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Abstract 7 

This paper investigates the impacts of climate change on groundwater droughts making use of 8 

regional projections and standardized indices: the Standardized Precipitation Index (SPI), the 9 

Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Groundwater 10 

Index (SGI). The method adopted, using historical precipitation and temperature data and water 11 

levels collected in monitoring wells, first investigates the possible correlations between 12 

meteorological and groundwater indices at each well. Then, if there is a correlation, a linear 13 

regression analysis is used to model the relationships between SGIs and SPIs, and SGIs and SPEIs. 14 

The same relationships are used to infer future SGIs from SPI and SPEI projections obtained by 15 

means of an ensemble of Regional Climate Models (RCMs), under different climate scenarios (RCP 16 

4.5 and RCP 8.5). This methodology has been applied to data collected in northern Tuscany (Italy) 17 

in an area served by a water company, where historical series of daily climate variables (since 1934) 18 

and daily records for 16 wells, covering the period 2005-2020, are available. The impacts on 19 

groundwater have been computed in the short- (2006-2035), medium- (2036-2065) and long-term 20 

(2066-2095). The analysis indicates that, in the historical period and for most of the monitoring wells, 21 

there is a good correlation between SGIs and SPIs or SPEIs. The results point out that making use of 22 

the SGI-SPI relationships, slight variations in the availability of groundwater are expected in the 23 
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future. However, in a global warming scenario, the influence of temperature on evapotranspiration 24 

phenomena cannot be overlooked and, for this reason, the SGI-SPEI relationships seem more 25 

suitable to forecast groundwater droughts. According to these relationships, negative effects on 26 

groundwater levels in almost all wells are estimated for the future. For the RCP 4.5 scenario, the 27 

largest decline in groundwater level is expected in the medium-term, while for the RCP 8.5 scenario 28 

future SGIs will significantly decrease over the long-term. Due to the type of data required and its 29 

simplicity, this methodology can be applied to different areas of interest for a quick estimate of 30 

groundwater availability under climate change scenarios. 31 

1 Introduction  32 

Climate change is one of the most addressed issues of the twenty-first century as its negative impacts 33 

on the environment are increasingly evident (e.g. Jiménez Cisneros et al., 2015). Therefore, 34 

environmental protection is a key concern for this century and, certainly, aquifers cannot be left 35 

behind for their significant contribution to water supply, irrigation and industrial needs.  36 

In the fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014), the 37 

assessment of future climate is linked to different projections of anthropogenic greenhouse gases 38 

(GHG) emissions, which are the key drivers of increasing global warming. In particular, the IPCC 39 

bases its findings on four different 21st century pathways of GHG emissions and atmospheric 40 

concentrations, air pollutant emissions and land use: the Representative Concentration Pathways 41 

(RCPs) or scenarios, namely RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5 (IPCC, 2013; Moss et al., 2010). To 42 

simulate the future climate variables, as a function of the four scenarios, Global Climate Models 43 

(GCMs) have been developed by several research centers within the World Climate Research 44 

Programme in the Coupled Model Inter-comparison Project, Phase 5 framework (CMIP5 – Taylor et 45 

al., 2012).  46 
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However, the GCM resolution (100÷500 km) may not be accurate enough to infer reliable projections 47 

at regional scale; for this reason, dynamic downscaling techniques have been developed to obtain 48 

Regional Climate Models (RCMs), which increase the GCM resolution up to 10÷50 km. In Europe, 49 

MED-CORDEX (Ruti et al., 2016) and EURO-CORDEX (Jacob et al., 2014) represent two of the most 50 

important initiatives for the simulation of regional climate data. Despite that, to be used on medium-51 

small scale basins for climate change impact studies, the raw RCM outputs need a bias correction 52 

process (Teutschbein and Seibert, 2012). In addition, to assess the uncertainty of the results, it is 53 

suggested to use an ensemble of climate models (i.e. different GCM-RCM combinations, D’Oria et 54 

al., 2018b).   55 

Investigating the impacts of climate change on groundwater resources is not an easy task. Typically, 56 

a complex numerical model is required that involves the subsoil description, the conceptualization 57 

of the aquifer system, boundary conditions, and recharge and withdrawal rates. Even if a calibrated 58 

model is available, simulating future conditions is challenging and the computational burden can 59 

be remarkably high, forcing users to limit the number of periods and scenarios to be analyzed. To 60 

overcome these problems, surrogate models have been proposed (Razavi et al., 2012; Asher et al., 61 

2015;  Rajaee et al., 2019) as a computationally efficient alternative to numerical models, mainly with 62 

the aim at helping in the management and decision processes concerning groundwater resources.   63 

In recent years, many authors have investigated the possible relationships between the groundwater 64 

levels, observed in monitoring wells, and the main climate variables, such as antecedent 65 

precipitation and temperature. A common approach to explore these links is to use standardized 66 

indices (see e.g. Khan et al., 2008; Bloomfield and Marchant, 2013; Kumar et al., 2016; Leelaruban et 67 

al., 2017; Soleimani Motlagh et al., 2017; Van Loon et al., 2017; Uddameri et al., 2019; Guo et al., 2021). 68 

The main indices widely adopted to monitor and quantify droughts worldwide are the standardized 69 

precipitation (SPI) and precipitation-evapotranspiration (SPEI) indices for the meteorological 70 
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variables, and the standardized groundwater index (SGI) for the aquifers. SPI (McKee et al., 1993) is 71 

obtained by processing cumulative precipitation at different time windows of consecutive months; 72 

SPEI (Vicente-Serrano et al., 2010) is computed on the so-called “useful precipitation”, i.e. the 73 

difference between precipitation and evapotranspiration; and SGI (Bloomfield and Marchant, 2013) 74 

concerns the groundwater level in monitoring-wells. International portals, containing the maps of 75 

these indices updated in real time (EDO, 2021; ISPRA, 2021; CNR IBE, 2021) are accessible to 76 

different users such as government, public and private agencies and irrigation authorities or 77 

agricultural associations to help in decision making. 78 

Khan et al. (2008) investigated the degree of correlation between the SPI and the fluctuations in 79 

shallow groundwater levels in the Murra-Darling Basin in Australia. The overall results showed that 80 

the SPI correlates well with fluctuations in groundwater table, however, the correlation coefficients 81 

resulted lower for areas where irrigation practices are remarkable and the groundwater recharge 82 

has complex characteristics. The precipitation accumulation periods that present the best correlation 83 

with groundwater levels are different in each analyzed subregion. The authors claimed that the 84 

correlation between SPI and groundwater levels can be adopted as a method of relating climatic 85 

impacts on water tables.  86 

Bloomfield and Marchant (2013) analyzed the correlation between SPIs and SGIs at 14 sites across 87 

the UK. In particular, it was shown that the computation of SGI presents new challenges on the 88 

definition of a suitable statistical distribution of the monthly groundwater levels, presenting a 89 

dependence on local peculiarities. A strong and evident relationship between SPIs and SGIs was 90 

identified, even if the authors highlighted that hydrological processes vary in space and depend on 91 

multiple driving forces, not only on meteorological conditions.  92 

Kumar et al. (2016) analyzed groundwater levels and precipitation records at several sites in 93 

Germany and the Netherlands; the dependence of SGI on SPI was investigated. The authors found 94 
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that a variable precipitation accumulation period over 3-24 months is needed to temporally align 95 

SPI and SGI at both local and regional scale. This reflects the smoothed response of groundwater to 96 

precipitation signals. The correlation between the considered indices decreases using a uniform 97 

accumulation period for computing SPI over the entire domain; therefore, an a priori selection of the 98 

SPI accumulation period leads to inadequate characterization of groundwater droughts. Overall for 99 

the analyzed areas, the authors claimed the limited applicability of the SPI as a proxy for 100 

groundwater droughts; SPEI that accounts for temperature is better suited for drought studies under 101 

global warming conditions.  102 

Leelaruban et al. (2017) analyzed groundwater level data from wells located in Central US. In 103 

particular, the monthly median depth of the water level from the land surface has been correlated 104 

with different meteorological indices, including SPI with accumulation periods varying from 6 to 24 105 

months. The authors found that SPI24 correlates best with the groundwater levels and showed how 106 

this index can be used for a quick assessment of groundwater droughts. The relationships between 107 

drought and aquifer levels are region-specific and therefore ad-hoc studies are required. 108 

Soleimani Motlagh et al. (2017) investigated groundwater drought in the Aleshtar Plain (Iran) using 109 

hierarchy and K-means clustering. They calculated the correlation between SPI and SGI for different 110 

clusters, finding that the maximum correlation is achieved using different precipitation 111 

accumulation periods for each cluster. The magnitude of the correlation coefficient can be variable 112 

among the clusters.  113 

Van Loon et al. (2017) reconstructed the groundwater drought occurred in central and eastern 114 

Europe in 2015, analyzing the relationship between SGI and SPEI in a reference period (1958-2013). 115 

At first, the link between SGI and SPEI was used to establish the spatially varying optimal 116 

accumulation period, highlighting a wide accumulation range (1 to 48 months) over the region. 117 
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Then, the SGI-SPEI relationships were used to calculate the SGIs for the year 2015. The authors 118 

underlined the importance of using a spatially variable accumulation period over large areas. 119 

Uddameri et al. (2019) discussed the possible use of SPI as a surrogate index of the groundwater 120 

drought. They analyzed the link between SPI and SGI for the Edwards Aquifer, Texas. Although the 121 

two indices were statistically correlated, the frequency at which both were concurrently in the 122 

drought state was lower than 50%. According to the authors, this indicates that SPI could be used 123 

only for a qualitative prediction of the groundwater drought. However, using SPI to impose drought 124 

restrictions is consistent with the precautionary principle.  125 

Guo et al. (2021) investigated the groundwater droughts using the SGI obtained from the data of 126 

four monitoring wells located in Georgia, Massachusetts, Oklahoma and Washington. The authors 127 

highlighted that the groundwater droughts vary for different areas due to agricultural and human 128 

activities; moreover, duration and severity of droughts in the same area also vary at different time 129 

scales. The cross-correlation between SGI and SPI was analyzed to find the time delay between 130 

meteorological and groundwater droughts.  131 

Climate models give the opportunity to evaluate SPIs and SPEIs also for future scenarios and to 132 

detect the occurrence of drought events, their frequency, intensity and duration (Stagge et al., 2015a), 133 

comparing them with the historical data. Stagge et al. (2015a) analyzed historical and future SPIs 134 

computed from observed precipitation and RCM data. The results obtained for the future period 135 

show significant increases in frequency and severity of meteorological droughts in the 136 

Mediterranean region, thereby exacerbating their impacts. On the contrary, the evaluations for 137 

northern Europe point out a less frequency and severity of droughts since an increase in 138 

precipitation is generally detected. Osuch et al. (2016) investigated possible future climate change 139 

effects on dryness conditions in Poland using SPIs based on RCM data. Great attention was given to 140 

the bias correction of the RCMs, in order to obtain a good reproduction of the historical precipitation. 141 
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Furthermore, using the modified Mann-Kendall test, an analysis of the SPI trends was performed 142 

employing the Sen’s method to calculate the trend slope. In general, this study confirmed the results 143 

of Stagge et al. (2015a), highlighting a difference between the climatic projections obtained from the 144 

various RCMs.  145 

In this study, we address the use of historical relationships between meteorological and 146 

groundwater indices in combination with regional climate model data to infer the impacts of climate 147 

change on groundwater. The method adopted, on the basis of the available historical data 148 

(precipitation, temperature and groundwater levels), first investigates the correlation between SGIs 149 

and SPIs and SGIs and SPEIs at each monitoring well, using different accumulation periods for the 150 

climate variables. Then, for those monitoring wells with a satisfactory correlation, a linear regression 151 

analysis is used to model the relationships between meteorological and groundwater indices. 152 

Assuming that the hydrological processes will not change over time, the same regression 153 

relationships are applied to future SPI and SPEI projections to infer the impact of climate change on 154 

groundwater levels. Future SPIs and SPEIs are obtained by means of an ensemble of RCMs, under 155 

different climate scenarios (RCP 4.5 and RCP 8.5). 156 

The novelty of this study lies in the coupling of drought indices and future projections of climate 157 

data to obtain a quick estimate of groundwater availability. In fact, even if many studies focus on 158 

the relationships between meteorological and groundwater indices, their use in future analysis is 159 

still very little investigated. Employing two different meteorological indices (SPI and SPEI) in 160 

combination with SGI, allows to highlight the differences in considering only precipitation rather 161 

than precipitation-temperature data to analyze the impact of climate change on groundwater 162 

resources. In fact, the use of other climate variables other than precipitation in characterizing 163 

droughts is an important aspect emphasized by many others (e.g. Vincente-Serrano et al., 2010; 164 

Teuling et al., 2013; Kumar et al., 2016;).    165 
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The procedure has been applied to a regional area located in northern Italy served by a water 166 

company where historical daily data of precipitation, temperature and groundwater levels in wells 167 

are available. 168 

This paper is organized as follows: in Section 2, the study area and the available data are presented, 169 

then the methodologies adopted to compute SPIs, SPEIs and SGIs and the processing of the climate 170 

projections are reported. Section 3 shows the main results, which are discussed in Section 4. 171 

Conclusions are drawn in Section 5. 172 

2 Materials and methods 173 

2.1 Study area and available data 174 

The study area, shown in Fig. 1, is located in the northern part of Tuscany (Italy) and covers about 175 

3000 km2. It is the territory served by an Italian water company, interested in evaluating the effect of 176 

climate change on water resources. The anthropic occupation of this area has undergone radical 177 

changes. Although agriculture has been the main activity in the last century, it is presently in decline 178 

and tourism represents the main source of income (Pranzini et al., 2019). In the last twenty years, the 179 

percentage of land used for agricultural is around 14-16% of the total area, resulting in a quite 180 

modest water demand. Natural forests occupy between 55 and 70% of the total area (PTA, 2005).  181 

The area has been already investigated in previous studies (D’Oria et al., 2017; D’Oria et al., 2019) 182 

and, in agreement, it has been split according to the water divides of four watersheds (Fig. 1): Magra, 183 

Serchio, Coastal Basins and Arno Portion (a portion of the Arno River basin). It was necessary to 184 

distinguish the area in basins since they have different characteristics. Table 1 summarizes the 185 

annual precipitation and annual mean temperature over the four basins as evaluated in the period 186 

1934-2020. 187 

[Insert Figure 1 here] 188 

 189 
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Table 1 - Annual mean temperature and annual precipitation over the basins: average, maximum and minimum values in the period 190 
1934-2020. 191 

Annual mean temperature 

(°C) 
MAGRA COASTAL BASINS SERCHIO ARNO PORTION 

Average 13.2 13.2 12.9 14.8 

Max 14.8 14.8 14.3 16.0 

Min 11.3 11.8 11.4 13.3 

Annual precipitation (mm) MAGRA COASTAL BASINS SERCHIO ARNO PORTION 

Average 1539 1578 1536 1205 

Max 2608 2579 2650 2039 

Min 810 803 825 444 

The basin of the Magra River (938 km2) is divided in three different areas: coastal, hilly and mountain 192 

portion; the coastal part of the basin is not included in the study area. High spatial variability of the 193 

temperature, due to the coastal climate influence, characterizes the hilly area. The inner mountain 194 

area presents average winter temperatures close to zero and moderate snow accumulations; high 195 

precipitation occurs in the internal areas.  196 

The Coastal basins (383 km2) are located in the area between the Apuan Alps and the Tyrrhenian 197 

Sea. The basins are characterized by high precipitation values due to the proximity of the Apuan 198 

Alps (maximum altitude 1946 m a.s.l.) to the sea. The most intense rains occur during late spring 199 

and late summer, the most persistent one in the autumn; only sporadic and short duration snow 200 

occurs due to the high temperature in the winter season.  201 

The Serchio River (1545 km2) has its source in the Apennine area (north of the Province of Lucca) 202 

and flows into the Tyrrhenian Sea. The particular position of the basin, longitudinally oriented with 203 

the sea, makes the area one of the wettest in Italy, with annual total precipitation exceeding 2500 204 

mm per year on the Apuan hills.  205 

Until the 16th century, the Arno portion area (186 km2) was occupied by swamps and by a lake with 206 

an irregular regime draining to Serchio River or Arno River according to the seasonal variations. 207 

Then, the zone was reclaimed by means of an artificial channel and the water was addressed to the 208 

Arno River. Precipitation is distributed over the year in two periods: between the months of January 209 
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and May, precipitation is abundant and regular; from October to December, precipitation can be 210 

significant and intense but irregularly distributed over time.  211 

In this work, precipitation and temperature data recorded among 18 gauging stations and the 212 

piezometric level measurements collected in 16 wells are considered; the climate data extend to the 213 

neighboring regions (Liguria and Emilia Romagna regions). The data are published by the 214 

Environmental Agency of the three regions (SIR, 2021; ARPAE, 2021; OMIRL, 2021). 215 

The historical daily precipitation and temperature database (years 1934-2012) used in D’Oria et al. 216 

(2017) was integrated until 2020. Eighteen precipitation gauges and 14 temperature stations, whose 217 

location is plotted in Fig. 1, have been selected to represent the historical climate due to their long 218 

period of records; Table 2 shows the type of data recorded and the elevation of each station.  219 

Table 2 – Type of data and elevation of the precipitation and temperature gauges. 220 

ID Name Rain gauge Temp. gauge Elevation [m a.s.l.] 

G1 Arlia x x 460 

G2 Bagnone x x 195 

G3 Bedonia x x 500 

G4 Borgo a Mozzano x  100 

G5 Calice al Cornoviglio x x 402 

G6 Carrara x x 55 

G7 Casania x  845 

G8 Cembrano x x 410 

G9 Lucca x x 16 

G10 Massa x x 150 

G11 Palagnana x  861 

G12 Pescia x x 78 

G13 Pontremoli x x 340 

G14 S. Marcello Pistoiese x x 618 

G15 Sarzana x x 26 

G16 Viareggio x x 0 

G17 Villacollemandina x  502 

G18 Villafranca Lunigiana x x 156 

Daily data from 16 wells are used in this study (Fig. 1 and Table 3); the available data are 221 

groundwater levels in m a.s.l. and cover the period 2005-2020. Almost all wells present consistent 222 

data time series, except for the S. Pietro a Vico well, which is characterized by few records of the 223 

piezometric levels (Table 3) and it was not used for the following analysis.  224 

All the wells considered have been recognized as belonging to underground water bodies that have 225 

been classified in terms of the European Directive 2008/105/CE (EU Directive, 2008) and its following 226 
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national laws D. Lgs. 152/06 (GU, 2006) and D. Lgs. 30/09 (GU, 2009).  In the Magra basin, only one 227 

monitoring well is available (Bandita 7); it is located in the city of Aulla in the bed aquifer of the 228 

Magra River. The Magra groundwater body (21MA010) reaches a depth of a few tens of meters 229 

resting on the impermeable sediments of the Rusciniano-Villafranchiano substratum. This aquifer 230 

presents a certain lateral continuity along the course of the Magra River and of the main tributaries, 231 

with variable thicknesses from the centre to the edges of the plain (D.R. 100, 2010; Regione Toscana, 232 

2021).  233 

Seven monitoring wells are available in the Coastal basin (Table 3); they are dug in the Versilia and 234 

Apuan Riviera groundwater body (33TN010; D.R. 100, 2010; Regione Toscana, 2021). It is a 235 

multilayer system that presents silt or clayed-silt lenses with good continuity only to a limited extent. 236 

Then a direct contact among the aquifer horizons exists on the main part of this water body. The 237 

main supply to the groundwater flow comes from the upstream basins and, in particular, from the 238 

alluvial fans of the streams (Pranzini et al., 2019).  239 

In the Serchio basin there are six monitoring wells (Table 3). The Decimo well is located in the upper-240 

medium valley of the Serchio River groundwater body (12SE020; Regione Toscana, 2021), which has 241 

a depth of 20-30 meters resting on the impermeable sediments of the Pliocene substratum. This 242 

phreatic aquifer presents a certain lateral continuity along the course of the Serchio River and of the 243 

main tributaries, with variable thickness from the center to the edges of the plain (Regione Toscana, 244 

2021). The other wells are located in the Lucca plain groundwater body – phreatic and Serchio zone 245 

(12SE011; Regione Toscana, 2021). The hydrogeological conditions are of a phreatic aquifer.  246 

Two wells are located in the Arno portion basin; they belong to the Lucca plain – Bientina area 247 

groundwater body (11AR028; Regione Toscana, 2021). The aquifer is mainly phreatic; only in the 248 

southern area a shallow confining layer can be recognized. 249 
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Table 3 – ID, name, reference groundwater body, percentage of available data and ground elevation of the monitoring wells. 250 

 251 

2.1.1 Data compilation: gap filling and interpolation procedures  252 

During data collection, gaps were present within the time series. To fill these blanks and to have a 253 

continuous set of observations we used the FAO method (Allen et al., 1998). According to this 254 

method, the gaps are filled according to a linear relationship between the data at the considered 255 

location and a twin location in which the missing data are available; the data available in the two 256 

locations must have a satisfactory correlation. This method was used to fill gaps in groundwater 257 

level, precipitation and temperature datasets; as suggested in Allen et al. (1998) a threshold value of 258 

0.7 has been adopted for the correlation coefficient to select twin stations. It is noteworthy that the 259 

Bandita7 well, after the FAO filling process, still presents missing data due to the unsatisfactory 260 

correlation with the other wells.  261 

Among the 18 climate gauging stations, four have no temperature data. Since this work needs 262 

precipitation and potential evapotranspiration data, it is necessary to have contemporary records of 263 

temperature and precipitation at the same location. Therefore, once the gaps in the time series were 264 

filled, the temperature data were interpolated to the precipitation station locations. For this purpose, 265 

in agreement with Moisello (1998), we considered that there is a temperature reduction with 266 

increasing ground elevation. Hence, in the recorded period and on a monthly scale, the coefficients 267 

ID Name Groundwater body % data Elevation m a.s.l. 

W1 Bandita 7 21MA010 73.4 68.00 

W2 Corte Spagni 11AR028 83.8 9.07 

W3 Cugnia 33TN010 91.7 4.00 

W4 Diecimo 12SE020 60.9 65.00 

W5 Flor Export 12SE011 64.6 1.67 

W6 Nozzano 12SE011 78.6 16.43 

W7 Paganico 11AR028 72.4 13.00 

W8 Percorso vita 33TN010 78.1 1.56 

W9 Ronco 12SE020 79.7 11.67 

W10 Salicchi 12SE011 83.3 27.12 

W11 S.Alessio 12SE011 71.9 18.87 

W12 S.Pietro a Vico 12SE011 12.0 30.69 

W13 Sat 1 33TN010 75.5 1.50 

W14 Unim 33TN010 91.7 19.91 

W15 Via Barsanti 33TN010 91.7 20.00 

W16 Via Romboni 33TN010 88.0 37.92 



13 

 

𝑞 and 𝑚 of the following linear equation (1) have been determined by means of the ordinary least 268 

square (OLS) method applied to the 𝑁 locations with known temperature 𝑇𝑗
𝑜 and elevation 𝐸𝑗:  269 

𝑇𝑗
𝑜 =  𝑞 −  𝑚 ∙ 𝐸𝑗    (𝑗 = 1, … , 𝑁). (1) 

Once estimated the coefficients 𝑞 and 𝑚, if (1) is applied to the sites where the temperature record 270 

exists, deviations (residuals) can be recognized due to local peculiarities not described by the linear 271 

regression. Then, in the estimation of the final temperature 𝑇𝑖 in any point of elevation 𝐸𝑖, the 272 

residuals, weighted with an inverse square distance method, were added to the result of equation 273 

(1) giving the following relationship: 274 

𝑇𝑖 =  𝑞 −  𝑚 ∙ 𝐸𝑖 + ∑ 𝜆𝑖,𝑗 ∙ 𝜀𝑗

𝑁

𝑗=1

 (2) 

where 𝜆𝑖,𝑗 is the weight of the 𝜀𝑗 residual of the temperature values in the 𝑗 location with known 275 

temperature. 276 

2.1.2 Future climate projections 277 

Estimates of the future climate in terms of daily precipitation and daily mean temperature have been 278 

acquired from an ensemble of 13 RCM models, which are part of the EURO-CORDEX initiative 279 

(Jacob et al., 2014). The combinations of GCMs and RCMs adopted in this study are reported in Table 280 

4. The RCM data consist of a historical control period (1950/1970-2005) and a projection period of 281 

the climate variables from 2006 until 2100, under different Representative Concentration Pathways 282 

(RCPs). In this work, the RCP 4.5 and RCP 8.5 scenarios have been considered. The climate model 283 

data have been downscaled at the 18 climate stations and bias corrected with reference to the 284 

historical period 1976-2005. In particular, the climate model data (daily precipitation and 285 

temperature) have been corrected with the Distribution Mapping method (Teutschbein and Seibert, 286 

2012) so that their cumulative distribution functions, at monthly scale, agree with the ones of the 287 

observed data in the chosen historical period. The same correction estimated for the historical period 288 
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is then applied for the future. For more information and details on the climate models data, the 289 

downscaling and the bias correction method for the study area see D’Oria et al. (2017). 290 

Table 4 – Combination of GCMs and RCMs from the EURO-CORDEX project used in this study. 291 

  GCM     

  CNRM-CM5 EC-EARTH HadGEM2-ES MPI-ESM-LR IPSL-CM5A-

MR 

RCM CCLM4-8-17 x x x x  

 HIRHAM5  x    

 WRF331F     x 

 RACMO22E  x x   

 RCA4 x x x x x 

2.2 Calculation of drought indices 292 

In this section, we first describe the methodologies used to compute the meteorological indices, SPI 293 

and SPEI, and the groundwater index, SGI, in the historical period. Then, the methodology to 294 

evaluate the relationships between meteorological and groundwater indices in the historical period 295 

is presented. Finally, we show how to evaluate the future SGIs on the basis of the SPI and SPEI 296 

projections and the previously estimated relationship. 297 

2.2.1 Standardized Precipitation Index (SPI) 298 

The Standardized Precipitation Index (SPI) was developed by McKee et al. (1993) and represents a 299 

statistical index useful in detecting the severity of meteorological droughts. The computation of SPI 300 

requires a long series of monthly precipitation (30 years or more is suggested by the World 301 

Meteorological Organization (1987)), accumulated over different time windows of interest (e.g. 1, 3, 302 

6, 9, 12, 24 months). The precipitation values related to a certain month and time window are first 303 

fitted to an appropriate probability distribution, which is then transformed into a standard normal 304 

distribution. SPI values close to zero indicate precipitation close to the average, positive or negative 305 

values indicate abundant or scarce rains; negative values less than -1 denote the occurrence of a 306 

meteorological drought. 307 
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In the present study, the SPI has been evaluated at station scale on the basis of the long-term 308 

precipitation records of the years 1934-1993, assumed as reference period. The probability 309 

distribution function (PDF) that usually fits the cumulative precipitation data is the gamma 310 

distribution (McKee et al., 1993, Soľáková et al., 2014, Stagge et al., 2015b) and this has been used in 311 

this work.  312 

Care must be taken to the so-called “zero precipitation problem”. During a season with low 313 

precipitation, the accumulated precipitation over short periods (1 or 3 months, generally) can be 314 

zero, but the gamma distribution can only handle positive values. Hence, according to Stagge et al. 315 

(2015b), the cumulative gamma distribution function was transformed in a piecewise probability 316 

distribution as follows:  317 

𝑝(𝑥) =  {

𝑝0 + (1 − 𝑝0)𝐺(𝑥𝑝>0, 𝜸)  for 𝑥 > 0

𝑝0 =  
𝑛𝑝=0 + 1

2(𝑛 + 1)
   for 𝑥 = 0

 

(3) 

where 𝑝 is the probability distribution, 𝑝0 is the zero precipitation probability, 𝑛𝑝=0 is the number 318 

of zeros occurring in the total data set of n values, 𝐺(𝑥𝑝>0, 𝛾) denotes the Gamma distribution with 319 

parameters 𝜸 and x is one element in the series.  320 

In this study, the distribution function fitted over the reference period was used to calculate the SPIs 321 

in more recent years (2005-2020), when the groundwater level data were available. The choice of not 322 

extending the reference period until 2020 is related to the fact that, in the study area, the effects of 323 

climate change have been detected since the ’90s (D’Oria et al., 2017). 324 

Once the SPIs have been computed at each gauging station, we processed them in order to obtain 325 

an average value according to the Thiessen polygon method. In particular, we evaluated the average 326 

SPIs for each basin and for the total area. 327 

2.2.2 Standardized Precipitation-Evapotranspiration index (SPEI) 328 
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In hydrological processes, temperature can play a non-negligible role; for this reason, in addition to 329 

the SPI, the Standardized Precipitation-Evapotranspiration Index (SPEI) has been considered in this 330 

work. The procedure for calculating the SPEI (Vicente-Serrano et al., 2010) is quite similar to that 331 

used for the SPI; in this case the reference meteorological variable is the difference between the 332 

precipitation and the potential evapotranspiration (PET). In this work, the PET has been evaluated 333 

in agreement with the Thornthwaite method (Thornthwaite, 1948) since only mean temperature data 334 

were available for the study area.  335 

The gamma distribution used for the SPI no longer accommodates the useful precipitation data, 336 

because negative values may occur due to the contribution of the evapotranspiration. According to 337 

Stagge et al. (2015b), we used the log-logistic distribution. Once the distribution is fitted, the data 338 

are transformed using a standard normal distribution to obtain the SPEI values. The reference period 339 

adopted to fit the log-logistic distribution is 1934-1993. The computation of the SPEIs outside the 340 

historical reference period may require significant extrapolation of the fitted distribution leading to 341 

unreasonable values (Stagge et al. 2015b). In these cases, the SPEIs were limited to the range of the 342 

extreme values allowed by the historical distribution.   343 

Again, using the Thiessen polygons and the SPEIs at station scale, their areal averages have been 344 

computed for the analyzed basins and the total area. 345 

2.2.3 Standardized Groundwater Index (SGI) 346 

As previously mentioned, SGI represents a statistical indicator of the groundwater drought severity, 347 

conceptually identical to SPI and SPEI. However, there are significant differences: there is no 348 

meaning in the accumulation over a specified period and the distribution of the observed monthly 349 

groundwater levels does not conform to the already analyzed PDFs. Some authors used different 350 

distributions to analyze the groundwater data such as the plotting position method  (Osti et al., 2008) 351 

and the kernel non-parametric distribution (Vidal et al., 2010; Bloomfield and Marchant, 2013; 352 
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Soleimani Motlagh et al., 2017). The plotting position method is very sensitive to the sample size, 353 

especially when the number of data is small; for this reason, the kernel non-parametric method is 354 

preferred and used in this study. The PDF of the model is the following (Horová et al., 2012): 355 

𝑝(𝑥) =
1

𝑁ℎ
∑ 𝐾(

𝑥 − 𝑥𝑘

ℎ
)

𝑁

𝑘=1

 (4) 

where 𝑝(𝑥) is the probability density function of the variable 𝑥, ℎ > 0 is the bandwidth, 𝐾(𝑥) is the 356 

kernel function which may be defined in different forms (normal, box, triangle, Epanechnikov) and 357 

𝑥𝑘 is a random sample from an unknown distribution. In this study, a Gaussian Kernel is used. 358 

Once established the distribution, the normalization procedure for obtaining SGI is identical to the 359 

process described for the meteorological indices. 360 

2.2.4 Future SPIs and SPEIs 361 

Making use of the outputs of the climate models, SPIs and SPEIs can be evaluated for the historical 362 

period and selected future periods. For this aim, the indices have been computed according to the 363 

probability distributions used to fit the historical observations in the period 1934-1993. 364 

As highlighted by Stagge et al. (2015a) and Osuch et al. (2016), it can be argued whether the results 365 

provided by climate models, once downscaled and bias corrected, well describe the observed 366 

standardized indices, like SPIs and SPEIs, in a common historical period. A positive answer gives a 367 

certain assurance that the climate models provide reliable predictions of the meteorological indices 368 

in the future. In order to investigate this issue, we performed a check on the congruence of the 369 

probability distributions of the observed SPIs and SPEIs with the ones obtained from the climate 370 

models in the historical period 1976-2005. To this end, we applied the two sample Kolmogorov-371 

Smirnov test, which verifies whether two samples are drawn from the same distribution. The test 372 

was applied to the SPIs and SPEIs evaluated, for each station and a certain time window, using the 373 

observed and the RCM data. The climate models have been individually tested. 374 
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2.2.5 Future SGIs 375 

To obtain future projections of SGIs for the study area, first the relationships between SPIs or SPEIs 376 

(at different time windows) and SGIs in a historical period must be investigated. To this end, a 377 

preliminary correlation analysis was made, based on the Pearson coefficient, on the indices 378 

calculated in the period 2005-2020. Investigations were also conducted to verify if potential delays 379 

between meteorological and groundwater indices (i.e. shifting backward the SPI or SPEI) may 380 

increase their correlation. A threshold for the correlation coefficient equal to 0.6 was adopted to 381 

identify an acceptable link between the two indices (Evans, 1996).  382 

For those wells with acceptable correlation, we made use of a regression analysis to establish a 383 

simple linear relationship between meteorological indices (SPIs or SPEIs) and SGIs. Then, assuming 384 

that the regression equations determined for the historical period hold for the future, they were 385 

applied to determine the SGIs according to the future meteorological indices (SPIs or SPEIs). The 386 

future analysis were conducted at short- (2006-2035), medium- (2036-2065) and long-term (2066-387 

2095).  388 

3 Results 389 

In this section, the main results are summarized. After reporting the SPIs, SPEIs and SGIs computed 390 

in the historical period (2005-2020), the correlations between meteorological and groundwater 391 

indices are analyzed and their relationships identified. Finally, the future projections of the SGIs are 392 

presented.   393 

3.1 Historical SPIs, SPEIs and SGIs 394 

Even if SPIs and SPEIs were calculated at station scale, for the sake of brevity, Fig. 2 shows only 395 

those averaged over the basins of interest and for the period of availability of the groundwater levels 396 
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(2005-2020). The time windows of 6, 9, and 12 months are selected since the highest correlations 397 

between meteorological and groundwater indices are in these aggregation periods.  398 

About the variability of the SPIs among the basins, it seems not significant; with reference to the 12- 399 

month time window (Fig. 2a), all the basins show a drought period that starts in 2005 and ends in 400 

2009. Another remarkable drought is detected from 2012 to 2013; this one is less severe in the Magra 401 

basin. Again, limiting the analysis to the 12-month time window, the smallest values are obtained 402 

for the Arno portion basin, in 2008; the largest in the Serchio basin in 2012-2013.  403 

The SPEI values (Fig. 2b) indicate drought periods similar to those identified by the SPIs; on average, 404 

limiting the analysis to the 12-month time window, they result lower in the negative values and 405 

moderately higher in the positive ones. The smallest value is obtained for the Arno portion basin in 406 

2012; the largest value for the Serchio basin in 2014. 407 

[Insert Figure 2 here] 408 

The SGIs were calculated for the data collected in the monitoring wells in the period 2005-2020. The 409 

SGIs, shown in Fig. 3, detect drought periods similar to those of SPIs and SPEIs for almost all wells. 410 

For some wells, in particular Bandita7 (Magra basin), Unim (Coastal basin) and Corte Spagni (Arno 411 

basin), some positive or slightly negative values are detected during the drought period of the years 412 

2005-2009. This condition could be due to the influence of external forcing on groundwater. For 413 

example, the proximity of the Magra River to the Bandita7 well may influence the groundwater 414 

levels, while Unim and Corte Spagni are affected by withdrawals from nearby well fields.  415 

[Insert Figure 3 here] 416 

3.2 Relationships between meteorological and groundwater indices 417 

To recognize potential relationships between meteorological and groundwater indices, we started 418 

investigating the correlation between SPIs and SGIs. For each monitoring well, we computed the 419 

Pearson correlation coefficient between the SPIs weighted on the corresponding basin and the SGIs. 420 
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The correlations obtained using the basin weighted SPIs are generally higher than those evaluated 421 

with the SPIs weighted over the entire study area; this makes the results more reliable. This is 422 

consistent with other literature studies, which highlighted that both the climate and basin 423 

characteristics influence the propagation of the precipitation signal to groundwater (e.g. Kumar et 424 

al., 2016).  425 

For the correlation analysis, eight time windows (1, 3, 6, 9, 12, 18, 24 and 36 months) were considered 426 

and the results are shown in Fig. 4. With reference to the correlation coefficients higher than the 427 

chosen threshold (0.6), the SPIs with time windows of six, nine and twelve months are generally 428 

better correlated with the SGIs. This behavior was expected considering that the wells are located in 429 

shallow aquifers with moderate distance from the ground surface (Kumar et al., 2016). However, 430 

some wells present low correlation values for all the considered time windows; this is particularly 431 

evident for the Bandita7, Unim and Corte Spagni wells in agreement with the results reported in 432 

Section 3.1.  433 

[Insert Figure 4 here] 434 

For the following analysis, we will consider only the wells with a correlation coefficient higher than 435 

the selected threshold (0.6) and for the 6-, 9-, and 12-month time windows. Ten wells satisfy this 436 

condition; they are located in the Arno portion (1 well), Coastal (5 wells) and Serchio (4 wells) basins.  437 

As showed by Bloomfield and Marchant (2013), it can be interesting to investigate if a delay (lag) 438 

between meteorological and groundwater indices may modify the correlation coefficients, allowing 439 

a better alignment between the precipitation and the groundwater signals. The heat maps in Fig. 5 440 

summarize the computations and show that the highest correlation coefficient is observed for zero-441 

lag. This indicates that, for the study area, the meteorological droughts are aligned to those of the 442 

groundwater system.  443 

[Insert Figure 5 here] 444 
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For the study area and the 10 selected wells, the precipitation accumulation periods that lead to the 445 

highest correlations do not exhibit a significant spatial variability. For all these wells but one, the 446 

maximum correlations occur considering the six- and nine-month time windows and the correlation 447 

coefficients do not considerably vary within these accumulation periods. For this reason and for 448 

clarity, in the following analysis we decided to use the SPI with six-month time window (here on 449 

denoted as SPI6) for all the 10 wells. 450 

Once established the correlation between SPIs and SGIs, we analyzed the relationships between the 451 

two indices according to a linear regression analysis (Fig. 6). For all wells, the slope of the regression 452 

line is always lower than one; this denotes that, for the study area, in the propagation process from 453 

meteorological to groundwater droughts there is an attenuation mechanism that smooths out the 454 

negative anomalies (see e.g. Van Loon, 2015).  The spread around the regression line (Fig. 6) 455 

indicates, as expected, that other factors beside the precipitation (e.g. lateral inflow/outflow, human 456 

activities) are behind the drought propagation process (Wang et al., 2016); however, the correlation 457 

between SPIs and SGIs is high and this allows us to consider this simple relationship for the 458 

subsequent analyses. 459 

[Insert Figure 6 here] 460 

The same procedure presented above was used to investigate the correlations and relationships 461 

between SPEIs and SGIs. With reference to the wells with a correlation coefficient above the 462 

threshold (0.6), also in this case the correlations are higher considering the accumulation periods of 463 

6, 9 and 12 months (Fig. 7). The same 10 wells, identified using SPI, satisfy the threshold condition. 464 

In general, the correlations between SPEIs and SGIs result moderately lower than those obtained 465 

processing SPIs and SGIs. In the majority of cases, the 9-month time window provides the better 466 

results, with correlation coefficients similar to those of the two adjacent accumulation periods. For 467 

this reason and for clarity, the further analyses were carried out with reference to the SPEI with a 9-468 
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month time window (here referred to as SPEI9), weighted on the four basins. An investigation on 469 

the influence of time delays between SPEIs and SGIs showed that the maximum correlations are 470 

achieved again with zero-lag for all the 10 wells (the figure is not shown for brevity). For all wells, 471 

the slopes of the regression lines are lower than the corresponding ones evaluated using SPIs, 472 

therefore a greater attenuation in the drought propagation processes was found for the study area 473 

when considering also the evapotranspiration processes. Also in this case, the spread around the 474 

regression line (Fig. 8) highlights that other factors besides the useful precipitation influence the 475 

groundwater levels; however, the high correlation between SPEIs and SGIs allows using this simple 476 

relationship for the subsequent analyses.  477 

[Insert Figure 7 here] 478 

[Insert Figure 8 here] 479 

3.3 Climate projections and future meteorological indices 480 

We used an ensemble of GCM-RCM projections, downscaled and bias corrected at each station 481 

location, to represent the future climate over the study area. Even if local heterogeneities are 482 

expected in the future projections, for the sake of brevity and to have an overview of the forecasted 483 

changes in climate, we report in Fig. 9 the annual precipitation and the annual mean temperature 484 

weighted over the entire study area, for both the historical and the future periods. The data are 485 

presented in term of 10-year moving average to smooth out the natural variability and highlight the 486 

climate change components. According to both the RCP 4.5 and RCP 8.5 scenarios and the median 487 

values, the annual precipitation does not present appreciable modifications in the future for both 488 

scenarios (Fig. 9a). The variability between models is high, pointing out a large uncertainty in the 489 

future estimation of the precipitation. As for the temperature (Fig. 9b), an evident and increasing 490 

trend is detected for the future and for both scenarios. Both the historical and climate model data 491 

show that around the ’90s the temperature began to increase. A similar upward trend is expected 492 
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until around 2040 for both the RCPs; after this period, RCP 8.5 indicates a greater warming of the 493 

study area. Looking at Fig. 9, it can be expected that in the future, even if the precipitation does not 494 

exhibit remarkable trends, the recharge of the aquifers could be reduced due to increasing 495 

evapotranspiration phenomena triggered by the temperature rise. This endorses the importance of 496 

using meteorological indices that take into account both precipitation and temperature variables, 497 

such as SPEI, for assessing the impact of climate change on groundwater resources.   498 

[Insert Figure 9 here] 499 

The climate model data were then used to obtain the meteorological indices as reported in 500 

Subsection 2.2.4. Before using the meteorological indices calculated from the climate models for 501 

future analysis, it is important to evaluate the reliability of the RCMs in reproducing the historical 502 

SPIs and SPEIs. We made use of the two sample Kolmogorov-Smirnov test to compare the historical 503 

and RCM meteorological indices. Since the distribution mapping procedure has been applied as bias 504 

correction method (Teutschbein and Seibert, 2012), the congruence is guaranteed at the single month 505 

scale, but for longer time windows, this may not be assured. With reference to the SPIs and a 506 

significance level of 5%, almost all samples passed the test with very few exceptions (1%) that 507 

resulted in a p-value slightly below the threshold one. For the SPEIs the percentage increases (20%) 508 

but still remains low. The results of the Kolmogorov-Smirnov test confirm that SPIs and SPEIs 509 

evaluated by the climate model data can be considered reliable. 510 

3.4 Future SGIs 511 

The SPI6 and SPEI9 values obtained from the climate models at each station location were averaged 512 

over each basin, for each RCP scenario. Making use of these values, the relationship showed in Fig. 513 

6 and Fig. 8 were then applied to estimate the SGIs in the historical and future periods. In order to 514 

estimate the SGIs, the time series provided by the 13 RCMs were put together to constitute a single 515 

data set. In this way, the 13 realizations of the climate models have been considered equally reliable 516 
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assuming that they are statistical realizations of the same stochastic process. Subsequently, we will 517 

refer to this dataset as “whole RCM ensemble”. 518 

For all wells, considering the SGI-SPI6 relationships, the CDFs of the SGIs obtained by the whole 519 

RCM ensemble, denote slight modifications with respect to the historical dataset, for both the RCP 520 

4.5 and RCP 8.5 scenarios. Only at medium-term for the RCP 4.5 and at long-term for the RCP 8.5, a 521 

slight increase of the frequency of low SGI values has been detected. On the other hand, applying 522 

the SGI-SPEI9 relationships the CDFs of the SGIs for the future periods remarkably change with 523 

respect to the historical period: for both RCP scenarios the reduction of the median SGI values is 524 

especially pronounced at medium- and long-term. 525 

As an example, Fig. 10 shows the empirical cumulative distribution functions of the SGIs in the 526 

historical and future periods obtained for the Paganico well (Arno portion basin) under the RCP 8.5 527 

scenario. The envelope curves of the different CDFs obtained by considering each climate model 528 

separately show a marked uncertainty due to the differences in the individual models; this aspect is 529 

more evident in the long-term. The results for the Paganico well are summarized in Fig. 11 by means 530 

of box-whisker plots. Applying the SGI-SPI6 regression relationships, no remarkable modifications 531 

can be detected between the historical period and the future ones, the median value remains close 532 

to zero in all periods. It is noteworthy to point out that there are positive outliers due to the results 533 

of a specific model which, unlike the other RCMs, forecast abundant precipitation in the future 534 

periods. According to the SGI-SPEI9 regression relationships, a systematic reduction of the SGIs, 535 

especially at a medium- and long-term can be detected. Considering the temperature, the effects of 536 

the model with abundant precipitation are mitigated, and on the contrary there is an increase of the 537 

negative outliers. 538 

[Insert Figure 10 here] 539 

[Insert Figure 11 here] 540 
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To quantify the results for all wells, some characteristic values of the SGIs defined through the SGI-541 

SPI6 and the SGI-SPEI9 regression relationships are reported (Fig. 12). For the SGI-SPI6 relationships, 542 

looking at the 25th percentile and the median value, there is a slight decrease of the SGI in the 543 

medium-term for the RCP 4.5 and in the long-term for the RCP 8.5. Conversely, using the SGI-SPEI9 544 

relationships, the future SGIs remarkably decrease in almost all wells. For the RCP 4.5, the medium-545 

term period shows the greatest declines, while for the RCP 8.5 the most critical groundwater level 546 

conditions are expected in the long-term. The detected changes maintain very similar characteristics 547 

in all wells, especially within the same basin. 548 

[Insert Figure 12 here] 549 

4 Discussion 550 

A first aspect worthy of discussion concerns the relationships that represent the SGI-SPI and SGI-551 

SPEI dependence. For the majority of wells (10 out of 15) in the study area and specific accumulation 552 

periods (6, 9 and 12 months), our results showed that the correlation coefficients are high, indicating 553 

a clear influence of the antecedent precipitations, or of the useful antecedent precipitations, on the 554 

groundwater indices. On this aspect, there is accordance with other recent studies (see e.g. 555 

Bloomfield and Marchant, 2013; Li and Rodell, 2015, Kumar et al. 2016; Van Loon et al., 2017; 556 

Uddameri et al., 2019; Guo et al., 2021).  557 

As pointed out by Kumar et al. (2016), the propagation of a meteorological drought to the 558 

groundwater is influenced by many factors, which are related not only to the climatic characteristics 559 

but also to the basin peculiarities (such as soil properties, geology, etc.). This results in a dispersion 560 

of the observed points around the regression lines between meteorological and groundwater indices 561 

(see Fig. 6 and Fig. 8). An element to consider is that the monthly precipitation, used to evaluate SPIs 562 

and SPEIs, does not take into account in any way the intensity of the rainstorms. It is known that the 563 
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water that feeds the aquifers develops with dynamics that are related to the initial soil moisture 564 

conditions and to the way in which they change during a rain event (Chow et al., 1988). If the 565 

precipitation intensity is very high, a significant portion of the volume becomes runoff and little 566 

recharges the aquifer; in the case of precipitation of modest intensity, the presence and typology of 567 

vegetation plays a fundamental role in quantifying the aquifer recharge. Even the dryness of the soil 568 

can negatively affect the infiltration rate and therefore the recharge. In addition, anthropogenic 569 

factors, such as the withdrawals for drinking or irrigation purposes, have a great relevance; 570 

moreover, they can have characteristics of marked seasonality (e.g. due to tourist presences or 571 

irrigation) that can affect groundwater levels in different ways along the year. Another source of 572 

uncertainty could be related to the presence of lateral inflow or outflow to the considered aquifers, 573 

which may affect the groundwater levels.  Even with some approximations and uncertainties, all 574 

these effects can be quantified through a complete numerical modelling, which, as known, is not 575 

quick, easy and cheap to implement.  576 

Another important issue to be considered is the accumulation period selected to compute the 577 

meteorological indices. The time window that gives the highest correlation with the SGIs can be 578 

different in relation to the examined aquifer. Several authors (Bloomfield and Marchant, 2013; 579 

Kumar et al., 2016; Soleimani Motlagh et al., 2017; Van Loon et al.,2017; Todaro et al., 2018) believe 580 

that these variations are due to the different characteristics of the aquifers under considerations: for 581 

example, the type of natural recharge (precipitation or recharge from contiguous aquifer or from a 582 

lake or stream) and its conditions (i.e. distance between the ground level and the water table). Also 583 

in this study, the SPI and SPEI time windows that provide the optimal correlations with the SGIs are 584 

not always the same for all wells, but the variation of the correlation coefficients, for accumulation 585 

periods between three and 12 months, is small. This, on the one hand, makes the selection of the 586 

optimal accumulation window more difficult; on the other hand, it justifies the choice of a single 587 
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aggregation period for the entire study area. This behavior is mainly related to the characteristics of 588 

the analyzed groundwater systems; in all cases they are aquifers with phreatic surface at modest 589 

depth below to the ground surface. 590 

An element of originality of this work is the application of an easy and fast method to assess the 591 

possible effects of climate change on the quantitative status of groundwater, combining the historical 592 

relationships between meteorological and groundwater indices with future climate projections. To 593 

achieve this result, the regression relationships between SGIs and SPIs and SGIs and SPEIs need to 594 

be considered valid also for the future. There is some debate about the reliability of using these 595 

regression relationships for future predictions.  The evapotranspiration mechanisms may change as 596 

the concentration of CO2 in the atmosphere increases. According to Vicente-Serrano et al. (2020), the 597 

increase in atmospheric evaporative demand resulting from an increase in the radiative component 598 

and in the temperature may not necessarily lead to an intensification of the droughts. The effect can 599 

be different if the region has a humid or dry climate and can have different impacts on 600 

meteorological, hydrological and agricultural droughts. Finally, they agree that even if plants may 601 

reduce water consumption because they optimize functions due to a favorable effect of the higher 602 

concentration of carbon dioxide, the increase in temperature causes greater evaporation from water 603 

surfaces and soil. According to Bloomfield et al. (2019), evidence of this behavior can be found from 604 

some sites in the UK that present an unusually long series of observations. According to the authors, 605 

the more frequent occurrence of groundwater drought, not accompanied by a lack of precipitation 606 

and an increase in withdrawals, is due to an increase in temperature, which induces greater 607 

evaporation from the soil above the phreatic line and especially from the capillary fringe. These 608 

results lead Bloomfield et al. (2019) to state that a change in the occurring of groundwater droughts, 609 

generated by anthropogenic warming, is already detectable. Another indirect effect of the increasing 610 

temperature is the alteration of the root system. The adaptation of plants to a warming climate is 611 
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discussed by different authors (Lubczynski, 2009; David et al., 2016; Eliades et al., 2018), who 612 

highlight that trees in Mediterranean regions manage to survive droughts by extending and 613 

deepening the root systems; this behavior can lead to increasing withdrawals from the aquifer or the 614 

capillary fringe. Other authors (Teuling et al., 2013; Vicente-Serrano et al., 2014; Diffenbaugh et al., 615 

2015; Dierauer and Zhu, 2020) emphasize the need to consider the temperature in evaluating 616 

droughts indices as it leads to a significant increase in the drought severity. Therefore, the 617 

assessment of the effects of climate change that considers only the variations in precipitation is 618 

intrinsically unreliable. For this reason, it is necessary to take into account the thermal effects in 619 

detecting climate and hydrological future trends. Some authors  (Bloomfield et al., 2019; Vicente-620 

Serrano et al., 2020) highlight that in several regions no variations in the future precipitation are 621 

forecasted but modifications, essentially increments, of the temperature could be remarkable. This 622 

is particularly evident for our case study, as showed in Fig. 9. In this regard, although in our work 623 

the SPIs and SPEIs give similar results for the historical period, this behavior may not be valid for 624 

the future. As other authors pointed out (see e.g. Kumar et al., 2016), we believe that the relationships 625 

between SGIs and SPEIs are more suitable for drought studies involving global warming conditions 626 

than the SGI-SPI ones. 627 

Another element of discussion is that different climate models can provide very different results. 628 

For this reason, it is important to consider in the analysis an ensemble of models (Jackson et al., 2015; 629 

Mascaro et al., 2018; D’Oria et al., 2018a), which helps in visualizing the uncertainty of the results. 630 

In the present study, we applied a downscaling/bias correction technique aimed at adjusting the raw 631 

outputs of the climate models so that they better represent the statistical distribution of the observed 632 

precipitation and temperature data on a monthly scale. By doing so, the historical period is well 633 

reproduced, but the disparity between models remains for the future projections and represents a 634 

major contribution to the uncertainty of the results. Analyzing Fig. 10, it is evident that the envelope 635 
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of the cumulative distribution functions (CDF) of the SGIs obtained with the climate models in the 636 

future periods is widespread. In this study, one model particularly contributes to the uncertainty of 637 

the results, providing projections of abundant precipitation and, consequently, higher SGIs than the 638 

other models. However, the estimations provided by the whole RCM ensemble are in good 639 

agreement with the median and mean CDFs, justifying the choice made in the present study to 640 

consider the model projections all together as a set of realizations of the same stochastic process. 641 

Finally, it could be interesting to verify whether different formulas to calculate the potential 642 

evapotranspiration may affect the SPEI evaluation. Concerning this, the SGI-SPEI relationships 643 

could be different from the ones obtained in this study using the Thornthwaite equation. A possible 644 

alternative is to resort directly to the climate variables (i.e. temperature and precipitation) instead of 645 

the meteorological indices. To this end, possible future works may concern the application of 646 

machine-learning algorithms to better represent the mutual dependences among groundwater 647 

levels, precipitation and temperature. 648 

5 Conclusions 649 

In this paper, we investigated the impact of climate change on groundwater drought in northern 650 

Tuscany (Italy) making use of historical and climate model data and standardized indices. To 651 

summarize, a reduction in groundwater availability should be considered for the future in the study 652 

area. In particular, the results highlighted the importance of considering temperature to assess the 653 

impact of climate change on groundwater resources and for this reason, the regression models 654 

obtained by the SGI-SPEI relationships are more suitable for the estimation of future water levels.  655 

The procedure adopted in this study can be easily extended to different areas of interest, requiring 656 

simple observed data only in terms of groundwater levels, precipitation and temperature. We 657 

recognize the inherent degree of uncertainty that we introduce adopting the historical relationships 658 

between meteorological and groundwater indices for future analyses, but this approach can be 659 
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useful for a quick estimate of the quantitative status of the aquifers under climate change scenarios. 660 

This is crucial in the process of planning integrated mitigation and adaptation strategies. 661 

Acknowledgements 662 

This work was developed under the scope of the InTheMED project whose funds cover the post-doc 663 

fellowship of V.T.. InTheMED is part of the PRIMA programme supported by the European Union’s 664 

HORIZON 2020 research and innovation programme under grant agreement No 1923. The authors 665 

are grateful to GAIA S.p.A. for the help during the data collection phase. The authors are thankful 666 

to the anonymous reviewers for their constructive suggestions and comments, which were very 667 

helpful to improve this manuscript. 668 

References 669 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. FAO Irrigation and Drainage Paper No. 56 - 670 

Crop Evapotranspiration. 671 

ARPAE, 2021. Agenzia Regionale Prevenzione Ambiente Energia Emilia Romagna. URL 672 

https://www.arpae.it (accessed 2.18.21). 673 

Asher, M. J., B.F.W.C., A. J. Jakeman,  and L.J.M.P., 2015. A review of surrogate models and their 674 

application to groundwater modeling. Water Resour. Res. 51, 5957–5973. 675 

https://doi.org/10.1111/j.1752-1688.1969.tb04897.x 676 

Bloomfield, J.P., Marchant, B.P., 2013. Analysis of groundwater drought building on the 677 

standardised precipitation index approach. Hydrol. Earth Syst. Sci. 17, 4769–4787. 678 

https://doi.org/10.5194/hess-17-4769-2013 679 

Bloomfield, J.P., Marchant, B.P., McKenzie, A.A., 2019. Changes in groundwater drought 680 

associated with anthropogenic warming. Hydrol. Earth Syst. Sci. 23, 1393–1408. 681 

https://doi.org/10.5194/hess-23-1393-2019 682 

Chow,  ven Te, Maidment, D.R., Mays, L.W., 1988. Applied hydrology. McGraw-Hill Book 683 

Company. 684 

CNR IBE, 2021. Drought Observatory. URL https://drought.climateservices.it  (accessed 2.18.21). 685 

D’Oria, M., Cozzi, C., Tanda, M.G., 2018a. Future precipitation and temperature changes over the 686 

Taro, Parma and Enza River basins in Northern Italy. Ital. J. Eng. Geol. Environ. 2018, 49–63. 687 

https://doi.org/10.4408/IJEGE.2018-01.S-05 688 

D’Oria, M., Ferraresi, M., Tanda, M.G., 2019. Quantifying the impacts of climate change on water 689 

resources in northern Tuscany, Italy, using high-resolution regional projections. Hydrol. 690 

Process. 33, 978–993. https://doi.org/10.1002/hyp.13378 691 



31 

 

D’Oria, M., Ferraresi, M., Tanda, M.G., 2017. Historical trends and high-resolution future climate 692 

projections in northern Tuscany (Italy). J. Hydrol. 555, 708–723. 693 

https://doi.org/10.1016/j.jhydrol.2017.10.054 694 

D’Oria, M., Tanda, M.G., Todaro, V., 2018b. Assessment of local climate change: Historical trends 695 

and RCM multi-model projections over the Salento Area (Italy). Water (Switzerland) 10. 696 

https://doi.org/10.3390/w10080978 697 

David, T.S., Pinto, C.A., Nadezhdina, N., David, J.S., 2016. Water and forests in the Mediterranean 698 

hot climate zone: A review based on a hydraulic interpretation of tree functioning. For. Syst. 699 

25. https://doi.org/10.5424/fs/2016252-08899 700 

Dierauer, J.R., Zhu, C., 2020. Drought in the twenty-first century in awater-rich region: Modeling 701 

study of the Wabash River Watershed, USA. Water (Switzerland) 12. 702 

https://doi.org/10.3390/w12010181 703 

Diffenbaugh, N.S., Swain, D.L., Touma, D., Lubchenco, J., 2015. Anthropogenic warming has 704 

increased drought risk in California. Proc. Natl. Acad. Sci. U. S. A. 112, 3931–3936. 705 

https://doi.org/10.1073/pnas.1422385112 706 

D.R. 100, 2010. Rete di Monitoraggio delle acque superficiali e sotterranee della Toscana in 707 

attuazione delle disposizioni di cui al D. Lgs. 152/06 e del D.Lgs. 30/09, Regione Toscana- Atti 708 

della Giunta. URL 709 

http://www301.regione.toscana.it/bancadati/atti/DettaglioAttiG.xml?codprat=2010DG0000000710 

0084 (accessed 2.18.21). 711 

EDO, 2021. European Drought Observatory. URL 712 

https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1050  (accessed 2.18.21). 713 

Eliades, M., Bruggeman, A., Lubczynski, M.W., Christou, A., Camera, C., Djuma, H., 2018. The 714 

water balance components of Mediterranean pine trees on a steep mountain slope during two 715 

hydrologically contrasting years. J. Hydrol. 562, 712–724. 716 

https://doi.org/10.1016/j.jhydrol.2018.05.048 717 

Evans, J.D., 1996. Straightforward Statistics for the Behavioral Sciences, Pacific Gr. ed. 718 

EU Directive, 2008. Directive 2008/105/EC of the European Parliament and of the Council of 16 719 

December 2008 on environmental quality standards in the field of water policy. URL 720 

https://eur-lex.europa.eu/eli/dir/2008/105/oj (accessed 2.18.21). 721 

GU, 2006. Gazzetta Ufficiale della Repubblica Italiana, Serie Generale n.88 del 14-04-2006 - Suppl. 722 

Ordinario n. 96. URL https://www.gazzettaufficiale.it/eli/gu/2006/04/14/88/sg/pdf (accessed 723 

2.18.21). 724 

GU, 2009. Gazzetta Ufficiale della Repubblica Italiana n. 79 del 4 aprile 2009. URL 725 

https://www.gazzettaufficiale.it/eli/gu/2009/04/04/79/sg/pdf (accessed 2.18.21). 726 

Guo, M., Yue, W., Wang, T., Zheng, N., Wu, L., 2021. Assessing the use of standardized 727 

groundwater index for quantifying groundwater drought over the conterminous US. J. 728 

Hydrol. 598, 126227. https://doi.org/10.1016/j.jhydrol.2021.126227 729 

Horová, I., Koláček, J., Zelinka, J., 2012. Kernel smoothing in MATLAB: Theory and practice of 730 

kernel smoothing, Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. 731 

World Scientific Publishing Co. https://doi.org/10.1142/8468 732 



32 

 

ISPRA - Istituto superiore per la protezione e ricerca ambientale, 2021. URL 733 

https://www.isprambiente.gov.it/pre_meteo/siccitas/ (accessed 2.18.21).  734 

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 735 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., 736 

D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. 737 

Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, 738 

NY, USA, 1535 pp.  739 

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III 740 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core 741 

Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 742 

Jackson, C.R., Bloomfield, J.P., Mackay, J.D., 2015. Evidence for changes in historic and future 743 

groundwater levels in the UK. Prog. Phys. Geogr. 39, 49–67. 744 

https://doi.org/10.1177/0309133314550668 745 

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O.B., Bouwer, L.M., Braun, A., Colette, A., 746 

Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, 747 

A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, 748 

A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., 749 

Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.F., Teichmann, 750 

C., Valentini, R., Vautard, R., Weber, B., Yiou, P., 2014. EURO-CORDEX: New high-resolution 751 

climate change projections for European impact research. Reg. Environ. Chang. 14, 563–578. 752 

https://doi.org/10.1007/s10113-013-0499-2 753 

Jiménez Cisneros, B.E., Oki, T., Arnell, N.W., Benito, G., Cogley, J.G., Döll, P., Jiang, T., Mwakalila, 754 

S.S., Kundzewicz, Z., Nishijima, A., 2015. Freshwater resources. Clim. Chang. 2014 Impacts, 755 

Adapt. Vulnerability Part A Glob. Sect. Asp. 229–270. 756 

https://doi.org/10.1017/CBO9781107415379.008 757 

Khan, S., Gabriel, H.F., Rana, T., 2008. Standard precipitation index to track drought and assess 758 

impact of rainfall on watertables in irrigation areas. Irrig. Drain. Syst. 22, 159–177. 759 

https://doi.org/10.1007/s10795-008-9049-3 760 

Kumar, R., Musuuza, J.L., Van Loon, A.F., Teuling, A.J., Barthel, R., Ten Broek, J., Mai, J., 761 

Samaniego, L., Attinger, S., 2016. Multiscale evaluation of the Standardized Precipitation 762 

Index as a groundwater drought indicator. Hydrol. Earth Syst. Sci. 20, 1117–1131. 763 

https://doi.org/10.5194/hess-20-1117-2016 764 

Leelaruban, N., Padmanabhan, G., Oduor, P., 2017. Examining the relationship between drought 765 

indices and groundwater levels. Water (Switzerland) 9. https://doi.org/10.3390/w9020082 766 

Li, B., Rodell, M., 2015. Evaluation of a model-based groundwater drought indicator in the 767 

conterminous U.S. J. Hydrol. 526, 78–88. https://doi.org/10.1016/j.jhydrol.2014.09.027 768 

Lubczynski, M.W., 2009. The hydrogeological role of trees in water-limited environments. 769 

Hydrogeol. J. 17, 247–259. https://doi.org/10.1007/s10040-008-0357-3 770 

Mascaro, G., Viola, F., Deidda, R., 2018. Evaluation of Precipitation From EURO-CORDEX 771 

Regional Climate Simulations in a Small-Scale Mediterranean Site. J. Geophys. Res. Atmos. 772 

123, 1604–1625. https://doi.org/10.1002/2017JD027463 773 



33 

 

Mckee, T.B., Doesken, N.J., Kleist, J., 1993. THE RELATIONSHIP OF DROUGHT FREQUENCY 774 

AND DURATION TO TIME SCALES, Eighth Conference on Applied Climatology. 775 

Moisello, U., 1998. Idrologia tecnica. La goliardica pavese, Pavia. 776 

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, 777 

T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, 778 

K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., Wilbanks, T.J., 2010. The next 779 

generation of scenarios for climate change research and assessment. Nature 463, 747–756. 780 

https://doi.org/10.1038/nature08823 781 

OMIRL, 2021. Osservatorio Meteo Idrologico della Regione Liguria. URL 782 

https://omirl.regione.liguria.it (accessed 2.18.21). 783 

Osti, A.L., Lambert, M.F., Metcalfe, A. V., 2008. On spatiotemporal drought classification in New 784 

South Wales: Development and evaluation of alternative techniques. Aust. J. Water Resour. 785 

12, 21–34. 786 

Osuch, M., Romanowicz, R.J., Lawrence, D., Wong, W.K., 2016. Trends in projections of 787 

standardized precipitation indices in a future climate in Poland. Hydrol. Earth Syst. Sci. 20, 788 

1947–1969. https://doi.org/10.5194/hess-20-1947-2016 789 

Pranzini, G., Martino, F., Fanti, R., Fontanelli, K., 2019. Map of the vulnerabiliy to pollution of the 790 

Apuo-Versilia aquifer (Tuscany - Italy). Acque Sotter. - Ital. J. Groundw. 8. 791 

https://doi.org/10.7343/as-2019-384 792 

PTA, 2005. Piano di Tutela delle Acque della Toscana n.6 del 25 gennaio 2005. URL 793 

https://www.regione.toscana.it/-/piano-di-tutela-della-acque-della-toscana-2005 (accessed 794 

2.18.21). 795 

Rajaee, T., Ebrahimi, H., Nourani, V., 2019. A review of the artificial intelligence methods in 796 

groundwater level modeling. J. Hydrol. 572, 336–351. 797 

https://doi.org/10.1016/j.jhydrol.2018.12.037 798 

Razavi, S., Tolson, B.A., Burn, D.H., 2012. Review of surrogate modeling in water resources. Water 799 

Resour. Res. 48. https://doi.org/10.1029/2011WR011527 800 

Regione Toscana, 2021. Risorse - Regione Toscana. URL https://www.regione.toscana.it/-801 

/risorse#Corpi_Idrici_sotterranei (accessed 9.15.2021). 802 

Ruti, P.M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A., Dell’Aquila, A., Pisacane, 803 

G., Harzallah, A., Lombardi, E., Ahrens, B., Akhtar, N., Alias, A., Arsouze, T., Aznar, R., 804 

Bastin, S., Bartholy, J., Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos, W., 805 

Calmanti, S., Calvet, J.C., Carillo, A., Conte, D., Coppola, E., Djurdjevic, V., Drobinski, P., 806 

Elizalde-Arellano, A., Gaertner, M., Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, 807 

O., Jordà, G., L’Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P., Maciàs, D., 808 

Nabat, P., Önol, B., Raikovic, B., Ramage, K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, 809 

A., Torma, C., Vervatis, V., 2016. Med-CORDEX initiative for Mediterranean climate studies. 810 

Bull. Am. Meteorol. Soc. 97, 1187–1208. https://doi.org/10.1175/BAMS-D-14-00176.1 811 

SIR, 2021. Servizio Idrologico della Regione Toscana. URL https://www.sir.toscana.it (accessed 812 

2.18.21). 813 

Soľáková, T., De Michele, C., Vezzoli, R., 2014. Comparison between Parametric and 814 



34 

 

Nonparametric Approaches for the Calculation of Two Drought Indices: SPI and SSI. J. 815 

Hydrol. Eng. 19, 04014010. https://doi.org/10.1061/(asce)he.1943-5584.0000942 816 

Soleimani Motlagh, M., Ghasemieh, H., Talebi, A., Abdollahi, K., 2017. Identification and Analysis 817 

of Drought Propagation of Groundwater During Past and Future Periods. Water Resour. 818 

Manag. 31, 109–125. https://doi.org/10.1007/s11269-016-1513-5 819 

Stagge, J., Tallaksen, L., Rizzi, J., 2015a. Future meteorological drought: projections of regional 820 

climate models for Europe. Geophys. Res. Abstr. 17, 2015–7749. 821 

Stagge, J.H., Tallaksen, L.M., Gudmundsson, L., Van Loon, A.F., Stahl, K., 2015b. Candidate 822 

Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Climatol. 35, 4027–823 

4040. https://doi.org/10.1002/joc.4267 824 

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. 825 

Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-11-00094.1 826 

Teuling, A.J., Van Loon, A.F., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., 827 

Grünwald, T., Prasse, H., Spank, U., 2013. Evapotranspiration amplifies European summer 828 

drought. Geophys. Res. Lett. 40, 2071–2075. https://doi.org/10.1002/grl.50495 829 

Teutschbein, C., Seibert, J., 2012. Bias correction of regional climate model simulations for 830 

hydrological climate-change impact studies: Review and evaluation of different methods. J. 831 

Hydrol. 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052 832 

Thornthwaite, C.W., 1948. An Approach toward a Rational Classification of Climate. Geogr. Rev. 833 

38, 55. https://doi.org/10.2307/210739 834 

Todaro, V., D’Oria, M., Tanda, M.G., 2018. Effect of climate change on the groundwater levels: 835 

evaluation of local changes as a function of antecedent precipitation indices. Proc. 5th IAHR 836 

Eur. Congr. — New Challenges Hydraul. Res. Eng. https://doi.org/doi:10.3850/978-981-11-837 

2731-1_305-cd 838 

Uddameri, V., Singaraju, S., Hernandez, E.A., 2019. Is Standardized Precipitation Index (SPI) a 839 

Useful Indicator to Forecast Groundwater Droughts? — Insights from a Karst Aquifer. J. Am. 840 

Water Resour. Assoc. 55, 70–88. https://doi.org/10.1111/1752-1688.12698 841 

Van Loon, A.F., 2015. Hydrological drought explained. WIREs Water 2, 359–392. 842 

https://doi.org/10.1002/wat2.1085 843 

Van Loon, A.F., Kumar, R., Mishra, V., 2017. Testing the use of standardised indices and GRACE 844 

satellite data to estimate the European 2015 groundwater drought in near-real time. Hydrol. 845 

Earth Syst. Sci. 21, 1947–1971. https://doi.org/10.5194/hess-21-1947-2017 846 

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive 847 

to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 848 

1696–1718. https://doi.org/10.1175/2009JCLI2909.1 849 

Vicente-Serrano, S.M., Lopez-Moreno, J.I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., 850 

García-Ruiz, J.M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., 851 

Espejo, F., 2014. Evidence of increasing drought severity caused by temperature rise in 852 

southern Europe. Environ. Res. Lett. 9. https://doi.org/10.1088/1748-9326/9/4/044001 853 

Vicente-Serrano, S.M., McVicar, T.R., Miralles, D.G., Yang, Y., Tomas-Burguera, M., 2020. 854 



35 

 

Unraveling the influence of atmospheric evaporative demand on drought and its response to 855 

climate change. Wiley Interdiscip. Rev. Clim. Chang. 11. https://doi.org/10.1002/wcc.632 856 

Vidal, J.P., Martin, E., Franchistéguy, L., Habets, F., Soubeyroux, J.M., Blanchard, M., Baillon, M., 857 

2010. Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou 858 

hydrometeorological suite. Hydrol. Earth Syst. Sci. 14, 459–478. https://doi.org/10.5194/hess-859 

14-459-2010 860 

Wang, W., Ertsen, M.W., Svoboda, M.D., Hafeez, M., 2016. Propagation of drought: From 861 

meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016. 862 

https://doi.org/10.1155/2016/6547209 863 

World Meteorological Organization, 1987. Standardized Precipitation Index User Guide. J. Appl. 864 

Bacteriol. 63, 197–200.   865 



36 

 

Figure captions 866 

 Fig. 1 - Location of the study area with indication of the climate stations, monitoring wells 867 

and river basins. 868 

 Fig. 2 – SPIs (a) and SPEIs (b) for the four analyzed basins and time windows of 6, 9 and 12 869 

months. 870 

 Fig. 3 - SGI values for the 15 monitoring wells used in this study. The white color indicates 871 

missing data, the grey color indicates positive values, while the color scale classifies the 872 

negative SGIs. 873 

 Fig. 4 - SGI-SPI Pearson correlation coefficients. 874 

 Fig. 5 - Heat maps of the SGI-SPI correlation coefficients (R) for different time windows and 875 

lags. The black box represents the highest correlation coefficient. 876 

 Fig. 6 - SGIs versus SPI6; the points represent the data, the red line indicates the regression 877 

line and the black line denotes the identity line. For each well, the correlation coefficient (R) 878 

and the regression equation is reported. 879 

 Fig. 7 - SGI-SPEI Pearson correlation coefficients. 880 

 Fig. 8 - SGIs versus SPEI9; the points represent the data, the red line indicates the 881 

regression line and the black line denotes the identity line. For each well, the correlation 882 

coefficient (R) and the regression equation is reported. 883 

 Fig. 9 - Total annual precipitation (a) and annual average of the mean daily temperature (b) 884 

in terms of 10-year moving average observed and forecasted by the RCMs under the RCP 885 

4.5 and RCP 8.5 scenarios. Average values over the entire study area. 886 

 Fig. 10 - Cumulative probability distributions according to the whole RCM ensemble 887 

obtained for the Paganico monitoring well through the SGI-SPI6 (a) and the SGI-SPEI9 (b) 888 
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regression equations for the historical period and at short- (ST), medium- (MT) and long-889 

term (LT) under the RCP 8.5 scenario. Envelope curves obtained by the 13 RCM models. 890 

 Fig. 11 - Box-plots of the SGIs obtained for the Paganico monitoring well, according to the 891 

whole RCM, through the SGI-SPI6 and SGI-SPEI9 regression equations for the historical 892 

period and at short- (ST), medium- (MT) and long-term (LT) under the two RCP scenarios. 893 

The boxplot draws points as outliers if they are greater than the mean ±2.7σ, where σ is the 894 

standard deviation. 895 

 Fig. 12 - Differences of the median, 25th and 75th percentiles of the future SGIs with those 896 

evaluated in the historical period. The SGIs are defined through the SGI-SPI6 (left) and the 897 

SGI-SPEI9 (right) regression relationships for the historical period and at short- (ST), 898 

medium- (MT) and long-term (LT), under the RCP 4.5 and RCP 8.5. 899 


