

PaNOSC

Photon and Neutron Open Science Cloud

H2020-INFRAEOSC-04-2018

Grant Agreement Number: 823852

Deliverable:

Prototype Remote Desktop and Jupyter Service (4.2)

Ref. Ares(2020)2754773 - 27/05/2020

2

Project Deliverable Information Sheet
Project Reference No. 823852
Project acronym: PaNOSC
Project full name: Photon and Neutron Open Science Cloud
H2020 Call: INFRAEOSC-04-2018
Project Coordinator Andy Götz (andy.gotz@esrf.fr)
Coordinating Organization: ESRF
Project Website: www.panosc.eu
Deliverable No: D4.2
Deliverable Type: Demonstrator
Dissemination Level Confidential, only for the members for the consortium

(including the Commission Services)
Contractual Delivery Date: Month 18
Actual Delivery Date:
EC project Officer: Rene Martins

Document Control Sheet
Document Title: Prototype Remote Desktop and Jupyter Service

Version: 1.0
Available at:
Files:

Authorship Written by: GREENWOOD Lottie (ESS), HALL Jamie (ILL), FANGOHR
Hans (EuXFEL), KLUYVER Thomas (EuXFEL), ROSCA Robert (EuXFEL)
Contributors: CAMPBELL Aidan (ESRF), DE SIMONE Marco (CERIC-
ERIC), FANGOHR Hans (EuXFEL), GALAL Kareem (ESS),
GREENWOOD Lottie (ESS), GROSZ Jakub (ELI), HALL Jamie (ILL),
KLUYVER Thomas (EuXFEL), LORENZON Andrea (CERIC-ERIC),
ROSCA Robert (EuXFEL), VINCENT Thomas (ESRF)
Reviewed by: BODERA SEMPERE Jordi (ESRF)
Approved: GÖTZ Andy (ESRF)

List of participants
Participant No. Participant organisation name Country

1 European Synchrotron Radiation Facility (ESRF) France

2 Institut Laue-Langevin (ILL) France

3 European XFEL (XFEL.EU) Germany

4 The European Spallation Source (ESS) Sweden

5
Extreme Light Infrastructure Delivery Consortium (ELI-
DC) Belgium

6 Central European Research Infrastructure Consortium
(CERIC-ERIC)

Italy

7 EGI Foundation (EGI.eu) The Netherlands

3

Table of Content
Project Deliverable Information Sheet 2

Document Control Sheet 2

List of participants 2

Table of Content 3

1.0 Introduction 4
2.0 Context 5

2.1 Motivation 5

2.2 Baseline: SSH Access for Cluster 6
3.0 Remote Jupyter Service 9

3.1 Jupyter Notebook 9

3.2 JupyterHub 10

3.3 Jupyter Service Prototype Status 10
3.4 Jupyter Service User Experience with Demonstrators 10

3.5 Technical Deployment 15

4.0 Remote Desktop Services 19
4.1 Remote Desktop 19

4.2 Remote Desktop Prototype Service Status 19

4.3 Remote Desktop User Experience with Demonstrators 19

4.3.1 ILL 20
4.3.2 ESS 25

4.3.3 CERIC-ERIC 26

4.3.4 ISIS 27
4.4 Technical Deployment 27

5.0 Towards a Harmonisation of Services 30

6.0 Summary 33

4

1.0 Introduction

Due to the increase in data produced by the facilities, an increasing amount of computer
power and storage space is required to manage and analyse said data. Remote data analysis
will enrich the services provided by European Open Science Cloud (EOSC): if users can explore
data from their web browser after having identified a data set of interest, this lowers the
barriers towards re-use of the data. Remote data analysis further benefits users and facilities
by enabling both pooling, and therefore more efficient use of compute resources, and reducing
the need for large data to be transferred.

The Work Package 4.2 deliverable is defined as the three proposed services (virtual machines,
remote desktop and Jupyter Notebooks) being available as a remote service via the internet.
They are required to have been created and deployed at one partner site minimum and serve
as prototypes for the data analysis services. This report covers the status of relevant remote
data analysis services at all facilities concerned and discusses how they meet the
requirements from the use cases proposed by the facilities.

In this document, we first provide the context for which remote data analysis services are
useful for researchers working on Photon and Neutron science (2.0 Context), and describe
Secure Shell as the de-facto standard for this (2.2 Baseline: SSH access for cluster). We then
have a dedicated section on the Remote Jupyter Service prototypes and demonstrator (3.0
Remote Jupyter Service) and another section on the Remote Desktop Service prototypes and
demonstrator (4.0 Remote Desktop Services). In each section, we comment on the status of
the service provision across the facilities, the user experience and discuss some aspects of the
deployment of the services. We close with a short discussion on the status and plans for the
harmonization of all these services (5.0 Towards a Harmonisation of Services) and then a brief
summary (6.0 Summary).

5

2.0 Context

2.1 Motivation

Remote data analysis is the ability to carry out numerical processing from a computer or laptop
far away from the (High Performance) computing centre that hosts the data and the computer
resources. In the context of Photon and Neutron research facilities, research scientists are the
users of the facility and carry out experiments either by physically visiting the facility or sending
in samples remotely. Remote data analysis is useful for a range of purposes, including:

 Online data analysis – Remote data analysis accessed during the active running of the
experiment. In this case the user is expected to already have a certain workflow and
software in place, and only make smaller changes during the experiment. This “online
analysis” is important to inform the rest of the experiment. An experiment can last
several days or a week. While some of the research team conducting the experiment
will be on site, they may be supported by further researchers who act as data experts
and can analyse the data while the experiment team sleeps, and the data experts can
do their work remotely (i.e. without having to travel to the facility).

 Offline data analysis – Remote data analysis that is necessary after the experiment. At
this point, the users have typically returned from the research facility to their home
institutions. This includes exploratory data analysis, when the user is trying to find the
best way to extract meaning from their data. This is less time sensitive than online data
analysis although the user may require quick feedback on smaller sizes of data initially,
before running larger analyses across all their experiment results.

 ‘Knowledge sharing’/ Tutorials – Requires that data analysis workflows can be shared

across users with a wide spectrum of expertise. This could range from software
scientists teaching users how to analyse their offline data, or beamline scientists
providing a template for easier analysis of online data for users. Remote data analysis
allows users to run examples with real data at the facility when they are not there in
person.

We list a number of software tools used in Photon and Neutron research in Table 1 (collected
from suggested use cases by facilities) and compare their compatibility with Jupyter Notebooks
and requirements for Graphical User Interfaces (GUIs).

6

Table 1 - Application use cases from facilities

2.2 Baseline: SSH Access for Cluster

The baseline provision of remote access to compute services is using secure shell (SSH), and all
facilities had this in place before this project started. SSH is a well-established character based
interface: commands can be entered and text can be displayed and edited. This works well and
can be used to access a supercomputer in Germany from a computer in Japan or the US using
the text-based SSH protocol (Figure 1).

Application Description
Usable in Jupyter

notebook
Graphical User
Interface (GUI)

PyMca X-ray powder diffraction analysis Yes Optional

Mantid Neutron scattering analysis
framework

Partly Required for full
functionality

SCI++
Library for handling multi-

dimensional data arrays similar to
xarray

Yes None

Sasview Small angle scattering analysis Partly Required

McStas Simulation for neutron scattering
experiments

Partly Optional

QENSmodels Models for fitting Quasi Elastic
Neutron Scattering data

Yes None

PyNX Tools for nano-structures
crystallography

Yes None

crispy
GUI for calculating core level

spectra
No Required

pyFAI
Fast Azimuthal integration using

python Yes Optional

7

Figure 1 - Example of text based access for submitting jobs to a cluster

However, the presentation of graphical information is not directly possible. SSH can be
combined with the use of a graphical interface (so called X-forwarding) where a graphical
desktop can be displayed and controlled remotely. However, the performance of this over the
Internet is suboptimal and generally not sufficient for graphical remote work across countries
and continents.

As outlined in the project’s proposal, we are investigating two technologies and approaches to
improve the possibilities and user experience of remote data analysis, and to expose the
computing and high performance computing resources of the research facilities, and later the
European Open Science Cloud, to a wider range of users; including those who cannot carry out
their work using a terminal connection.

One technology is based on browser driven Remote Desktop execution, i.e. the provision of
virtual machines that are tailored for particular data analysis tasks and which can be
controlled remotely through a web browser which hosts a graphical desktop interface. This is
the most generic approach for remote data analysis as any application currently used can be
hosted in the virtual machine and the ‘usual’ interface (be it graphical or command line) can be
displayed remotely in the browser. We thus take an environment that is already known to the
users from working at the facility, and make it accessible remotely. This technology is in
particular required for a range of legacy software tools and ready-made GUI based
applications.

The second technology is based on the Jupyter Notebook interface and data analysis being
carried out within a Jupyter notebook, which is executed within an appropriate software
context for the data analysis task at hand. This approach has advantages of being designed
for remote access, allowing users to access the service with the webbrowser of their choice on
their machine, and allowing better support of the FAIR principles through more intrinsic

8

reproducibility. While we predict the importance of this approach to grow, the notebook hosted
data analysis service is not usable for all data analysis requirements, and thus complementary
to the remote Desktop approach.

9

3.0 Remote Jupyter Service

3.1 Jupyter Notebook

The Jupyter Notebook itself is a web application that allows users to create and share
documents containing live code, equations, visualisations and descriptive text (Figure 2).
Jupyter notebooks are popular within the scientific community because of their ability to easily
share data analysis workflows presented in a clearly defined order.

Figure 2 - Jupyter notebook example

10

3.2 JupyterHub

JupyterHub provides a multiuser implementation of the Jupyter Notebook, enabling users to run
notebook servers on shared hardware. JupyterHub allows for user and resource management
by system administrators and can run using a variety of backends.

3.3 Jupyter Service Prototype Status

The current status of remote analysis services is shown in Table 2. All facilities have some form
of JupyterHub available, whether as a pilot or production service.
In terms of use cases, all facilities have data analysis packages that can be invoked via Jupyter
notebooks, with some (EuXFEL/CERIC-ERIC/ESS) expecting it to be available as part of the live
data analysis process.

Table 2 - Jupyter Service status at each facility

Facility
JupyterHub

Status Spawner

CERIC-ERIC Pilot Docker, Singleuser, Kubernetes,
Singularity

ELI Pilot Docker, Docker Swarm

ESS Pilot Kubernetes

ESRF Production Kubernetes, Slurm, Singleuser

ILL Pilot Sudo

EuXFEL Production Slurm, Singleuser

3.4 Jupyter Service User Experience with Demonstrators

In this section we discuss the experience of users interacting with a typical Jupyter service – the
demonstrator max-jhub – and include comments from the instrument scientists at EuXFEL
describing their experience with the service.

Max-jhub is a Jupyterhub service that has been in running in production at EuXFEL and DESY
since November 2018, seeing around 150-200 users per month. Together with the effort to
enable data analysis on this infrastructure, this is the demonstrator for Jupyterhub services
(D4.2 in WP4). It is available at https://max-jhub.desy.de.

11

User experience is described below. We show the entry point where a user can access a
webpage (Figure 3) and is able to select a particular resource type, dependent on their data
analysis requirements. They will then be able to create and execute Jupyter notebooks. An
example of this is shown in Figure 4, with part of a notebook which loads and visualizes some
analysis results. Throughout this process the user does not need to set up their own Jupyter
notebook server for secure remote access.

Figure 3 – Launch page of Maxwell Jupyterhub hosted at DESY/EuXFEL

12

Figure 4 – A notebook in use on max-jhub, examining results from a simulated crystallography
experiment

The benefits listed above are further emphasized in the following comments from instrument
scientists. It should be highlighted that in addition to the ease of use for less expert users, the
improvements for expert users are also mentioned – particularly the flexibility of adding to a
workflow for a Jupyter notebook, so that it can cover edge cases other standard applications
may not.

“I think the main advantage of max-jhub, in particular compared to direct access to maxwell

13

nodes, is its accessibility and significantly lower requirements of technical (e.g. SSH, linux
command-line, SLURM, etc) expertise.

I can attest to that from my own experience in 2018, where I first joined FLASH experiments
with more immediate computing needs as well as the first SASE3 EuXFEL experiments. Here, I
had significantly less expertise yet of SSH and working on remote machines. After trying out
remote IPython kernels for Spyder and tedious/fragile manual port forwarding, max-jhub made
my work significantly easier. It is directly accessible from the (outside!) internet, keeps the
session across days "automatically" and networks (beamline + hotel wifi) and still provides
ample computing power. At the time, only the jhub partition could be used, but as it was
relatively new, those nodes were largely empty. Looking back now, my proficiency in
configuring my software stack to my needs makes working on any node as easy as max-jhub.
However, I still use max-jhub regularly if all I want to do is take quick look at some previous
analysis, remake a plot or discuss over data.

The same applies now to other scientists I support. It is still comparably hard for lots of them to
grasp the Linux environment, in particular if they're used to work within Windows and pre-
compiled GUI software, and do all the things required to have a working conection to a
personal Jupyter. Being able to browse to a page, login, select your allocation and having a
running Jupyter notebook within seconds enables lots of these people to actually use maxwell
at all. Hence, if jupyterhub is not working, some of these colleagues may be unable to work at
all by themselves.” – Phillipp Schmidt

“If we agree that jupyter notebooks are extremely useful for data analysis—[..]—we should
distinguish between expert users and non-expert users of JupyterHub. I would define an expert
user as somebody who is comfortable with using the shell, working with python environments,
etc.

For expert users, JupyterHub is a convenient tool because it speeds up your workflow. With
just a few clicks you can spawn a jupyter server and start working. Moreover, it provides
configurations for more complex setups, e.g., using gpus for machine learning, etc. Although
you could in principle build your own configuration, you can be sure that the real experts (CAS-
DA) make sure that software is properly installed and configured on Maxwell so that you are
already good to go.

In case of non-expert users, in my opinion, JupyterHub is essential for conducting successful
experiments. First of all, it is super easy to use and lowers the slope of the initial learning curve,
which is anyway extremely steep. Secondly, the users can directly start to use example jupyter
notebooks, e.g., the ones you provide in the documentation of extra_data. Experience from MID
shows that basically all user groups—expert and non-expert users—started their data analysis

14

based on the jupyter notebooks I provided them. Thirdly, sometimes users are quite familiar
with jupyter notebooks because they are using them on their laptops, e.g., with Anaconda.
JupyterHub on Maxwell, therefore, allows them to work in a way they are already comfortable
with just by opening a browser. This makes it also easier for the beamline scientists because
we do not have to explain the users how to allocate a node, spawn a jupyter server, etc.” –
Mario Reiser

“I have two use cases:
1) fast online analysis of some aspect and during the experiment, which cannot be done with a
standard tool. Users at EuXFEL have a lot of freedom in designing their experiment. This
sometimes requires a non-standard analysis which is not covered by tools like EXtra-foam.
Here, Jhub can be a very convenient. I was moving back and forth between directly working on
Maxwell and Jhub depending on what exactly I want to do.
2) Offline data analysis. Currently I'm using Jhub mostly for analysis my FEL FLASH data. The
big advantage to me is, that I can share my notebook with colleagues at the university. They
are not experts in Python but Jhub helped a lot to make it easier for them. I setup python
environment for them and we can work more efficiently together. One nice feature for Jhub
would be, if one could share notebooks cross accounts easier.

Jhub makes it easy for non-expert users to get familiar with analysis FEL data. During my
beamtimes as PI at FLASH FEL, I first tried the show my team how to access maxwell directly
(via ssh etc) and install python analysis codes. This was a difficult task due to different
knowledge level, different computers (from mac, PC, Linux) and different python distributions.
During a later beamtime, I prepared the software environment on Jhub. Everything was
working right from the beginning.
I would strongly recommend to keep Jhub. Experiments at FEL can be very diverse and not all
aspects can be implemented in a separate tool. I would investigate ways to share jhub
notebooks easier between accounts and also ways, to access data from tools within jhub
notebook.” – Markus Scholz

“1. Documentation and reproducibility
We've been using jupyterhub-based analysis extensively during our beamtimes as well as
when writing reports, preparing talks and, of course, drafting publications. One thing I'd
certainly miss would be the convenient documentation of our work in (markup) text and
images. I just had to come back to analysis code from about a year ago to prepare a paper
submission and the combined code comments and dedicated markup cells make it much easier
to understand what we've been doing then. This directly extends to the journals trying to
enforce better reproducibility by asking us to make data and analysis code available as part of
our publications (which I think is a very important part of scientific credibility). My current
experience is, that journal editors are quite happy to get a well-formatted notebook with

15

figures and extensive explanations (that would obfuscate the actual code in the form of
comments). This makes it easier and less effort for us to comply to the journals' data/analysis
availability guidelines.

2. Collaboration
Notebooks are easy to prepare/modify for colleagues working on different aspects of the
analysis as well as for less experienced users, so that they can explore parts of the data on
their own. Especially for the latter group, starting a notebook server on max-jhub is a lower
hurdle compared to working on a bare console over ssh and gets them productive much
quicker.

At the same time, collaborative features are one thing that I think could be improved upon.
Using the jupyter git plugin helps with maintaining different versions of the notebooks among
several people, but sometimes a true (real-time) collaborative work flow would be very handy. I
personally haven't tested cocalc (https://cocalc.com/doc/jupyter-notebook.html) yet, but it
seems that something like that could be very useful.

I hope these thoughts are useful for your report. As I said before, the max-jhub service is
incredibly useful to our work and I'm very thankful to all of you offering and maintaining it as a
service!” – Michael Schneider

3.5 Technical Deployment
In this section we discuss different possibilities of deploying and running a JupyterHub
installation, and describe approaches of the different facilities to provide this service within
their given infrastructure and infrastructure constraints. This discussion is not specific to the
demonstrator, max-jhub, but aims to give an overview of the technology used for the range of
Jupyter services running at all participating facilities.

In the most basic form, JupyterHub can run on a single server. An example of this already exists
at the ESRF, where they have been providing single machine sudo-spawner based
JupyterHubs for two beamlines. One of these deployments has been running for over two years
in production. It is also possible to use a Docker-spawner for Jupyterhub, as is deployed in both
ELI Beamlines as a pilot for remote analysis of particle-in-cell simulations. Of the two
JupyterHub distributions supported by the JupyterHub community, one supports running on a
single server only, although it is recommended only to be used for under 100 users
(https://tljh.jupyter.org/).

https://cocalc.com/doc/jupyter-notebook.html

16

Figure 5 - JupyterHub server architecture

Pre-existing resource managers at facilities can be used for spawning new users notebook
servers – such as Kubernetes, Docker Swarm or Slurm. In this case users’ Jupyter instances
(Figure 5) can be distributed across multiple servers, and it is possible to take advantage of
already existing Graphics Processing Unit (GPU) or High-Performance Computing (HPC)
resources.

Several facilities have a JupyterHub set up using Kubernetes, either as a pilot for providing
scientists/users a place to do exploratory offline data analysis, and as part of tutorial
workshops for future users/collaborators (eg in ESS). The second JupyterHub distribution
supported by the Jupyterhub community is configured to work with a Kubernetes backend
(https://z2jh.jupyter.org/).
Docker swarm provides similar functionality to Kubernetes as a resource manager and is used
in ELI ALPS to provision notebook instances.

JupyterHub with user instances running in containers - such as with Kubernetes - can be
further extended with the repo2docker tool. This prepares a container image with the software
libraries needed to run a collection of notebooks, based on a requirements file saved alongside
the notebooks. This technology forms the basis of the public Binder service
(https://mybinder.org/). Binder offers anonymous, temporary access to run notebooks with no
persistent storage; this is not precisely what we want to offer, but its mechanisms to create
and manage container images are of significant interest for facilitating reproducible analysis.

Slurm, along with other batch job schedulers, can be used as the backend provider in the same
way as Kubernetes. In this case the user’s Jupyter instances are run as jobs on the cluster, and
provided the JupyterHub is configured correctly, users may request certain resources for their
instance, such as GPU, or a particular number of cores. EuXFEL currently have this setup

https://mybinder.org/

17

working in production as part of their ‘max-jhub’ service (Figure 3).

Other facilities, such as ESRF, have a pilot JupyterHub integrated with Slurm, and are expecting
to move it into production before the end of the year.
There is another option for integrating Jupyter Notebooks and Slurm – using python packages
such as dask_jobqueue or pyslurm it is possible to submit slurm jobs directly from the
notebook. For this workflow users are expected to do the visualisation within the notebook,
and only use the HPC cluster for heavier computation.

Such a configuration might work well for the case of McStas, an application for simulating
neutron scattering instruments and experiments. Part of the McStas workflow (generating the
instrument definition file) is relatively lightweight and can be done using a Jupyter notebook
with fewer resources, whilst the Monte Carlo simulations can require HPC level resources.
Therefore the most effective use of resources would be having the user mainly work on a
smaller Jupyter instance, whilst submitting specific parts of the workflow as jobs to the cluster.
This is shown in Figure 6.

18 Figure 6 Part of example McStas notebook demonstrating Instrument generation, submission of a cluster job and
visualizing the end result

19

4.0 Remote Desktop Services

4.1 Remote Desktop

A Remote Desktop Service offers a remote data analysis experience that appears as if the
display of a local computer is available remotely. This includes the window manager and
operating system.
A number of data analysis applications have a requirement for a GUI, or have only partial
functionality available from an API and can thus not be driven from a Jupyter Notebook. Users
may also be accustomed to a particular user interface, and not wish to move their workflow to
a Jupyter notebook. Whilst Jupyter notebooks can be considered more user friendly for
inexperienced users than the command line, a well-designed GUI probably has the lowest bar
of entry. For these use cases, we anticipate use of the Remote Desktop service for remote data
analysis.
There are a variety of technologies used to provide Remote Desktops within the facilities, the
main use cases of which are detailed below.

4.2 Remote Desktop Prototype Service Status

All facilities have a remote desktop service available, although in some facilities data analysis
is available as a pilot rather than production basis (See Table 3 for overview).
In terms of applications proposed as target use cases by facilities, some are only available via
a GUI, and others only provide full functionality when interacted with via a GUI.

Table 3 - Status of remote desktop service

Facility
Remote desktop

Status Technology

CERIC-ERIC Pilot
VNC, Guacamole, XPRA (X Persistent

Remote Applications)

ELI NA NA

ESS Pilot VNC

ESRF Production NoMachine

ILL Production VISA (XRDP, Guacamole)

EuXFEL Production FastX

4.3 Remote Desktop User Experience with Demonstrators

20

In this section we discuss the experience of users interacting with a remote desktop service,
and describe different approaches from facilities to provide this service, with focus on the
demonstrator.
When using a remote desktop to analyse data, the user experience for interacting with the
remote desktop itself is similar between all facilities. The differences in user experience occur in
how users access the remote desktop (by web browser, or desktop client), and their purpose
for doing so (covered in 2.1 Motivation).

4.3.1 ILL

Virtual Infrastructure for Scientific Analysis (VISA) is a remote desktop service in production at
ILL. It is proposed as the demonstrator for remote desktop services to fulfil the WP4.2
deliverable requirements and is available internally at https://visa.ill.eu/.

A typical remote desktop user experience can be demonstrated by VISA. A user authenticates
via a web page (Figure 7) and is able to request an instance (Figure 8). They are then able to
select which experiment data to analyse (Figure 10) and several other configuration options
(Figure 9 and 11). The virtual machine is deployed on request with access to the results data,
and with a set range of software preinstalled. Figure 13 shows the remote desktop view for
users.

There are several features available to enable knowledge sharing between proposal group
members. These include the ability to share a machine with another user (Figure 14) – either as
read-only, or full control and a planned chat room integration for ease of communication.
 The user does not need to manage the installation of scientific software, or configuration of
their machine and can instead focus on analysing their data. Two months after putting this
service into operation, the ILL reported an increasing number of users, with over 30 unique
users across the past few weeks, along with positive feedback.

The remote desktop service at ILL is currently only used for offline data analysis (after the
experiment), but there are plans to expand it to cover both online data analysis and to use prior
to the experiment for simulations.

21

Figure 7 - VISA Login screen

Figure 8 – VISA computer instance view for authenticated user

22

Figure 9 – VISA compute instance creation environment options

Figure 10 – VISA compute instance creation experiment selection

23

Figure 11 – VISA compute instance creation configuration options

Figure 12 - VISA authenticated user view with deployed instances

24

Figure 13 - VISA Remote Desktop view

Figure 14 - VISA remote desktop sharing options

25

4.3.2 ESS

The ESS provides an example of a pilot remote desktop service for online data. Remote
desktops would add value as a part of the reduction and live data pipeline that is under
development. Whilst the applications that handle data acquisition are command line only, the
data reduction application, Mantid (Figure 15), needs a remote desktop view to show relevant
graphs with count rates. Whilst not amalgamated into the live data pipeline as yet, some of the
data analysis applications that will be used after data reduction also need a remote desktop
available for full functionality.

For the pilot set up users are expected to download a desktop client to connect with the server,
although it is planned to be provided via the web browser in production.

Figure 15 - Mantid GUI showing reduced data at two time points after the data stream has started. Left - +60
seconds after data stream. Right: After all events have been received by Mantid (+306 seconds)

Figure 16 - Mantid instrument view of event data shown in Figure 15

26

4.3.3 CERIC-ERIC

CERIC-ERIC employs a custom solution for software remotization, developed in house in the
context of PaNOSC – ‘RAFEC’ (Remote Application For Edge Computing). This is a DAaaS
(data analysis as a service) Linux application and container based spawner. It is accessible via
a RESTful API and fully integrated in CERIC VUO (virtual unified office) at the Elettra site and
CERIC beamlines workstations. RAFEC acts as bridge for VUO between cloud resources and
edge devices with VUO managing the accounts and data access for users.

RAFEC differs from other remote desktop applications discussed within this section in that it
does not provide a desktop view from which the user then navigates, but instead directly
spawns specific applications. This ranges from Jupyter notebook containerized instances to
Linux programs such as PyMCA (an X-ray powder diffraction analysis tool). The software
applications are distributed and can reside on either the facility’s cluster resources (ie. ‘the
cloud’) or computers located at the facility’s beamlines. This means that data can be processed
using a local application with lower latencies. It also enables beamline control systems to be
accessible remotely as shown in Figure 17.

Figure 17 - RAFEC being used to access the beamline controls of the instrument TwinMic remotely

27

4.3.4 ISIS

ISIS, a facility participating in the sister ExPaNDS project, has a production remote desktop
service for online data. Their ‘data analysis as a service’ (ISIS DAaaS) runs on around 10
beamlines. In this set up users are provided with a virtual machine during the experiment.
Similarly to VISA, users are able to request an instance of a particular size via a web browser.
The machine is then deployed with access to the results data and a Jupyter Notebook single
user server is available, along with other relevant data analysis applications. ISIS reports that
the service currently sees 20-50 concurrent users and the main limiting factor is availability of
resource.

Figure 18 - ISIS Data Analysis as a Service deployment page

4.4 Technical Deployment

In this section we consider the technical details of some remote desktop services, their
deployment and configuration.

In the simplest form this would involve a machine with Virtual Network Computing (VNC)
server installed accessed via a desktop client. This is demonstrated by the ESS pilot service
where remote desktop machines are created on an adhoc basis. Virtual machines are deployed
manually via provisioning service (Foreman), and assigned specific roles in a configuration

28

management tool (Puppet), which then ensures the correct software applications are installed
and configured.

ILL’s VISA service (architecture shown in Figure 19) provides an example of more developed
virtual machine lifecycle and configuration management. Virtual machines are deployed when
users request them using OpenStack, a cloud computing platform - Figure 20 shows an
instance running within OpenStack. Instead of configuring the machine after provisioning,
prebaked images are built every night using a modified version of packer. There are plans to
increase the range of images available to cater for specific instrument fields that require
different data packages. For example, ISIS DAaaS provides several environments, with
different software installed, dependent on the experiment type. They also use OpenStack for
provisioning, but additionally use Ansible, a configuration management tool, to further
customise the image after deployment.

Figure 19 - VISA architecture

Figure 20 - ILL OpenStack showing VISA image spawning

Several facilities use Apache Guacamole so the user can access the remote desktop service via
their web browser. Guacamole is a clientless remote desktop gateway which supports multiple
standard remote desktop protocols such as VNC and Remote Desktop Protocol (RDP) (Figure

29

21).
 ILL has been using Guacamole and have reported positive feedback from users, in particular
direct access to their data, hardware resources, and pre-installed scientific software directly
from a web browser.
Whilst Guacamole is effective for the majority of use cases, insufficient performance has been
noted with workflows that require intense visualisations.
To mitigate this issue of performance using Guacamole the ILL decided, in the scope of the
PaNOSC project, to start developing their own protocol for remote desktop analysis. The new
development work has four main objectives:

1. Reduce the time spent processing and the memory footprint on our cloud resources;
2. Reduce the data being sent to the client by using a more efficient protocol;
3. Remove the layers of unnecessary abstraction that leads to a decrease in performance;
4. Aiming to ensure 60 fps but dynamically reducing the frame-rate and increasing the

compression ratio if the clients connection is not fast enough
A protocol developed purely for remote desktop analysis on the web should lead to better
performance (both on the server and client), less data transfer, reduced load on our cloud
resources and also open up the possibilities for applications that require efficient and quick
rendering. All of the development will be open-sourced to the wider community.

Figure 21 - Apache Guacamole overview

Whilst there are currently a wide variety of methods used between facilities for deployment of
resources, it is expected that there will be some convergence toward more homogenous
solutions that can work for all participating facilities. For instance, the ESS expects to move

30

toward using a cloud computing platform such as OpenStack, already used by ILL, or
something similar in scope.
This would indicate that one portal is able to manage remote desktop services across multiple
facilities, despite minor differences in methodologies.
The integration of these services into EOSC will be handled by collaboration between WP6
(EOSC Integration) and WP4.3 (EOSC integration and common portal for remote data analysis
services).

5.0 Towards a Harmonisation of Services
As is clear from the above overview each of the sites offer services at different levels of
maturity and are integrated into the local infrastructure on each site. Our approach towards a
harmonisation of these services is to develop a common portal that will be deployed at each
facility. The common portal will provide abstractions to the various different remote
technologies being used at each site.
Each portal instance provides the same user interface and very similar user experience at every
site. The portal software will translate user queries, such as search for a data set, or starting
the interactive exploration of a data set, into facility specific requests that can be executed on
the facility specific computing infrastructure.

Figure 22 illustrates that the portal, indicated by the PaNOSC logo, with its common look and
feel (pink box) acts as an adapter to access the required functionality that is implemented in
different ways at each facility.

For the integration with EOSC, we could imagine an additional instance of this portal that
directs queries to the facilities or a cloud computing resource according to the locality of the
data sets. The options are under investigation, and will depend on EOSC developments and the
results of Work Package 6.

31

Figure 22 - Each facility (as examples shown are ESRF, EuXFEL and ILL) has established computing infrastructure,
visualised through the different shapes, technologies and logos in the light blue box at the bottom. The PaNOSC
portal (represented as the PaNOSC logo in a box) in the middle section, acts as a translator from user requests to
facility specific compute instructions, while providing a common user experience.

The choice of computing infrastructure and access to data is still governed by each facility but
the portal interface and authentication (provided by WP6) will be common across all facilities.

We have defined an architecture specification for the portal [1] after having collected feedback
and use cases[2] from all of the partners. The portal is developed with joint input and
contributions from WP3.

32

Figure 23 - Mock up of Portal interface

33

6.0 Summary

We have discussed the status of remote desktop and Jupyter services across the photon and
neutron facilities in this project. All facilities now have a remote desktop and Jupyter service
available, either in pilot or production status. Facilities are reporting positive user feedback, and
in cases where services have been available for longer periods of time they have become a
well-established part of the users’ normal workflow. Users comment that they find that these
services make it easier for them to complete their data analyses, and to share their workflow
with others.

Whilst Jupyter services provide easily templated and sharable workflows, remote desktop
analysis services allow for access to all software tools, both legacy and GUI-requiring.
Together the two services complement each other, and cover the vast majority of use cases.

We have demonstrated prototypes for remote data analysis through the provision of software
environments that can be accessed through Jupyter Notebooks and Remote Desktop Graphical
interfaces. These provide a user interface (either the Jupyter notebook, or the GUI/UI of the
machine to which the remote desktop is connected) with the provision of a software
environment (either the container or environment in which the notebook executes, or the virtual
machine to which the remote desktop connects). Topics not addressed in this deliverable are
the authentication for these services, and data access. Authentication and data transfer are
being implemented in WP6 and will be adopted by the services in WP4 as soon as it is
operational.

In parallel, efforts are underway to offer remote analysis capabilities, such as remote Juptyer
notebooks for EOSC through EGI. The EGI Jupyter service has been tested successfully during
an online training for data analysis using X-ray Strain Orientation Calculation Software
(https://kmap.gitlab-pages.esrf.fr/xsocs/) on 1st April 2019 at the HERCULES European school
(http://hercules-school.eu/). Nine students participated, with trainers providing positive
feedback and indicating interest in using the service again in the future.

The availability of remote data analysis services is rapidly becoming essential with the
generalisation of remote experiments and remote access the new mode of operation in the
post-COVID-19 phase.

[1] https://confluence.panosc.eu/display/wp4/Common+Portal+Design
[2] https://confluence.panosc.eu/display/wp4/Common+Portal+Use+Cases

