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Abstract 

The quaternion is a powerful and common tool to avoid singularity in rotational dynamics 

in three-dimensional (3D) space. Here it has been particularly used as an alternative to 

Euler angles and rotation matrix. The application of the quaternion is exercised in 

quadrotor modeling and control. It changes the dynamics and represents a singularity-free 

attitude model. Here for the first time (for the best knowledge of authors), the state-

dependent differential Riccati equation (SDDRE) control has been implemented on the 

quaternion-based model of a quadcopter. The proposed control structure is capable of 

aerobatic flight and the Pugachev’s Cobra maneuver is chosen to assess the capability of 

the quaternion-based SDDRE approach. The introduced control simulator is validated by 

comparison with conventional dynamics based on Euler angles, controlled using a 

proportional-derivative (PD) controller on a normal regulation flight. The simulator 

successfully performed the Cobra maneuver and also validated the proposed structure. 

The more precision in regulation along with lower energy consumption demonstrated the 

superiority of the introduced approach. 

 

Keywords: SDDRE, Riccati, Optimal control, Quaternion, Quadrotor, Cobra maneuver, 

aerobatic maneuver. 

 

1. Introduction 

The Euler angles and rotation matrix in three-dimensional (3D) space are vulnerable to 

singularities, considering dynamics, especially in an aerobatic flight. Here we focus, 

particularly on multirotor drones and quadcopters. The dynamics of the multirotor drones 

are usually subjected to hovering assumptions to guarantee a stable flight [1]. To perform 
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agile maneuvers with sudden changes in attitude, geometric control was introduced that 

avoids singularities and computes the rotation matrix in another manifold [2]. Krishna et 

al. used the geometric control for helicopter trajectory tracking in agile flight regarding the 

attitude of the system [3]. The sliding mode was employed as the controller and the error 

function in the geometric domain constructed the sliding condition to prove the stability. 

The geometric control was also applied on quadrotor drones subject to wind disturbance 

and sudden changes in attitude dynamics [4]. A flip is representative of a challenging 

maneuver that includes passing through a singularity, that was addressed by the geometric 

approach [5]. The 𝜋(rad) flip in roll angle was considered, sudden motion between two 

stable roll angles. The change in the manifold and solving singularity cost the user more 

complicated integration methods [6]. Variational integration is an effective method [7]. 

Improper treatment of the integration may cause numerical drift in the results, especially 

in big orientation changes. 

The quaternion is another representation of the complex numbers in mathematics, 

with a wide range of usage in theory and application. The focus of this work is to 

implement the alternative representation of the Euler angles and rotation matrix in 3D 

space. The application of quaternion in control was reported on aircraft [8, 9], orientation 

and translation control of manipulators [10, 11], control of autonomous underwater 

vehicles [12-15], helicopter attitude control [16], etc. Terze et al. used quaternion 

representation of the rotational dynamics for aircraft simulators and introduced shifting 

update-process to ensure precise integration in long flight simulations [8]. Kinematics 

control of a robotic arm was presented using dual quaternion, aimed to present a robust 

controller without decoupling of the translational and orientation dynamics [10]. Cooke et 

al. presented a thorough implementation of the quaternion dynamics for flight simulation 

[17]. The performance of the quaternion-based control was validated by an 

omnidirectional intelligent navigator for an underwater platform [12]. Suzuki et al. 

presented the simulation and experimental studies on Lepton-Ex unmanned helicopter 

using quaternion feedback in control [16]. Quadrotor and multi-copters were also 

employed quaternions [18-23]. A study compared three controllers, linear quadratic 

regulator (LQR), proportional-derivative (PD), and model predictive controller (MPC) for 

trajectory tracking, that revealed the PD and the LQR gained better results in an ideal 

condition and the MPC was more accurate in presence of disturbance [18]. Quaternion 

variables in the attitude controller provided an advantage, employment of low-cost sensors 
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due to the high-speed capability of the singularity-free controller [20]. Palomo et al. 

presented an observer-based method based on position-yaw for the ellipsoid method [21]. 

Linear matrix inequalities were used to optimize the feedback of the observer and 

experimental results showed successful tracking in high speed maneuver. Euler angles are 

popular in UAV modeling though they suffer from gimbal lock when two orthogonal axes 

align and lock together [24]. Another disadvantage of Euler angles is the computational 

cost by computing so many trigonometric functions [25], on the contrary, quaternion 

mathematics only involves algebraic computations [26]. Sanchez et al. used quaternion 

dynamics for quadrotor control based on receiving gesture commands [27], where it was 

important to cope with the unpredictability of the gesture andquaternion made it more 

reliable due to insensitivity to singularity. 

Performing experiment on aggressive maneuvers requires more safety concerns in 

addition to solving singularities. Gillula et al. used the Hamilton-Jacobi differential game 

approach for finding a reachable set for aerobatic maneuvers to guarantee safety [28]. 

Considering the constraint of the actuators in the flight experiment is an important issue 

since, during the flip, it is highly probable to put the rotors in saturation [29]. Here in this 

work, the simulation of the Cobra maneuver is done and for experimentation, actuator 

limits and speed of the maneuver must be considered to avoid undesired saturations in the 

middle of trajectory that could be dangerous. 

The state-dependent Riccati equation (SDRE) is a closed-loop optimal nonlinear 

controller introduced in the 1960s [30]. The utilization of the quaternion in SDRE was 

explored in several platforms such as satellite [31, 32], spacecraft [33-36], spacecraft in 

proximity operations [37], attitude control of a rigid body [38], remote sensing CubeSats 

[39]. Here we present the state-dependent differential Riccati equation (SDDRE) control 

based on quaternion for quadcopter dynamic systems. For the best knowledge of authors, 

a quaternion-based SDDRE controller has not been used for quadrotors in the literature so 

far which makes the first contribution of this work. The SDDRE is a finite time controller 

that penalizes the states (error variables) by a final boundary condition [40]. 

The singularity-free attitude control is the principal advantage of the quaternion. The 

Cobra is a challenging aerobatic flight maneuver, performed by a jet aircraft [41, 42]. The 

motion turns the aircraft vertical (even for pitch angle 𝜃 > 𝜋/2) to performe the maneuver 

along with sudden deceleration; the thrust of the jet engine helps to avoid the system from 

falling. 
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A tail-sitter drone is a good choice, with a vertical thrust option, to perform the Cobra 

maneuver [43]. Xu et al. presented iterative learning control for a tail sitter unmanned 

aerial vertical-take-off-and-landing system for Pugachev’s Cobra maneuver [43]. They 

used the acceleration model that resulted in simple dynamics without system 

identification. The Cobra was exercised by a quadrotor using adaptive control [44]. The 

quadrotor possessed 28(g) , a small lightweight platform. An adaptive backstepping 

controller with a modified recursive least-square was employed to control the system. 

Contributions: 1) presenting a quaternion-based state-dependent differential Riccati 

equation control peculiar to a quadrotor. 2) Implementing Cobra maneuver in pitch angle 

in a forward flight. The performed Cobra in Ref. [44] was done in vertical ascending flight. 

In a forward flight, conducting a Cobra maneuver, the system will lose its thrust (𝜃 ≈ 𝜋/2) 

and is subjected to fall. Here in this work, using SDDRE, the Cobra in forward flight is 

done. 

Section 2 describes the preliminaries in quaternion mathematics. Section 3 states the 

system dynamics details. Section 4 presents the state-dependent differential Riccati 

equation control structure. Section 5 expresses the approximate closed-form solution to 

the SDDRE. Section 6 presents the implementation and method and cascade design. 

Simulations are reported in Section 7 which includes validation and aerobatic flight and 

concluding remarks are summarized in Section 8. 

Notations: ℝ𝑛  denotes the 𝑛 -dimensional Euclidean space. ℍ𝑛  denotes the 𝑛 -

dimensional Hamilton space, and (∙)∗ performs conjugate transpose. ℝ𝑛×𝑚 is the set of 

𝑚 × 𝑛 real matrices; (∙)𝑇 is the transpose of a matrix or a vector; ⨂ denotes Kronecker 

product; diag(∙) means a diagonal matrix; 𝐈𝑛×𝑛 and 𝟎𝑛×𝑛 denote 𝑛 × 𝑛 identity and zero 

matrices. 

 

2. Preliminaries: Quaternion Mathematics 

Here we consider the quaternion definition with real-scalar part 𝑞0 and vector-imaginary 

part 𝐪v = 𝑞1𝐢 + 𝑞2𝐣 + 𝑞3𝐤, set all together 

𝐪 = [
𝑞0
𝐪v
] = [

cos
𝜗

2

𝐫sin
𝜗

2

], (1) 
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where 𝐫 ∈ ℝ3 is a unit rotation vector and 𝜗 is the corresponding rotation angle about that 

[20]. To solve the ambiguity of the direction of quaternions, 0 ≤ 𝑞0 ≤ 1 is chosen. A 

conjugate transpose of the quaternion (1) is presented as 

𝐪∗ = [
𝑞0
−𝐪v

]. (2) 

The multiplication product of two arbitrary quaternions 𝐪 and 𝐩 is defined through 

Kronecker product 

𝐪⊗ 𝐩 = 𝐐(𝐪)𝐩 = [

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 −𝑞3 𝑞2
𝑞2 𝑞3 𝑞0 −𝑞1
𝑞3 −𝑞2 𝑞1 𝑞0

] [

𝑝0
𝑝1
𝑝2
𝑝3

]. (3) 

A unit quaternion can build a rotation transformation by two multiplications by 

Kronecker product, that could rotate an arbitrary vector 𝐯 from the global coordinate to a 

moving coordinate 𝐪 as in the form of 𝐪⊗ [0, 𝐯𝑇]𝑇⊗𝐪∗. So, using definitions (2) and 

(3), the rotation matrix is built by replacing 𝑥, 𝑦, 𝑧 in turn into 𝐯: 

𝐑𝑥(𝐪) = 𝐪⊗ [0,1,0,0]𝑇⊗𝐪∗, 

𝐑𝑦(𝐪) = 𝐪⊗ [0,0,1,0]𝑇⊗𝐪∗, 

𝐑𝑧(𝐪) = 𝐪⊗ [0,0,0,1]𝑇⊗𝐪∗, 

which form [25]: 

𝐑(𝐪) = [𝐑𝑥(2: 4), 𝐑𝑦(2: 4), 𝐑𝑧(2: 4)]

= [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2𝑞1𝑞2 − 2𝑞0𝑞3 2𝑞0𝑞2 + 2𝑞1𝑞3
2𝑞0𝑞3 + 2𝑞1𝑞2 𝑞0

2 − 𝑞1
2 + 𝑞2

2 − 𝑞3
2 2𝑞2𝑞3 − 2𝑞0𝑞1

2𝑞1𝑞3 − 2𝑞0𝑞2 2𝑞0𝑞1 + 2𝑞2𝑞3 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

]. 

where i.e. 𝐑𝑥(2: 4) selects three last components of 𝐑𝑥. 

The angular velocity vector of the quaternion is accessible (supposedly) in local 

moving coordinate; it is presented by the vector 𝛚(𝐪, 𝐪̇):ℍ × ℝ4 → ℝ3  where 𝛚 =

[𝜔1, 𝜔2, 𝜔3]
𝑇 (

rad

s
). Then the derivative of the quaternion is found [45]: 

𝐪̇𝛚 =
1

2
𝐪⨂[

0
𝛚
] =

1

2
𝐐(𝐪) [

0
𝛚
], (4) 

in which 𝐪̇𝛚(𝐪,𝛚):ℍ × ℝ
3 → ℝ4 and 𝐐(𝐪) has been introduced in Eq. (3). 

The relation between the Euler angles (𝜙, 𝜃, 𝜓) and quaternions is also needed for 

the control design [25]: 
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𝐪 =

[
 
 
 
 
 
 
 cos

𝜙

2
cos

𝜃

2
cos

𝜓

2
+ sin

𝜙

2
sin
𝜃

2
sin
𝜓

2

sin
𝜙

2
cos

𝜃

2
cos

𝜓

2
− cos

𝜙

2
sin
𝜃

2
sin
𝜓

2

cos
𝜙

2
sin
𝜃

2
cos

𝜓

2
+ sin

𝜙

2
cos

𝜃

2
sin
𝜓

2

cos
𝜙

2
cos

𝜃

2
sin
𝜓

2
− sin

𝜙

2
sin
𝜃

2
cos

𝜓

2]
 
 
 
 
 
 
 

, (5) 

and also with inverse mapping, one could find: 

[
𝜙
𝜃
𝜓
] = [

atan2(2(𝑞0𝑞1 + 𝑞2𝑞3), 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2)

asin(2(𝑞0𝑞2 − 𝑞1𝑞3))

atan2(2(𝑞0𝑞3 + 𝑞1𝑞2), 𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2)

]. 

 

3. Dynamics of The System 

Consider a “plus-shaped” quadrotor drone with two moving and fixed reference 

coordinates, body frame denoted by ℬ, and global frame marked with ℳ = {𝑋, 𝑌, 𝑍}, with 

respect, see Fig. 1. The position of the moving coordinate is defined through the vector 

𝛏1(𝑡) = [𝑥c(𝑡), 𝑦c(𝑡), 𝑧c(𝑡)]
𝑇(m). The kinematics equation is 

𝛏̇1(𝑡) = 𝐑(𝐪(𝑡))𝛖1(𝑡), (6) 

where 𝛖1(𝑡) = [𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡)]
𝑇 (

m

s
) , and 𝐑(𝐪):ℍ → ℝ3×3  is the quaternion-based 

rotation matrix; and {𝜙, 𝜃, 𝜓}(rad) are Euler angles set in global coordinate. The local 

angular velocity vector set on the body frame is also named 𝛖2(𝑡) =

[𝑝(𝑡), 𝑞(𝑡), 𝑟(𝑡)]𝑇 (
rad

s
). 

 

Fig. 1. The definition of the reference coordinates for a sample quadrotor drone. 

To find the dynamics of the system, Newton-Euler equation could be used that results in 

two sets of dynamic equations, the first set is translational: 

𝑚𝛏̈1(𝑡) = 𝐑3(𝐪(𝑡))𝑇B(𝑡) − 𝑚𝑔𝐞3, (7) 

𝑢 𝑣 

𝑤 

ℬ 

𝑍 

𝑋 𝑌 
ℳ 

𝜃 𝜙 

𝜓 

𝑝 

𝑞 

𝑟 

𝜔1 

𝜔3 𝜔2 

𝜔4 
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where 𝐑3(𝐪) is the last column of 𝐑(𝐪), 𝑔 = 9.81 (
m

s2
) is the gravity constant, 𝑚(kg) is 

the total mass of the drone, and 𝐞3 = [0,0,1]
𝑇. The second set is rotational dynamic: 

𝐉𝛖̇2(𝑡) = 𝛕B(𝑡) − 𝛖2(𝑡) × 𝐉𝛖2(𝑡), (8) 

where 𝛕B(𝑡) = [𝜏𝑥(𝑡), 𝜏𝑦(𝑡), 𝜏𝑧(𝑡)]
𝑇
(Nm)  is the input torque vector and 𝐉 =

diag(𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧) (kgm
2) is the inertia matrix assigned in the body frame. 

The state-vector is 

[𝐱(𝑡)]13×1 = [𝛏1
𝑇(𝑡), 𝐪𝑇(𝑡), 𝛏̇1

𝑇(𝑡), 𝛖̇2
𝑇(𝑡)]

𝑇
, 

which provides the state-space representation of the multi-copter using Eqs. (4)-(8) and 

setting 𝛚(𝑡) = 𝛖2(𝑡) = [𝑝, 𝑞, 𝑟]
𝑇 in Eq. (4): 

𝐱̇(𝑡) =

[
 
 
 
 
 
 

𝐑(𝐪(𝑡))𝛖1(𝑡)

1

2
𝐐(𝐪(𝑡)) [

0
𝛖2(t)

]

1

𝑚
(𝐑3(𝐪(𝑡))𝑇B(𝑡) − 𝑚𝑔𝐞3 − 𝐃𝛏̇1(𝑡))

𝐉−1(𝛕B(𝑡) − 𝛖2(𝑡) × 𝐉𝛖2(𝑡)) ]
 
 
 
 
 
 

. (9) 

In state-space equation (9), 𝐃 ∈ ℝ3×3 collects drag and aerodynamics parameters of 

the quadcopter model and has been added to complete the model. 

 

4. The State-Dependent Differential Riccati Equation Controller Design 

Consider the time-invariant affine-in-control nonlinear system 

 𝐱̇(𝑡) = 𝐟(𝐱(𝑡)) + 𝐠(𝐱(𝑡), 𝐮(𝑡)), (10) 

where 𝐱(𝑡) ∈ ℝ𝑛  is the state vector, 𝐮(𝑡) ∈ ℝ𝑚  is the input vector, 𝐟(𝐱(𝑡)): ℝ𝑛 → ℝ𝑛 

and 𝐠(𝐱(𝑡), 𝐮(𝑡)): ℝ𝑛 × ℝ𝑚 → ℝ𝑛  represents the dynamics and they satisfy local 

Lipschitz condition. 𝑛 is the dimension of the state vector and 𝑚 is the total number of 

actuators. The system equation (10) is transformed into state-dependent coefficient (SDC) 

parameterization [46]: 

𝐟(𝐱(𝑡)) = 𝐀(𝐱(𝑡))𝐱(𝑡), (11) 

𝐠(𝐱(𝑡), 𝐮(𝑡)) = 𝐁(𝐱(𝑡))𝐮(𝑡), (12) 

in which 𝐁(𝐱(𝑡)):ℝ𝑛 → ℝ𝑛×𝑚  and 𝐀(𝐱(𝑡)):ℝ𝑛 → ℝ𝑛×𝑛  are held. The pair of 

{𝐀(𝐱(𝑡)), 𝐁(𝐱(𝑡))} is a controllable parameterization of system (10) [47]. 

The cost function of the SDDRE is structured as 
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𝐽(∙) =
1

2
𝐱𝑇(𝑡)𝐅𝐱(𝑡) +

1

2
∫[𝐱𝑇(𝑡)𝐐(𝐱(𝑡))𝐱(𝑡) + 𝐮𝑇(𝑡)𝐑(𝐱(𝑡))𝐮(𝑡)]d𝑡

𝑡f

0

, (13) 

where 𝑡f ∈ ℝ
+ is the final time of the control task, 𝐐(𝐱(𝑡)):ℝ𝑛 → ℝ𝑛×𝑛, 𝐑(𝐱(𝑡))ℝ𝑛 →

ℝ𝑚×𝑚, and 𝐅 ∈ ℝ𝑛×𝑛 are weighting matrices, for states and inputs in 𝑡 ∈ [0, 𝑡f) and states 

at the final time 𝑡f  with respect. The pair of {𝐀(𝐱(𝑡)), 𝐐
1

2(𝐱(𝑡))}  is an observable 

parameterization of system (10) where 𝐐
1

2(𝐱(𝑡))  is the Cholesky decomposition of 

weighting matrix in (13). 

The control law is defined by applying 
𝜕ℋ(𝐱(𝑡),𝐮(𝑡),𝛌(𝑡))

𝜕𝐮(𝑡)
= 𝟎, stationary condition, on 

Hamiltonian function ℋ(𝐱(𝑡), 𝐮(𝑡), 𝛌(𝑡)) = 𝐽(∙) + 𝛌𝑇(𝑡)𝐱̇(𝑡): 

𝐮(𝑡) = −𝐑−1(𝐱(𝑡))𝐁𝑇(𝐱(𝑡))𝐊(𝐱(𝑡))𝐱(𝑡), (14) 

where 𝛌(𝑡) = 𝐊(𝐱(𝑡))𝐱(𝑡) is the co-state vector and 𝐊(𝐱(𝑡)):ℝ𝑛 → ℝ𝑛×𝑛 is the control 

gain of the control equation, SDDRE. 

Using the necessary condition for optimality, 
𝜕ℋ(𝐱(𝑡),𝐮(𝑡),𝛌(𝑡))

𝜕𝐱(𝑡)
= −𝛌̇(𝑡)  and the 

derivative of the co-state vector 𝛌̇ = 𝐊̇𝐱 + 𝐊𝐱̇, one could find: 

𝐊̇(𝐱) + 𝐊(𝐱)𝐀(𝐱) − 𝐊(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊(𝐱) + 𝐀𝑇(𝐱)𝐊(𝐱) + 𝐐(𝐱) + 𝚷(𝐱) = 𝟎, 

where 𝚷(𝐱) collects the derivative terms (see the complete equation in Ref. [46]), then the 

SDDRE is represented as [48]: 

−𝐊̇(𝐱) = 𝐐(𝐱) − 𝐊(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊(𝐱) + 𝐊(𝐱)𝐀(𝐱) + 𝐀𝑇(𝐱)𝐊(𝐱), (15) 

with 𝐊(𝐱(𝑡f)) = 𝐅, a final boundary condition. 

 

5. An Approximate Closed-Form Solution to The SDDRE 

The quadrotor dynamics in Eq. (9) must be controlled by the SDDRE approach. The 

extended linearization model of (9) is so-called state-dependent coefficient 

parameterization (or apparent linearization) [49]. To solve the SDDRE (15) and to find the 

control gain, several methods could be used such as backward integration (BI) [50], state-

transition matrix [51], and Lyapunov based approach [52]. The BI imposes a two-round 

solution that might not be proper for systems that need frequent changes in initial and final 

conditions, non-repetitive systems. The STM approach is not computationally robust when 

the final time is long [53], then the Lyapunov-based approach has been selected for this 
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work. It works with both positive and negative solutions to the Riccati equation and 

delivers an approximate closed-form answer, in just one round. This work uses Lyapunov 

based method via negative root to the related SDRE, 𝐊ss
− (𝐱)  to find the symmetric 

positive-definite solution to the SDDRE, 𝐊(𝐱(𝑡)) [50]. Subtracting (15) from 

𝐀𝑇(𝐱)𝐊ss(𝐱) + 𝐊ss(𝐱)𝐀(𝐱) + 𝐐(𝐱) − 𝐊ss(𝐱)𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱) = 𝟎, (16) 

generates 

−𝐊̇(𝐱) = [𝐊(𝐱) − 𝐊ss(𝐱)]𝐀(𝐱) + 𝐀
𝑇(𝐱)[𝐊(𝐱) − 𝐊ss(𝐱)]

− 𝐊(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊(𝐱)

+ 𝐊ss(𝐱)𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱). 

(17) 

Adding and subtracting 𝐊𝐁𝐑−1𝐁𝑇𝐊ss, 𝐊ss𝐁𝐑
−1𝐁𝑇𝐊 and 𝐊ss𝐁𝐑

−1𝐁𝑇𝐊ss to (17) 

result in: 

−𝐊̇(𝐱) = 𝐀𝑇(𝐱)[𝐊(𝐱) − 𝐊ss(𝐱)] + [𝐊(𝐱) − 𝐊ss(𝐱)]𝐀(𝐱)

− [𝐊(𝐱) − 𝐊ss(𝐱)]𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱)

− [𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱)]
𝑇[𝐊(𝐱) − 𝐊ss(𝐱)]

− 𝐊(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊(𝐱)

+ 𝐊(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱)

+ 𝐊ss(𝐱)𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)𝐊(𝐱)

− 𝐊ss(𝐱)𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱). 

(18) 

Rewriting (18): 

−𝐊̇(𝐱) = [𝐊(𝐱) − 𝐊ss(𝐱)]𝐀(𝐱) + 𝐀
𝑇(𝐱)[𝐊(𝐱) − 𝐊ss(𝐱)]

− [𝐊(𝐱) − 𝐊ss(𝐱)]𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱)

− [𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱)]
𝑇[𝐊(𝐱) − 𝐊ss(𝐱)]

− [𝐊(𝐱) − 𝐊ss(𝐱)]𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)[𝐊(𝐱) − 𝐊ss(𝐱)], 

and introducing a new variable 

𝐏−1(𝐱) = 𝐊(𝐱) − 𝐊ss(𝐱), 

and expressing the closed-loop matrix of the system 

𝐀cl(𝐱) = 𝐀(𝐱) − 𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱), 

one could present 

−𝐊̇(𝐱) = 𝐏−1(𝐱)𝐀cl(𝐱) + 𝐀cl
𝑇 (𝐱)𝐏−1(𝐱) − 𝐏−1(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐏−1(𝐱) (19) 

Regarding that 
d

d𝑡
(𝐏−1(𝐱)) = −𝐏−1(𝐱)𝐏̇(𝐱)𝐏−1(𝐱), Eq. (19) should be changed to 
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𝐏−1(𝐱)𝐏̇(𝐱)𝐏−1(𝐱)

= 𝐏−1(𝐱)𝐀cl(𝐱) + 𝐀cl
𝑇 (𝐱)𝐏−1(𝐱) − 𝐏−1(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐏−1(𝐱), 

and consequently, results in a state-dependent differential Lyapunov equation [50]: 

𝐏̇(𝐱) = 𝐀cl(𝐱)𝐏(𝐱) + 𝐏(𝐱)𝐀cl
𝑇 (𝐱) − 𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱), (20) 

with a final boundary condition 𝐏(𝑡f) = [𝐅 − 𝐊ss(𝐱(𝑡))]
−1

. A solution to (20) is 

𝐏(𝐱) = 𝐄(𝐱) + exp{𝐀cl(𝐱)(𝑡 − 𝑡f)}[𝐏(𝑡f) − 𝐄(𝐱)]exp{𝐀cl
𝑇 (𝐱)(𝑡 − 𝑡f)}, (21) 

in which 𝐄(𝐱(𝑡)) is an answer to a state-dependent algebraic Lyapunov equation: 

𝐄(𝐱)𝐀cl
𝑇 (𝐱) + 𝐀cl(𝐱)𝐄(𝐱) − 𝐁(𝐱)𝐑

−1(𝐱)𝐁𝑇(𝐱) = 𝟎. (22) 

Proof of (21) could be checked by the substitution of Eq. (21) into (20): 

𝐄̇(𝐱) +
d(𝐀cl(𝐱)(𝑡 − 𝑡f))

d𝑡
exp{𝐀cl(𝐱)(𝑡 − 𝑡f)}[𝐏(𝑡f) − 𝐄(𝐱)]exp{𝐀cl

𝑇 (𝐱)(𝑡

− 𝑡f)} − exp{𝐀cl(𝐱)(𝑡 − 𝑡f)}𝐄̇(𝐱)exp{𝐀cl
𝑇 (𝐱)(𝑡 − 𝑡f)}

+ exp{𝐀cl(𝐱)(𝑡 − 𝑡f)}[𝐏(𝑡f) − 𝐄(𝐱)]exp{𝐀cl
𝑇 (𝐱)(𝑡

− 𝑡f)}
d (𝐀cl

𝑇 (𝐱)(𝑡 − 𝑡f))

d𝑡
=𝐄(𝐱)𝐀cl

𝑇 (𝐱) + exp{𝐀cl(𝐱)(𝑡

− 𝑡f)}[𝐏(𝑡f) − 𝐄(𝐱)]exp{𝐀cl
𝑇 (𝐱)(𝑡 − 𝑡f)}𝐀cl

𝑇 (𝐱) + 𝐀cl(𝐱)𝐄(𝐱)

+ 𝐀cl(𝐱)exp{𝐀cl(𝐱)(𝑡 − 𝑡f)}[𝐏(𝑡f) − 𝐄(𝐱)]exp{𝐀cl
𝑇 (𝐱)(𝑡

− 𝑡f)} − 𝐁(𝐱)𝐑
−1(𝐱)𝐁𝑇(𝐱). 

(23) 

From (22) we have 

𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱) = 𝐀cl(𝐱)𝐄(𝐱) + 𝐄(𝐱)𝐀cl
𝑇 (𝐱). (24) 

The algebraic Lyapunov equation (22) results in 

𝐄̇(𝐱) = 𝟎. Regarding frozen computation at each simulation time-step, we neglect the time 

derivative of 𝐀cl(𝐱) and as a result, 
d(𝐀cl(𝐱)(𝑡−𝑡f))

d𝑡
= 𝐀cl(𝐱) + 𝐀̇cl(𝐱)(𝑡 − 𝑡f)⏟        

𝟎

. Substituting 

(24) into (23), mathematical manipulation cancels all terms and shows that the solution 

(21) holds for Eq. (20). Since we neglected 𝐀̇cl(𝐱)(𝑡 − 𝑡f) ≈ 𝟎  in the derivative 

d(𝐀cl(𝐱)(𝑡−𝑡f))

d𝑡
 and considered 𝐄̇(𝐱) = 𝟎 , this approach is so-called a closed-form 

approximate solution. 

The positive gain of the SDDRE (15) is regarded as 𝐊(𝐱(𝑡)) = 𝐊ss(𝐱(𝑡)) +

𝐏−1(𝐱(𝑡)), in which 𝐊ss(𝐱(𝑡)) could be a negative definite 𝐊ss
−(𝐱(𝑡)) or positive definite 

𝐊ss
+(𝐱(𝑡)) solution to the SDRE (16). It works with both of them. 
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The details of the positive and negative roots of the SDRE are reported in Sections 

3.3.1 and 3.3.2 of Ref. [50]. The negative root is computationally more robust than the 

positive one and it has been used here in this work. Finally, notice that the negative definite 

solution to the SDRE (16) is the positive definite answer to 

−𝐊n
+(𝐱)𝐀(𝐱) − 𝐀𝑇(𝐱)𝐊n

+(𝐱) − 𝐊n
+(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊n

+(𝐱) + 𝐐(𝐱) = 𝟎, 

with consideration of 𝐊ss
−(𝐱(𝑡)) = −𝐊n

+(𝐱(𝑡)). 

 

6. Implementation of the SDDRE on Quaternion-based Dynamics 

The state-space equation of the system (9) must be represented by SDC forms (11) and 

(12). On the one hand, the dimension of the state vector (13 states) is not compatible with 

the cascade approach, commonly used in quadrotor control (12 states) [5]. On the other 

hand, the separation of rotational and translational dynamics was reported helpful in the 

control design due to different speeds of them, slow and fast dynamic [54]. So, here we 

propose two sub-controllers for the translation and rotational dynamics, connected through 

cascade design. For the translation dynamic, the set of SDC parameterization is 

𝐀t(𝐱(𝑡)) = [
𝟎3×3 𝐑(𝐪(𝑡))

𝟎3×3 −
𝐃

𝑚

] , 𝐁t = [

𝟎3×3
𝐈3×3
𝑚

], 

in which hovering condition has been assumed to find 𝛏̇1 = 𝐑(𝐪)⏟
𝐈

𝛖1 ≈ 𝛖1, to make the 

factorization possible, and “t” stands for translation. For the orientation section, we neglect 

the scalar part of the quaternion, the first column, and the row of 𝐐(𝐪(𝑡)) in (9), then the 

SDC parameterization is 

𝐀o(𝐱(𝑡)) = [
𝟎3×3 [𝐐(2: 4,2: 4)]3×3
𝟎3×3 −𝐉−1[𝛖2 × 𝐈]3×3

] , 𝐁o = [
𝟎3×3
𝐉−1

], 

where 𝐐(2: 4,2: 4) collects the second to fourth components of 𝐐(𝐪(𝑡)) in columns and 

rows, and “o” stands for orientation. Based on (14), the translation control law for 

regulation to the desired condition rather than zero is 

𝐮t(𝑡) = −𝐑t
−1(𝐱(𝑡))𝐁t

𝑇𝐊t(𝐱(𝑡)) [
𝛏1(𝑡) − 𝛏1,des

𝛏̇1(𝑡) − 𝛏̇1,des
], (25) 

where 𝐑t, 𝐐t, 𝐅t and 𝐊t are the corresponding matrices (with proper dimension) for the 

translation and Riccati equation and “des” defines the desired condition. 
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The computation of input law (25) is based on a fully actuated system, which is not 

possible in reality. So, to transform the [𝐮t(𝑡)]3×1 to the scalar thrust input considering 

the gravity as well, we use cascade design [55]: 

𝑇B(𝑡) = 𝑚 ([𝐑3(𝐪(𝑡))]1𝑢t,1
(𝑡) + [𝐑3(𝐪(𝑡))]2𝑢t,2

(𝑡) + [𝐑3(𝐪(𝑡))]3(𝑢t,3
(𝑡) + 𝑔)), 

where i.e. [𝐑3(𝐪(𝑡))]1 is the first component of 𝐑3(𝐪(𝑡)). The cascade design delivers 

the necessary desired Euler angles 

𝜃des(𝑡) = tan
−1 (

𝑢t,1cos𝜓des + 𝑢t,2sin𝜓des

𝑢t,3 + 𝑔
), (26) 

𝜙des(𝑡) = sin
−1

(

 
𝑢t,1sin𝜓des − 𝑢t,2cos𝜓des

√𝑢t,1
2 + 𝑢t,2

2 + (𝑢t,3 + 𝑔)
2

)

 , (27) 

in which 𝜓des could possess an arbitrary value. 

The orientation control law is also presented as 

𝐮o(𝑡) = −𝐑o
−1(𝐱(𝑡))𝐁o

𝑇𝐊o(𝐱(𝑡)) [
𝓕𝐞𝐪(𝑡)

𝛖2(𝑡) − 𝛖2,des
], (28) 

where 𝐞𝐪(𝑡) is quaternion error and 

𝓕 = [

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]. 

The quaternion error in (28) is defined as 

𝐞𝐪(𝑡) = −𝐪des(𝑡) ⊗ 𝐪∗(𝑡) = −𝐐(𝐪des(𝑡))𝐪
∗(𝑡), 

where 𝐪des(𝑡) is defined by substituting (26), (27), and 𝜓des into Eq. (5). 

 

7. Simulations 

6-1. Validation 

To validate the proposed controller design and the simulator, a comparison has been done 

with the PD controller and a conventional sliding mode control (SMC). We consider a 

system based on the Euler angles in rotational dynamics, controlled by a simple PD to 

have it as a reference. Then the SDDRE controller is implemented on the quaternion-based 

dynamics to check the performance and also to validate the correctness of the 

implementation. The sliding mode control (SMC) has been frequently used in UAV 
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control [56], in the context of robustness or combined with other techniques [57]. Based 

on that, the SMC is selected for comparison to add the more detailed result. 

The mass of the system is 𝑚 = 0.468(kg) , the drag coefficient matrix is 𝐃 =

diag(0.25,0.25,0.25) (
kg

s
) , the components of the inertia matrix are 𝐼𝑥𝑥 = 4.856 ×

10−3(kgm2), 𝐼𝑦𝑦 = 4.856 × 10
−3(kgm2), and 𝐼𝑧𝑧 = 8.801 × 10

−3(kgm2). The time of 

the simulation has been set 𝑡f = 10(s), and the drone flies from zero coordinate to the 

desired position in Cartesian coordinate (−2,3,1.5)(m). All of the initial conditions are 

set zero including position, velocity, Euler angles, and angular velocity. The initial 

condition of the quaternions is found by substituting (𝜙(0), 𝜃(0), 𝜓(0)) into (5) to reach 

𝐪(0) = [1,0,0,0]𝑇. 

The PD control gains are set as 𝐊P,t = 𝐈3×3 , 𝐊D,t = 2 × 𝐈3×3 , 𝐊P,o = 𝐈3×3 , and 

𝐊D,o = 0.5 × 𝐈3×3. The SDDRE controller gains are selected as follows: 𝐑t = 𝐈3×3, 𝐐t =

diag(0.1,0.1,0.1,0.2,0.2,0.2), 𝐅t = 100 × 𝐐t , 𝐑o = 𝐈3×3, 𝐐o = diag(2,2,2,0,0,0), 𝐅o =

10 × 𝐐o. 

Two separate SMC controllers are considered for translation and orientation parts, 

consistent with Section 6. The sliding surface is 𝐬𝑖(𝐱) = 𝐱̇̃𝑖 + 𝚲𝑖𝐱̃𝑖  for 𝑖 = {t, o} 

(translation and orientation) where 𝐱̃𝑖 = 𝛏𝑖 − 𝛏𝑖,des and 𝚲𝑖 is a strictly positive constant 

matrix. The control law is also in the form of 𝐮𝑖 = 𝐁𝑖,SMC
−1 (𝐱) (𝛏̈𝑖,des − 𝐟𝑖,SMC(𝐱) −

𝐊𝑖,SMC tanh (
𝐬𝑖(𝐱)

𝜎
))  where 𝐁t,SMC = 1/𝑚𝐈3×3 , 𝐁o,SMC(𝐱) = 𝐉c

−1(𝛏2) , 𝐟t,SMC(𝐱) =

−
1

𝑚
𝐃𝛏̇1(𝑡), 𝐟o,SMC(𝐱) = −𝐉

−1(𝛏2)𝐂(𝛏2, 𝛏̇2)𝛏̇2  and 𝐊𝑖,SMC is the correction gain of the 

SMC. More details on conventional dynamics, such as 𝐉c(𝛏2) = 𝐖
𝑇(𝛏2)𝐈𝐖(𝛏2), could 

be found in Ref. [54]. To avoid chattering in SMC, tanh (
𝐬𝑖(𝐱)

𝜎
) is used where 𝜎 = 0.2 in 

this simulation. The SMC control parameters are selected as 𝚲t = diag(0.5,0.5,1), 𝚲o =

1.5𝐈3×3, 𝐊t,SMC = diag(5,5,1), 𝐊o,SMC = 2.5𝐈3×3, and desired accelerations are set zero, 

𝛏̈𝑖,des = 𝟎. 

Simulating the system, the results are found in the following. The position variables 

of the drone are illustrated in Fig. 2 to Fig. 4 with respect. The roll and pitch angles of the 

multi-copter are plotted in Fig. 5 and Fig. 6 with respect. The input norm of the quadrotor 

is illustrated in Fig. 7 and the configuration and trajectories of the drones are shown in Fig. 

8. 
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Fig. 2. 𝑥-axis regulation of the system, comparison with PD and SMC. 

 

Fig. 3. 𝑦-axis regulation of the system, comparison with PD and SMC. 

 

Fig. 4. 𝑧-axis regulation of the system, comparison with PD and SMC. 

 

Fig. 5. The roll angle of the system, comparison with PD and SMC. 

 

Fig. 6. The pitch angle of the system, comparison with PD and SMC. 
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Fig. 7. The input norm of the inputs of the system, comparison with PD and SMC. 

 

Fig. 8. The configuration and trajectories of the quadrotor drones with PD, SMC, and SDDRE 

controllers. 

The error of the regulation with PD controller was gained higher than the other two 

and the error of the SDDRE was obtained the least, see Table 1. Since the norm of the 

inputs (representative of the energy consumption) of the SDDRE is less than the PD and 

SMC, the performance of the proposed system is satisfactory. The results also confirm the 

validity of the quaternion-based dynamics and also the control implementation. 

Table 1. Comparison of PD, SMC, and SDDRE controller. 

method 

position 

error 

(mm) 

overshoot 
convergence 

speed 

energy consumption: 

the area under the 

norm signals, Fig. 7 

PD 35.99 
only in 

orientation 

second 

 
highest, 46.3504 

SMC 12.26 

in translation 

and 

orientation 

first middle, 46.4512  

SDDRE 4.69 none third lowest, 46.3102 

 

Validation with previous work: To confirm the correctness of the quaternion-based 

dynamics and the SDDRE controller, an existing model will be employed for comparison. 

Xiong and Zhang used a global fast terminal sliding mode controller (TSMC) for quadrotor 

regulation and also compared the results with conventional SMC [58]. Here the parameters 

of the system are substituted into the quaternion model and the SDDRE controls the model. 
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The results are similar to the ones in Fig. 2 of Ref. [58] presented in this section, in Fig. 9. 

The regulation of translation control is quite like the TSMC and regulated to desired values 

around 2s, without overshoot. The controller parameters are similar to Section 6-2. 

It should be noted that since the loop is closed, it cannot be said that the dynamics 

are validated; however, observing the behavior of the system in comparison with the SMC, 

the closed-loop system is validated. 

 

Fig. 9. The validation results of the quaternion-based SDDRE with previous work in Ref. [58]. 

 

6-2. Cobra Maneuver 

The motivation of using quaternions and avoiding Euler angles in rotational dynamics is 

to gain a singularity-free controller and as a result, obtain agile flight and aerobatic 

maneuvers. One of the hardest positions in quadrotor control in 𝜋/2(rad) rotation either 

in roll or pitch angles. The Cobra maneuver is famous for a jet aircraft to perform aerobatic 

shows or in combat for sudden brake, etc. For the quadrotors, it is the first time that this 

motion is simulated in a forward flight; the Cobra in ascending motion was reported [44]. 

That is a challenge since, in 𝜙 = 𝜋/2 or 𝜃 = 𝜋/2, there is no thrust to compensate the 

gravity; for an aircraft, a jet engine supports the gravity. This might cause a crash or fall 

for the multirotor. To perform the Cobra maneuver, 𝜃des = 𝜋/2  is imposed in 𝑡 ∈

[1,1.35](s) instead of Eq. (26). After that, the multirotor drone tries to recover the stability 
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and regulate to final condition. The simulation time is 𝑡f = 10(s) and the parameters of 

the control are 𝐑t = 𝐈3×3, 𝐐t = diag(1,1,1,0.5,0.5,0.5), 𝐅t = 10 × 𝐐t, 𝐑o = 𝐈3×3, 𝐐o =

diag(2,2,2,0,0,0), 𝐅o = 10 × 𝐐o. The start point of the regulation is set at zero along with 

other initial conditions; the endpoint is chosen (5,1,1.25)(m). Simulating the drone, the 

error is found 7.75(mm)  and the system successfully performed the maneuver. The 

position variables and attitude ones are shown in Fig. 10 and Fig. 11 with respect. The 

trajectory and configuration of the system are demonstrated in Fig. 12. The quaternions 

are plotted in Fig. 13. The input thrust and input torque signals are presented in Fig. 14 

and Fig. 15 with respect. 

 

Fig. 10. The position variables of the system in aerobatic maneuver. 

 

Fig. 11. The Euler angles of the drone in aerobatic maneuver. 

 

Fig. 12. The Cobra maneuver via the SDDRE and quaternion dynamics. 
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Fig. 13. The quaternions. 

 

Fig. 14. The input thrust of the quadrotor. 

 

Fig. 15. The input torque signals of the drone. 

 

8. Conclusions 

This work investigated the quaternion-based control design using the state-dependent 

differential Riccati equation to control a quadrotor in aerobatic flight. The Euler angles are 

vulnerable to big changes in attitude and rotational dynamics, specifically, the rotation 

matrix. The diagonal components of 𝐑(𝜙, 𝜃, 𝜓) become zero for either of 𝜙, 𝜃, 𝜓 at 𝜋/2. 

This means the omission of thrust in flight and unstable conditions. Specifically, the 

controllability pair will be unsatisfied. To solve this problem, quaternion representation 

has been used to have a singular-free attitude control and rotation matrix. The introduced 

model has been validated through a comparison with the conventional Euler dynamics 

controlled by a PD input law. To show the application of the proposed method, a 

challenging maneuver, Cobra, has been simulated in the forward flight, successfully 

controlled. The Cobra maneuver has put the drone in a position without thrust to 
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compensate for the gravity; however, this approach generated a stable motion to reduce 

the fall in that condition. 
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