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1 Executive Summary 

• This report considers the geographic and taxonomic spread of non-
constitutive mixoplankton (NCM). NCM are mixoplankton (protists that are 
both phototrophic and phagotrophic) by virtue of acquired phototrophy; they 
acquire their potential for photosynthesis from their prey. 
 

• NCM are quantitatively important members of the protistan communities in 
Arctic, temperate and Subtropical waters. Generally, ciliates were the 
quantitatively dominant NCM across climate zones, with NCM 
dinoflagellates and amoebic were of less importance.  
 

• In temperate and polar surface waters, Specialized NCM often bloom in 
spring, reaching levels nearly 20 times greater in terms of biomass than 
recorded at more southern latitudes; generally, generalist NCM bloom 1-3 
months later than SNCM, but maintain significant biomass well into the 
summer months, when SNCM populations (the ciliate, M. rubrum) crash as 
nutrient concentrations become depleted in the euphotic zone. 
 

• In the Arctic (e.g., Disko Bay, Greenland) oligotrich and protomatid ciliates 
dominate the NCM in surface waters during summer, which is characterized 
strong stratification, 24 h of light, and inorganic nutrient limitation; here they 
are an important link to higher trophic levels. 
 

• In the North Sea, oligotrich ciliates are major NCM contributors followed by 
few dinoflagellate species. However, NCM are minor contributors to the 
number of DNA-metabarcoding reads of protists throughout all year long in 
the North Sea. 

 

• In oligotrophic Mediterranean waters, heterotrophic ciliate abundance and 
biomass did not show any seasonality but were closely linked to chla 
concentration. In contrast, NCM ciliates were largely restricted to the months 
with high temperatures and irradiance. Thus, in the near-surface samples 
NCM ciliates formed an important part of total ciliate abundance and 
biomass, and likely moved to deeper layers during June and July. 
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2 Introduction 

Aditee Mitra & Kevin J Flynn 

2.1 Protist Plankton functional groups and Non-Constitutive Mixoplankton  

The existence of mixoplanktonic protists, combining phototrophy and phagotrophy in a 
single cell, in marine waters has been well known for decades (e.g., Stoecker et al., 2009; 
Flynn et al. 2013). Mitra et al. (2014, 2016) highlighted the importance of mixoplankton in 
marine biogeochemical cycling and proposed a protist functional group classification 
identifying different types of mixoplankton according to their functionality. Broadly, 
mixoplanktonic protists have been classified into those which have innate capability to 
photosynthesize - Constitutive Mixoplankton (CM; e.g., Karlodinium, Prymnesium, Tripos), 
and, those that acquire their phototrophic capability from their prey - Non-Constitutive 
Mixoplankton (NCM; e.g., Mesodinium, Dinophysis, Strombidium). Various biogeography 
studies have highlighted the importance of the occurrence of different mixoplankton 
functional types globally (Leles et al., 2017, 2019; Faure et al., 2019).  These works have 
revealed the ubiquity of all mixoplankton functional groups across the different Longhurst 
provinces from coastal areas to the open ocean with important seasonal differences. 

Within MixITiN, the functional classification of Mitra et al. (2016) was updated to take into 
account the mixotrophic and mixoplanktonic protists. The revised protist plankton functional 
classification including the different mixoplankton functional type (MFT) names (with 
examples for harmful algal bloom species) is given in Figure 2.1.  

 

 

Figure 2.1 Functional group classification key for Harmful Algal Bloom (HAB) species developed from the 

protist functional group key in Mitra et al. (2016) with example species from the IOC-UNESCO HABs list 

aligned to functional groups according to the Mixoplankton Database (Mitra et al. in prep). Reproduced from 

Mitra & Flynn (2021). 
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2.2 Seasonal distribution of mixoplankton 

The ability of mixoplankton to both photosynthesize and phagocytose allow these organisms 

to potentially compensate for lack of light and inorganic nutrients especially in environments 

and seasons when the conditions are not optimal for photosynthetic growth.  

 

 

  

Figure 2.2 Diagrammatic portrayal of 

the changes to the planktonic food web 

over a year, with transitions between 

ecosystem states. The upper panels 

show changing patterns of light, 

inorganic nutrients and particle density 

(i.e., total plankton biomass) over the 

temperate year. Transitions between 

developmental and mature stages of 

the ecosystem are as indicated; green 

and orange dashed lines indicate the 

developmental stages, where green 

represents conditions optimal for 

phototrophy and orange for phago-

trophy.  

Later periods (transition to the more 

mature state) are suboptimal for phyto-

plankton and/or protozooplankton, and 

more supportive for mixoplankton. The 

lower panel shows in detail the 

transition from developmental to 

mature stages, with changes in 

selection prioritising from “r-selected” 

FTs in the developmental phase of the 

ecosystem to a mature ecosystem with 

“K-selected” FTs. Figure adapted from 

Mitra et al. (2014). 
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Figure 2.3 Global distribution of different functional types of NCM. On the left are shown schematics of the 
physiological functioning of these organisms. The generalist NCM (i.e., GNCM) may acquire phototrophy from 

many types of phototrophic prey; pSNCM are plastidic specialists acquiring phototrophy from specific prey 
only. eSNCM are endosymbiotic NCM, acquiring phototrophy by harbouring specific phototrophic prey. See 

Mitra et al. (2016) and Flynn et al. (2019) for further information. , no recorded presence. Modified from 
Leles et al. 2017 and Flynn et al. 2019. 

 

This report focuses on the seasonality of NCM in Arctic, temperate and tropical/subtropical 
waters. NCM functional group include protists from various taxonomic groups such as 
ciliates, dinoflagellates, rhizarians (e.g., Stoecker et al. 1987, 1989, 2009; Leles et al. 2017; 
Hansen and Tillmann, 2020). Figure 2.3 indicates the contrasting physiologies of these 
organisms and their recorded global distributions. 
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3 Arctic waters: the contribution of mixoplankton to the plankton 

community in the fjords around Disko Bay, Greenland  

 Maira Maselli & Per Juel Hansen 

3.1 Study site  

The study was conducted in July 2019 in Disko Bay, on the West Greenland coast, in four 

fjords impacted by runoff of land-terminating glaciers (Figure 3.1). In this area, the well-

developed sediment plumes allowed to follow gradients in the total load of suspended 

particles. The sites show different geology, resulting in different chemical imprint on 

downstream waters. 

 
 

 
 
Figure 3.1 Map showing (A) the location of Disko Bay, and, (B) the position of transects and sampling stations 

exploited during 20-29 July 2019 

 

3.2 Materials and Methods  

3.2.1 Sampling 

Samples were collected along transects from the inner part of the fjord to the mouth 
(Figure 3.1). At each sampling station, profiles of temperature, salinity, fluorescence and 
turbidity were collected using a SBE19plus CTD. Water was collected from sub-surface (1 m 
depth) and at the deep chlorophyll maximum (DCM; variable depth) using 5 and 10 L Niskin 
bottles and siphoned off with a silicon tube to decrease loss of organisms due to mechanical 
disturbance. For identification and count of organisms, two samples of 200 mL were 
collected from each depth in 250 mL amber glass bottles and fixated with two different 
fixatives: a Lugol´s solution (1% final concentration) and a glutaraldehyde solution (2% final 
concentration). For chlorophyll analysis, 1 L of water was collected and split into two equal 
subsamples of 500 mL from which chlorophyll contents of two different size classes were 
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obtained as described below (Section 3.1.4, chlorophyll a analysis). Water samples were 
also collected for dissolved macronutrients (nitrate, phosphate, and silicate) analysis; 
samples of 10 mL were kept frozen at -20 °C for further analysis. 

3.2.2 Protist community analyses 

Planktonic protists with a cell diameter of >15 μm were enumerated in the transects’ samples 
using sedimentation chambers (Hydrobios) in accordance with Utermöhl (1958). Cells were 
counted on an inverted light microscope Olympus (BX 40) equipped with the camera 
Olympus DP73 at 200x magnification. 
 
The linear dimension (length and width) of the planktonic protists in the transect samples 
and on the onboard incubation experiments were measured using CellSense software 
(Olympus Camera software). Cellular biovolumes were calculated using geometric formulae 
for spheres, cylinders, prolate spheroids or cones according to Hillebrand et al. (1999) and 
converted into cellular carbon content according to Menden-Deuer and Lessard (2000); this 
allowed calculations of the biomass (μg C L-1) of the individual protist functional groups.  
 
Protists were assigned to functional categories (protozooplankton, mixoplankton and 
phytoplankton; Figure 2.1) following analysis of the glutaraldehyde preserved samples. 
Glutaraldehyde preserved organisms were collected on polycarbonate filters (pore size 
2μm). Filters were stained with Calcofluor (Andersen and Kristensen, 1995) and DAPI 
(Porter and Feig, 1980), and inspected with an epifluorescence microscopy (Olympus BX 
50) equipped with UV, Green and Blue excitation filters prior and after the count of the Lugol 
sample. This filter set allowed the detection of DAPI, Calcofluor, chlorophyll and 
phycoerythrin pigments, thus a deeper characterization of the organism morphotypes 
observed in the Lugol samples. All samples were enumerated by the same person to 
eliminate observer bias. Triplicate samples from the incubation experiment were averaged 
for each time point. 
 

3.2.3  Chlorophyll a analysis 

The total chlorophyll a (total chla) content of the waters samples as well as the chla content 
in the size fraction <15 μm (fractionated chla) were analyzed. For total chla analysis, 
biomass was directly collected via filtration on Whatmann glass microfiber filters GF/F, while 
for the fractioned chla samples were first sieved through a 15 μm net mesh. Filters were 
stored at -80°C until further processing. Chla samples were extracted in 5 mL 96% ethanol 
for 24 h in the dark at 4°C and quantified using a Turner Trilogy Fluorometer. 
 

3.2.4 Dissolved inorganic nutrients analyses 

Subsamples (10 mL) for nutrients were filtered through 0.45 μm filters (Q-Max GPF syringe 
filters) and directly frozen at -20°C until analysis. Nutrients were measured using standard 
colorimetric methods on a Seal QuAAtro autoanalyzer. 
 

3.3 Results 

3.3.1 Description of the water column along each transect 

At the time of sampling (20 to 29 July 2019), the four fjords were characterized by different 

physical and chemical conditions (Figure 3.1; Table 3.1).  
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Table 3.1 DCM depth (m) and surface and DCM temperature (Temp; °C), salinity, turbidity (arbitrary units) 

and concentrations of nitrate, phosphate and silicate (μM) at each station. 

  SURFACE DCM 

transect station Temp Salinity Turbidity  DIN DIP SiO2 depth Temp salinity Turbidity DIN DIP SiO2 

1 10 11 32 2 0.50 0.07 0.93 20 6 34 0.84 0.32 0.06 3.70 

1 12 12 30 1 0.30 0.06 1.14 45 3 34 0.24 1.88 0.20 3.90 

1 14 12 32 0 0.30 0.06 1.53 50 3 34 0.27 1.22 0.27 3.90 

1 18 10 32 0 0.40 0.08 1.82 50 3 34 0.45 2.08 0.35 0.70 

2 19 3 12 534 3.60 0.21 15.7 5 3 17 737 4.00 0.26 17.3 

2 29 6 10 10 3.30 0.14 7.20 20 3 27 333 6.53 0.44 12.2 

2 31 4 14 10 2.70 0.13 12.6 5 4 18 29 4.79 0.28 12.0 

2 36 7 18 3 5.40 0.07 3.74 10 5 23 4 1.22 0.19 5.40 

2 42 5 25 3 7.20 0.18 3.05 10 4 26 2 4.80 0.50 4.60 

2 44 4 26 3 3.00 0.21 3.64 5 4 29 2 3.90 0.22 2.40 

2 47 4 29 2 4.30 0.31 1.88 5 4 29 2 4.02 0.27 3.00 

3 54 11 6 18 1.90 0.40 11.6 5 5 32 3 1.39 0.15 42.5 

3 56 11 12 7 0.40 0.28 17.5 5 6 32 2 1.80 0.2 24.5 

3 58 11 11 13 1.00 0.31 8.08 5 6 31 6 6.35 0.18 39.7 

3 62 10 26 3 2.60 0.15 2.02 30 3 33 1 3.53 0.45 11.1 

3 64 8 31 1 1.20 0.14 0.85 30 3 33 1 1.85 0.28 11.8 

3 66 7 33 0 6.00 0.11 0.37 20 3 33 1 1.03 0.16 0.70 

4 74 1 28 4 11.4 0.76 11.9 5 1 30 3 11.1 0.79 12.3 

4 76 4 28 5 10.1 0.67 5.35 5 1 30 3 5.26 0.42 11.7 

4 78 1 29 3 3.70 0.25 5.61 5 1 29 3 6.78 0.4 3.60 

4 80 2 29 3 5.80 0.30 7.39 5 1 30 4 3.85 0.35 5.10 

4 82 3 30 2 1.10 0.12 3.00 5 3 30 2 0.37 0.12 3.00 

 

Transect 1 (Figure 3.1B) was generally warmer than the others and had a warm surface 

layer in in the upper 10-15 m with temperatures of up to 11 °C, which was 5 °C higher than 

temperatures at 20 m depth (Figure 3.2). Salinity was slightly lower at the surface compared 

to that below 5 m depth in all transects (Figure 3.3). Turbidity was low at all stations 

(Table 3.1; Figure 3.4). Dissolved inorganic nutrients concentration was also quite low 

(below 2 and below 0.3 µM of nitrogen and phosphorus respectively) and quite 

homogeneous along the transect, both at surface and at DCM (Table 3.1). 

Transect 2 (Figure 3.1B) showed a strong salinity gradient (Figures 3.2 and 3.3). Salinity 

increased with depth and along the transect into Disko Bay, varying from about 10 at surface 

in the innermost station to about 30 at the outermost stations at all depths. The three 

innermost stations were also very turbid due to large amounts of glacier flour from the 

melting glaciers. Turbidity decreased with depths and along the transect (Table 3.1; 

Figure 3.4). Silicate concentration decreased from inner part of the fjord to the mouth, while 

dissolved inorganic nitrogen and phosphorous concentrations did not show a clear trend 

along the transect, varying from about 2 to 7 µM and from about 0.1 to 0.5 µM respectively 

(Table 3.1).   
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Transect 3 (Figure 3.1B) showed both a temperature and salinity gradient along the transect 

in the upper 5 m of the water column (Figures 3.2 and 3.3). Salinity varied from about 10 to 

30 and temperature varied from 11 to 6 °C. Below 5 m depth, salinity and temperature were 

quite homogenous at depth and along the transect being respectively 31 and ~5 °C. The 

five upper meters were also the more turbid at the innermost stations (Table 3.1; 

Figure 3.4). Silicate concentration in the surface water of the innermost stations was much 

higher than in the other transects. Dissolved inorganic phosphate and silicate concentrations 

decreased along the transect in surface water, while phosphate and nitrate concentrations 

at the DCM were only different (higher) in the mid part of the fjord. Dissolved inorganic 

phosphate and nitrate concentrations were in the same range as in transect 2. 

Transect 4 (Figure 3.1B) was characterized by cold and homogeneous temperatures 

(around 1 °C) and limited variation in salinity (Table 3.1; Figure 3.3). Turbidity was generally 

quite low (Table 3.1; Figure 3.4). The concentration of dissolved inorganic nutrients 

decreased along the transect into Disko Bay and was very similar at surface compared with 

the DCM (Table 3.1). In the innermost stations dissolved inorganic phosphate and nitrate 

concentrations were double compared with the outermost stations and compared with the 

highest concentrations found in transects 2 and 3. 

 

Figure 3.3 Vertical profile of salinity along the 4 fjord transects. 



NCM Seasonal Distribution – Disko Bay, Greenland 

© Mitra et al. 2021  14 | P a g e  

Figure 3.4 Vertical profile of turbidity (Formazin Turbidity Unit, FTU, uncalibrated) along the 4 fjord transects. 

 

3.3.2 Description of the protist community and Chlorophyll a concentration along 

each transect 

The biomass of organisms > 15 µm (as µgC L -1) and the total chl a content (µg L-1) were 

generally higher at the outermost stations at the 4 transects, where mainly autotrophs 

dominated. Biomass content and composition strongly differed among transects 

(Figure 3.6).  

Transect 1 had the lower (total) biomass (Figure 3.6), despite that total chla (µgL-1) was 

comparable to transects 2 and 3 (Figures 3.5 and 3.7). The largest fraction of the biomass 

in the surface water was allocated in the heterotrophic compartment, and almost 80% of the 

chla was allocated in the <15µm size fraction (Figure 3.6). Transect 1 was also 

characterized by a very deep chlorophyll maximum at the outer stations (50 m), so that the 

community composition strongly differed from surface to DCM, being dominated by 

heterotrophs at the surface and by diatoms at the DCM (Figure 3.6). 

The community composition at transect 2 did not greatly vary from surface to the DCM, nor 

among stations especially in the terminal part of the transect, from station 36 to station 47 

(Figure 3.6). Biomass was much lower in the innermost stations, where the higher turbidity 

was recorded. At the intermediate station (station 33) the autotrophic biomass was much 

higher at the DCM (5 m) than surface water. Chla in the < 15µm size fraction represented a 

smaller proportion of the total chlorophyll in the terminal stations compared to the innermost 

stations (Figure 3.7). This was due to a dominance of chain forming diatoms.  
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Mixoplankton dominated Transect 3, especially in the surface water and the shallower DCM 

of the innermost stations (Figure 3.6). At the outermost stations, the DCM was deeper 

(Figure 3.5) and the protist community changed in being dominated by heterotrophs at 

surface and by autotrophs at the DCM (Figure 3.6).  

 

Figure 3.5 Vertical profile of fluorescence (uncalibrated) along the 4 transects. 

Transect 4 differed from the other transects in that the biomass was much higher and 

dominated by chain forming diatoms along the entire transect (Figure 3.6); indeed, Chla in 

the < 15 µm size fraction was almost non-existent (Figure 3.7). The biomass of heterotrophic 

protists (ciliates and dinoflagellates) was comparable to the other transects, while 

mixoplankton made up a very small fraction (Figure 3.6).  

Heterotrophic protists, i.e., protozooplankton, were represented by ciliates and 

dinoflagellates in all samples. Although some radiolarians were found, the rare individual 

cells did not represent a significant proportion of the total biomass in any of the samples. 

Heterotrophic dinoflagellates were consistently more abundant than heterotrophic ciliates, 

which represented less than one third of the total heterotrophic biomass in the majority of 

the samples (Table 3.2). The most abundant and widespread heterotrophic dinoflagellates 

belonged to the genera, Gyrodinium and Protoperidinium. Aloricate ciliates (heterotrophic 

and mixoplanktonic) were generally more abundant than loricate ciliates (tintinnids), and 

dominated by the genera Strombidium, Strobilidium, Monodinium. Despite numerical 

abundance in some samples, the biomass of small heterotrophic ciliates (~ 20 µm) did not 

account for a significant proportion of the total heterotrophic protist biomass in any of the 

samples (Table 3.2). 

 



NCM Seasonal Distribution – Disko Bay, Greenland 

© Mitra et al. 2021  16 | P a g e  

 

Figure 3.6 Biomass (µgC L-1) of heterotrophic protozooplankton (in black), mixoplankton (in grey) and 

autotrophic phytoplankton (striped) and depth of the DCM (dots) at all stations along each transect. Note the 

difference in biomass for transect 3.  

Total mixoplankton were generally less abundant than heterotrophs (~25% of the biomass 

of heterotrophs on average) and mostly represented by mixoplanktonic ciliates. 

Mixoplanktonic dinoflagellates only exceeded mixoplanktonic ciliates biomass in:  

a) surface samples of transect 3 - where dinoflagellates in the genera Alexandrium and 

Heterocapsa were abundant, and, 
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b) two stations in transect 1 (10 DCM and 12 surface), where Dinophysis and Heterocapsa 

contributed to the relatively high biomass of mixoplanktonic dinoflagellates. 

Mixoplanktonic ciliates belonging to the genera Laboea, Strombidium and 

Mesodinium almost equally contributed to the biomass of mixoplanktonic ciliates in 

all samples. However, Mesodinium rubrum/major accounted for most the 

mixoplanktonic ciliate biomass on a few occasions (Table 3.2).  

 

 

 

Figure 3.7 Total Chlorophyll a concentration and fraction of Chla concentration in the size category <15µm in 

all stations at surface and DCM 
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Table 3.2 Biomass (µgC L-1) of the most dominant protists groups (dinoflagellates, ciliates and diatoms) at 
selected stations at (a) surface and (b) DCM. Protists were grouped according to their trophic mode (i.e., 

functional group); see also Figure 2.1. Gyro = Gyrodinium spp; Proto = Protoperidinium spp; Tint = tintinnids; 
Small = ~20 µm; Hetero = Heterocapsa spp; Dino = Dinophysis spp; Meso = Mesodinium spp 

 

 
phago-osmo-hetero-trophs 

(Protozooplankton) 

photo-auto-phago-osmo-hetero-

trophs (Mixoplankton) 

photo-auto-osmo-hetero-

trophs (Phytoplankton) 

Stations Dinoflagellates Ciliates Dinoflagellates Ciliates Diatoms 

 Total Gyro Proto Total Tint Small Total Hetero Dino Total Meso Total 

1-12 11.0 6.5 2.8 4.8 1.3 0.1 8.2 6.4 0.3 2.2 1.2 0.0 

1-14 16.3 6.2 1.2 7.4 2.4 1.1 2.1 0.6 1.1 3.2 0.3 0.1 

1-18 23.9 9.4 3.1 7.6 1.1 0.3 3.2 0.2 2.0 1.9 0.1 5.5 

2-19 0.0 - - 0.0 - - 0.0 - - 0.0 - 11.2 

2-33 2.6 - - 0.2 - - 0.0 - - 0.4 0.4 3.5 

2-42 9.9 5.6 3.4 0.3 - 0.2 0.7 0.6 0.1 2.2 0.2 86.1 

2-47 14.4 10.7 1.0 0.3 0.1 - 0.3 - - 0.5 - 90.7 

3-56 19.8 1.1 0.1 0.5 - 0.5 24.9 8.6 - 2.5 - 0.0 

3-62 19.3 10.4 1.0 5.0 1.0 - 6.7 2.5 0.1 1.9 0.9 0.3 

3-66 13.3 6.0 1.1 3.7 0.4 - 1.4 1.2 0.3 1.9 - 1.2 

4-74 0.0 - - 0.0  - 0.0 - - 0.0 - 5.5 

4-82 14.1   1.5   1.5   1.2  606 

 

 

 

 
phago-osmo-hetero-trophs 

(Protozooplankton) 

photo-auto-phago-osmo-hetero -

trophs (Mixoplankton) 

photo-auto-osmo-hetero-

trophs (Phytoplankton) 

Stations Dinoflagellates Ciliates Dinoflagellates Ciliates Diatoms 

 Total Gyro Proto Total Tint Small Total Hetero Dino Total Meso Total 

1-12 8.9 2.3 0.6 2.5 0.2 0.1 0.7 0.3 0.4 1.8 0.1 4.6 

1-14 0.6 0.3 0.2 1.4 0.2 - 0.2 - - 0.0 - 31.0 

1-18 0.2 - - 0.7 - - 0.0 - - 0.0 - 0.7 

2-19 0.0 - - 0.0 - - 0.0 - - 0.0 - 4.2 

2-33 7.6 - 4.6 1.1 0.3 - 0.4 - 0.3 2.2 2.2 56.8 

2-42 3.2 1.4 0.9 1.3 1.0 0.2 0.1 - 0.1 1.2 0.3 41.9 

2-47 17.6 15.2 1.3 1.1 0.6 0.1 0.2 0.2 - 2.1 0.7 113 

3-56 23.4 2.4 0.7 5.2 3.9 0.1 4.8 0.4 0.5 3.9 1.4 0.0 

3-62 2.9 0.6 0.9 5.6 0.1 0.1 0.4 0.2 - 1.8 1.4 6.7 

3-66 37.2 14.7 8.1 6.8 1.0 - 2.4 1.9 0.5 3.7 0.8 42.8 

4-74 0.7 - - 0.0 - - 0.0 - - 0.2 - 95.7 

4-82 17.7 15.9 0.2 1.2 0.5 - 0.2 - 0.2 1.3 0.1 631 

 

  

(a) SURFACE SAMPLES 

(b) DCM SAMPLES 
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3.4 Discussion   

Gradients associated with the glacier inputs were distinguishable in the chemical and 

physical qualities of the water column in all four different fjords. The sediment plume was 

only evident at stations that were close to the glacier input. A large fraction of glacial 

sediments settle within a few kilometres from the input, in accordance with previous 

observations in the area (Meire et al., 2017). The relatively low protist biomass in the 

innermost station can only partially be attributed to turbidity caused by suspended 

particles. Suspended particles tend to agglutinate to protists and bacteria, thereby 

transporting them out fast from the photic layer (Szeligowska et al., 2021).  

 

The freshening of the upper part of the water column lead to a stronger stratification of 

water column and this decreases the vertical mixing and create a nutrient-poor surface 

layer. This limits the growth of autotrophic organisms and lead to the deepening of the 

chlorophyll maxima (Holding et al., 2019; Hopwood et al., 2020). This was less evident 

on transect 4 due to the presence of marine-terminating  glaciers that could have led to 

the upwelling of nutrient rich bottom water (Meire et al., 2017). Diatoms dominated the 

protist communities on transect 4 and in most of the offshore stations on the other 

transects.  

 

The protozooplankton and mixoplankton were more abundant at the innermost stations 

of transects 1-3. Their relative abundance in terms of biomass, exceeded that of the 

phytoplankton in stations where the dissolved inorganic nitrogen concentrations were 

relatively low (< 2 µM). On such stations chla was mainly found in the < 15 µm fraction, 

suggesting that phototrophic nanoplankton, which have a higher surface to volume ratio 

compared to phototrophic microplankton, were favoured in nutrient limiting conditions 

(Stolte and Riegman, 1995). Moreover, many photosynthetic nanoplankton species (< 20 

µm in size) other than diatoms, are known to be mixoplanktonic and sustain their 

metabolism through bacterivory (Stoecker et al., 2017). A similar predominance of chla 

in the small size fraction have previously been observed in the inner location of other 

Western Greenlandic fjords (Arendt et al., 2010, 2016). The predominant grazing activity 

on primary producers in such locations is likely attributed to the microplanktonic grazers 

rather than copepods, which instead play an important role in the coastal zones (Arendt 

et al., 2010, 2016). Similarly, especially at transects 1 and 3, heterotrophic and 

mixoplanktonic microplankton seemed to be associated with the smaller size fraction of 

primary producers (the chla fraction < 15 µm).  

 

Heterotrophic dinoflagellates were also found on more offshore stations where most of 

the chla was due to chain forming diatoms (functionally > 15 µm). Dinoflagellates in the 

genera Protoperidinium and Gyrodinium have already been recorded to be dominant in 

summer in Greenland and associated to diatom blooms (Krawczyk et al., 2015). 

Heterotrophic ciliate biomass, instead, was very low or even null in such samples. This is 

likely explained by differences in the feeding mechanisms in these two groups. The 

ciliates species found in this survey were mostly filter feeders. Thus, their grazing 

potential was limited to particles, which size fits the morphological constrains of their 

feeding apparatus (Jonsson, 1986). The feeding mechanisms of dinoflagellates are more 

diverse. Many thecate species, like Protoperidinium and the Diplosalis group use a 
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pallium (a sort of pseudopod) to unveil the prey. Most of the athecate species like 

Gyrodinium spp use direct engulfment, while many athecate and thecate species, like 

Phalacroma and many small heterotrophic species use peduncles (feeding tubes). These 

are all feeding mechanisms that allow the organisms to ingest prey items exceeding their 

own size (Jacobson and Anderson, 1986; Hansen and Calado, 1999).  

 

Mixoplanktonic microplankton was relatively more abundant in the mid part of the fjords, 

especially in areas where the water column was strongly stratified. This is especially 

evident at transect 3, where stratification was induced by both salinity and temperature. 

Peaks in the relative abundance of mixoplanktonic microplankton were formed by 

constitutive mixoplanktonic species (Heterocapsa spp. and Alexandrium spp.), while non-

constitutive mixoplankton never dominated the microplankton communities. The reasons 

for that can be found in biotic factors such as the top-down control from metazoan grazers 

and specific interaction among microorganisms. Mixoplankton ciliates in particular, are a 

preferred prey of copepods (Stoecker and Lavrentyev, 2018), while most constitutive 

mixoplanktonic dinoflagellates produce toxins (Burkholder et al., 2008) that deters 

predation. 

 

The only identifiable non-constitutive mixoplanktonic dinoflagellate species were 

Dinophysis spp, which are prey specialist grazers that can only acquire phototrophy by 

feeding on the non-constitutive mixoplanktonic ciliate Mesodinium rubrum (Hansen et al., 

2013). Not surprisingly, Dinophysis spp were only found in samples where the 

mixoplanktonic Mesodinium spp were also present. Non-constitutive mixoplanktonic  

ciliates in the Mesodinium rubrum species complex are also prey specialist grazers that 

can only acquire chloroplasts via feeding on cryptophytes within the 

Teleaulax/Plagioselmis/-Geminigera clade (Hansen et al., 2013). Differently from many 

other mixoplanktonic  ciliates, Mesodinium rubrum can take up and utilize inorganic 

nutrients for growth and go through up to 4 cell divisions without prey (Tong et al., 2015; 

Kim et al., 2017). Mesodinium spp only dominated the mixoplanktonic ciliates biomass in 

few of our samples. Indeed, Mesodinium biomass is usually low under non-bloom 

conditions, which tend to occur in localized patches (Crawford, 1989), as actually evident 

from the distribution of this ciliate found in these fjords. Except for a few locations, prey 

generalists mixoplanktonic ciliates were equally or more abundant than Mesodinium, as 

typical in polar waters (Levinsen and Nielsen, 2002; Stoecker et al., 2009; Leles et al., 

2017). The total biomass of mixoplanktonic ciliates was in the low range of what it could 

be in summer in more open waters of the same area, but their relative abundance 

compared to the total ciliate biomass (from ~ 30% to ~ 70%) was comparable to those 

previous records (Putt, 1990; Levinsen et al., 2000; Levinsen and Nielsen, 2002) . 

 

The way in which the glacial flour inputs affect microplankton communities depends on 

the chemical-physical properties of the runoff water and the hydrology of the specific 

location. As previously suggested, the functional classification of plankton has to be 

adequate in order to underline different response of organisms to the impact of glacier 

discharges in the marine ecosystem (Szeligowska et al., 2021). Indirectly, the high 

suspended-particle load, potentially however, has an impact due to possible aggregation 

of protists to suspended particles, especially close to the glacier inlet. Diatom abundance 

seems to be more influenced by the glacier inputs compared to the heterotrophic and 



NCM Seasonal Distribution – Disko Bay, Greenland 

 

© Mitra et al. 2021  21 | P a g e  

mixoplanktonic microplankton that are not directly affected by turbidity and the nutrients 

limitation. The freshening of marine coastal waters, associated with increased turbidity, 

aggregate formation, and de-eutrophication, may lead to a shift from fast growing 

photoautotrophic microplankton communities to less productive communities dominated 

by heterotrophic and mixoplanktonic microplankton species. 
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4 Temperate waters: NCM succession and spatial variability in The 

North Sea revealed by DNA metabarcoding 

Jon Lapeyra Martin & Nathalie Gypens 

4.1 Study site  

New molecular techniques are widely used for plankton diversity assessment (Medlin and 

Kooistra, 2010) and have a high potential for very detailed monitoring (Stern et al., 2018), 

encompassing the entire protistan community including nano- and pico-planktonic 

components, and therefore NCM. The small ribosomal subunit (SSU) 18S rRNA gene is 

the most widely used marker for the detection and classification within the marine 

eukaryotic microbes. Despite providing semi-quantitative information (Santoferrara, 

2019) the barcoding of different regions of this gene has been proven to be a powerful 

and sensitive tool for large-scale biodiversity surveys,  allowing comparison of studies 

rooted in taxonomy (Chain et al., 2016).  

In this study, we characterized the spatial and temporal variations of the NCM 

assemblages in the North Sea (NS) based on molecular data (metabarcoding) 

(Figure 4.1). We performed Illumina MiSeq sequencing of V4-18S rRNA in 155 samples 

from NS collected in 2018-2019, divided into three subsets:  

(i) 1 year time-series in the Belgian Coastal Zone (BCZ),  

(ii) summertime sampling in the Northern North Sea (NNS) and the BCZ, and,  

(iii) late spring post-phytoplankton bloom snapshot in three areas of the Southern 

North Sea (SNS), i.e., the British waters along the English coastal (EN), the 

Dutch coastal water (NL), and the BCZ. 

Temperate seas such as the North Sea are under the influence of strong nutrient, 

temperature, irradiance, as well as biotic factors (like grazing, pathogens and competition; 

Gran-Stadniczeñko et al., 2019). Particularly the SNS is subjected to direct and indirect 

anthropogenic inputs that are discharged via rivers from the watersheds (Passy et al., 

2013). In this region massive Phaeocystis globosa blooms occur during spring (Lancelot 

et al., 2005) and mixed water column and nutrient-enriched waters prevail (Desmit et al., 

2015). In the central and NNS, due to slower current velocities (Ducrotoy et al., 2000) and 

influence of different water masses (Atlantic, Baltic Sea), seasonal or permanent 

stratification takes place (Sonja van Leeuwen, 2015).  
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Figure 4.1 Field sampling location (inset) accessed using the RV Simon Stevin in Southern North Sea and 

RV Heincke in the Northern North Sea. 

SNS sites (including ENG, NL and BCZ time-series) were sampled during several 

expeditions aboard the RV Simon Stevin (Vlaams Instituut voor de Zee, VLIZ; 

Figure 4.1). The time-series monitoring in BCZ took place monthly from March 2018 to 

June 2019 at five fixed station locations (130, 230, 330, 700 and ZG02), chosen to cover 

both near-offshore gradient and a longitudinal gradient. One extra monthly cruise was 

performed over the spring-summer months, with samples collected in order to closely 

follow the evolution of the phytoplanktonic blooms that occur in this period in Belgian 

waters. Time-series analysis was performed on the five station averaged values. The 

sampling expedition covering the ENG, BCZ and NL coastal areas (Figure 4.1) took place 

throughout the first week of May 2019. 

4.2 Materials and methods 

Seawater samples were collected at 3 m depth using 4 L Niskin bottles connected to a 

CTD sensor (Sea-bird SBE25). Physico-chemical parameters such as temperature, 

salinity, major nutrients (DIN, PO4
3-) as well as chlorophyll-a (Chl-a) were measured and 

analysed as part of the national water quality monitoring programs LifeWatch and 

JericoNext with the methodology found in Mortelmans et al. (2019).  

NNS sampling was carried out on the RV Heincke (Alfred Wegener Institute) during the 

expedition HE517 in August-September 2018.  Three different areas were chosen to be 

analysed, covering (1) the transect from Bremerhaven (Germany) to the north of Scotland 
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(BS); (2) the continental rift between Scotland, the Shetlands Islands, and the Faroe 

Islands (SSF); and (3) the Norway Coastal Zone (NCZ) (Figure 4.1). The sampling was 

realized using Niskin bottles on a rosette sampler attached to a Conductivity-

Temperature-Depth (CTD) sensor (SEA-bird SBE 911plus, SN 1015).  

Considering that mixoplankton is largely widespread in both nano- and micro-organisms, 

field sampling techniques in this study were used to sample marine eukaryotic plankton 

sizing > 0.22 µm. For all above-mentioned expeditions, identical sampling methodology 

was followed. The DNA samples for the study of the protistan community were collected 

by vacuum filtering 500-800 mL of water (from Niskin) through 0.22 µm polycarbonate 

filters (47 mm) and storing the samples immediately at -20 °C. 

Total DNA was extracted from filters using NucleoSpin Soil extraction Kit (Macherey-

Nagel, Düren, Germany) following manufacturer’s protocol. For a maximum efficiency of 

the extraction from the filters the sample lysis step was performed using 10 mL cryotubes.  

Standard polymerase chain reactions (PCR) reactions were performed to amplify the 

universal eucaryote small subunit (SSU) 18S rRNA gene. Primers TAReuk454FWD1 (5′-

CCAGCASCYGCGGTAATTCC-3′), TAReukREV3 (5′-ACTTTCGTTCTTGATYRA-3′) 

were used to target the V4 region of the 18S rRNA gene (Stoeck et al., 2010). The 

following library preparation of 18S ribosomal RNA gene amplicons were executed: PCR 

clean-up 1, index PCR, PCR clean-up 2, library quantification, normalization and pooling 

were performed following the 16S Metagenomic Sequencing Library Preparation guide 

(Illumina).  Library denaturing and sample loading to the Illumina MiSeq system to perform 

a 2 x 250bp paired-end sequencing using V2 chemistry.  

For already demultiplexed raw files (MiSeq paired-end output), FASTQC was used to 

check the quality of reads (Andrews, 2010). TRIMMOMATIC (Bolger et al., 2014) was 

used to crop the 250 bp to 225 bp and used sliding window of length 3, with allowed 

average ‘phred’ score of 8 to filter from 5' - 3' direction and truncate when quality drops 

below 8. The paired-ends were merged with VSEARCH (Rognes et al., 2016) with an 

minimum overlap of 40 bp and a maximum number of allowed mismatch of 4 bp. 

Sequences were reverse complemented and both direction merged into one file. The 

combined files were then filtered (allowing mismatch of 10% and minimum overlap of 17 

bp for forward and 13 bp for reverse) for checking the existence of the primer sequences 

(fwd-> rev). Primer sequences were removed using CUTADAPT (Martin, 2011).  Feature 

filtering was carried out next with VSEARCH: allowed maximum expected error per 

sequence of 1; minimum length of 275, maximum 475 and max number of ambiguities of 

0. In the same step the headers were renamed by a shall digest of the sequence itself. 

Each sample was dereplicated independently (abundances of each amplicon added to 

the header) and chimera checked de novo.  All samples were pooled and dereplicated in 

total to produce a combined data set. This served as input for the SWARM OTU clustering 

(Mahé et al., 2014) using a distance of 1. The most abundant amplicon of an OTU cluster 

was used as representative. These sequences were annotated with the default bootstrap-

based method (RDP) recommended and implemented in MOTHUR (Hardge et al., 2018). 

Taxonomical annotation was performed MOTHUR's prepared Silva v1.32 (Pruesse et al., 

2007) database.  
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Trophic strategies were annotated based on the current accepted forms of protistan 

plankton nourishment (Mitra et al. 2016; Flynn et al., 2019; see also Figure 2.1). Species-

specific knowledge were obtained from published literature (Armeli Minicante et al., 2019; 

Faure et al., 2019; Leles et al., 2019) to classify the species into trophic groups: 

phytoplankton or strictly autotrophs (AU), protozooplankton or strictly heterotrophs (HET), 

constitutive-mixoplankton (CM), non-constitutive mixoplankton (NCM) and unknown 

(NA). 

4.3 Results 

Overall, 205 OTUs out of 1011 were assigned to mixoplankton: 174 to constitutive 

mixoplankton (CM) and 31 to non-constitutive mixoplankton (NCM). Regarding the 

number of reads of the total dataset comprising 155 samples, 33.5% were assigned to 

CM, 2.1% to NCM, 25.4% to photo-autotrophic phytoplankton and 32.8% to heterotrophic 

protozooplankton (Table 4.1). Dinoflagellates and heterotrophic nanoflagellates were the 

most abundant groups in terms of number of reads (45.8% and 15.8%, respectively), 

followed by Phaeocystis (12.5%), diatoms (7.9%) and ciliates (7%) (data not shown).  

 

Table 4.1 Summary of the proportions of reads (%) belonging to the different trophic strategies annotated 

for the entire dataset and the different spatial and temporal scenarios covered the Southern and the 

Northern North Sea sampling. 

FTs  
Total 

dataset 

Belgian Coastal Zone (Time-series) Spatial analyses 

Spring 
18’ 

Summer 
18’ 

Autumn 
18’ 

Winter 
18’-19’ 

Spring 
19’ 

North Sea 
Summer 18’ 

SNS 
May 19’ 

phototrophs 25.47 13.82 16.57 20.19 19.92 33.95 16.44 41.23 

CM 33.56 53.77 39.77 28.47 25.93 30.16 47.27 15.5 

NCM 2.14 1.34 0.69 2.15 4.44 1.92 2.38 1.36 

heterotrophs 32.78 25.57 31.28 37.05 40.74 31.89 27.02 39.66 

mixoplankton  35.70 55.11 40.46 30.62 30.37 32.08 49.65 16.86 

NA 6.05 5.50 11.70 12.14 8.98 2.08 6.86 2.22 

 

4.3.1 Seasonality in the BCZ   

The environmental conditions varied widely across the temporal series in BCZ 

(Figure 4.2). In general, the range values recorded in the study period are atypical and 

they follow the well-known seasonal dynamics of the area (Gypens et al., 2007). 

Metabarcoding results revealed the taxonomic composition of mixoplankton in the BCZ 

time-series, showing that, in average, the taxa having most mixoplanktonic species were 

dinoflagellates, accounting for 87% of the total mixoplankton reads and 136 identified 

OTUs (out of total 205 OTUs; data not shown). Dinoflagellates were followed by ciliates 

with a 5.9% of the reads and 26 OTUs.  

Regarding NCM, only 5 dinoflagellates were classed as NCM. NCM had a relatively low 

contribution to the entire protistan community compared to CM (max = 4.4% winter 2018-

2019 averaged; Figure 4.3) and they comprised of ciliates, and few dinoflagellate 

species. < 1% of detected dinoflagellates were classed as NCM (data not shown). 

Mixoplanktonic ciliates attained in average 27.4%.  In ciliates, the neither the 
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heterotrophic nor the mixoplanktonic showed a clear seasonal pattern (Figure 4.4). 

However, it is worth noting that > 90% of ciliates were found to be heterotrophic in May 

2018 (Figure 4.5).  

Figure 4.2 Temporal succession of environmental data in the Belgian Coastal Zone (BCZ) time-series and 

dynamics of strictly photo-autotrophic plankton (phytoplankton), CM and NCM. (a) Photosynthetic active 

radiation (PAR) and Sea Surface Temperature (SST, °C). (b) Dissolved Inorganic Nitrogen (DIN), dissolved 

silica (DSi), and phosphates (PO4
-3, nM) concentrations. (c) log read abundances for CM and NCM 

revealed by DNA-barcoding. 

 

Most important constituents based on proportional OTU reads appeared to be marine 

oligotrich ciliates belonging to the genus Strombidium: ranging 1.1 - 3.5% in Winter 2018-

2019 and 2.6% in April 2019 (Figure 4.3). Another important mixoplanktonic ciliate, 

Spirostrombidium cupiformum attained its maximum value in March 2018 (1.8 - 1.6%) 

and were important NCM members in Winter 2018-2019 (1.4 - 1.5%) (Figure 4.5). 

Species belonging to the Lepidodinium genus such as Lepidondinium chlorophorum (a 
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kleptoplastidic NCM species) were the only dinoflagellates detected among the top 10 

most relevant NCM species, having its maximum contribution in autumn 2018 (1.3% in 

September-October). Only two other NCM dinoflagellates were detected in our dataset, 

Dinophysis acuminata and Shimiella gracilenta, both having their maximum contributions 

< 0.03%. Two Pseudotontonia genus organisms (GNCM) were present in our BCZ time-

series dataset as well,  consistent with both Leles et al. (2019) morphological 

observations and Faure et al. (2019) metabarcoding results, nevertheless the 

proportional read abundance values among NCM were low throughout our time-series 

(<  0.5%). We also observed that in November 2018 and April 2019 mixoplanktonic ciliate 

relative abundance exceeded 40% attaining maximum mixoplanktonic ciliate contribution 

to the community (Figure 4.6). 

 

Figure 4.3 Radar chart displaying the temporal relative OTU reads proportions of major trophic modes 

(mixoplankton and heterotroph) in ciliates. 

non-constitutive mixoplankton heterotroph 
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Figure 4.4 Series of seasonally arranged heatmaps displaying all the NCM protist occurring in the Belgian 

Coastal Zone time-series dataset (5 stations averaged). Line-plot above displays the temporal progression 

of the observed species richness at each time-point. Taxonomic affiliation of OTUs at the lowest possible 

level (species), is shown in lines. The colour scale (orange) represents the relative abundance contribution 

as percentage to the entire protistan community. Left annotation in colours refers to the taxa assigned for 

each of the species. The results that accounted > 0.5% of OTU reads were annotated. Row clustering and 

its corresponding dendrogram was built using Pearson distance. 
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4.3.2 NNS Summer 2018 

In the NNS area, NCM had a low contribution to the protistan community, similar to BCZ 

time-series dataset, average = 3.1% (Table 4.1), whereas CM attained up to 51.0%. 

However, sites located most in the south of the BS transect, very close to the German 

coast (NS 1, NS a, NS b), showed the highest peaks of NCM relative abundances of the 

entire dataset (Figure 4.6). Indeed, Lepidodinium chlorophorum (two OTUs assigned) 

contributed up to 19.2% in site NS a. Northern sites (BS, SSF and NCZ) of BS transect 

were characterized by strong contributions of another NCM dinoflagellate, Dinophysis 

acuminata (Figure 4.5). In SSF and NCZ the tintinnid ciliate Spirotontonia grandis 

contributed substantially to the overall NCM weight, nevertheless Lepidodinium 

chlorophorum was still the most important contributor (Figure 4.5).  

 

Figure 4.5 Series of geographically arranged heatmap per areas stablished displaying the top 10 most 

representative NCM in samples along the NNS samples collected in summer 2018. Line-plot above 

displays the temporal progression of the observed species richness at each sampling-point. Coloured 

stacked bar represent the proportions of reads of the different trophic strategies. Taxonomic affiliation of 

OTUs at the lowest possible level (species), is shown in lines. Left annotation in colours refers to the taxa 

assigned for each of the species.  The colour scale (orange) represents the relative abundance calculated 

as percentage of final total reads per sample. The results that accounted > 0.5% of OTU reads are 

annotated. 
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4.3.3 Southern North Sea, May 2019 

The SNS receives freshwater and nutrient loads from rivers (mainly the Seine and the 

Scheldt) that mix with inflowing English Channel waters. These nutrient enriched coastal 

systems are characterized by well-documented Phaeocystis globosa massive blooms 

that occur yearly as a single spring event lasting between 4-13 weeks (Breton et al., 2006; 

Rousseau et al., 2000) in high-nitrate but silicate-deficient conditions (Simó, 2001). 

Among the NCM detected (Figure 4.6), the ciliates belonging to Strombidium genus, were 

the only species that stood out on the dataset, particularly Strombidium sp. which attained 

noticeable high values in all the sites of the British Coast (ENG). Similarly, in the BCZ, 

only Strombidium sp. contributed > 0.5% to the community.  Lowest NCM richness 

detected were in NL sites SS 51 and SS 49, located nearby Scheldt estuary (Figure 4.6).  

 

Figure 4.6 Series of geographically arranged heatmap per areas stablished displaying the top 10 most 

representative NCM in samples along the SNS samples collected in May 2019. Line-plot above displays 

the temporal progression of the observed species richness at each sampling-point. Coloured stacked bar 

represent the proportions of reads of the different trophic strategies. Taxonomic affiliation of OTUs at the 

lowest possible level (species), is shown in lines. Left annotation in colours refers to the taxa assigned for 

each of the species.  The colour scale (orange) represents the relative abundance calculated as 

percentage of final total reads per sample. The results that accounted > 0.5% of OTU reads are annotated. 

 



NCM Seasonal Distribution – North Sea 

 

© Mitra et al. 2021  31 | P a g e  

4.4 Discussion  

We gathered new information on the spatial and temporal variability of NCM in the North 

Sea based on the analysis of 18S rRNA gene. On the three dataset subsets studied, the 

contribution of NCM to the taxonomic diversity of the entire eukaryotic protistan plankton 

(in terms of number of reads) was in general very scarce. In contrast, results showed that 

CM were present throughout the year, often dominating the community as previously 

revealed Schneider et al. (2020) for neighbouring areas, noting that the data in Schneider 

et al. excludes NCM other than Mesodinium.  

Regarding the taxonomic composition of NCM, they were almost exclusively represented 

by oligotrich ciliate species, of which ~ 30% of OTU reads on average were identified as 

NCM; it has been shown that chloroplast-retaining oligotrichs rarely dominate the ciliate 

community (Dolan, 1992). Besides, various studies have demonstrated a low biomass of 

NCM throughout all year in temperate seas and in oligotrophic waters (Dolan and Pérez, 

2000; Stoecker et al., 2009; Romano et al., 2021; Leles et al., 2021). 

In time-series, NCM mostly emerged in winter under conditions of high nutrients - low 

light, and the number of NCM species detected by metabarcoding was found to be lowest 

in April 2018 and May 2019 during Phaeocystis globosa blooms (data not shown). The 

datasets used for the spatial analysis showed that the contribution of NCM was 

considerably high (3.1% of OTU reads on average, Table 4.1) during the summer months 

in stratified waters of NNS, which are characterized by a permanent thermocline in the 

North Sea (Richardson et al., 1998) that induces a sink of the colder and nutrient-rich 

waters away from the photic zone (Johns and Reid, 2001). Our approach was able to 

capture the post-Phaeocystis bloom period in SNS with high proportion of reads 

belonging to autotrophic organisms, and NCM presented very low contributions to the 

protistan community.  

This work provides a first picture of the NCM temporal and spatial variability in the North 

Sea based on DNA metabarcoding. The major findings of this study are summarized as 

follows.  

(i) Marine oligotrich ciliates are major NCM contributors followed by few 

dinoflagellate species in the North Sea.  

(ii) NCM are minor contributors to the number of reads proportions of the entire 

protistan community throughout all year long.  

(iii) NCM species richness tend to increase beginning of summer and is maintained 

high until the end of the winter.  

(iv) NCM dinoflagellates such as Lepidodinium chlorophorum and Dinophysis 

acuminata were found to be more abundant (in number of reads) in stratified 

waters of the NNS summer.  

(v) In SNS, NCM contribution strongly decreases throughout the end phase of 

colonial Phaeocystis blooms, being Strombidium sp. most important contributor, 

particularly in ENG.  

Our study did establish the presence of organisms that are known to be mixoplanktonic 

(NCM), however, that does not necessarily mean that they are actively performing 

photosynthesis or engaging in phagocytosis at a particular time and place. 
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5 Mediterranean oligotrophic waters: Subtropical waters  

Filomena Romano & Paraskevi Pitta 

5.1 Sampling 

Sampling took place on a monthly basis from January to December 2019 at the coastal 

station POSEIDON-HCB (Heraklion Coastal Buoy, 35.426°N - 25.072°E, max depth 

180 m), Heraklion Bay, Cretan Sea, Greece (Figure 5.1). Profiles of water column 

structure (temperature, salinity) and chla were performed with a Seabird CTD profiler 

equipped with a fluorescence sensor. Water samples were collected at seven depths in 

the euphotic zone (2, 10, 20, 50, 75, 100, 120 m) using 5 L Niskin bottles. Sampling was 

not performed in February and August due to bad weather at sea. Dissolved nutrient 

concentrations were assessed following Ivancic and Degobbis (1984) and Strickland and 

Parsons (1972) using a UV/VIS spectrophotometer with the detection limits for 

phosphate, ammonium, nitrate, nitrite and silicate being 0.018, 0.019, 0.017, 0.010 and 

0.025 μM, respectively. 

 

Figure 5.1 Map of the Sampling area in the Mediterranean Sea showing the position of the Poseidon-HCB 

station. 
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5.2 Materials and Methods 

5.2.1 Ciliate abundance enumeration and biomass  

For the enumeration and identification of ciliates, 250 mL of water were fixed with borax-

buffered formalin (formaldehyde final concentration 2%) and stored at 4 °C in the dark. 

According to Stoecker et al. (1994), formaldehyde fixation may underestimate the total 

ciliate abundance by up to 65%. Acid Lugol’s solution can give a higher estimation of cell 

abundance (Gifford, 1985) but does not allow the observation of the autofluorescence of 

chloroplasts. For this reason, the present study, focusing on trophic modes of ciliates 

(mixotrophy vs heterotrophy), reports results from samples fixed with formaldehyde. A 

parallel series of samples were fixed with 2% of acid Lugol’s in order to estimate the 

percentage of cell loss and the correlation between abundances. One hundred mL of the 

sub-sample were concentrated using sedimentation chambers (Utermöhl, 1931) and cells 

were counted with an Olympus IX-70 inverted microscope equipped for transmitted light, 

phase-contrast and epifluorescence (blue light: DM 500 nm dichroic mirror, BP 420 to 

480 nm exciter filter, BA 515 nm barrier filter and a 100 W mercury burner) at 150X 

magnification.  

 

Oligotrichs and choreotrichs (both comprising aloricate species) were identified down to 

genus level in most of the cases and down to species level when possible, following 

Laval-Peuto (1986), Laval-Peuto & Rassoulzadegan (1988), Lynn et al. (1988), 

Montagnes et al. (1988), Lynn & Montagnes (1991). Those ciliates showing a 

homogeneous fluorescence were considered to be mixoplanktonic, while ciliates that did 

not show any fluorescence or specimens in which fluorescence was located in a specific 

part of the cell (probably food vacuole) were considered as heterotrophic. Tintinnids were 

identified based on the lorica shape and dimensions, after Jorgensen (1924) and Balech 

(1959). The dimensions of each individual cell were measured using an image analysis 

software (Image-Pro Plus 6.1). Aloricate ciliates were divided into four size classes based 

on their cell length. More specifically, the groups were identified as very small, small, 

medium, and large, referring, respectively, to cell length < 18, 18-30, 30-50, and > 50 µm. 

The biovolume was calculated using geometric shapes according to Peuto-Moreau 

(1991) and biomass by multiplying the biovolume with the conversion C factor of 0.14 pg 

C µm-3 used for samples fixed with 2% formaldehyde (Putt & Stoecker, 1989). For 

samples from January, we only report of total ciliate abundance due to a temporary 

malfunction of the image analysis system. 

 

5.2.2 Statistical analysis 

Two-way ANOVA (water column structure by depth) was used in order to reveal 

significant differences among samples grouped according to certain criteria 

(mixing/intermediate/stratification period and depth layers 2-120 m). This analysis was 

performed on four size classes (very small, small, medium, and large). In addition, two-

way ANOVA (water column structure by month) was performed to test whether significant 

differences existed among samples grouped according to the 

mixing/intermediate/stratification period or certain months of the year; this analysis was 

performed on the mixotrophic ciliate genera.  
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Alpha diversity was measured temporally (for each month) and vertically (at each depth) 

using Shannon’s H index, richness value and Pielou’s Evenness index according to ciliate 

abundance. For the temporal evaluation of the alpha diversity, integrated values were 

used, while for the vertical evaluation, values of each depth were averaged (annual 

average). Rank abundance analysis was also carried out with R language version 4.0.1 

and the integrated dataset, transformed using square root transformation, was used for 

temporal ranks, while annual average was used for vertical ranks. 

5.3 Results 

5.3.1 Temporal and vertical distribution 

Throughout the water column, total abundance (cells L-1) of mixoplanktonic ciliates 
represented 24 ± 8.6% of the pelagic ciliate community. In terms of vertical distribution, 
mixoplanktonic ciliates were abundant between 2 and 20 m depth; below this layer, their 
abundance decreased with depth (Figure 5.2).  
 

 
Figure 5.2. Vertical distribution of (A) abundance, cells L-1 and (B) biomass, µg C L-1 of oligotrichs, 

choreotrichs and tintinnids at all months sampled. For January, only total ciliate abundance is presented 
(line) and values for oligotrichs, choreotrichs and tintinnids are missing. Note that in September, the x axis 

has a different scale compared to all other months. (Romano et al. 2021). Mixoplanktonic ciliates are part of 
oligotrichs and the rest are heterotrophic. 
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This was true throughout the year, the only exception being June and July, which 
presented maxima at 100 and 50 m, respectively. Mixoplanktonic ciliates showed a very 
different vertical pattern compared to heterotrophic species that did not show any specific 
pattern and their distribution was not significantly correlated with depths (data not shown). 
In terms of integrated values (surface to 120 m), the abundance of mixoplanktonic ciliates 
ranged from 1.81 x 106 to 9.21 x 106 cells m-2, while the integrated biomass ranged from 
14 to 118 mg C m-2. For both mixoplanktonic and heterotrophic species the lowest 
abundance was found in March and the highest in September and July, respectively 
(Table 5.1). 
 

Table 5.1. Integrated values of abundance and biomass of mixoplanktonic and heterotrophic ciliates 
together with the maximum abundance at each depth. NA = not available. Numbers in parenthesis are 

depths of maximum abundance and biomass, respectively. See also Romano et al. (2021)  
Mixoplankton Heterotrophs 

Month  Abundance Biomass Maximum 
abundance 

Maximum 
biomass 

Abundance Biomass Maximum 
abundance 

Maximum 
biomass 

 
106 cells 

m-2 
mg C m-

2 
Cells L-1 

(m) 
mg C L-1 

(m) 
106 cells 

m-2 
mg C m-

2 
Cells L-1 

(m) 
mg C L-1 

(m) 

January 8.56 NA 142 (10) NA 12.63 NA 192 (10) NA 

March 1.82 87 28 (10) 3.65 (20) 6.39 135.59 85 (75) 1.83 (10) 

April 1.83 14 128 (10) 1.2 (10) 18.47 130.87 292 (75) 1.42 (75) 

May 5.02 93 170 (10) 3.4 (10) 14.66 165.17 210 (2) 3.27 (2) 

June 7.23 117 90 (100) 1.81 (10) 14.17 167.49 160 (75) 2.74 (75) 

July 6.43 68 110 (50) 1.7 (50) 19.07 251.21 260 (2) 4.11 (2) 

September 9.21 118 390 (2) 1.81 (10) 18.81 192.15 620 (2) 5.14 (2) 

October 4.76 42 140 (10) 2.18 (50) 14.82 225.44 240 (2) 4.78 (20) 

November 2.52 112 40 (10) 6.91 (10) 16.41 256.43 190 (10) 3.34 
(120) 

December 5.62 41 120 (2) 1.86 (2) 16.88 158.15 220 (50) 2.04 (50) 

 

5.3.2 Size classes  

In terms of size classes, the contribution values to the mixoplanktonic ciliate community 
were 4.26 ± 3.05%, 10.55 ± 3.52%, 5.79 ± 2.20%, and 2.99 ± 2.43%, while for biomass 
0.67%, 4.02%, 7.03%, and 11.42%, respectively for ciliates < 18 or very small, 18-30 or 
small, 30-50 or medium and > 50 or large μm, respectively. During the stratification period 
(May to November), large (> 50 μm) mixoplanktonic cells were observed only above the 
DCM (at 50 m), while the deeper layers were populated by very small (< 18 μm) and small 
(18–30 μm) mixoplanktonic ciliates (Figure 5.3).  
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Figure 5.3 Vertical distribution of abundance (cells L-1) of (A) four size classes of mixoplanktonic and (B) 
heterotrophic ciliates at all months sampled. Very small: < 18 µm, Small: 18-30 µm, Medium: 30-50 µm, 

Large: > 50 µm. Note that in September, the x axis has a different scale compared to all other months. See 
also Romano et al. (2021). 

 
During the mixing period (December to May), mixoplanktonic species were very few, and 
the community was dominated especially by small and medium (18-30 μm, 30-50 μm) 
species. The integrated abundance of mixoplanktonic aloricates varied between 0 and 
2.96 x 106 cells m-2 for very small, and between 0.91 and 3.41 x 106 cells m-2 for small 
species. When considering the integrated abundance of medium and large cells (30–50 
and > 50 μm), mixoplanktonic ciliates were much lower numerically and varied between 
0.16 and 1.80 x 106 cells m-2 for medium species and between 0.00 and 1.28 x 106 cells 
m-2 for large species (Table 5.2).  
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Table 5.2. Integrated abundance (106 cells m-2) of four size classes of aloricate mixoplanktonic and 
heterotrophic ciliates at each month. Very small: < 18 µm, Small: 18-30 µm, Medium: 30-50 µm, Large: 

>50 µm. Minimum and maximum values are reported below and in the table. Maximum values are in bold 
and minimum values in italic. 

  
Mixoplankton Heterotrophs 

Month 
 

Very 

small 
Small Medium Large 

Very 

small 
Small Medium Large 

March 
 

0.37 0.91 0.47 0.07 1.41 2.08 1.63 0.53 

April 
 

0.08 1.07 0.68 0.00 8.08 7.44 1.89 0.13 

May 
 

0.59 1.63 1.52 1.28 3.02 5.06 2.46 0.66 

June 
 

2.14 2.61 1.38 1.10 1.64 5.07 3.26 0.82 

July 
 

1.52 2.95 1.69 0.28 4.36 6.65 3.96 1.67 

September 
 

2.96 3.41 1.80 1.04 2.12 5.79 3.50 1.00 

October 
 

0.00 3.39 1.13 0.24 1.57 5.25 5.11 1.83 

November 
 

0.51 1.03 0.16 0.82 1.29 7.96 4.91 0.77 

December 
 

1.18 2.80 1.42 0.23 4.26 5.55 4.72 0.29 

Max 
 

2.96 3.41 1.80 1.28 8.08 7.96 5.11 1.83 

Min 
 

0.00 0.91 0.16 0.00 1.29 2.08 1.63 0.13 

 
 

5.3.3 Genera of Mixoplanktonic Ciliates 

The integrated abundances of mixoplanktonic ciliates were very low during autumn and 
spring, more specifically in October for very small species and November for medium 
cells, while the lowest number of small and large species was found in March and April, 
respectively. The integrated abundance of very small, small, medium and large, instead, 
was very high in June, October, July and May respectively. 
  
Regarding mixoplanktonic ciliates, species/morphotypes of four genera were observed 
(Strombidium, Tontonia, Laboea, and the species Mesodinium rubrum). The temporal 
and vertical distribution of these four genera showed that Strombidium was the most 
abundant from all of them, which made up more than 50% of the total abundance. 
Plastidic specialist non-constitutive mixoplankton (pSNCM) as Mesodinium rubrum were 
abundant only in April. Mixoplanktonic species belonging to Strombidium and Tontonia 
genera were very abundant during June, July, and September when the stratification was 
well formed. Mixoplanktonic Strombidium species that were abundant during the 
stratification period belonged to the very small and small size classes (Figure 5.4). 
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Figure 5.4 Depth-integrated abundance (cells m-2) of four size classes of mixoplanktonic genera of ciliates 
at all months sampled. Very small: <18 µm, Small: 18-30 µm, Medium: 30-50 µm, Large: >50 µm. See 

also Romano et al. (2021). 

 

5.3.4 Alpha diversity 

From the rank abundance curve analysis for each depth, the most abundant species, in 
terms of cells L-1, belong to Strombidium genus, except for 100 m where the most 
abundant genus was Leegaardiella. The most abundant species were Strombidium 
acutum and S. conicum for 2, 10 and 20 m, while S. epidemum dominated the water 
column at 50, 75 and 120 m. Strombidium acutum and S. conicum are two mixoplanktonic 
microciliates, and they are the most abundant species at the surface of the water column. 
For this reason, it is possible that these two species contributed for the most of the 
mixoplanktonic microciliates (>30 μm) biomass at the surface layer. Strombidium 
epidemum, on the other hand, contributed for the most of heterotrophic very small ciliate 
biomass at 75 m (Figure 5.5).  
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Figure 5.5. Rank abundance curve of annual average of ciliate abundance at each depth. Only the names 
of the first two most abundant species are reported here. Strombidium acutum, S. conicum, and 

S. capitatum are mixoplanktonic. 

 

Table 5.3 Correlation between biomass of mixoplanktonic (mix) and heterotrophic (het) ciliates smaller and 
bigger than 30 μm with abiotic factors. Significant p values are in green. Ns = not significant. 

 Het < 30 μm Mix < 30 μm Het > 30 μm Mix > 30 μm 

 R p R p R P R p 

Temperature -0.05 ns 0.20 ns 0.64 0.00 0.31 0.02 

Salinity 0.08 ns 0.15 ns 0.25 Ns 0.19 ns 

DIN -0.09 ns -0.23 ns -0.47 0.00 -0.37 0.00 

PO4
3- -0.03 ns -0.15 ns -0.28 0.03 -0.13 ns 

SiO4
3- 0.28 0.03 0.07 ns -0.16 Ns -0.14 ns 

Chla 0.20 ns -0.12 ns -0.19 Ns -0.08 ns 
 

From the correlation analysis, only the biomass of heterotrophic very small ciliates is 
significantly positive with SiO4, while bigger ciliates are significantly correlated with the 
temperature and negatively correlated with DIN. Very small mixoplanktonic ciliates did 
not show any significant correlation with any abiotic factor (Table 5.3). 
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Rank abundance analysis was conducted on numerical integrated abundance of 
planktonic ciliate species. The results showed that most of the months belonging to the 
mixed water period (Figure 5.5) are mostly very diverse and no clear dominance was 
detected. During stratification, June and September showed that some species were 
more dominant compared to the others. More specifically, Strombidium acutum and S. 
dalum abundances were two times higher than other species abundances (Figure 5.5). 
Strombidium was the most dominant genus in all months except for March and October 
where the genera that dominated the community were Lohmanniella and 
Pelagostrobilidium, respectively.  

 

Figure 5.6. Rank abundance analysis of pelagic ciliate species during stratified (A) and mixed (B) water. 
Only the names of the first two most abundant species are reported here. Strombidium acutum, S. 

conicum, S. dalum and S. capitatum are mixoplanktonic. 

 

Shannon index H, species richness and Pielou’s eveness were calculated for the 
integrated abundance of pelagic ciliates at each month sampled and the annual average 
at each depth. The biodiversity analysis conducted at each month showed that 
September had the highest Shannon index while the lowest values were found in April, 
November, and December. The values for the other months ranged between 2.8 and 3.0. 
January showed the highest value but the lowest regarding the Evenness. On the other 
hand, October and May showed very low value of species richness but a high value of 
Evenness (Figure 5.6). 
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Figure 5.7 Shannon’s H, species richness and Pielou’s Evenness values at each month sampled for the 
integrated abundance of planktonic ciliates. The coloured symbols represent different months. 

 

 
 
Figure 5.8 Shannon’s H, species richness and Pielou’s Evenness at each depth for the annual average of 

planktonic ciliates. The coloured symbols represent different months. 

Regarding the annual average at each depth, Shannon’s H index value was in the same 
range except for 50 m and 120 m that showed the highest and the lowest value 
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respectively. Between 2 and 20 m species richness increased exponentially while it 
remained stable down to the bottom (120 m) with the highest value at 100 m. On the other 
hand, Evenness decreased with depths except for 2 and 50 m that showed the highest 
values. More specifically, those indices showed that the surface was populated by few 
species and the abundance was homogenous, but in the bottom the number of species 
increased and a strong dominance of some species compared to the others (Figures 5.7 
and 5.8).  

 

5.4 Discussion 

Consistent with, and building from, previous studies (Pitta & Giannakourou, 2000; Pitta et 

al., 2001), mixoplanktonic ciliates were found to widely populate this oligotrophic 

environment, which is poor in nutrients but with plenty of light. The data presented here 

showed that planktonic ciliates of different types of trophic strategies displayed different 

vertical and temporal distributions, relative to the season. Heterotrophic ciliate abundance 

and biomass did not show any seasonality but were closely linked to chla concentration. 

In contrast, mixoplanktonic forms were largely restricted to the months with high 

temperatures and light. In the near-surface samples, mixoplanktonic species formed an 

important part of total ciliate abundance and biomass, and likely moved to deeper layers 

during June and July. If we consider size classes, large mixoplanktonic species were 

found only above DCM, while small and very small mixoplankton were present throughout 

the water column. Since it is known that oligotrophic conditions favour nanoplankton 

feeding on pico-bacterioplankton in tropical and temperate areas (Zubkov & Tarran, 

2008), if we report on trophic relationships from oligotrophic environments, nano-ciliates 

(very small <18 µm) should also be considered because they represent an important 

grazer (except for nano-flagellates) for picoplankton.  

 
This is one of few studies reporting on the annual dynamics and vertical distribution of 
size classes of mixoplanktonic vs heterotrophic ciliates through the water column (2-
120 m), taking into account the contribution of the very small and small (<30 µm) 
mixoplanktonic ciliates that were found to comprise up to 50% of the total ciliate 
community during June, July, and September (a significantly different abundance 
between the stratification and mixing periods), most probably grazing on bacterioplankton 
and pico-phytoplankton that flourish during the stratification compared to the mixing 
period. Larger mixoplankton, like Laboea strobila and Tontonia appendiculariformis, were 
found only during the construction and destruction of the water column stratification (May 
and November, respectively; a significantly different abundance was found between the 
mixing and intermediate periods).  
 
Based on these results, we may conclude that the four size classes of NCM (very small, 
small, medium, and large) have distinct vertical distributions throughout the water column, 
reflecting different ecological strategies. Due to their limited size (< 18 µm), very small 
ciliates feed only on picoplankton (bacteria, cyanobacteria, and flagellates) so they could 
be considered generalists since those groups are present through the whole water 
column. Larger mixoplankton (> 50 µm) are probably more specialists since they can feed 
only on some groups belonging to phytoplankton. This could explain the differences in 
the vertical distribution of the four size classes of mixoplanktonic ciliates. 
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6 Conclusions 

For the first time, we gathered knowledge of the spatial, vertical and temporal variability 

of GNCM and pSNCM in three different marine environments (Arctic waters, North Sea, 

Mediterranean Sea) and using two different methodological approaches. The composition 

of Arctic and Mediterranean coastal water NCM communities was assessed using optical 

methods whereas the North Sea’s communities were studied using DNA-based 

approaches. Microscopy provides high quality quantitative data but lacks high taxonomic 

resolution. In contrast DNA metabarcoding, provides only semi-quantitative information 

usually with biases, but with higher taxonomic resolution.  

The contribution of NCM to total protist plankton is greatest during stratified periods in 

Arctic, temperate and tropical waters, characterized by high solar radiation and low 

inorganic nutrient concentrations. In tropical waters that see year-round stratification in 

the water column, and are generally nutrient limited, pSNCM are often restricted to 

shallow coastal waters while GNCM were found to comprise up to ~70% of the ciliate 

assemblages in offshore surface waters (Canals et al., 2020). One may argue that this 

difference is due to pSNCM relying more heavily on photosynthesis (Hansen et al., 2013), 

while GNCM are not directly affected by the inorganic nutrient limitations that restricts 

phototrophic growth and/or by the unavailability of specific prey. However, it should be 

noted that GNCM depend critically upon phototrophic prey which are subjected to such 

nutrient limitations.  

In the sub-tropical, stratified, summer waters of the Mediterranean Sea, mixoplankton 

species have been found in abundance throughout nutrient-deficient surface layers, as 

well as in deeper waters at and under the deep chlorophyll maxima (Dolan and Marrasé, 

1995; Dolan et al., 1999). Throughout the vertical stratification, mixoplankton exhibit an 

increased relative importance in areas where phytoplankton biomass is lower, likely due 

to their ability to utilize inorganic carbon fixation to increase gross growth efficiency (GGE) 

and prolong survival in prey-starved environments. GNCM in particular can sometimes 

account for up to 100% of ciliate biomass in the photic zone, though the average annual 

contribution of GNCM to ciliate biomass is generally between 40-50%, often achieving 

peak values in spring and autumn. pSNCM ciliates (represented by the red Mesodinium 

spp.), however, are relatively rare in the Mediterranean Sea, with peak abundances when 

and where dissolved nutrient concentrations are highest. They (i.e., pSNCM) represent 

an average of just 3-9% of annual ciliate biomass (Bernard and Rassoulzadegan, 1994; 

Modigh, 2001). 

The trend of increasing seasonal variation with increasing latitude continues into the more 

extreme temperate and polar climates where vertical stratification dissipates and light 

becomes limiting in the winter months, inhibiting primary production. Interestingly, both 

GNCM and pSNCM ciliates are often recorded, albeit at low levels, throughout the 

darkness of winter (Haraguchi et al., 2018; Stoecker and Lavrentyev, 2018). This appears 

to contradict laboratory findings that suggest GNCM will die within days to weeks without 

sufficient prey. Some suggestions of how these plankton may survive over winter have 

been discussed, including decreased winter metabolism, cyst formation, and exploitation 

of patchy food sources (Levinsen et al., 2000). In early spring, however, light returns, 

temperature increases, ice melts, and waters become stratified, giving photosynthetic 
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organisms the ability to take advantage of the winter-long nutrient regeneration. In 

temperate and polar surface waters, pSNCM often bloom in spring, reaching levels nearly 

20 times greater than recorded at more southern latitudes (Leles et al., 2017). Generally, 

GNCM bloom 1-3 months later than pSNCM, but maintain significant biomass well into 

the summer months when SNCM populations crash as nutrient concentrations become 

depleted in the euphotic zone. Indeed, GNCM generally see the greatest relative 

contribution to ciliate biomass in summer-time surface waters of both temperate and polar 

climates, reaching up to 85-90%.  

Both GNCM and pSNCM spring/summer blooms tend to occur later in polar climates than 

in temperate climates (Levinsen et al., 2000; Haraguchi et al., 2018). As the deep 

chlorophyll maximum deepens into summer months, GNCM have been shown to be able 

to maintain biomasses here comparable to those found at surface waters (Levinsen et 

al., 2000), and GNCM can contribute up to 46% of the chlorophyll-a found at the deep 

chlorophyll maxima (Franzè and Lavrentyev, 2017). Even at depths below the euphotic 

zone, GNCM ciliates can thrive presumably due to their ability to function as completely 

heterotrophic organisms. In fact, at and below the depth of the chlorophyll maxima, where 

light is so low that it may strongly limit photosynthesis, GNCM organisms exhibit patterns 

similar to their heterotrophic counterparts, and experience less seasonal variability than 

in well-lit surface waters (Levinsen et al., 2000).  

NCM are a pivotal link between the nano-size primary producers and higher trophic levels. 

The ability to couple an acquired ability to photosynthesise with phagotrophy can give all 

NCM a competitive advantage over pure phototrophs or heterotrophs, and would likely 

booster the trophic transfer in specific environments and seasons. However, inclusion of 

NCM as separate functional groups in biomass-based ecosystems models requires 

suitable field data (as done by Leles et al., 2018, 2021). Challenges are related to 

identification of these organisms in field samples, because of their fragility, and because 

taxonomy is not often associated to a trophic description. In surveys based on 

morphological identification, special care must be taken during the collection of samples 

and transparent fixatives should be used in conjunction with the traditional Lugol´s 

solution. When molecular techniques are employed, updated literature should be 

examined to classify organisms based on their trophic mode. The main challenge in 

survey protocols, however, lies on the standardization of an analytical pipeline where 

samples can be processed by both approaches and their results combined. 
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