the Blue-Cloud infrastructure.

Containerization bundles the application code together with the related configuration files, libraries,
and dependencies required for it to run. This single package of software or “container” is abstracted
away from the host operating system, and stands alone and is portable. Containers are inherently
smaller in capacity than a Virtual Machine (VM) and require less start-up time, allowing far more
containers to run on the same compute capacity as a single VM.

Containerization allows applications to run anywhere. Containerized applications are isolated in that
they do not bundle in a copy of the operating system.

This approach is particularly suitable for the Blue-Cloud VRE since each containerized application is
isolated and operates independently of others that are provided by different groups working in
different domains. The failure of one container does not affect the continued operation of any other
containers and this allows to deliver production-quality operations even in presence of development
activities performed by other users. Technical issues within one container never force any downtime
in other containers.

Moreover, the isolation of applications as containers prevents the injection of malicious code aimed
to attack other containers or the host system and this reduces the costs of operation and making it
possible for the Blue-Cloud VRE to automate the installation, scaling, and management of
containerized workloads and services.

5.1 Docker Applications

A Docker Swarm’ cluster is available to deploy and run Docker containers. Only Docker containers are
supported at this time and they can be deployed in different ways:

e A public container already available in Docker Hub® or any other public container registry.

® A build of a public image can be requested, which must be accessible from the D4Science
Jenkins® instance so that the process can be automated. The result container image will be
uploaded into Docker Hub and deployed into the cluster.

e A build of a private image can be requested, which must be accessible from the D4Science
Jenkins instance so that the process can be automated. The result container image will be
uploaded into the D4Science's private Registry and deployed into the cluster.

To request the deployment and provision of a Docker container is sufficient to be a member of an
existing Blue-Cloud Virtual Laboratory and open a Support Request by accessing the D4Science support
web site at https://support.d4science.org.

7 https://docs.docker.com/engine/swarm/
8 https://hub.docker.com/
9 https://jenkins.d4science.org/

D3.2 Demonstrator Implementation Guidelines

https://docs.docker.com/engine/swarm/
https://hub.docker.com/
https://jenkins.d4science.org/
https://hub.docker.com/
https://jenkins.d4science.org/
https://support.d4science.org/
https://docs.docker.com/engine/swarm/
https://hub.docker.com/
https://jenkins.d4science.org/

Blue-Cloud

27

In the Request a new Functionality on existing VRE, the user has to select Docker App. This link opens
a new interface (Figure 14) where a number of information have to be provided:

o Subject: the name of the demonstrator;
e Description: any information about the container that Request a new
may be useful to proper provision it; Functionality on existing
e RAM, DIskSpace: memory and disk resources required VRE
by the container;
e |mage Name: the name of the image on either Docker As member of ar:;YRE ylou
. can request additiona
HUB or another repository; ¢ a tionalit
. . unctionality.
e Display Name: the name to assign in the VLAB to start Y
the containerised application; 3rd Party App Registration
e A D ioti . inf ti bout th licati Docker App
pp Description: any information about the application ShinyProxy App
that may be useful to proper provision it; New Virtual Machine
e External storage data disk: volumes that store
permanent data (if any).
New issue
Tracker * (_Docker Image g Private
Subject *
Description ['p |[7 [|| ¢ | [m|[e]|[m] [=][=] [=][=][m] (@
Status * [New + Parent task
Priority * [Normal v Start date 2020-03-06
Assignee | +) Due date 7
RAM * 2 Display Name *
DiskSpace * 1p App Description *

External storage data disk

P Repo URL (if not docker

Image Name *

Files Choose Files no files selected (Maximum size: 5 MB)

Watchers g search for watchers to add

hub)

Figure 14. “Request a new Functionality on existing VRE” support interface for requesting to add a “Docker App”

The request is managed by the Blue-Cloud VRE support team and processed in the shortest time
possible. If all the requested information is properly specified, the request is managed in two working

days.

D3.2 Demonstrator Implementation Guidelines

28
¢ Blue-Cloud

-

5.2 Shiny Applications

Shiny is an R package that makes it easy to build interactive web apps straight from R. However, when
multiple instances/users attempt to start a Shiny App at the same time, only a single R session is initiated
on the serving machine. This is problematic and cannot be adopted as a solution by the Blue-Cloud VRE if
one user starts a process for example that takes several seconds to complete, all other users will need to
wait until that process has completed before any other tasks can be processed. For this reason, Blue-Cloud
requires that the Shiny App is containerised. One of the benefits of deploying a containerised Shiny App is
that each new instance will run in its own R session.

To implement this approach, ShinyProxy is used. ShinyProxy uses time-tested and mature enterprise

t1° web application. When deploying a Shiny application

Java technology bundled nicely as a Spring boo
with ShinyProxy, the application is simply bundled as an R package and installed into a Docker image.
Every time a user runs an application, a container spins up and serves the application. This has

numerous advantages:

fully isolated 'workspace' per session;
plug and play different docker images (even with different R versions or different Shiny
versions);
control on memory and CPU usage via the Docker API;
e monitoring and debugging using standard Docker tooling.

A Shiny (proxy) app*t can be deployed in different ways:

e As a public app available in Docker Hub*? or any other public container registry. In this case,
the image name and the run command are the only requirements.

e Abuild of a public image can be requested, this must be accessible from our Jenkins? instance
so that the process can be automated. The resulting container image will be uploaded into
Docker Hub*.

e A build of a private image can be requested, this must be accessible from our Jenkins®®
instance so that the process can be automated. The result container image will be uploaded
into the D4Science's private registry.

To request the deployment and provision of a Shiny App is sufficient to be a member of an existing
Blue-Cloud Virtual Laboratory and open a support request by accessing the D4Science support web
site at https://support.d4science.org.

10 https://spring.io/projects/spring-boot
11 https://www.shinyproxy.io/

12 https://hub.docker.com/

13 https://jenkins.d4science.org/

14 https://hub.docker.com/

15 https://jenkins.d4science.org/

D3.2 Demonstrator Implementation Guidelines

https://spring.io/projects/spring-boot
https://www.shinyproxy.io/
https://hub.docker.com/
https://jenkins.d4science.org/
https://hub.docker.com/
https://jenkins.d4science.org/
https://support.d4science.org/
https://jenkins.d4science.org/

2 Blue-Clou

29

In the Request a new Functionality on existing VRE, the user has to select ShinyProxy App. This link

opens a new interface (Figure 15) where a number of information have to be provided:

® Subject: the name of the demonstrator;
e Description: any information about the ShinyProxy Request a new
App that may be useful to proper provision it; Functionality on existing
o Image Name: the name of the image on either Docker VRE
HUB or another repository;
® Repo URL: container repository, if not docker hub. Or
a code repository if a local build has been requested; As member of any VRE you
e Display Name: the name to assign in the VLAB to start can request additional
the containerised application; functionality.
® App Description: any information about the 3rd Party App Registration
application that may be useful to proper provision it; Docker App
e Docker Command: the docker command required to ShinyProxy App
start-up the ShinyProxy App; New Virtual Machine
e Local Build: Set to Yes if you are requesting a public or
private build. Specify in the Description field if it must
be private.
New issue
Tracker * (_ShinyProxy App +) Private
Subject *
D= cipton B I | & C H HR H == [T = e (g
Status * [(New a Parent task ’
Priority * ("Normal 0 Start date 2020-03-06 |
Assignee (3) Due date 7
Sprint * 1O %Done (0% %)
Image Name * Repo URL (if not docker
Display Name * hub)
Local Build *
App Description * -
P Dependencies
Docker Command * :
Files choose Files o files selected (Maximum size: 5 MB)

Watchers g search for watchers to add

Figure 15. “Request a new Functionality on existing VRE” support interface for requesting to add a “ShinyProxy App”

D3.2 Demonstrator Implementation Guidelines

30
Blue-Cloud

6 Appendix

6.1 Servlet-based container: SmartGears

SmartGears is a set of Java libraries that turn Servlet-based containers and applications into D4Science
resources, transparently.

In this section, we introduce SmartGears and explain how it is an improvement over existing solutions.
The discussion is relevant to node and infrastructure managers, who perform and maintain
SmartGears installations, and to developers, who package or write software for a D4Science
infrastructure.

A piece of software is an infrastructure resource (the so-called Software as Resource, SaR) if we can
manage it in the D4Science infrastructure. This means that we can do a number of things with the
software, including:

e discover where it is deployed in the infrastructure, so as to use it without hard coded
knowledge of its location. For this, we need to describe each and every software deployment,
and publish these descriptions, or profiles, in the infrastructure;

e monitor and change the status of its deployments, so as to take actions when they are not in
an operational status (e.g. redeploy the software, or at least prevent discovery and usage of
the deployments). For this, we need to track their current status, report it in the profiles we
publish, and republish the profiles when the status changes;

e dedicate its deployments to certain groups of users, in the sense that only users in those
groups can use them. We can change the sharing policies of individual deployments at any
time, i.e. share them across more or less groups. We can also grant different privileges to
different types of users within given groups.

Publication, discovery, lifecycle management, controlled sharing are the pillars of the resource
management. Yet relying on humans to compile deployment profiles, publish them in the
infrastructure, keep track and change the status of deployments, or enforce sharing policies is all but
practical. In some cases, it is downright impossible. We need instead automated solutions that live
alongside each and every deployment and help us turn it into a resource we can manage. SmartGears
is one such solution.

We focus on software that can be used over the network, such as distributed applications and network
services. Software deployments then correspond to software endpoints.

Typically, software endpoints run within containers and, in D4Science, containers can be resources in
their own right, the so-called gCube Hosting Nodes (gHNs).

Managing gHNs is a way to manage multiple endpoints simultaneously (e.g. to deactivate a gHN means
to deactivate a set of endpoints at once). Equally, it is a way to manage underlying hardware resources
(e.g. dedicate a gHN to selected groups of users).

This is a notion of "Container-as-Resource" (CaR), and it raises the same requirements as SaR, including
publication and discovery, lifecycle management, and controlled sharing. SmartGears helps us meet

D3.2 Demonstrator Implementation Guidelines

31
Blue-Cloud

these requirements too, i.e. turns containers as well as the endpoints therein into D4Science
resources.

SmartGears is not a development framework. Rather, SmartGears is invisible to the software, not part
of its stack at all. As a result, any software can run in the infrastructure: SaR becomes a nature that
software acquires at runtime.

Indeed, SmartGears has few requirements for the software. All we ask of software is that it is based
on the Servlet specifications, which define the hooks that we need to track its lifecycle and its use. The
software is thus a Web Application and may more specifically be a Soap service, a Rest service, or a
generic Web Application. It may adopt different standards and technologies (e.g. JAX-RPC, JAX-WS,
JAX-RS, but also Dependency Injection technologies, persistence technologies, etc.). And of course, it
may run in any container that is Servlet-compliant (Web Containers, Application Servers).

Finally, the evolution of SmartGears is inconsequential for the software: most of the APIs of
SmartGears remain private to SmartGears.

Containers and applications need a minimal set of requirements before SmartGears can turn them
into D4Science resources:

e Containers must comply with version 3 of the Servlet specifications;
o Applications must include at least one gcube-app.xml configuration file alongside their
deployment descriptor (i.e. under /WEB-INF);

In addition:

e Node managers must define a GHN_HOME environment variable that resolves to a location
where SmartGears can find a container.xml configuration file.

Starting from version 3, the Servlet specifications allow SmartGears to intercept relevant events in the
life cycle of individual applications whilst being shared across all applications, in line with the
deployment scheme of SmartGears. In particular, the specifications introduce a
ServletContextlnitializer interface that SmartGears implements to be notified of application startup.
The specifications also allow programmatic registration of filters and servlets, which SmartGears uses
to transparently manage applications without the need of additional configuration in their web.xml
descriptor.

Configuration is thus limited to WEB-INF/gcube-app.xml and SGHN_HOME/container.xml, which
provide the configuration of, respectively, the application and the container as D4Science resources.
Details about their contents are available in the gCube Wiki Appendices®®.

SmartGears is distributed as a tarball that contains the libraries, scripts, and configuration files
required to install SmartGears in a given container, and to maintain the installation over time.
Instructions on how to download, install and maintain SmartGears are available in the
SmartGears_Web_Hosting_Node_(wHN)_Installation’.

16 https://wiki.gcube-system.org/gcube/SmartGears#Appendices
17 https://wiki.gcube-system.org/gcube/SmartGears Web Hosting Node (wHN) Installation

D3.2 Demonstrator Implementation Guidelines

https://wiki.gcube-system.org/gcube/SmartGears#Appendices
https://wiki.gcube-system.org/gcube/SmartGears_Web_Hosting_Node_(wHN)_Installation
https://wiki.gcube-system.org/gcube/SmartGears#Appendices
https://wiki.gcube-system.org/gcube/SmartGears_Web_Hosting_Node_(wHN)_Installation

o

-

6.2

32

Blue-Cloud

Documentation

Developers website: to get information about a set of commonly used APIs: Dev Web Site
(https://dev.d4science.org/);
Profile & Social Networking API: to get profile and user information or boost your content's

reach by making it easy for people to share it on Virtual Research Environments (VREs) Profile
and Social Networking RESTful Service

(https://dev.d4science.org/swagger/social-networking/);

Workspace (Storage Hub) API: to learn how to browse, upload and download user's workspace
files and folders: StorageHub REST API
(https://gcube.wiki.gcube-system.org/gcube/StorageHub REST API);

Metadata Catalogue (gCat) API: to learn how to publish and search collections of metadata
for items including data, services, and related information objects: gCAT REST API
(https://wiki.gcube-system.org/gcube/GCat Service);

Information System API: to learn how to interact with resources hosted in the Infrastructure
and its Vlab : Information System REST API
(https://dev.d4science.org/swagger/registry/);

Authorisation framework :
o Authorization
(https://dev.d4science.org/authorization/),

o Authorization Framework

(https://wiki.gcube-system.org/gcube/Authorization Framework).

New Methods/Algorithms for DataMiner: to learn how to implement custom Methods and
Algorithms for DataMiner: Software Algorithm Importer

(https://wiki.gcube-system.org/gcube/Category:Statistical Algorithms Importer)

Supported languages for new Methods/Algorithms for DataMiner: Create a new project with
SAI
(https://wiki.gcube-system.org/gcube/Statistical Algorithms Importer: Create Project)

DataMiner online interfaces
o Web: DataMiner Manager

(https://wiki.gcube-system.org/gcube/DataMiner Manager),

o Web Processing service: Web Processing Service | OGC

(https://www.opengeospatial.org/standards/wps).

DataMiner overview: Data Mining Facilities

(https://wiki.gcube-system.org/gcube/Data Mining Facilities);

Spatial Data Infrastructure capabilities
o SDI-Service
(https://gcube.wiki.gcube-system.org/gcube/SDI-Service),

o Spatial Data Storage and Publishing

(https://gcube.wiki.gcube-system.org/gcube/Spatial Data Storage and Publishing),

o Spatial Data Discovery and Access

(https://gcube.wiki.gcube-system.org/gcube/Spatial Data Discovery and Access).

D3.2 Demonstrator Implementation Guidelines

https://dev.d4science.org/
https://dev.d4science.org/
https://dev.d4science.org/swagger/social-networking/
https://dev.d4science.org/swagger/social-networking/
https://dev.d4science.org/swagger/social-networking/
https://gcube.wiki.gcube-system.org/gcube/StorageHub_REST_API
https://gcube.wiki.gcube-system.org/gcube/StorageHub_REST_API
https://wiki.gcube-system.org/gcube/GCat_Service
https://wiki.gcube-system.org/gcube/GCat_Service
https://dev.d4science.org/swagger/registry/
https://dev.d4science.org/swagger/registry/
https://dev.d4science.org/authorization/
https://dev.d4science.org/authorization/
https://wiki.gcube-system.org/gcube/Authorization_Framework
https://wiki.gcube-system.org/gcube/Authorization_Framework
https://wiki.gcube-system.org/gcube/Category:Statistical_Algorithms_Importer
https://wiki.gcube-system.org/gcube/Category:Statistical_Algorithms_Importer
https://wiki.gcube-system.org/gcube/Statistical_Algorithms_Importer:_Create_Project
https://wiki.gcube-system.org/gcube/Statistical_Algorithms_Importer:_Create_Project
https://wiki.gcube-system.org/gcube/Statistical_Algorithms_Importer:_Create_Project
https://wiki.gcube-system.org/gcube/DataMiner_Manager
https://wiki.gcube-system.org/gcube/DataMiner_Manager
https://www.opengeospatial.org/standards/wps
https://www.opengeospatial.org/standards/wps
https://wiki.gcube-system.org/gcube/Data_Mining_Facilities
https://wiki.gcube-system.org/gcube/Data_Mining_Facilities
https://gcube.wiki.gcube-system.org/gcube/SDI-Service
https://gcube.wiki.gcube-system.org/gcube/SDI-Service
https://gcube.wiki.gcube-system.org/gcube/Spatial_Data_Storage_and_Publishing
https://gcube.wiki.gcube-system.org/gcube/Spatial_Data_Storage_and_Publishing
https://gcube.wiki.gcube-system.org/gcube/Spatial_Data_Discovery_and_Access
https://gcube.wiki.gcube-system.org/gcube/Spatial_Data_Discovery_and_Access

33

% Blue-Cloud

e To communicate with D4Science and to get additional information about Docker, ShinyApps,
and third-parties services : D4Science Support

(https://support.d4science.org/)

D3.2 Demonstrator Implementation Guidelines

https://support.d4science.org/
https://support.d4science.org/

34
¢ Blue-Cloud

-

7 References

1.Assante, M., Candela, L., Castelli, D., Cirillo, R., Coro, G., Frosini, L., Lelii, L., Mangiacrapa,
F., Marioli, V., Pagano, P., Panichi, G., Perciante, C., Sinibaldi, F. (2019). The gCube
System: Delivering Virtual Research Environments as-a-Service. Future Generation
Computer Systems, Vol. 95

2.Coro, G., Panichi, G., Scarponi, P., & Pagano, P. (2017). Cloud computing in a distributed
e-infrastructure using the web processing service standard. Concurrency and
Computation: Practice and Experience, 29(18), e4219

3.L. Candela, D. Castelli, P. Pagano (2013). Virtual Research Environments: An Overview
and a Research Agenda. Data Science Journal, Vol. 12

4. M. Assante, L. Candela, D. Castelli, R. Cirillo, G. Coro, L. Frosini, L. Lelii, F. Mangiacrapa,
P. Pagano, G. Panichi, F. Sinibaldi. (2019). Enacting open science by D4Science, Future
Generation Computer System

5. Coro, G., Panichi, G., & Pagano, P. (2016). A Web application to publish R scripts as-a-
Service on a Cloud computing platform. Bollettino di Geofisica Teorica ed Applicata,
57, 51-53.

6. IBM Cloud Education, Containerization (May 2019), consulted February 2020
https://www.ibm.com/cloud/learn/containerization

D3.2 Demonstrator Implementation Guidelines

https://www.ibm.com/cloud/learn/containerization

