A short description of the main differences
between JSBML and libSBML

Andreas Driager* Nicolas Rodriguez’ Alexander Dorr*

Marine Dumousseau’ Clemens Wrzodek™

Principal Investigators:
Nicolas Le Novere! Andreas Zell* and Michael Hucka*

February 4, 2011

JGBML

*Center for Bioinformatics Tuebingen, University of Tuebingen, Tiibingen, Germany
TEulropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
#Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California, USA

Contents

Contents
[1 An extended type hierarchy| 5
[l.I SBases with names, valuesand units| 5
(1.2 The MathContainer interfacel 10
(1.3 The Assignment interface| 11
[2__Ditferences In the abstract programming interface| 11
[2.1 ~Abstract syntax trees| 12
2.2 The ASTNodeCompilerclass|. 12
[2.3 Cloning when adding childnodes|. 13
2.4 Deprecation| e e e e e e e 13
2.5 Exceptions|. 13
2.6 Model history| 14
[2.7 Replacement of the interface 11bSBMConstants by Java enums| 14
: 14
14
15
15
15
16
17
3.1 Change events and listeners|. o L. 17
[3.2 Determination of the variable in AlgebraicRules| 18
[Open tasks in JSBML version 0.8.7 18
|A~ Frequently Asked Questions (FAQ)| 18
B How to use the JSBML module API 19

[B.1 An example of how to use libSBML for parsing SBML into JSBML data structures| 19
[B.2" An example of how to turn a JSBML-based application into a CellDesigner plug-in| 19

[References| 23
[ndex 25

JGML 3

Although the libraries JSBML and libSBML for working with files and data structures defined
in SBML (Systems Biology Markup Language) are very similar and share a common scope, users
should be informed about their major differences to help switch more easily from one library to the
other. To this end, the document at hand gives a brief overview of the main differences between the
Java™ application programming interfaces of both libraries.

In addition, JSBML can be used as a communication layer between the widespread application
CellDesigner and an application that works with JSBML as its internal data structure. This doc-
ument gives an example that demonstrates how to convert between CellDesigner’s plug-in data
structures and JSBML objects.

In the same way, it is possible to inter-convert between data structures obtained from libSBML
version 4.2.0 and JSBML version 0.8.* data structures. This document also provides an example
of how to read SBML files with libSBML, to turn them into JSBML data structures, manipulate
them and to turn it back for writing into the libSBML format.

Furthermore, JSBML provides a compatibility module, whose member classes show an identical
type declaration as defined in libSBML. In this way, the compatibility module facilitates switching
from libSBML to JSBML and vice versa by simply exchanging the included JAR file in the project.

1 An extended type hierarchy

Whenever multiple elements defined in at least one of the SBML specifications (Hucka et al.|
2003a, 2008}, 2010) share some attributes, JSBML provides a common superclass or at least a
common interface that gathers methods for manipulation of the shared properties. In this way,
the type hierarchy of JSBML has become more complex (see Figs. [] to [5] on pages [6HIT).
Just as in 1ibSBML (Bornstein et al.l 2008), all elements extend the abstract type SBase, but in
JSBML, SBase has become an interface. This allows more complex relations between derived
data types. In contrast to libSBML, SBase in JSBML extends three other interfaces: Cloneable,
Serializable, and TreeNode. As all elements defined in JSBML override the clone () method
from the class java.lang.Object, all JSBML elements can be deeply copied and are therefore
cloneable. By extending the interface Serializable, it is possible to store JSBML elements in
binary form without explicitly writing them to an SBML file. In this way, programs can easily load
and save their in-memory objects or send complex data structures through a network connection
without the need of additional file encoding and subsequent parsing. The third interface, TreeNode
is actually defined in Java’s swing package, it is a type independent of any graphical information.
It basically defines recursive methods on hierarchically structured data types, such as iteration over
all of its successors. In this way, all instances of JSBML’s SBase interface can be directly passed
to the swing class JTree and hence be easily visualized. Listing demonstrates in
a simple code example how to parse an SBML file and to immediately display its content on a
JFrame. Fig. shows an example output when applying the program from Listing[T on]
[page 7to SBML test model case00026. The ASTNode class in JSBML also implements all these
three interfaces and can hence be cloned, serialized, and visualized in the same way.

1.1 SBases with names, values and units

The SBML specifications define the data type SBase as the abstract supertype for all other SBML
elements (Hucka et al.| [2003a, 2008, 2010). In JSBML, SBase has become an interface and most
elements therefore extend its abstract implementation AbstractSBase.

Some types derived from SBase contain a unique identifier, an id. JSBML gathers all these ele-
ments under the common interface NamedSBase. The class AbstractNamedSBase, which extends
AbstractSBase implements this interface.

Many SBML elements represent some quantitative value, which is associated with a unit. How-
ever, the value does not necessarily have to be defined explicitly. In many cases, it needs to be
computed from a formula contained in the instance of SBase in form of an abstract syntax tree,
i.e., ASTNode. Therefore, also the associated unit may not be set explicitly but can be derived when
evaluating the formula. In JSBML, the interface SBaseWithDerivedUnit unifies all those ele-
ments that either explicitly or implicitly contain some unit. If these elements can also be addressed
using an identifier, they also implement the interface NamedSBaseWithDerivedUnit. Within
formulas, i.e., ASTNodes, references can only be made to instances of NamedSBaseWithDerive-
dUnit. Fig. shows this part of JSBML'’s type hierarchy in more detail.

JBML 5

1 An extended type hierarchy

Java data types

<<interface>>
SBase rr ASTNode
k4 R N

I \
’

<<interface>> "
<< >> Abstract
SBase interface:

WithDerivedUnit NamedSBase SBase

<<interface>> alioiviid Abstract SBML nit List
MathContainer 1 WithDerivedUnit NamedSBase Document of
P - - Abstract
. <<interface>> Abstract == <<interface>> Species Unit Simple Compartment
! NamedSBase
e Assignment MathContainer WithUnit Quantity Reaction Type Definition SpeciesReference Type Model
/
,)y
4 33—
4 S =
/
/| Kinetic Event Initial Function o Stoichiometry <<interface>> Modifier
' Law Assignment Assignment Definition Rule ; 7 Constraint Delay Priority Math Trigger Event Variable SpeciesReference
AY
\ A
. AN
S | N
Algebraic Local Species
Symbol
Rule Parameter G Reference
Rate Assignment
E H Compartment Parameter Species

Figure 1: The type hierarchy of the main SBML constructs in JSBML. With letting SBase implment the Java interfaces Clone-
able, Serializable, and TreeNode, all derived elements also implement these types. Elements colored in blue have been
introduced as additional, in most cases abstract, data types in JSBML but do not have a corresponding element in libSBML. The
yellow types Creator and History correspond to ModelCreator and ModelHistory in libSBML.

JGML

O 00 OB~ W

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24

1.1 SBases with names, values and units

package org.sbml.gui;

import javax.swing.*;
import org.sbml. jsbml.x*;

public class JSBMLvisualizer extends JFrame {

public JSBMLvisualizer (SBMLDocument document) {
super (document .isSetModel () 7 document.getModel().getId() : "SBML,
Visualizer");
getContentPane () .add(new JScrollPane(new JTree(document),
JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,
JScrollPane . HORIZONTAL_SCROLLBAR_AS_NEEDED)) ;
setDefaultCloseOperation (EXIT_ON_CLOSE);
pack () ;
setLocationRelativeTo (null);
setVisible (true) ;
}
/** Q@param args Expects a valid path to an SBML file. */
public static void main(String[] args) throws Exception {
UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName ());
new JSBMLvisualizer ((new SBMLReader ()).readSBML(args[0]));
}

Listing 1: Parsing and visualizing the content of an SBML file

JBML 7

1 An extended type hierarchy

Serializable Cloneable

| TreeNode

«interface»
SBaseChangedListener

annotation

L
, !)/ AbstractSBase 1
1 / - annotation : Annotation Annotation
| I - extensions : HashMap<String, SBase> ~ about : String
- — ~Iv: ValueP: eger, Integer> - H p<String, String>
cinterface» cinterface» - metald : String - extensions : HashMap<String, Annotation>
NamedSBase ‘SBaseWithDerivedUnit - - g - listOfcVTerms : List<CVTerm>
ﬂ “ 4 - notes : XMLNode - history : History
, \ ~ parentSBMLObject : SBase - otherAnnotation : StringBuilder
, \ - sboTerm : int - i S p<String, String>
Il \ # setOfListeners : Set<SBaseChangedListener>

1
1
|
1
1

0.* 0.1
N
! ~ K 0.1
' o jeuse» notes MIRIAM history
| Ny |2 4 !
\ “ SBO History

CVTerm

i - alias2sbo : Properties - - listOfModelCreators : LinkedList<Creator>
— : - qualifier : CVTerm.Qualifier = realors - e
-id : String NamedSBaseWithDerivedUnit - prefix : String XMLNode B :‘eswmeums - List<String> - listOfModification : LinkedList<Date>
- name : String - sbo : Ontology “ype: CVTemn Type - creation : Date

4! _ N - sho2alias : Properties - modified : Date

- \ ~
1 -7 | AN 0.*
1 - f ~ /creator
- N
' 1 \
- | \
Reaction | \ 1
[

- compartmentID : String | Creator

- fast : Boolean - FunctionDefinition ey

- kineticLaw : KineticLaw — il : String

- listOfMModifiers : ListO! i i Quantity -id : String - familyName : String
- listOfProducts : ListOf<SpeciesReference> - name : String - givenName : String
- listOf : ListOf<Specit - organisation : String

- rewersible : Boolean

0.*
modification

Figure 2: The interface SBase, adapted from (Dréger, |2011)). This figure displays the most impor-
tant top-level data structures of JSBML with main focus on the differences to libSBML. All other
data types that represent SBML constructs in JSBML extend either one of the two abstract classes
AbstractSBase or AbstractNamedSBase. The class SBO parses the ontology file provided on
the SBO web site (http://www.ebi.ac.uk/sbo/main/) in OBO format (Open Biomedical On-
tologies) using a parser provided by the BioJava project (Holland ef al., 2008). For the sake of a
clear arrangement, this figure omits methods, fields and other properties.

As a special case, these elements may declare a unit. The interface SBaseWithUnit serves as the
supertype for all those elements that may be explicitly equipped with a unit. The convenient class
AbstractNamedSBaseWithUnit extends AbstractNamedSBase and implements both interfaces
SBaseWithUnit and NamedSBaseWithDerivedUnit. All elements derived from this abstract
class may therefore declare a unit and can be addressed using a unique identifier.

In addition, the interface Quantity describes an element that is associated with a value and at
least a derived unit and which can be addressed using its a unique identifier. JSBML uses the term
QuantityWithUnit for a Quantity that explicitly declares its unit. In contrast to Quantity, the
data type QuantityWithUnit is not an interface, but an abstract class.

If a Quantity provides a Boolean switch to decide whether it describes a constant, JSBML lets
it implement the interface Variable. Finally, JSBML refers to Variables with a defined unit
as a Symbol and provides a corresponding abstract class. In this way, the SBML elements Com—
partment, Parameter, and Species are special cases of Symbol in JSBML. The specification
of SBML Level 3 introduces another type of Variable, which does not explicitly declare its unit:

g JSML

http://www.ebi.ac.uk/sbo/main/

1.1 SBases with names, values and units

«interface» «interface» AbstractSBase
SBaseWithDerivedUnit NamedSBase

P _- X

7 N_ 7 N
7 -~ 7N N
Ve -~ N N\
~ N N
«interface» «interface»
NamedSBaseWithDerivedUnit SBaseWithUnit | AbstractNamedSBase

X

cinterfacey AbstractNamedSBaseWithUnit
Quantity

4v /4\

- - «interface»
Slmp/eSpeesReference Variable | Quant/tlethUnlt UnitDefinition
1 JARIANY 1.*
! N ListOf
I \
I \
reference I \

0..*
Parameter | | Compartment outside
0..1

Figure 3: The interface Variable, adapted from (Dréger, [2011). JSBML refers to those compo-
nents of a model that may change their value during a simulation as Variables. The class Symbol
serves as the abstract superclass for variables that can also be equipped with a unit. Instances of
Parameter do not contain any additional field. In Species a Boolean switch decides whether its
value is to be interpreted as an initial amount or as an initial concentration. In contrast to Vari-
ables, LocalParameters represent constant unit-value pairs that can only be accessed within
their declaring KineticLaw.

JBML 9

1 An extended type hierarchy

«interface» «interface» «interface» «interface»
Cloneable Serializable TreeNode Dy SBase
-~ - == \4 - / \
v - 4 \
L ’ \
ASTNode / \

- denominator : int

- exponent : int

- listOfNodes : LinkedList<ASTNode>
- mantissa : double

- name : String «interface» _
- numerator : int SBaseWithDerivedUnit AbstractSBase
- parent : ASTNode ﬂ 4
- type : ASTNode.Type ,
- unitld : String , \
- variable : NamedSBaseWithDerivedUnit / N N
~ parentSBMLObject : MathContainer / N
/ \
: 0..n / \
0.1 | «call» variable // \
\
v 0.1 , |
th «interface» «interface» «interface»
ma ASTNodeCompiler NamedSBaseWithDerivedUnit MathContainer
I
L
AbstractMathContainer
- math : ASTNode

Figure 4: Abstract syntax trees, adapted from (Drager, [2011). The class AbstractMathCon-
tainer severs as the superclass for several model components in JSBML. It provides methods
to manipulate and access an instance of ASTNode, which can be converted to or read from C-like
formula Strings. Internally, AbstractMathContainers only deal with instances of ASTNode.
It should be noted that these abstract syntax trees do not implement the SBase interface, but also
implement the Java interfaces Cloneable, Serializable, and TreeNode. In this figure, the
inheritance relationship between SBase and Cloneable as well as between SBase and Serial-
izable has been omitted for the sake of simplicity.

SpeciesReference. On the other hand, a LocalParameter is a QuantityWithUnit, but not a
Variable, because it is always constant.

1.2 The MathContainer interface

This interface gathers all those elements that may contain mathematical expressions encoded in
abstract syntax trees (instances of ASTNode). The abstract class AbstractMathContainer serves
as actual superclass for most of the derived types. Figs.H|to[5|on pages[ITOHI1]give a better overview
of how this data structure is intended to function.

10 JSML

1.3 The Assignment interface

- N

dnterface» dnterface» cinterface»
AbstractSBase MathContamer I I e Uit l
-V [& B &

- \ - \

- 1
- - \
- 1 \

- I «interface»

-
«interface» «interface»
DerivedUnit ‘SBaseWithUnit

i AV [y 7 v\\

// -
4 < 1 N \
4 // I A /7
£ \

v
i 1

Abstract Initial Event \ Function , N

MathContainer Assignment Assignment \ Definition .

T <— 9! ig ,

~id : String / N

- name : String ’

- math : ASTNode - variablelD : String - variablelD : String \
4 [N W

’ KineticLaw

- listOfLocalParameters : ListOf<LocalParameter>
- substanceUnitsID : String

- timeUnitsID : String

Trigger

- initialValue : Boolean

- persistent : Boolean

- message : XMLNode

ListOf

ExplicitRule 1

variablelD - Sting [Agebrai] [
- unitsID : String

Stoichiometry
Math

[AssignmentRule] [RateRule]

Figure 5: MathContainer, adapted from (Dréger, [2011). Instances of the interface MathCon-
tainer, particularly its directly derived class AbstractMathContainer, constitute the superclass
for all elements that store and manipulate mathematical formulas in JSBML, which is done in form
of ASTNode objects. These can be evaluated using an implementation of ASTNodeCompiler. Note
that some classes that extend AbstractMathContainer do not contain any own fields or methods:
Delay, Priority, StoichiometryMath, or AlgebraicRule.

1.3 The Assignment interface

JSBML unifies all those elements that may change the value of some variable in SBML (Hucka
et al., [2003b) under the interface Assignment. This interface uses the term variable for the ele-
ment whose value is to be changed depending on some mathematical expression that is also present
in the Assignment (because Assignment extends the interface MathContainer). Therefore, an
Assignment contains methods such as set-/getVariable(Variable v) and also isSetVari-
able() as well as unsetVariable(). In addition to that, JSBML also provides the method
set-/getSymbol (String symbol) in the InitialAssignment class to make sure that switch-
ing from 1ibSBML to JSBML is quite smoothly. However, the preferred way in JSBML is to
apply the methods setVariable either with String or Variable instances as arguments. Fig. [3]
displays the type hierarchy of the Assignment interface in more detail.

2 Differences in the abstract programming interface

JSBML strives to attain an almost complete compatibility to libSBML. However, the differences in
the programming languages C++ and Java™ lead to the necessity of introducing some differences.

JSML 1

1

2 Differences in the abstract programming interface

Figure 6: A tree representation of
the content of SBML test model
case00026. In JSBML, the hier-
archically structured SBMLDocu-

2 OO case00026

— SBML Level 2 Wersion 4
= casel0026
= listofCompartments
compartment
= listofspecies
51
52
= listofParameters
k1
= listGfReactions
— reactionl
- listofReactants
sl
= listofProducts
52
= kineticLaw(reaction1) : compartment+k1+51
= compartment#k1#+S1
compartment
k1
Sl
= listGfEvents
- eventl
- 5Sl1<201
- 5S1=<201

51

ment can be traversed recursively
0.1
= listofEventAssignments

because all instances of SBase im-
. - 51=1
plement the interface TreeNode. 1

In some cases, a direct “translation” from C++ and C code to Java would not be very elegant.
JSBML wants to provide a Java API, whose classes and methods are structured and named and
behave like classes and methods in other Java libraries. In this section, we will discuss the most
important differences in the APIs of JSBML and libSBML.

2.1 Abstract syntax trees

Both libraries define a class ASTNode for in-memory manipulation and evaluation of abstract syntax
trees that represent mathematical formulas and equations. These can either be parsed from a rep-
resentation in C language-like Strings, or from a MathML representation. The JSBML ASTNode
provides various methods to transform these trees to other formats, for instance, IZTEX Strings. In
JSBML, several static methods allow easy creation of new syntax trees, for instance, the following
code

ASTNode myNode = ASTNode.plus(myLeftAstNode, myRightASTNode);

creates a new instance of ASTNode which represents the sum of the two other ASTNodes. In this
way, even complex trees can be easily manipulated.

2.2 The ASTNodeCompiler class

This interface allows users to create customized interpreters for the content of mathematical equa-
tions encoded in abstract syntax trees. It is directly and recursively called from the ASTNode class
and returns an ASTNodeValue object, which wraps the possible evaluation results of the interpre-
tation. JSBML already provides several implementations of this interface, for instance, ASTNode

12 JSML

2.3 Cloning when adding child nodes

objects can be directly translated to C language-like Strings, ISIEX, or MathML for further pro-
cessing. Furthermore, the class UnitsCompiler , which JSBML uses to derive the unit of an
abstract syntax tree, also implements this interface.

2.3 Cloning when adding child nodes

When adding elements such as a Species to a Model, libSBML will clone the object and add the
clone to the Model. In contrast, JSBML does not automatically perform cloning. The advantage is
that modifications on the object belonging to the original pointer will also propagate to the element
added to the Model. Furthermore, this is more efficient with respect to the run time and also
more intuitive. If cloning is necessary, users should call the clone() method manually. Since
all instances of SBase and also Annotation, ASTNode, CVTerm, and History implement the
interface Cloneable (see Fig. [T on page 6), all these elements can be naturally cloned. However,
when cloning an object in JSBML, such as an AbstractNamedSBase, all children of this element
will recursively be cloned before adding them to the new element. This is necessary, because the
data structures specified in SBML define a tree, in which each element has exactly one parental
node.

2.4 Deprecation

The intension of JSBML is to provide a Java library for the latest specification of SBML. Hence,
JSBML provides methods and classes to cover earlier releases of SBML as well, but these are often
marked as being deprecated to avoid creating models that refer to these elements.

2.5 Exceptions

Generally, JSBML throws more exceptions than libSBML, whose methods often return error codes
instead. This behavior helps programmers and users to avoid creating invalid SBML data struc-
tures already when dealing with these in memory. Examples are the ParseException that may
be thrown if a given formula cannot be parsed properly into an ASTNode data structure, or Inval-
idArgumentExceptions if inappropriate values are passed to methods. For instance,

e An object representing a constant such as a Parameter whose constant attribute has been
set to true cannot be used as the Variable element in an Assignment.

e An instance of Priority can only be assigned to an Events if its level attribute has at
least been set to three.

e Another example is the InvalidArgumentException that is thrown when trying to set an
invalid identifier String for an instance of AbstractNamedSBase.

Hence, you have to be aware of potential exceptions and errors when using JSBML, on the other
hand this will prevent you from doing obvious mistakes.

JSML 13

1

2 Differences in the abstract programming interface

2.6 Model history

In earlier versions of SBML only the model itself could be associated with a history, i.e., a descrip-
tion about the person(s) who build this model, including names, e-mail addresses, modification
and creation dates. Nowadays, it has become possible to annotate each individual construct of an
SBML model with such a history. This is reflected by naming the corresponding object History
in JSBML, whereas it is still called ModelHistory in libSBML. Hence, all instances of SBase in
JSBML contain methods to access and manipulate its History. Furthermore, you will not find the
classes ModelCreator and ModelCreatorList because JSBML gathers its Creator objects in
a generic List<Creator> in the History.

2.7 Replacement of the interface 1ibSBMConstants by Java enums

You won’t find a corresponding implementation of this interface in JSBML. The reason is that the
JSBML team decided to encode constants using the Java construct enum. For instance, all the fields
starting with the prefix AST_TYPE_* have a corresponding field in the ASTNode class itself. There
you can find the enum Type. Instead of typing 1ibSBMLConstants.AST_TYPE_PLUS, you would
therefore type ASTNode . Type . PLUS.

The same holds true for Unit.Kind. * corresponding to the 1ibSBMLConstants.UNIT_KIND_x
fields.

2.8 The classes 1ibSBML and JSBML

There is no class 1ibSBML because this library is called JSBML. You can therefore only find a
class JSBML. This class provides some similar methods as the 1ibSBML class in libSBML, such as
getJSBMLDottedVersion() to obtain the current version of the JSBML library, which is 0.8.*
at the time of writing this document. However, many other methods that you might expect to
find there, if you are used to libSBML, are located in the actual classes that are related with the
function. For instance, the method to convert between a String and a corresponding Unit.Kind
can be done by using the method

Unit.Kind myKind = Unit.Kind.valueOf (myString);

In a similar way, the ASTNode class provides a method to parse C-like formula Strings according
to the specification of SBML Level 1 (Hucka et al.,|2003a) into an abstract syntax tree. Therefore,
in contrast to the 1ibSBML class, the class JSBML contains only a few methods.

2.9 Various types of List0f* classes

In JSBML the ListOf* objects do not offer a method get (String id) because their generic
implementation List0f<? extends SBase> excepts also elements that do not necessarily have
an identifier. Only instances of NamedSBase may have the fields identifier and name set. Hence,

14 JSML

2.10 Units

generally, the ListOf class cannot assume these fields to be present. To query an instance of
List0f in JSBML for names or identifiers or both, you can apply the following filter:

NamedSBase nsb = myList.firstHit(new NameFilter (identifier));

This will give you the first element in the list with the given identifier. Various filters are already
implemented, but you can easily add your customized filter. To this end, you only have to im-
plement the Filter interface in org.sbml. jsbml.util.filters. There you can also find an
OrFilter and an AndFilter, which take as arguments multiple other filters. With the SBOFil-
ter you can query for certain SBO annotations (Le Novere, [2006; Le Novere et al.,|2006) in your
list, whereas the CVTermFilter helps you to identify SBase instances with a desired MIRIAM
(Minimal Information Required In the Annotation of Models) annotation (Le Novere et al., [2005).
For instances of List0f<Species> you can apply the BoundaryConditionFilter to look for
those species that operate on the boundary of the reaction system.

2.10 Units

Since SBML Level 3 (Hucka et al.,|2010) the data type of the exponent attribute in the Unit class
has been changed from int to double values. JSBML reflects this in the method getExponent ()
by returning double values only. For a better compatibility with libSBML , whose corresponding
method still returns int values, JSBML also provides the method getExponentAsDouble (). This
method returns the value from the getExponent () method and is therefore absolutely redundant.

2.11 Unit definitions
2.11.1 Predefined unit definitions

A model in JSBML always also contains all predefined units in the model if there are any, i.e.,
for models encoded of SBML versions before Level 3. These can be accessed from an instance of
model by calling the method getPredefinedUnit (String unit).

MIRIAM annotations (Le Novere et al., 2005) have become an integral part of SBML mod-
els since Level 2 Version 2. Recently, the Unit OntologyE] (UO) has been included in the set of
supported ontology and online resources of MIRIAM. Since all the predefined units in SBML
have corresponding entries in the UO, JSBML automatically equips those predefined units with
the correct MIRIAM URI in form of a controlled vocabulary term (CVTerm) if the Level/Version
combination of the model supports MIRIAM annotations.

Note that the enum Unit.Kind also provides methods to directly obtain the entry from the UO
that corresponds to a certain unit kind and also to generate MIRIAM URIs accordingly. In this
way, JSBML facilitates the annotation of user-defined units and unit definitions with MIRIAM-
compliant information.

"http://www.obofoundry.org/cgi-bin/detail.cgi?id=unit

JBML 15

http://www.obofoundry.org/cgi-bin/detail.cgi?id=unit

2 Differences in the abstract programming interface

2.11.2 Access to the units of an element

In JSBML, all SBML elements that can be associated with some unit implement the interface
SBaseWithUnit. This interface provides methods for direct access to an object representing their
unit. Currently, the following elements implement this interface:

o AbstractNamedSBaseWithUnit
e ExplicitRule
e KineticLaw

Fig.[T on page 6|provides a better overview about the relationships between all the classes explained
here. Note that AbstractNamedSBaseWithUnit serves as the abstract superclass for Event and
QuantityWithUnit. In Event, all methods to deal with units are already deprecated because
only in SBML Level 1 Versions 1 and 2 (Hucka ef al.,|2003a) Events could be explicitly equipped
with units. The same holds true for instances of ExplicitRule and KineticLaw, which both
can only explicitly be populated with units for SBML in Level 1, Versions 1 and 2. In contrast,
QuantityWithUnit serves as the abstract superclass for LocalParameter and Symbol, which is
then again the super type of Compartment, Species, and (global) Parameter.

With SBaseWithUnit being a subtype of SBaseWithDerivedUnit users can access the units
of such an element in two different ways:

getUnit () This method returns the String of the unit kind or the unit definition in the model
that has been directly set by the user during the life time of the element. If nothing has been
declared, an empty String will be delivered.

getDerivedUnit () This method gives either the same result as getUnit () if some unit has
been declared explicitly, or it returns the predefined unit of the element for the given SBML
Level/Version combination. Only if neither a user-defined nor a predefined unit is available,
this method returns an empty String.

Both methods have corresponding methods to directly obtain an instance of UnitDefinition for
convenience.

However, care must be taken when obtaining an instance of UnitDefinition from one of the
classes implementing SBaseWithUnit because it might happen that the model containing this
SBaseWithUnit does actually not contain the required instance of UnitDefinition and the
method returns a UnitDefinition that has just been created for convenience from the infor-
mation provided by the class. It might therefore be useful to either check if the Model contains this
UnitDefinition or to add it to the Model.

In case of KineticLaw it is even more difficult, because SBML Level 1 allows to separately set
the substance unit and the time unit of the element. To unify the API, we decided to also provide
methods that allow the user to simply pass one UnitDefinition or its identifier to KineticLaw.
These methods then try to guess if a substance unit or time unit is given. Furthermore, it is possible

16 JSML

to pass a UnitDefinition representing a variant of substance per time directly. In this case, the
KineticLaw will memorize a direct link to this UnitDefinition in the model and also try to save
separate links to the time unit and the substance unit. However, this may cause a problem if the
containing Model does not contain separate UnitDefinitions for both entries.

Generally, this approach provides a more general way to access and to manipulate units of SBML
elements.

3 Additional features of JSBML

The JSBML library also provides some features that cannot be found in libSBML. This section
briefly introduces its most important additional capabilities.

3.1 Change events and listeners

JSBML introduces the possibility to listen to change events in the life of an SBML document. To
benefit from this advantage, simply let your class implement the interface SBaseChangedLis-
tener and add it to the list of listeners in your instance of SBMLDocument. You only have to
implement three methods

sbaseAdded (SBase sbase) This method notifies the listener that the given SBase has just been
added to the SBMLDocument

sbaseRemoved (SBase sbase) The SBase instance passed to this method is no longer part of
the SBMLDocument as it has just been removed.

stateChanged (SBaseChangedEvent event) This method provides detailed information about
some value change within the SBMLDocument. The object passed to this method is an
SBaseChangedEvent, which provides information about the SBase that has been changed,
its property whose value has been changed (this is a String representation of the name of
the property), along with the previous value and the new value.

With the help of these methods, you can keep track of what your SBMLDocument does at any time.
Furthermore, one could consider to make use of this functionality in a graphical user interface,
where the user should be asked if he or she really wants to delete some element or to approve
changes before making these persistent. Another idea of using this, would be to write log files of
the model building process automatically. To this end, JSBML already provides its implementation
SimpleSBaseChangedListener, which notifies a logger about each change.

Note that the class SBaseChangedEvent implements the class java.util.EventObject and
that the interface SBaseChangedListener extends the interface java.util.EventListener. In
this way, the event and listener data structures fit into the common Java API (Application Program-
ming Interface) and allow users also to make use of, e.g., EventHandlers to deal with changes
in a model. It should also be noted that SBaseChangedListeners only keep track of changes in

JSML 17

A Frequently Asked Questions (FAQ)

instances of SBase directly. This means that changes inside of, e.g., CVTerm or History may not
be traced.

3.2 Determination of the variable in AlgebraicRules

The class OverdeterminationValidator in JSBML provides methods to determine if a model
is over determined. This is done using the algorithm of |Hopcroft and Karp| (1973). While doing
that, it also determines the variable element for each AlgebraicRule if possible. In JSBML,
AlgebraicRule even provides a method getDerivedVariable () to directly obtain a pointer to
its free variable.

4 Open tasks in JSBML version 0.8.*

JSBML does not yet provide a complete validator for SBML.

The number of tests files is currently limited; needed are both both tests from the libSBML
Java API and some new tests.

The documentation could be improved.
The support for SBML Level 3 should be completed, particularly extension packages.

The getTypeCode () methods are missing because due to the getClass () methods in each
element these are actually not neede when working with Java.

The toSBML () methods in SBase are still missing.
Constructors and methods with namespaces are not yet provided.

The libSBML compatibility module could be improved.

A Frequently Asked Questions (FAQ)

Why does the class LocalParameter not inherit from Parameter? The reason is the Boolean

18

attribute constant, which is present in Parameter and can be set to false. A parameter in
the meaning of SBML is not a constant, it might be some system variable and can therefore
be the subject of Rules, Events, InitialAssignments and so on, i.e., all instances of As-
signment, whereas a LocalParameter is defined as a constant quantity that never changes
its value during the evaluation of a model. It would therefore only be possible to let Param-
eter inherit from LocalParameter but this could lead to a semantic misinterpretation.

JGNL

B How to use the JSBML module API

JSBML can also be used as a communication layer between your application and libSBML (Born-
stein et al., |2008)) or the program CellDesigner (Funahashi et al., 2003). Furthermore, a compat-
ibility module provides the same package structure as it is provided by libSBML. In this section,
we will give small code examples of how to make use of these modules.

B.1 An example of how to use libSBML for parsing SBML into JSBML data
structures

The capabilities of the SBML validator constitute the major strength of libSBML (Bornstein et al.}
2008) in comparison to JSBML, whose SBML validation is not yet fully implemented. Further-
more, if the platform-dependency of 1ibSBML does not hamper your application, or you want to
slowly switch from libSBML to JSBML, you may want to be able to still read and write SBML
models using libSBML. To this end, the JSBML module 1ibSBMLio provies the classes LibSBML-
Reader and LibSBMLWriter. Listing [2 on the next page| gives a small example of how to use the
LibSBMLReader. For this example to run, please make sure to have libSBML installed correctly
on your system. The current version of the libSBML/JSBML interface at the time of writing this
document requires libSBML version 4.2.0. To this end, you may have to set environment variables,
e.g., the LD_LIBRARY _PATH under Linux operating system, appropriately. For details, see the doc-
umentation of libSBMI_El Writing SBML works similarly. This example will display the content

of an SBML file in a JTree, similar as shown in Fig.

B.2 An example of how to turn a JSBML-based application into a CellDesigner
plug-in

Once an application has been implemented based on JSBML, it can easily be accessed from Cell-
Designer’s plug-in menu (Funahashi ef al.,[2003). To this end, it is necessary to extend two classes
that are defined in CellDesigner’s plug-in API (Application Programming Interface). The List-
ings [3|to[d on pages 2TH22|show a very simple example of how to pass CellDesigner plug-in model
data structures to the translator in JSBML, which creates then a JSBML Model data structure. The
examples described by Listings [3|to[d on pages[2TH22] create a plug-in for CellDesigner, which dis-
plays the SBML data structure in a tree, like the example in Fig. This example only
shows how to translate a plug-in data structure from CellDesigner into a corresponding JSBML
data structure. With the help of the class PluginSBMLWriter it is possible to notify CellDesig-
ner about changes in the model data structure. Note that Listing is only completed
by implementing the methods from the superclass. In this example it is sufficient to leave the
implementation open.

Zhttp://sbml.org/Software/1ibSBML

JSML 19

http://sbml.org/Software/libSBML

0NN R WD~

[NO Y N Y S U G G g G Y
— O VO R WD = OO

B

How to use the JSBML module API

VEXS
* Q@param args the path to a valid SBML file.
*/

public static void main(Stringl[] args) {
try {

// Load 1ibSBML:

System.loadLibrary ("sbmlj");

// Extra check to be sure we have access to 1libSBML:
Class.forName("org.sbml.libsbml.libsbml") ;

// Read SBML file using 1ibSBML and convert it to JSBML:

LibSBMLReader reader = new LibSBMLReader () ;
SBMLDocument doc = reader.convertSBMLDocument (args[0]);

// Run some application:
new JSBMLvisualizer (doc);

} catch (Throwable e) {
e.printStackTrace () ;
}
}

Listing 2: A simple example for a converting libSBML data structures into JSBML data objects

20

JGML

[BN e Y R N O R S

[OST NS T NS T NG T 1 I NS T NS T NS R S B N B S e i e
SOOI PHA WD OOV ITANWN PR WD~ O\

B.2 An example of how to turn a JSBML-based application into a CellDesigner plug-in

package org.sbml.jsbml.cdplugin;

import java.awt.event.ActionEvent;
import javax.swing.JMenultem;
import jp.sbi.celldesigner.plugin.PluginAction;

/** A simple implementation of an action for a CellDesigner plug-in */
public class SimpleCellDesignerPluginAction extends PluginAction {

private SimpleCellDesignerPlugin plugin;

/** Constructor memorizes the plug-in data structure. */

public SimpleCellDesignerPluginAction(SimpleCellDesignerPlugin plugin) {
this.plugin = plugin;

}

/**x Executes an action if the given commant occurs. */
public void myActionPerformed(ActionEvent ae) {
if (ae.getSource() instanceof JMenultem) {
String itemText = ((JMenultem) ae.getSource()).getText();
if (itemText.equals(SimpleCellDesignerPlugin.ACTION)) {
plugin.startPlugin();
}
} else {
System.err.printf ("Unsupported,sourceof action%s\n", ae
.getSource () .getClass () .getName ());

Listing 3: A simple implementation of CellDesigner’s abstract class PluginAction

JGML 21

[IR e R R N O R

el e el el
N=lic BN Be NV B S N e =

20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48

B How to use the JSBML module API

package org.sbml.jsbml.cdplugin;

import javax.swing.*;

import jp.sbi.celldesigner.plugin.x*;
import org.sbml.jsbml.x*;

import org.sbml.jsbml.gui.x*;

/** A very simple implementation of a plug-in for CellDesigner. x/
public class SimpleCellDesignerPlugin extends CellDesignerPlugin {

public static final String ACTION = "Display,full model tree";
public static final String APPLICATION_NAME = "Simple_ Plugin";

/**% Creates a new CellDesigner plug-in with an entry in the menu bar. */
public SimpleCellDesignerPlugin() {

super () ;

try {
System.out.printf ("\n\nLoading,,%s\n\n", APPLICATION_NAME);
SimpleCellDesignerPluginAction action = new

SimpleCellDesignerPluginAction(this);
PluginMenu menu = new PluginMenu (APPLICATION_NAME);
PluginMenultem menultem = new PluginMenuItem (ACTION, action);
menu.add (menultem) ;
addCellDesignerPluginMenu (menu) ;
} catch (Exception exc) {
exc.printStackTrace ();

/** This method is to be called by our CellDesignerPluginAction. */
public void startPlugin() {
PluginSBMLReader reader = new PluginSBMLReader (getSelectedModel (), SBO
.getDefaultPossibleEnzymes ());
Model model = reader.getModel();
SBMLDocument doc = new SBMLDocument (model.getLevel(), model
.getVersion());
doc.setModel (model) ;
new JSBMLvisualizer (doc);

// Include also methods from superclass, not needed in this example.
public void addPluginMenu() { }
public void modelClosed(PluginSBase psb) { }
public void modelOpened(PluginSBase psb) { }
public void modelSelectChanged (PluginSBase psb) { }
public void SBaseAdded(PluginSBase psb) { }
public void SBaseChanged(PluginSBase psb) { }
public void SBaseDeleted(PluginSBase psb) { }
}

Listing 4: A simple example for a CellDesigner plug-in using JSBML as a communication layer

2 JGBML

References

Bornstein, B. J., Keating, S. M., Jouraku, A., and Hucka, M. (2008). LibSBML.: an API Library
for SBML. Bioinformatics, 24(6), 880-881.

Driger, A. (2011). Computational Modeling of Biochemical Networks. Ph.D. thesis, University of
Tiibingen, Sand 1, 720726 Tiibingen.

Funahashi, A., Tanimura, N., Morohashi, M., and Kitano, H. (2003). CellDesigner: a process
diagram editor for gene-regulatory and biochemical networks. BioSilico, 1(5), 159-162.

Holland, R. C. G., Down, T., Pocock, M., Prli¢, A., Huen, D., James, K., Foisy, S., Driger, A.,
Yates, A., Heuer, M., and Schreiber, M. J. (2008). BioJava: an Open-Source Framework for
Bioinformatics. Bioinformatics, 24(18), 2096-2097.

Hopcroft, J. E. and Karp, R. M. (1973). An n°/? algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2, 225.

Hucka, M., Finney, A., Sauro, H., and Bolouri, H. (2003a). Systems Biology Markup Language
(SBML) Level 1: Structures and Facilities for Basic Model Definitions. Technical Report 2, Sys-
tems Biology Workbench Development Group JST ERATO Kitano Symbiotic Systems Project
Control and Dynamical Systems, MC 107-81, California Institute of Technology, Pasadena, CA,
USA.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein,
B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor,
V., Goryanin, I. 1., Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H. S., Hunter, P. J., Juty, N. S.,
Kasberger, J. L., Kremling, A., Kummer, U., Le Novere, N., Loew, L. M., Lucio, D., Mendes, P.,
Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff,
J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M.,
Wagner, J. M., Wang, J., and the rest of the SBML Forum (2003b). The systems biology markup
language (SBML): a medium for representation and exchange of biochemical network models.
Bioinformatics, 19(4), 524-531.

Hucka, M., Finney, A., Hoops, S., Keating, S. M., and Le Novere, N. (2008). Systems biology
markup language (SBML) Level 2: structures and facilities for model definitions. Technical
report, Nature Precedings.

Hucka, M., Bergmann, F. T., Hoops, S., Keating, S. M., Sahle, S., Schaff, J. C., Smith, L. P., and
Wilkinson, D. J. (2010). The Systems Biology Markup Language (SBML): Language Specifi-
cation for Level 3 Version 1 Core. Technical report, Nature Precedings.

Le Novere, N. (2006). Model storage, exchange and integration. BMC Neuroscience, 7 Suppl 1,
S11.

JBML %

References

Le Novere, N., Finney, A., Hucka, M., Bhalla, U. S., Campagne, F., Collado-Vides, J., Crampin,
E. J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B. E., Snoep, J. L.,
Spence, H. D., and Wanner, B. L. (2005). Minimum information requested in the annotation of
biochemical models (MIRIAM). Nature Biotechnology, 23(12), 1509-1515.

Le Novere, N., Courtot, M., and Laibe, C. (2006). Adding semantics in kinetics models of biochem-
ical pathways. In C. Kettner and M. G. Hicks, editors, 2"¢ International ESCEC Workshop on

Experimental Standard Conditions on Enzyme Characterizations. Beilstein Institut, Riidesheim,
Germany, pages 137-153, Riidessheim/Rhein, Germany. ESEC.

2 JSML

Index

BTEX, [T T3
ASTNode, 5} [T0} [T2HT4]

ASTNode . Type,[14]
ASTNodeCompiler,[12]
ASTNodeValue,[12]
AST_TYPE_x,[[4]
c++,[17]
Compartment, 8] [I6]
InitialAssignment, [T} [I§]
KineticLaw,[16]
List0fx*,[14]

Filter,[13]
LocalParameter, |10} [T6] [T§]
Object, 3]

Parameter,[8] [13} [16] [18]
SBase,[3]

AbstractNamedSBaseWithUnit,[§]
AbstractNamedSBase, 5} [§} [13]
AbstractSBase,[3|
NamedSBaseWithDerivedUnit,[3[§]
NamedSBase,[3] [14]
SBaseWithDerivedUnit, [[16]
SBaseWithUnit, 8] [I6]
getTypeCode (),
toSBML (),

Serializable,[3

String,[T7]
Empty, [T6]
Formula, [T2H14]
Identifier, [T1]

Unit, [T4] [16]

1ibSBML, [14]

Annotation, [13] [T3]
CVTerm,[13][18]
History, [13] [14}[18]

ModelCreator,[14]
ModelHistory,[14]

MIRIAM, [[3]

SBO,[T3]
Unit ontology, [13]

Application programming interface

CellDesigner, [T9]

Java,[T2}[17]
JSBML, 5} [12}[T6]
libSBML, 5 [12[T8]

Boolean, [8] [18§]

CellDesigner

PluginAction,[I9]
Plug-in, [T9]

Cloning, [5} [[3]
Constant, [8] [T0} [T3] [18]

enum,[14]

Event, [16]

EventHandler,[17]
EventListener,[I7]
EventObject,

Event, [13} [T§]

Priority,[I3]

SBaseChangedEvent, [T7]
SBaseChangedListener,
SimpleSBaseChangedListener,

Exception, T3]

InvalidArgumentException,[I3]
ParseException,|[I3]
Error codes, [13|

Graphical user interface,

JFrame, [3]
JTree,[3

swing, 9]

JSBML

Assignment, [T} [I§]

25

Index

JSBML, [14] XML file, 3]
LibSBMLReader, [[9] Species, [16]
LibSBMLWriter,[T9] Species, 8] [[3]
MathContainer, 10 [T1] Boundary condition, [I5]
OverdeterminationValidator,[I§| '

QuantityWithUnit, [} [T0}[T6] Unit,[15]

Quantity, String, [T4}[T6]
Symbol,@@ UNIT_KIND_x* @
Variable, 8] [T1} [13] 18] Unit.Kind, [[4} [T3

UnitsCompiler,[I3]

As communication layer, [T9] MIRIAM on I3
annotation,

Deprication, [I3]
Type hierarchy, [3]
Version, [14]

libSBML

LD_LIBRARY _PATH,[19
Compatibility module, [T8] [T9]
Version, [T9]

Logging

Log file,[T7]

MathML, [12] [13]
Model, [T6HTS]

Model,[16} 17, [19]
CellDesigner, [19]

Over determination, [T8]

Operating system, [T9]
Rule, [T§]

AlgebraicRule,[I§]
ExplicitRule,[I6]

SBML, 3 [T1} 13} [T4]

26

SBMLDocument, [T7]
Extension packages,
Hierarchical structure, [13]

Level 1,[14] [16]
Level 2 Version 2, [15]

Level 3,8} [T3] T3] [18]

Test cases, [3]
Validator, [T9]

JGML

	1 An extended type hierarchy
	1.1 SBases with names, values and units
	1.2 The MathContainer interface
	1.3 The Assignment interface

	2 Differences in the abstract programming interface
	2.1 Abstract syntax trees
	2.2 The ASTNodeCompiler class
	2.3 Cloning when adding child nodes
	2.4 Deprecation
	2.5 Exceptions
	2.6 Model history
	2.7 Replacement of the interface libSBMConstants by Java enums
	2.8 The classes libSBML and JSBML
	2.9 Various types of ListOf* classes
	2.10 Units
	2.11 Unit definitions
	2.11.1 Predefined unit definitions
	2.11.2 Access to the units of an element

	3 Additional features of JSBML
	3.1 Change events and listeners
	3.2 Determination of the variable in AlgebraicRules

	4 Open tasks in JSBML version 0.8.*
	A Frequently Asked Questions (FAQ)
	B How to use the JSBML module API
	B.1 An example of how to use libSBML for parsing SBML into JSBML data structures
	B.2 An example of how to turn a JSBML-based application into a CellDesigner plug-in

	References
	Index

