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Abstract—The rapid growth of the Internet of Things and
the proliferation of easily compromisable IoT devices has led
to a drastic increase in the occurrence of IoT-based botnet
attacks. Hackers are keen on exploiting the vulnerabilities of
smart devices, which are seen as easy targets often lacking
robust security mechanisms. Identifying botnet activity is an
active research topic and remains a challenging task due to
the continuous evolution of botnet families that employ a large
number of attack vectors. Traditional rule-based approaches
which rely on signature matching, heuristics and behavioral
profiling are always lagging one step behind the attacker, leading
researchers to the development of machine and deep learning
methods for the detection of compromised IoT device behaviour.
In this paper, we model botnet traffic identification as an anomaly
detection task, aiming at establishing a baseline of benign traffic,
in order to detect unusual behavior using Netflow data. We
propose a feature engineering and deep learning-based detection
framework based on two Autoencoder architectures: (i) a vanilla
implementation of a deep Autoencoder and (ii) GANomaly which
has never been used in the context of network traffic analysis
before. We validate the performance of the proposed methodology
on the CICIDS2017 dataset which has been widely used for
cybersecurity benchmarks and show that it is possible to induce
highly accurate unsupervised learning models to detect previously
unseen botnet behaviour.

I. INTRODUCTION

The threat landscape of the cyber world evolves rapidly, and
new sophisticated threats emerge making attacks undetectable
by conventional cybersecurity-related countermeasures and
techniques. Threats such as the Emotet botnet [1], one of
the most significant botnets of the decade, have proved the
need for quick and reliable detection tools within the network
infrastructure of an organisation or enterprise. According to
ENISA [2] a botnet is a set of computers infected by bots,
pieces of malicious software that get commands from a central
node, the bot master. The malicious acts carried out by botnets
can range from DDoS attacks to illegal file hosting and remote
code execution (RCE).

IoT devices can also process data and behave as basic
computers with specialized functions. However, not all of
these devices had adequate security to ward off cyberattacks
based on their specifications when they entered the market.
Therefore, IoT gadgets went online in homes and businesses
without the same level of security awareness that PCs have
gained over time, making them a prime target for IoT botnets
and other dangers. IoT botnets are a collection of smart devices

hijacked by cybercriminals with the same end purpose as
traditional botnets, which use networks of hacked computers
to execute assaults or harmful activities like cryptocurrency
mining.

In our work, we concentrate on IoT botnet detection using a
combination of feature engineering methods with two distinct
Autoencoder architectures: (i) a vanilla version of the deep
Autoencoder and (ii) GANomaly, which is a combination of
Autoencoders with conditional Generative Adversarial Net-
works (GANs), originally implemented for computer vision
tasks and re-purposed for botnet detection. To the best of
our knowledge, this is the first adaptation of GANomaly on
network traffic analysis. We leverage a popular benchmark
dataset to train our models using only benign traffic and try
to detect botnet activity on unseen data.

This paper is structured as follows: We present related
work on IoT attack detection in Section II. We describe the
methodology and rationale behind our preprocessing feature
engineering techniques and deep learning models in Section
III and elaborate on the experimental setup (benchmark dataset
and training framework) in Section IV. We discuss the results
of our models’ performance in Section V, while Section VI
concludes our methodology and gives directions for future
research.

II. RELATED WORK

The configuration of IoT botnets generally resembles the
one of traditional botnets, comprising two main modules as
shown in Figure 1:

1) a command and control server from which a threat actor
sends commands and controls the botnet and,

2) a number of infected devices (i.e. bots, zombies) that
are individually hijacked as part of a larger network of
similarly infected bots.

In the case of IoT devices, bots can also encompass extra
features such as a port-scanning functionality, a cryptomining
script or a DDoS attack generator [3]. Their widespread
disruption can be primarily attributed to the existence of many
unpatched IoT devices ranging from TV set-top boxes, DVRs,
webcams, smartwatches to medical devices and exploitable car
systems [4], as a result of either end-user negligence or lack
of vendor support [5].



Fig. 1: Example of an IoT botnet.

The need to detect and classify botnet traffic within network
flows is ever growing and has been the subject of prior
works. According to the work of Feily et al. [6] there are
four distinctive approaches to detect botnets: signature-based,
anomaly-based, DNS-based and mining-based, with variable
success rates depending on the algorithm and the dataset.
A variety of different data types have been used for botnet
detection and tracking, including DNS data, Netflow data,
packet tap data, address allocation data, honeypot data and
host data [7].

Traditional detection methods used by Intrusion Detection
Systems (IDS), are mostly rule-based and leverage signature
matching to detect well-known bots [8] [9]. Modern rule-
based approaches also propose DNS blacklisting [10], rule
construction on statistical DNS features [11] or the use of
Fuzzy Rule Interpolation (FRI) reasoning [12], leading to
the generation of more realistic and comprehensive alerts.
However the momentum has shifted to the use of machine
learning algorithms and techniques due to the vast amount of
information of the network headers that the IDS has to process,
resulting in a time consuming operation.

Machine learning approaches can be generally classified
based on the desired outcome of the algorithm as supervised
and unsupervised. The former are trained using labeled data
inputs to predict the label of future inputs. In the context
of botnet detection, supervised ML methods are commonly
used for the implementation of network traffic classifiers,
able to distinguish between benign and malicious traffic by
assigning the corresponding label to each log or by identifying
traffic belonging to different botnets. A number of techniques
have demonstrated good detection results in this line of work,
including Support Vector Machines [13], tree-based methods
[14], and modern neural network-based architectures [15] [16].

However, the inherent weakness of supervised approaches is
that they rely on the existence of annotated datasets to train
in order to classify network incidents. While they are thriving
in cases where a vast history of application signatures exists
to get labeled data, their performance is heavily dependent on
the training data and falls short in cases of adaptive malware
variants (e.g., polymorphic and metamorphic variations [17])
characterized by the ability of blending in with legitimate ap-
plications to avoid detection. On the other hand, unsupervised
learning methods tend to view botnet detection as an anomaly
detection problem that requires no a priori knowledge of bot
signatures or labeled traffic in general. The main characteristic
of unsupervised, anomaly-based approaches is that they learn
a client’s trusted behavior by establishing a baseline of what is
considered normal/usual traffic, in order to detect any unusual
behavior. They are thus more generalizable and effective in
cases of 0-day attacks where no labels are available, whilst
supervised learning methods are effective only for known
attacks. Unsupervised methods such as k-means clustering
[18], Self-Organizing Map (SOM) [19], Local Outlier Factor
(LOF) [20], One-class-SVM (OCSVM) [21] and more recent
Autoencoder architectures [22] have been employed for the
detection of botnet traffic.

III. METHODOLOGY

A. Feature engineering

Network traffic is inherently a multivariate time series. In
order to encapsulate the time aspect of it we need to perform
feature engineering on the provided flow characteristics. The
alternative would be to use a model that incorporates temporal
data such as a Recurrent Neural Network, however their ability
to learn temporal relationships is limited in long-term series.

The simplest approach would be to perform feature engi-
neering using a sliding window of some size. For example,
we could create a feature that represents the average number
of packets sent in the last 10 seconds. The downside to this
approach, however, is that when considering the entire network
traffic it would be hard to pinpoint which specific IPs created
a potential fluctuation to this metric.

Our approach first performs a grouping by IP and then
calculates features using sliding windows. This serves our goal
of pinpointing malicious traffic since these features represent
an underlying distribution that is both easier to learn and more
specific to our task.

The implemented feature engineering strategy concludes
with the calculation of statistics (mean and standard deviation)
over highly representative network features such as packet
size, packets sent and header size. In the case of categorical
features such as source/destination ports and destination IPs,
we implement a counting of the occurrence of these values.

B. Autoencoder variants

For the purposes of this work, we experimented with two
Autoencoder variants:



Fig. 2: Autoencoder architecture. The forward pass of data is
from left to right. The input is first encoded into a latent vector
and then decoded, producing the reconstruction of the input.

1) Deep Autoencoders: The vanilla implementation of Au-
toencoders is a Neural Network architecture whose purpose
is to learn the underlying distribution of data by forcing
dimensionality reduction and reconstruction of the original
input. To elaborate, Autoencoders receive an input x ∈ RN ,
which gets passed through a series of Neural Network layers
that produce progressively smaller outputs (Encoder) as shown
in Figure 2. This bottleneck performs dimensionality reduction
of the input x to a latent vector z ∈ RL<N . The latent vector
is then passed through a series of Neural Network layers that
produce progressively bigger outputs (Decoder) producing the
output x′ with the goal of reproducing the original input x.
Autoencoders for non-binary regression are trained using the
Mean Squared Error loss.

MSE =
1

N

N∑
i=1

(xi − x′i)
2 (1)

For the purposes of outlier detection, Autoencoders are
trained with normal/benign traffic only and are expected to
produce outputs with a high loss when fed with anomalous
data. This happens because anomalies do not belong to the
distribution of normal behaviour that is learned by Autoen-
coders.

2) GANomaly: The GANomaly architecture proposed by
Akcay et al. [23] is a Generative Adversarial Network (GAN)
[24] purposefully built for outlier detection purposes. A GAN
is comprised of two neural networks contesting with each other
in a zero-sum game, depicted in Figure 3. The Generator
network aims to learn the underlying data distribution and
produces samples from the learnt distribution. The Discrim-
inator network identifies data as either real or generated by
the Generator. After training, the Generator can be used to
generate new samples or perform various other tasks.

GANomaly is a GAN that uses an Autoencoder as the
Generator. Two extra encoders are also employed, one being
the Discriminator and the other being a feature extractor that

re-encodes the reconstructed input. The Generator’s loss is a
weighted sum of three loss functions which all aim to help
the Generator learn the underlying data distribution so that
any outliers stand out from the other data points.

Ladv = Ex∼px
||DE(x)− Ex∼px

DE(G(x))||2 (2)

Lcon = Ex∼px
||x−G(x)||1 (3)

Lenc = Ex∼px
||GE(x)− F (G(x))||2 (4)

LG = wadvLadv + wconLcon + wencLenc (5)

Ladv is the adversarial L2 loss between two outputs of the
Discriminator Encoder DE , one given the input x and the other
given the reconstructed input G(x). Lcon is the reconstruction
loss of the Generator/Autoencoder. Lenc is the Encoder loss
measuring the difference between the Generator and feature
extractor latent vectors, GE(x) and F (G(x)) respectively.

The Discriminator is trained using the standard GAN binary
cross-entropy loss.

LD = −(ylog(D(x)) + (1− y)log(1−D(x))) (6)

For making a prediction on whether a sample is an outlier or
not we obtain an anomaly scoreA by calculating the difference
between the feature extractor’s latent vector and that of the
Generator, which we scale to [0,1]. A high anomaly score
means a high confidence of the sample being malicious, while
a low score means that the sample is predicted as being normal.
The decision boundary can be defined on a per-use case basis
depending on the precision-recall trade-off that is acceptable.

A(x) = ||GE(x)− F (G(x))||1 (7)

IV. EXPERIMENTS

A. Dataset

Numerous works exist in literature trying to address the
botnet detection problem with varying results. The work of
Garcı́a et al. [25] focuses on comparing three different detec-
tion methods CAMNEP [26], BClus [27] and BotHunter [28]
using the same real dataset, concluding that a realistic network
dataset is essential to evaluate the accuracy of the detection.
In our work we used the CICIDS2017 dataset provided by
Sharafaldin et al. [29]. This dataset contains real-world data
with a simulated behaviour of 25 users within the network,
capturing packets of the most common HTTP, HTTPS, FTP,
SSH, and email protocols. There is also a great variety of
simulated attack vectors such as Brute Force FTP, Brute Force
SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and
DDoS. The full list of different network traffic types is shown
in Table I.

For our training dataset, we use Monday’s traffic, which
only contains naturalistic benign background traffic. It should
be noted that, while additional normal traffic could be acquired
by combining the benign traffic subsets of other days, these



Fig. 3: GANomaly architecture.

TABLE I: CICIDS2017 Dataset description

Dataset Traffic type # of records
Monday-WorkingHours.
pcap ISCX.csv Benign 529918

Tuesday-WorkingHours.
pcap ISCX.csv

Benign 432074
SSH-Patator 5897
FTP-Patator 7938

Wednesday-WorkingHours.
pcap ISCX.csv

Benign 440031
DoS Hulk 231073
DoS GoldenEye 10293
DoS Slowloris 5796
DoS Slowhttptest 5499
Heartbleed 11

Thursday-WorkingHours-
Morning-WebAttacks.
pcap ISCX.csv

Benign 168186
WebAttack-
Bruteforce 1507

WebAttack-SQL
Injection 21

WebAttack-XSS 652
Thursday-WorkingHours-
Afternoon-Infiltration.
pcap ISCX.csv

Benign 288566
Infiltration 36

Friday-WorkingHours-
Morning.pcap ISCX.csv

Benign 189067
Bot 1966

Friday-WorkingHours-
Afternoon-Portscan.
pcap ISCX.csv

Benign 127537
Portscan 158930

Friday-WorkingHours-
Afternoon-DDoS.
pcap ISCX.csv

Benign 97718
DDoS 128027

were not used in our experiments to resemble a more realistic
operational setting, where a model’s training is usually based
on limited historical data. Our test dataset is Friday’s morning
traffic, which contains normal activities as well as malicious
IoT Botnet ARES communications (the only IoT-botnet related
attack). The ARES botnet was discovered on Android OS-
based Set-Top Boxes (STBs) to be exploiting insecure config-
uration and misuse of the Android Debug Bridge infrastructure
used by a majority of STBs and smart TVs. We preprocess
the datasets and perform feature engineering as mentioned in
the previous section. Given that our datasets are comprised of
features with diverse ranges, we also apply standardisation to
resolve any bias caused by the gradient of larger parameters
dominating the networks’ weights updates.

B. Training

We use the Keras framework of Tensorflow using Python
and train on an NVIDIA RTX 2080 Super GPU. For both
models, we use Leaky ReLU activations, batch normalization,
a batch size of 512, a latent vector size of 25% the original
dimensions and the Adam optimizer [30]. We train for 60000
iterations and present the best models in the following section.

1) Autoencoder: For the Autoencoder, we use a learning
rate of 0.002 and a Mean Squared Error loss. The Encoder con-
sists of 3 layers having 128, 64 and 32 neurons respectively.
The latent vector is of size 21 while the Decoder consists of
3 layers with 32, 64 and 128 neurons.

2) GANomaly: For the training of GANomaly we use a
learning rate of 0.0002 for both Generator and Discriminator,
Eq.5 as the Generator loss and Eq.6 as the Discriminator loss.
The Encoders and Decoders have the same architecture as
the ones used for the Autoencoder, described above. For the
Discriminator labels, we utilize one-sided label smoothing of
value 0.9 for the reconstructed inputs given by the output of the
Generator which prevents overconfidence of the Discriminator.
We do not use a balancing scheme for training the Generator
and Discriminator and train both equally.

V. RESULTS & DISCUSSION

This work is a preliminary investigation on outlier detection
using Netflow data intended for an Intrusion Detection System.
For this reason, our main goal was focused on achieving high
precision, which means detecting the botnet traffic without
flagging too much normal traffic as malicious. The intuition
behind this rationale is that if the botnet has been detected,
the IDS can prevent further traffic. Thus, for this use case,
precision is much more important than recall.

After training both models we obtain the precision scores
presented in Table II. In our case, precision is defined as the
number of true positives (actual botnet flows) over the number
of true positives plus the number of false positives. We identify
three decision boundaries as potential candidates which we use
to compare the two models. These decision boundaries were
found by accepting various percentages of the normal data as
false positives. All results represent the models that had the
highest overall precision across the three decision boundaries.



An interpretation of Table II is as follows: For example,
when accepting that 0.001% of normal traffic can be predicted
as malicious we get a decision boundary that contains that
percentage of normal traffic on the wrong side of it. For
that decision boundary, we get a precision of 0.92 given by
GANomaly, meaning 92% of the traffic labelled as malicious
is indeed botnet traffic.

We also present the underlying measurements of true pos-
itives and false positives in Table III at the same decision
boundaries for both models. For example, when accepting
0.006% of normal traffic to be predicted as malicious we get
11 false positives, 13 true positives by the Autoencoder and
20 by GANomaly.

TABLE II: Precision scores of both models at various decision
boundaries. The decision boundaries represent the percentage
of normal traffic that has been predicted as malicious.

Model Precision
Decision Boundary 0.001% 0.006% 0.011%

Autoencoder 0.75 0.54 0.44
GANomaly 0.92 0.65 0.58

TABLE III: Number of true/false positives at various decision
boundaries. The decision boundaries represent the percentage
of normal traffic that has been predicted as malicious. Total
outlier samples after preprocessing are 1947 and normal traffic
samples are 188955.

Measurements # of occurrences
Decision Boundary 0.001% 0.006% 0.011%
FP (both models) 1 11 20
Autoencoder TP 3 13 16
GANomaly TP 11 20 28

Overall, the GANomaly model has proven to be more
effective at learning the underlying data distribution. This can
be seen both numerically in the tables above and visually
when comparing the scatter plots of the testing dataset between
the two models in Figures 4 and 5. In these figures it is
apparent that GANomaly is much more confident in the data
distribution since the blue points, representing normal traffic,
have an anomaly score that is on average closer to zero
compared to their reconstruction error when passed through
the Autoencoder. It can also be observed that the red points,
representing malicious traffic, achieve better separation from
the blue points with GANomaly which is caused by a better
modelling of the data distribution, making outliers stand
out more. It is however, worth noting that the Autoencoder
eventually achieves lower average reconstruction losses when
trained for more iterations but performs considerably worse
for outlier detection. This further points to the fact that the
training scheme of GANomaly results in a more accurate
approximation of the underlying data distribution.

VI. CONCLUSIONS

In this work, we proposed a methodology for the efficient
detection of IoT botnet activity on Netflow traffic. To this end,
we applied a combination of feature engineering techniques

Fig. 4: Scatter plot of Autoencoder. Red points are malicious
samples, blue points are normal traffic. The prediction (y
axis) is the reconstruction error of each sample scaled to the
range [0,1]. This represents the confidence of a sample being
malicious. Decision boundary A predicts 0.001% of normal
traffic as malicious while B and C predict 0.006% and 0.011%
respectively.

Fig. 5: Scatter plot of GANomaly. Red points are malicious
samples, blue points are normal traffic. The prediction (y axis)
is the anomaly score (Eq.7) scaled to the range [0,1]. This rep-
resents the confidence of a sample being malicious. Decision
boundary A predicts 0.001% of normal traffic as malicious
while B and C predict 0.006% and 0.011% respectively.

to extract robust features that better represent the underlying
problem, to improve our predictive performance on unseen
data. We performed anomaly detection using two state-of-
the-art deep-learning architectures, a deep Autoencoder and
GANomaly (which was re-purposed for the traffic analysis
task) by training them on benign traffic and testing them on
a mixture of normal and botnet network flows. Our models
were successful in establishing a baseline of normal network
behaviour, outputting a higher reconstruction error when fed
with botnet flows which was used as an indicator of malicious
activity given a predefined decision boundary.

Throughout our work, we acknowledged that outlier detec-
tion in network traffic by using heuristic-based approaches
such as neural networks is an inherently complex problem
since the activities of each user in a network can vary
dramatically making the underlying distribution hard to model.
Nonetheless, highly representative features can be the cata-
lyst to this problem. We also observed that proper feature



extraction can potentially be more important than even the
choice of model and its parameters. This points to the fact
that for these types of tasks, focusing heavily on the dataset
statistics and feature extraction can prove extremely beneficial.
Furthermore, having access to data that is more detailed than
the Netflow format, such as full packet captures, can further
improve performance as even more meaningful features can
be extracted from them. To this end, our approach could have
practical applications as part of a hybrid threat intelligence
system that exploits multiple data sources to deliver context-
agnostic technical indicators [31].

Future work could investigate the effectiveness of our ap-
proach on other botnet families or different network attacks.
We would also like to further finetune the implemented feature
extraction strategy, by modifying the characteristics of the
extracted features using different sliding windows for the
calculation of statistics. Finally, another line of work could
be targeted towards the optimisation of our method for the
online (real-time) analysis of flow streams.
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