University of Warsaw
Interdisciplinary Center for Mathematical
and Computational Modeling

Jakub Jalowiec
Student no. 358817

Evaluation of the Linked Data
approach to curation and processing
of data in epidemiology

Master’s thesis
in COMPUTATIONAL ENGINEERING

The thesis was written under the supervision of:

Marek Michalewicz, Ph.D.
Interdisciplinary Center for Mathematical
and Computational Modeling

Piotr Bala, professor, Ph.D.

Interdisciplinary Center for Mathematical
and Computational Modeling

Warsaw, December, 2021






Abstract

This thesis aims to provide practical insights into the Linked Data approach to epidemi-
ology. The insights are based on the preliminary results of a real-world study at the Pedi-
atric Hospital of the Medical University of Warsaw which was concerned with investigating
various medical and social risk factors on COVID-19 severity in children and SARS-CoV-2
spread dynamics. The thesis delivers results regarding the influence of various comorbidities
on COVID-19 severity, based on a case of 90 patients of the Hospital, and establishes that
metabolic disorders had a statistically significant influence on the hospitalization length in
the observed sample (alpha = 0.05). It discusses the role of Linked Data in obtaining that
result and presents ways to reuse that approach to enable similar studies. An overview of
the theoretical framework for the paradigm is presented and its practical implications are dis-
cussed. Additionally, the thesis provides a technical report of the implemented data processing
pipeline.
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Chapter 1

Introduction

According to World Health Organization, coronavirus disease (COVID-19) is an "infectious
disease caused by the SARS-CoV-2 virus" [I]. Since the virus identification in late December
2019, the COVID-19 outbreak has had an immense impact on all aspects of everyday life.
The disease most commonly manifests itself with a fever, cough, tiredness and loss of taste or
smell [I]. In addition, it typically has a relatively high transmission risk and a few days-long
latency phase.

1.1. The COVID-19 pandemic

In general, the primary route of spreading the virus is via direct person-to-person respiratory
transmission where personal protective equipment is not used. Common circumstances of
transmission include same-household contacts and healthcare settings like hospitals and long-
term care facilities [2]. In addition, both children and adults can contract the virus, become
symptomatic and infect others. Nevertheless, COVID-19 infections among children seem to
be less severe and their mortality lower when compared to adults [3].

The World Health Organization estimates that as of the 10th December 2021, there have
been over 267 million confirmed cases of COVID-19, including over 5 million deaths glob-
ally [4]. However, the COVID-19 pandemic is more than a health crisis. It profoundly affects
societies and their economies, contributing to the shrinking of Gross Domestic Product (GDP)
and a general increase in poverty and social inequalities [5]. Consequently, understanding how
the disease spreads, introducing prevention and developing potential COVID-19 therapeutics
have become global priorities.

1.2. The epidemiological study at the Pediatric Hospital of the
Medical University of Warsaw

This thesis has been written as a part of an ongoing epidemiological study concerning the
SARS-CoV-2 virus conducted at the Pediatric Hospital of the Medical University of Warsaw.
The study started in December 2020 and will finish in summer 2022. The patients
of the hospital and their families are interviewed in a retrospective, voluntary survey about
their health and social conditions in order to provide insights about COVID-19 severity and
spread dynamics in children aged 0-18.

Figure presents phases of the epidemiological study. This thesis is concerned with data
collection and analysis of the data obtained in the study’s first phase, which spanned between
December 2020 and July 2021.



December 2020

Phase 1
- data collection
(epidemiological survey
+ virus samples)

July 2021

December 2021

Phase 2
- further data collection
(epidemiological survey
+ virus samples)

July 2022

Figure 1.1: Phases of the epidemiological study.

1.3. Goals & motivations of the thesis

The ultimate goal of this thesis is to assess the usefulness of the Linked Data approach to
data processing in epidemiology. Linked Data is a paradigm in data managment proposed
by World Wide Web Consotrium [6]. It postulates to annotate heterogenous datasets with
a set of predefined annotations, called Internationalized Resource Identifier (IRIs). IRIs are
labels, usually taking form of HTTP addresses. The paradigm found its audience primarily
in science, where data interoperability and comparability is especially crucial [7].

Prior to the SARS-CoV-2 pandemic, medicine had already been a subject of interest
within the Linked Data community. As e.g. Kamdar et al. [§] argued in 2019, biomedicine
suffered from the overwhelming plethora of data formats and lack of techniques to integrate
them which hinders discoveries. They indicated pharmacology, cancer research and infectious
diseases as branches of research which would gain through a widespread use of the Linked
Data approach. They pointed out that futher effort is needed to overcome difficulties which
biomedical sciences face due to lack of common data management standards.

This thesis can be treated as a technical report of an application of the Linked Data-based
approach to epidemiology. The two main goals of the thesis included:

1. design & implementation of a Linked Data processing system in the context of an
epidemiological study, including:

(a) formulating a data model specific to the epidemiological study according to the
Linked Data principles
(b) implementing a data pipeline conformant to the obtained data model
2. evaluation of the Linked Data approach to epidemiology by assessing risk factors of

COVID-19 severity based on the data collected using the implemented system in the
first phase of the epidemiological study



1.4. Contributions

As a result, a Linked Data model for the epidemiological study was formulated. The thesis
presents some insights about the added value of that approach in the context of epidemiology.
Additionally, it draws practical conclusions from the data collected in the first phase of the
study. The main contributions of this thesis include:

1. a high-level overview of Linked Data-related concepts and notations, including RDF [9],
Turtle [10], RDFS [11] and OWL [12] (Chapter [3]).

2. a technical report on the design (Section [4.1]) and implementation (Section [4.2]) of
a data model in an epidemiological study formulated according to the Linked Data
priniciples [13])

3. some insights about COVID-19 severity in children aged 0-18, obtained using the Linked
Data approach (Section

1.5. Related work

The following section presents the current state of the Linked Data paradigms and their
practical applications to epidemiology. Additionally, some of the latest results in research on
COVID-19 severity both in children and adults are provided.

1.5.1. Linked Data in epidemiology

The conceptual foundations of the paradigm were established in the works by Berners-Lee
[14] [I3] and by Berners-Lee et al. [I5] [16] [I7]. Allemang and Hendler [I8] provide a good
overview of notations used to representing Linked Data. Ultimately, Linked Data became the
de-facto standard for scientific data management and stewardship [7].

With the beginning of the COVID-19 pandemic, applications of Linked Data in epidemi-
ology have become a valuable area of research. Aakash et al. [I9] as well as Bayoudhi et al.
[20] provided surveys on Linked Data-related techniques for COVID-19 analytics, including a
list of tools and various scenarios for their usage.

The results of Dutta et al. [2I] are the most relevant for the epidemiological study at the
Pediatric Hospital of the Medical University of Warsaw. They proposed the CODO Ontology:
a conceptual model of COVID-19 patients, their comorbidities, symptoms etc. They reused
the already available SNOMED CT, FOAF and schema.org vocabularies following the Linked
Data principles. Unfortunately, their model lacks easy support for the ICD-10 vocabulary,
which is used to report diagnosis and comorbidities in Polish hospitals. Additional mapping
of their disease definition to the ICD-10 vocabulary would be needed. Although this can be
achieved using e.g. the Disease Ontology [22], that effort would be out of the scope of this
thesis. Additionally, the authors emphasize geographical annotations of the COVID cases,
which is superfluous in the epidemiological study.

Further examples include e.g. the CIDO ontology by He et al. [23]. The authors proposed
a general conceptual model for COVID-19 symptoms, disease transmission, and genetic con-
ditions. The model heavily relies on the OBO ontology to make it as generic as possible. As a
result, it proved to be too broad for the use case of the epidemiological study at the Pediatric
Hospital of the Medical University of Warsaw.



1.5.2. Severity of COVID-19 in children aged 0-18

The following literature can be treated as a brief introduction to the topic of COVID-19
severity in children. Some references for COVID-19 hospitalization rates for various age groups
and the outcomes of COVID-19 are presented. The retrospective studies provided here are
examples of the most recent results in that area, both for adults and children. The typical
medical and social risk factors analyzed in those studies included: comorbidities, obesity,
pregnancy, age group, ethnicity, socioeconomic background.

The World Health Organization [3] indicated that the severity of COVID-19 tends to be
lower in children than in adults. Thus, more investigation into severe COVID-19 cases in
children needed to be made.

The study by Lindsay et al. [24] provided insights about the hospitalization rates for
children at the beginning of the pandemic in the USA. The paper points out that most cases
of COVID-19 among children seemed mild or moderate. At the same time, it stated that
further effort should be put into confirming whether children are impacted differently by
COVID-19 than adults. Delahoy et al. [25] in turn provided hospitalization rates per age
group before and after the Delta variant became dominant in the USA based on the data
obtained from the COVID-NET system in the USA [26].

Sandoval et al. [27] provided results for a cohort of 1853 COVID-positive young adults
registered within the metropolitan healthcare system in Houston, Texas, including 226 preg-
nant women and 833 obese patients) whereas Woodruff et al. [28] for a sample of study sample
of 454 children — patients of Children’s Hospital Colorado. The statistically significant re-
sults in both studies indicated respiratory system conditions, obesity, diabetes and preterm
birth conditions as the risk factors of severe COVID-19. Rubenstein et al. [29] reported
COVID outcomes of a sample of 82 children inpatients at three hospitals in the USA between
spring and summer of 2020. The study points out the following observed risk factors of severe
COVID-19: BMI above 25, higher age and comorbidities.

Other authors have also investigated the relationship between COVID-19 severity and
specific health conditions, though primarily for adults. Examples include:

1. asthma: Gaietto et al. [30], Assaf et al. [31], Krishan et al. [32], Garcia-Pachon et al. [33]

2. pneumonia (Grandbastien et al. [34])

1.6. Structure of the document

Chapter|[l} presents an introduction to the topic of Linked Data in the context of epidemiology
— including its goals and motivations, as well as related work. Chapter presents the
methodology with regard to the design of a semantic data model as well as methods of
statistical analysis, which were used to process the data collected in the epidemiological study.
Chapter [3| provides a high-level overview of the relevant part of the Linked Data semantic
stack, including descriptions of RDF, RDFS, OWL and some domain technologies. Chapter
[l presents results obtained in the thesis. Those included the semantic data model following
the Linked Data principles, a report of technical aspects of the design and implementation
of a semantic data model of COVID-positive patients in an epidemiological study and some
statistical insights into the data collected in the first phase of the epidemiological study.
Chapter contains a discussion on the role of Linked Data in epidemiology. Chapter [6]
provides conclusions and future work.
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Chapter 2

Methodology

This thesis provides an evaluation of a practical application of the Linked Data approach in an
epidemiological context. The leitmotif of the evaluation was to assess risk factors on COVID-
19 severity in children aged 0-18 admitted to the Pediatric Hospital between December 2020
and July 2021. In the following sections, a description of the methodology chosen in this work
follows.

2.1. Conceptual foundations of Linked Data

A deeper overview of the conceptual foundations of Linked Data can be found in Chapter [3
It involved:

1. reference & citation analysis in the following area:
(a) classical works on Linked Data, including those done by Berners-Lee [13| and
Berners-Lee et al. [17]

(b) specifications of the technologies related to data storage and modeling using Re-
source Description Framework [9] and its associated metadata modeling languages:
Resource Description Framework Schema [11], Web Ontology Language [12]

(c) ontologies and their applications in the context of domain modeling, including
classical works on ontologies by Gruber [35] and on domain-specific ontologies such

as ICD10CM [36], ATC [37] and FOAF [3§]
2. formalization of the Resource Description Framework’s abstract syntax in terms of:

e Extended Backus Naur Form [39, Chapter 6. Notation| (Definition [3.2.2})
e graph theory [40] (Definition [3.2.1])

2.2. Designing the model

A major challenge of the epidemiological study at the Pediatric Hospital of the Medical Uni-
vesity of Warsaw was to design a data-processing methodology that would enable seamless
integration of data of various provenance, including medical, pharmaceutical and socioeco-
nomic vocabularies.

11



One of the data-processing paradigms which help to fulfill these requirements is Linked
Data [13]. As opposed to "traditional" approaches, Linked Data rigorously defines the seman-
tics of the data [41], using Resource Description Framework and ontologies [18] as its formal
foundations [9] [41].

The semantic model of COVID-positive patients in the epidemiological study at the Pedi-
atric Hospital of the Medical University of Warsaw was designed according to the principles
of Linked Data [13]. It involved linking two different datasets of biomedical terms: ICD-
10CM [36] and ATC [37] with a vocabulary of concepts related to humans: FOAF [3§].

The design of the model was conducted using;:

1. Protege v5.5.0 [42] — an RDF-based data model editor

2. BioPortal (https://bioportal.bioontology.org/) [43] — a search engine for various RDF-
based vocabularies in the context of biology and medicine

2.3. Implementation

Figure [2.1] presents an overview of the data pipeline implemented for the obtained data
model. The data pipeline was deployed on a Linux machine, using Docker [44].
The pipeline consisted of four steps:

1. manual entry of surveys through a user interface
2. mapping of the JSON data to an RDF representation

3. bulk data load into Apache Jena [45], a tool capable of applying inferences to Linked
Data

4. statistical analysis and Apache Jena querying within RStudio [46]

A more detailed report on the technical implementation of the data pipeline can be found
in Section .2

2.4. Evaluation

The ultimate goal of this thesis was to assess the usefulness of the Linked Data approach
in the context of an epidemiological study. The assessment was based on the ability to
answer the following analytical question: what comorbidities impacted COVID-19 severity in
the obtained sample? Patient’s hospitalization was selected as the indicator of COVID-19
severity.

The data were verified to have a non-normal distribution using the Shapiro-Wilk test.
It was assumed that the presence of comorbidities positively influenced COVID-19 severity.
Thus, the one-sided version of Mann-Whitney-Wilcoxon’s U test was used to test whether
cases with comorbidity had a longer hospitalization length. In order to achieve a proper level
of data granularity, the comorbidities were grouped by their class (e.g. respiratory system
diseases, neurological diseases) according to the ICD-10CM taxonomy [36]. Comorbidities
falling into the same group were counted separately for a single patient.

In order to prevent data noise and underrepresented comorbidity classes from being rec-
ognized as risk factors, the cut-off value for their observed count was set to min. 10% of the
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Paper
surveys

Step 1: Data collection through a user
interface (React JSON Forms)

JSON files

* ---------------- Step 2: JSON-to-RDF mapping (rdflib)

&- ---------------- Step 3: Loading the data into a triple store

& ................ Step 4: Data analysis in RStudio

RStudio

Figure 2.1: Data processing pipeline. The data were transformed from surveys collected on
paper to a Linked-Data-based representation in Turtle [10], available for processing in RStudio
[46].

total population. Otherwise the comorbidity class was rejected from further investigation as
a possible risk factor.

Table presents the general form of the hypothesis under investigation. It was tested
whether the distributions of both populations are equal.

Hj hypothesis P(X>Y)=05-(X,Y) € (Strue, Staise)

Hl hypOtheSiS P(X > Y) > 0.5 - (X7 Y) € (Strueysfalse)

Table 2.1: The general scheme of the investigated hypotheses. Given two subsamples Sty
(comorbidity class present) and Stqse (comorbidity class absent) it was checked whether for
any two values (X,Y) € (Sirues Sfalse), the probability that the hospitalization length of a
person with the comorbidity (X) was greater than that of a person without the comorbidity
(Y) is higher than 0.5.
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Chapter 3

Conceptual foundations of Linked
Data

As pointed out in Section [I.3], Linked Data has been chosen as the data processing paradigm
for the epidemiological study at the Pediatric Hospital of the Medical University of War-
saw. The following chapter provides an overview of the conceptual foundations of the Linked
Data paradigm. It presents both theoretical as well as practical aspects of the Linked Data
technology stack.

3.1. Linked Data

The Linked Data paradigm has been postulated by Tim Berners-Lee [13], one of the inventors
of the World Wide Web [15]. It aims to make data of various provenance machine interpretable
and reusable. It gained popularity especially in the area of scientific data management and
stewardship [7].

Linked Data uses Resource Description Framework (RDF) [9] [13] as its abstract data
model. It reuses its concept of annotating the data using Internationalized Resource Identifiers
(IRIs). IRIs provide an infrastructure for linking various data sources and facilitate shared
semantics for them. The ultimate goal of Linked Data is to provide infrastructure for data
integration through reuse of IRIs in various contexts. Throughout this thesis, the term Linked
Data will be used as a synonym for the term Semantic Web to denote a distributed knowledge
graph labeled with IRIs [47].

3.1.1. Background

The need to provide a formal yet simplified way to annotate data has its roots in the so-called
AAA problem 9] [14] [18], which stands for Anybody can say Anything about Anything. The
problem boils down to the following observations about modern data that most analysts face:

1. huge amounts of data are made publicly available by various organizations on the Inter-
net, such as public services, scientists, researchers, governments and private companies,
which want to share their data

2. the data available publicly often uses "ad-hoc" semantics, which prevents their easy
processing outside of the context the data were published in

15



Tim Berners-Lee [I3] proposed four principles that the data published on the Internet
should follow in order to be automatically interpretable by computers [I3], thus facilitating
its analysis. He called thme the "Linked Data principles":

1. all entities (such as study subjects, diseases, medical substances, measurements etc.) and
types of relationships (e.g. "measurement has value", "person has diseases") within the
frame of discourse should be assigned so called Internationalized Resource Identifiers

(IRI) — labels that globally identify those things (also called resources)

2. IRIs which are also HTTP addresses should be viewable through Internet browsers in
order to look up their meaning by human users

3. IRIs should provide machine-interpretable interpretation of the concepts they represent

4. when possible, all data should reuse existing IRIs in order to facilitate shared mean-
ing and let the referer discover other things (resources) by looking up the other IRIs
("following the links")

Although those principles were intially formulated for the Internet (Berners-Lee proposed
them as a way to structurize the World Wide Web in terms of data semantics) and found little
audience in the web development community, they provided important conceptual foundations
for annotating any kind of data with IRIs. In fact, we will treat any data annotated with
IRIs as Linked Data, regardless whether the IRI point to a place on the Internet. As such,
IRIs can be treated as plain labels with which data can be annotated to provide meaning for
them.

Development of new databases and programs that support Linked Data processing, such
as databases (also called triple stores in the community), and inference engines (reasoners) is
an active area of research for semantic data science. The SPARQL Protocol and RDF Query
Language 48| provides both a query language and APIs to access that data programmatically.
The technological stack of Linked Data constitutes a well-established alternative to the already
existing semantics-agnostic data stores, such as SQL databases [49] or plain files, e.g. in JSON
or XML [50] format.

3.1.2. Raw data vs. annotated data

One of the main goals of the Linked Data paradigm is to add a semantic layer to any data [13].
It facilitates its shared meaning through the use of special annotations called Internationalized
Resource Identifiers (IRIs).

Table[3.I] presents a small example of how annotations using the Internationalized Resource
Identifiers work in practice. We will treat all labels present in the b) subfigure but not present
in the a) subfigure as IRIs.

The main problem with the data in the a) subfigure in Table is that there is no
obvious way of saying what that data actually means. The naming convention of the columns
("id" on the left and "cond" on the right) alludes to identifiers and some sorts of conditions,
only the person knowing the use case and storage format understands their meaning.

On the other hand, the b) subfigure presents the same data with annotations. Through
their use, the data becomes (more or less) human-readable — the presented example models
human’s comorbidities. It can trivially be concluded that N9X2, K1A4 and P0Z2 are iden-
tifiers of some persons and that U07.1, J45.1 and G40.909 are codes of health conditions.
In fact, it is easy to check that those codes correspond in the ICD-10 vocabulary [36] to the
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'has health
_~ condition’

domain ' relationship” " range
A " TA
. ICD10 Health
Person equwalen‘t.to Conditions
id cond \\ id cond type
type /
NOX2 U07.1 N NIX2 Uo7.1
K1A4 J45.1 K1A4 J45.1
P0Zz2 G40.909 P0Zz2 G40.909
a) b)

Table 3.1: Raw data (left) vs. data with annotations (right). The example in the b) subfigure
conceptually follows the Linked Data approach (it provides explicit semantics for the data
through annotations) whereas the example in the a) subfigure does not — it only has some
implicit semantics for the owner of the data.

COVID-19 disease, asthma and epilepsy, respectively. Moreover, those annotations can be
expressed using a formal notation — such as RDF (see Chapter ) — in order to make them
also machine interpretable [9].

The philosophical considerations of whether it is possible to create a schema-neutral system
of annotations using IRIs and assessing its usefulness has been a topic of a long-term debate
within the Linked Data community. Doctorow [51] and Schwartz [52] provide two different
views on that matter. Regardless of their views, this thesis treats the annotations using IRIs
as a practical way to add any sort of semantics to the data.

3.1.3. The driving idea: linking heterogenous data

As argued above, annotations provide meaning to the data. Moreover, they can be written
in a formal notation (such as RDF [9].), which allows them to be treated as any other data.
Using annotations makes the data interpretable regardless of the platform and methodology
of data processing — as long as it can interpret those annotations.

At its core, the Linked Data paradigm tries to achieve data interoperability in two steps:

1. by publishing custom annotation types formally describing their meaning by the users
(e.g. using RDF [9])

2. more importantly, reusing annotations created by others in your own datasets

Linked Data especially emphasizes the second point: reusing annotations of others and
thus interlinking datasets — hence the name. In fact, provision and curation of those links
constitutes the major part of activities around Linked Data.

It is necessary to discuss the practical implications of the second point for the b) subfigure
of Table The presented hypthetical dataset provides data about persons and their co-
morbidities. At the same time, consider another hypothetical dataset which links diseases to
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physiological systems of human body they affect (such as neurological system, immunological
system etc.). If those datasets used the same taxonomies for diseases, then their integration
would be trivial. In other words, investigation whether comorbidities of certain systems in
human body influence COVID-19 severity would be easy to conduct.

Annotations of various datasets using IRIs is the core of Linked Data. Providing them
wherever possible guarantees seamless data integration in the future.

3.2. Resource Description Framework

As pointed out in Section [3.1.2], Resource Description Framework brings formal framework
for syntax and semantics of annotations using IRIs. Thus, it provides foundations for Linked
Data. According to its authors, " RDF is an assertional language intended to be used to express
propositions using precise formal vocabularies" [41]. In fact, it can be regarded as general-
purpose language to express statements about any data. The following section presents a
formal definition of RDF syntax and an informal description of RDF semantics.

The current standard is defined in the following list of documents [53]:

e RDF 1.1 Concepts and Abstract Syntaz 9]
e RDF 1.1 Semantics [41]

e a number of serialization specifications, e.g.: RDF 1.1 XML Syntaz [54] and RDF 1.1
Turtle [10]

3.2.1. The core concept: triples

hasComorbiditx

Patient P Disease X

Figure 3.1: An example of an RDF triple represented as a graph. Patient P is the subject,
hasComorbidity is the predicate and Disease X is the object. The direction of the arc in the
graphical notation is important, i.e. the relationship is not necessarily symmetrical.

The so called triples are the central concept of the Resource Description Framework. A
triple consists of a subject, a predicate and an object [9]. They provide a generic way of making
claims about the universe of discourse. An example of a triple is the sentence " Patient P has
comorbidity Disease X", where Patient P is the subject, has comorbidity is the predicate and
Disease X is the object. Figure shows a graphical representation of the example triple.

A triple denotes a single statement about the world. All such statements are collectively
called assertions. Assertions that are objectively proven to be true are called facts. Boolean
valuation of facts is either provided by a real-world observation (such as an experiment)
or by derivation from other true assertions through the means of logical inference (refer to

Section ).

Examples of various assertions are provided below:

e Patient P has comorbidity Y

18



e All patients were COVID-positive
e Comorbidity Z could influence COVID-19 severity

e Person () claims to have got infected in work

The first sentence is a simple, database-like statement about a single observation. The
second sentence is an example of quantification. The third sentence is a claim which is a-priori
unknown to be false or true. The fourth sentence is a claim about another sentence. All those
sentences have various degrees of abstraction (simple fact vs. quantification vs. uncertainty
vs. statements about statements) and can be easily expressed in RDF.

3.2.2. RDF as an abstract data model based on graphs

livesIn /\ infectionDate
P »  "05-05-2021"

\\atient P
hasComorbity

livesWith

Figure 3.2: An example of an RDF graph. Things in the universe of discourse ("resources")
are drawn as ovals (also called nodes). Arcs (also called edges) are labeled with relationships.
There are 6 edges which means that this RDF graph contains 6 triples (assertions).

Household H

A

"13-05-2021" < Person Q

infectionDate

The RDF specification often refers to an RDF graph as its driving concept. Gener-
ally speaking, a graph (in some contexts called also a network) is a mathematical structure,
which models relationships between entities of the universe of discourse. Graphs have a well-
established mathematical theory behind them which has its roots in the works of Euler [55]
and their properties are relatively well studied and understood. Kenneth and Wright [40]
provided a formal definition of graphs with proofs of their mathematical properties and some
associated algorithms.

Roughly speaking, graph’s primary usage is to express the abstract structure of a given
problem. A widely used, intuitive graphical notion for them involves drawing circles connected
by arcs. They are used in those branches of research where the structure carries inherent value,
e.g. in transportation networks, social networks, electronic circuits and topology. One of the
major applications of graphs is metamodeling. Entity-relationship models and taxonomies are
all expressed using graphs.

Ehrlinger et al. [56] provide a definition of a knowledge graph, that is a graph used specif-
ically in the context of knowledge representation. Resource Description Framework can be
regarded as a notation to represent knowledge graphs.
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The RDF specification often mixes different naming conventions from graph theory, de-
scription logics and computer science. We will uniformly refer to the elements modeled in
graphs as nodes or resources and to the links between them as relationships. Both nodes and
relationships do not have any internal structure — they are plain labels.

Nodes in RDF come in two flavors:

1. concepts — they model entities in the domain of the discourse

2. literals — they represent atomic data values, such as numbers, dates, strings etc.

The purpose of edges in RDF is to model relations between nodes.

Definition proposes a formal notation of an RDFgraph. The sets of labels R;, Ry
and R; are the building blocks of an RDF graph. They contain the so called IRIs, blank nodes
and literals, respectively, collectively known as resources. As pointed out in Section (3.1.1],
IRIs are used to globally identify resources. Blank nodes in turn are used to identify things
within the scope of a single RDF graph. Literals are used to denote values of atomic types,
such as strings, numbers, booleans, dates. The S, P, O letters denote the sets of subjects,
predicates and objects.

Definition 3.2.1 (RDF graph) An RDF graph is a tuple (S, P,O, R;, Ry, R;) where:

1. R;, Ry, R; — three disjunctive finite sets of labels called Internationalized Resource Iden-
tifiers (IRIs), blank node identifiers and literals respectively; the set R;U Ry U Ry is called
"resources”

2. S C R; URy is a finite set of labels called subjects
3. O C R;URyU Ry is a finite set of labels called objects

4. PC S x 0O x R; is a finite set of tuple called properties

As can be seen:
e a subject can be either an Internationalized Resource Identifiers or a literal value
e a predicate can only be an Internationalized Resource Identifiers

e an object can be either an Internationalized Resource Identifiers, a literal value or a
blank node identifier

Thus, it is possible for an IRI to appear in some triples as a node (either a subject or
an object) and in other triples as a predicate. That does not however lead ultimately to
an inconsistency but it is just a construct available in RDF to express statements about
statements.

Figure [3.2] shows a graphical interpretation of an RDF graph. Nodes are drawn as the
rounded shapes with their designating labels inside them. Relationships are drawn as arrows
starting from one node to another. A relationship (s,t,1) is drawn as an arrow from the node
s (also called the source) towards the node t (called the target) annotated with the label
. The (s,t) pair can be regarded as the direction of the edge and in general it is a binary
relationship determining connectivity between nodes. Thus, edges are directed and, unless
explicitly stated, (s,t,l) € P does not imply (¢,s,l) € P.
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3.2.3. Syntax

The authors of RDF provided a formalization of how RDF data should be written, called
RDF abstract syntazx. It can be regarded as a minimal storage format for RDF data. Actual
implementations of the abstract syntax are called concrete syntaxes. There is a multitude of
concrete syntaxes available, which can lead to confusion when using RDF in general. The
following sections discuss the most important aspects of RDF syntax.

Abstract syntax

The RDF’s abstract syntax can be defined using the Extended Backus-Naur Form notatiOIﬂ.

Definition 3.2.2 (RDF abstract syntax) RDF abstract syntaz is a syntax whose rules are

described by Listing[3.1]

data =
triple =
subject S
predicate =
object L=

triplex

ws*x subject wst predicate wst+ object wst separator
iri | blankNodelID

iri

iri | blankNodeID | literal

Listing 3.1: Abstract syntax of Resource Description Framework defined using the FBNF
notation (refer to Table [3.2]).

The following symbols were left undefined in the Listing [3.1] as the RDF specification does
not necessarily enforce any particular representation for them:

e ws — any symbol designating a single whitespace character, such as space, new line etc.

e separator — a single symbol terminating a triple definition

e iri — a symbol designating an Internationalized Resource Identifier (e.g. a HTTP

address)

e blankNodeld — a symbol designating a blank node

e literal — a symbol designating a literal values

As can be seen, the abstract syntax of the Resource Description Framework mimics the
definition of an RDF graph. The following concepts from the definition of an RDF graph
(Definition ) are present in it: triple, subject, predicate, object, IRIs, blank nodes, literals.
Each edge in an RDF graph is mapped to a separate triple.

"https://www.w3.org/ TR/REC-xml/#sec-notation
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aaa, bbb etc. syntactical symbols
= substitution equivalence (left side can be substituted by right side)
aaa bbb concatenation of two symbols
aaa | bbb alternative between two symbols
aaax zero or more occurences of the symbol (Kleene star)
aaat one or more occurences of the symbol

Table 3.2: A brief summary of the subset of Fxtended Backus-Naur Form used to define the
abstract syntax of RDF.

Abstract vs. concrete syntax

Aside from defining syntax for whitespaces, triple separators, IRIs, blank node identifiers and
literals, the abstract syntax leaves two things to consider when designing a concrete syntaz:

1. optimization of the resulting file size
2. human readability of the concrete syntax

Trivial ways to optimize the resulting file size and at the same time to improve its human
readability include using shorthands for IRI prefixes and listing triples grouped by subject.

The following comparison tries to justify the need to thoroughly implement a syntax for
RDF. Consider two hypothetical representations of the same data: one represented in the
abstract syntax way, where each triple is in a separate line (Listing and one optimized
using the postulated improvements (Listing . Clearly, in the latter case the readability
has been improved as well as the size of the resulting data file decreased.

http//<url>#patient P http//<url>#livesWith http//<url>#person Q
http//<url>#patient P http//<url>#livesIn http//<url>#household H
http//<url>#patient P http//<url>#hasComorbidity http//<url>#disease D

Listing 3.2: Strict use of the RDF abstract syntax to store triples.

@prefix ns: <http//<url>#>

ns:patient P ns:livesWith ns:person_Q ;
ns:livesln ns: household H
ns:hasComorbidity ns:disease D ;

)

Listing 3.3: The same data as in Listing represented using an optimized concrete syn-
tax. Compared to the other version grouping triples by subjects and extracting IRI prefixes
decreased the resulting file size (the text is shorter) and improved its readability.

Unfortunately, there is no single, commonly used standard concrete syntaz. The authors of
RDF provided three different concrete syntaxes (RDF/XML [54], JSON-LD [57|, Terse RDF
Triple Language [10]) and many more unofficial standards emerged from the RDF community.
Thus, RDF programs are forced to support multiple different input formats at the same time.
It leads to unnecessary confusion between users across different formats. A partial solution is
to use RDF format converters, such as Apache Jena’s riot [45].

An example of a concrete syntax: Turtle

To wrap up, let’s consider one example of RDF concrete syntaxes: the Terse RDF Triple Lan-
guage [10] (Turtle). Listing presents the example RDF graph from Figure represented
in that format. In fact, a similar example has already been seen in the Listing
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@prefix covidepid: <https://github.com/kubajal/covidepid#>

covidepid : patient P covidepid:livesWith covidepid :person Q ;
covidepid:livesIn covidepid : household H ;
covidepid : hasComorbidity covidepid:disease D ;
covidepid:infectionDate "05—05—2021"

covidepid :person_Q covidepid:livesIn covidepid : household H ;
covidepid:infectionDate "13—-05—2021"

Listing 3.4: The graph from Listing [3.4] stored using the Turtle format. There are two sub-

jects: patient P and patient Q four different predicates: livesWith livesIn hasComorbidity

infectionDate and five different subjects: person (@ household H disease D "05-05-2021"

"13-05-2021".

The example from Listing [3.4] should be read in the following way:

e patient P lives with person Q

e patient P lives in household H

patient P has comorbidity disease D

patient P was infected on the 5th of Mai 2021

person_Q lives in household H

e person_(Q was infected on the 13th of Mai 2021
Notable features of the Turtle concrete syntax used in the Listing include:

e declaration of prefixes as shorthands for RDF namespaces (@prefiz <prefiz> <names-
pace>)

e access to identifiable resources (such as patient p) through the <prefix>: patient X

e separation of (predicate object) pairs for the same subject by the ";" character

3.2.4. Syntax vs. semantics

Until now, it has been stated how RDF can be used to write down data using various notations
based on its abstract syntax (such as Turtle) and that its underlying data model is in fact a
graph. The expressivity of RDF was not an issue whatsoever as we have treated all resources
and relationships as pure labels that had only #mplicit meaning to us.

Assigning meaning to labels

covidepid :patient X covidepid:infectionDate "05—05—2021"

Listing 3.5: An example of an assertion.

Listing |3.5| provides a driving example in this subsection. Without the context of IRIs, the
asserted triple implicitly means that "patient X was infected on the 5th of May", including
that e.g.:

1. patient X is probably an identifier of a human person
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2. the domain of the infectionDate relationship are infected persons and its range are dates
3. the "05-05-2021" literal should be consider a date and not a plain string

4. based on the used IRIs, the infection was probably caused by SaRS-CoV-2

RDF provides a formal method to automatically obtain the above statements using the
meaning of each of the resources. At the same time, it provides a way to express the meaning
of resources, again using RDF syntax. As a result, it is the IRIs that appear in the data that
determine semantics of a given RDF graph.

The role of IRIs and namespaces

Before going over to the topic of semantics in RDF it is necessary to reiterate over the role of
IRIs and namespaces in RDF. Definition provides the notion of RDF namespaces. They
play an organizational role in the RDF ecosystem. They are used to group related IRIs and
can be treated as vocabularies of predefined annotations (refer to Section .

Definition 3.2.3 (RDF namespaces) An RDF namespace is an abstract container of re-
lated IRIs. All IRIs contained within a given IRI share the same prefix, which also identifies
the namespace. The party that declared IRIs (resources) in the given namespace is called the
maintainer of the namespace.

Examples of namespaces include:

1. https://bioportal.bioontology.org/ontologies/ICD10CM/ groups all IRIs related to the
ICD-10 CM classification [36]; it thus provides the user with annotations related to
diseases

2. http://zmlins.com/foaf/0.1/ groups all IRIs related to the FOAF vocabulary [38] — it
contains annotations related to concepts of persons

There are three important features of IRIs in the context of RDF semantics:

1. IRIs are used to globally identify resources and usually take form of a browsable HTTP
address

2. anybody can reserve a namespace and freely declare concepts (IRIs) in it (as long as it
is the namespace is not taken, of course)

3. namespaces and IRIs aimed to be reused by others (such as vocabularies of concepts)
should be made freely accessible to anybody — e.g. by humans using browsers (in which
case an HTML representation of that namespace or IRI should be returned) or by
machines (in which case an RDF representation of that namespace or IRI should be
returned).

IRIs and RDF namespaces provide foundations for RDF semantics in the following way:
the maintainers of the given RDF namespace assign the meaning of the IRIs that belong to
the namespace. As mentioned in SubSection [3.2.4], RDF is able to capture meaning of data
through annotations using IRIs.
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3.2.5. Semantics

The formal semantics provided by the authors of RDF was expressed using model theory [41],
though presenting it fully is out of scope of this thesis. Nonetheless, we will provide here its
practical implications. We will treat the semantics of an RDF graph as equivalent to the set
of assertions that can be derived from it using logical inferences [58].

As argued in Section [3.2.4] the meaning of a given RDF graph emerges from the IRIs that
are present in it. The IRIs determine what logical conclusions can be made on the asserted
triples. The meaning of the IRIs in turn is provided by the maintainers of namespaces they
belong to. Equivalently, their meaning is determined by the list of conclusions that can be
carried out if an appropriate set of assertions have appeared in the data.

The given RDF graph can be then transformed using those logical inferences in order to
obtain a semantically equivalent graph [41]. Those transformations are also called inferences
and are the core of semantics of RDF. A specialized class of software capable of conducting
automatic entailments on RDF data is called reasoners.

RDF semantics in action

Listing [3.6] provides a driving example of how RDF semantics works in practice. At the
same time, it presents a typical use case of RDF: expressing data models. The example
involves expressing constraints on a hypothetical relationship which models infection dates of
a disease (denoted infectionDate in the example). That relationship has already appeared
e.g. in Figure |3.2

@prefix ns:  <http//<url>#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf—schema#>
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix xsd: <http://www.w3.org/2001/XMLSchemaz#>

ns:covidInfectionDate rdfs:domain foaf:Person ;
rdfs:range xsd:date

Listing 3.6: Expressing constraints on the infectionDate relationship. It is asserted that its
domain are Persons in the sense of the FOAF vocabulary and that its range are XML dates.
Both range and domain concepts were taken from the RDFS vocabulary.

The infectionDate relationship from Listing [3.6] is subject to constraints on its domain
and range in the following way. Its domain is limited to some definition of a person (here
— from the FOAF vocabulary [38|, more on which will follow later) and its range is limited
to dates (e.g. as they are defined in the XML Schema Definition [59]). The concepts of the
domain and range of a relationship are in turn provided in the RDFS namespace [II]. As a
result, any assertions that would state that e.g. a person is connected to an integer via the
ns:infectionDate relationship (and not to a date) would be considered as data inconsistency
(invalid) under the collective semantics of all IRIs that were involved in the definition of the
infectionDate relationship.

The example data uses four different namespaces: one to identify the infectionDate rela-
tionship and three external: RDFS [I1], FOAF [38] and XSD [59]. The external namespaces
provide definitions of their concepts in RDF themselves and thus can be automatically inter-
preted by RDF reasoners.
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Summary

A usual use case of RDF semantics involves appending the inferred triples to the knowledge
base in an iterative manner until no new triples can be added. The triples are generated using
the semantics of the IRIs that were present in the dataset. The obtained graph is said to be
inferred from the initial graph.

The purpose of RDF inferences (and thus of RDF semantics as pointed out in the intro-
duction to Section m) is to make knowledge "hidden" in the graph explicit. To be more
precise, the inferred knowledge does not constitute qualitatively new knowledge but rather it
is a tautologically equivalent to the knowledge already contained within the given RDF graph.
Nonetheless, those tautological equivalences help to tackle three problems in data processing
in general:

1. model consistency checks — the model can be validated using a reasoner such as Pellet [60]

2. data validation — inference of two contrary assertions can be detected and automatically
explained to the user by an RDF reasoner, again using e.g. Pellet [60]

3. simplification of queries — queries on the data can make use of the inferred knowledge
The following list sums up the semantics of RDF in an informal way:

1. resources are abstract concepts that are used in domain modeling and their meaning is
ceded to their creator; in particular, the creator of the resource defines its semantics,
including its associated logical inferences

2. all literal values represent database-like values: numbers, dates, strings, XML literals
etc.

3. all blank nodes and Internationalized Resource Identifiers identify resources; the former
are used to identify resources solely within the context of a given RDF graph, whereas
the latter identify resources globally (on the Web)

4. information can be deduced from an existing RDF graph by applying inference rules
and thus materializing implicit information within the graph

5. the knowledge materialized through logical inferences can be queried in the same way
as the initially asserted data

6. finally, inconsistencies in the data can be detected by verifying the logical consistency
of the graph

3.3. The semantic stack of Linked Data

The following section briefly discusses the "semantic stack" — i.e. the wvarious modeling no-
tations and tools, targeting different levels of modeling, available in its ecosystem. The stack
consists of "layers", which are in fact groups of RDF namespaces that handle different levels
of abstraction in modeling.

Hendler [6I] pointed out that the full description of the semantic stack is unnecessairly
complex and needs to be simplified. According to him, it is easy to get lost in the plethora
of the available RDF namespaces, its semantic formalisms and technicalities. The following
section presents a distilled list of its core concepts.
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3.3.1. The four layers
Figure 3.3l presents the order of the layers. They include:
e Layer 0: RDF as the underlying notation (refer to Section
e Layer 1: metamodels: RDF Schema [I1I] and Web Ontology Language [12]
e Layer 2: domain-specific ontologies: ICD-10CM [36], ATC [37] and FOAF [3§]

e Layer 3: custom ontologies, used to integrate the data

RDF can be treated as foundations for the rest of layers. Going upwards the stack,
OWL and RDFS are metamodels that provide the user with model specification capabilities.
Domain-specific ontologies in turn use the metadmodels to formalize knowledge in various
domains of interest. The integrational layer builds on top of the other three.

| custom ontology I } Layer 3: Data integration

B oo 7 } Layer 2: Domain-specific ontologies
OWL
RDFS Layer 1: Metamodels
RDF } Layer 0: RDF syntax and semantics

Figure 3.3: The semantic stack of Linked Data.

3.3.2. Layer 0 — RDF as the basis

RDF provides the minimal set of syntactical and semantic rules to annotate the data. For
details on RDF, refer to Section [3:2

3.3.3. Layer 1 — Metamodels: RDFS & OWL

The role of the metamodels is to provide a set of annotations (IRIs) that let the user ezpress
models of their data. The two most widely used metamodels available in the RDF ecosystem
are RDF Schema (RDFS) and Web Ontology Language (OWL). Horrocks et al. [62] provided
a good overview and comparison between the two.

RDFS

RDF Schema (RDFS) [11] is a namespace within the RDF ecosystem providing basic meta-
modeling capabilities. Two interesting types of annotations (IRIs) provided by that namespace
include:

1. IRIs related to rigorous definition of relationships (including the concepts of domain
and range which have already appeared e.g. in Listing ﬂ)

2. the IRIs related to modeling of hierarchies, e.g. subClassOf
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'has health
.~ condition'

domain relationship ; range
e A
ICD10 Health
Conditions
) subC]aséO_f
Infected Infected
Not Infected Low Risk High Risk

Figure 3.4: Expressivity of RDFS. The example captures its type hierarchy modeling capa-
bilities as well as the ability to define domains and ranges of relationships.

Figure [3:4] presents an example of application of RDFS to domain modeling. It includes
a sample type hierarchy along with a domain & range specification of a relationﬂ The
presented hierarchy can be practically used in an epidemiological setting to annotate persons
based on their exposure to the SARS-CoV-2 virus.

Web Ontology Language

Web Ontology Language (OWL) [12] can be regarded as an extension of RDF'S which adds more
semantic expressivity. It provides the users with a rich vocabulary for defining equivalences
between classes and enriching type hierarchies [63]. OWL heavily relies on mathematical
formalisms, primarily description logics [12] [63] [18].

OWTL is suitable for domain modeling which involves classification based on the asserted
data. In the context of epidemiology, it enables e.g. formally expressing the following three
concepts:

1. "high-risk patients" as those persons "who are COVID-positive AND are desaturated"
2. "low-risk patients" as those persons "who are COVID-positive AND are not desaturated"
3. "not infected patients" as those persons "who are not COVID-positive"

Figure provides an example of how inferences within OWL are being made. The
provided data has a similar layout and meaning to the example presented in Table [3.1] It
adds the two following columns: sympl and symp2, both storing information about the
observed symptoms. Based on the simple domain model of COVID-19 patients defined above
and on the asserted list of health conditions and symptoms, the following inferences about
the patients can be made using OWL:

1. N9X2 patient belongs to " Infected, High Risk" class
2. A4G2 patient belongs to "Infected, Low Risk" class

3. P0Z2 patient belongs to "Not Infected" class

2The full IRIs of the concepts used in Figure include http://www.w3.org/1999/02/22-rdf-syntax-
ns#subClassOf, http://www.w3.0rg/1999/02/22-rdf-syntax-ns#domain and http://www.w3.org/1999/02/22-
rdf-syntax-ns#range. For further information on the IRIs provided by RDFS, refer to
https://www.w3.org/ TR /rdf-schema/ [11].
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. SubClassOf .

Infected

Not Infected - A ; H
Infected High Risk id cond [symp1|symp2
A Low Risk AW
A type NI9X2 uo7.1 desaturation cough
T type —|  AdG2 uo7.1 cough loss of taste
~ type = P0Z2 G40.909 aura phase migraine

Figure 3.5: Expressivity of OWL. The following inferences about the persons can be made
based on the asserted data: N9X2 — "Infected, High Risk" case, A4G2 — "Infected, Low
Risk" case, P0Z2 — "Not Infected" case. Red font denotes premises of belonging to the
"Infected, High Risk" class. The "U07.1" stands for Diagnosed COVID-19 in the ICD-10CM
taxonomy [36].

3.3.4. Layer 2 — Domain-specific ontologies

The role of domain-specific ontologies is to provide formalized vocabularies for various domains
— e.g. biomedicine, sociology, chemistry etc.

Ontologies

According to Gruber [35], ontologies are "specifications of a conceptualization". To put it
simply, they provide formalized vocabularies of terms with their strictly defined meaning.
They aim at formalizing knowledge in order to avoid logical errors and inconsistencies when
modeling phenomena. Uschold and Griininger [64] provided a good overview of principles,
methods and applications of ontologies.

The following terms are all synonyms for ontology, used in various contexts: tazxonomy,
hierarchy, domain model [35]. Moreover, ontologies have a special relationship to database
schemas. Uschold [49] provided a good overview of that topic. According to him, both share
many common features (e.g. have strong foundations in formal logic) but differ in one key
aspect: ontologies are focused on the meaning whereas database schemas are focused on data.

Domain-specific ontologies

Domain-specific ontologies are ontologies that concentrate on a single, specific domain of
interest. They play the role of controlled vocabularies. The following list presents examples
of domain-specific ontologies used in the context of the epidemiological study at the Pediatric
Hospital of the Medical University of Warsaw:

1. Friend-of-a-Friend (FOAF) [38] — a vocabulary of concepts related to persons, including
attributes like age and gender and some social relationships, like the "knows’ relationship

2. Anatomical Therapeutical Chemical Classification [37] — a vocabulary of chemical sub-
stances used in medicine

29



3. International Classification of Diseases, v10, Clinical Modification (ICD-10CM) [36] — a
vocabulary of human diseases

3.3.5. Layer 3 — Data integration

Lenzerini [65] defines data integration as "the problem of combining data residing at different
sources and providing the user with a unified view of these data". In the context of Linked
Data, it practically means to combine two domain-specific ontologies in order to design a novel,
interdisciplinary model of some phenomena. This layer covers conceptually everything in the
data model under design that requires using at least two different domain-specific ontologies.
It boils down to defining relationships between concepts from two different ontologies.
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Chapter 4

Results

In the following chapter, results of the thesis regarding design and implementation of the se-
mantic data model for the epidemiological study follow. Additionally, a statistical verification
of the possible risk factors on COVID-19 severity are provided.

4.1. Data model: the covidepid ontology

covidepid ontology } Layer 3: Data integration

FOAF ICD-10CM ATC :}— Layer 2: Domain-specific ontologies

OWL / RDFS } Layer 1: Metamodels

RDF (Turtle) } Layer 0: RDF syntax and semantics

Figure 4.1: Layers of the obtained data model.

As pointed out in Section , one of the goals of the thesis was to create a data model
linking three domain-specific ontologies: ICD-10CM [36], ATC [37] and FOAF [38]. Figure
presents the layers of the obtained model (refer to Section for more details on the
role of different semantic layers in Linked Data). The covidepid ontologyﬂ merged the other
three ontologies using RDFS [I1]. Turtle has been chosen as the target concrete RDF syntax
(refer to Section [3.2.3]) to store the obtained RDF data.

Figure presents the Linked Data model used in the epidemiological study. To im-
prove readability, a UML-like [66] notation has been used. The rectangles represent concepts.
Entries on the white background within rectangles represent the literal values associated with
the concept (refer to Section for the notion of literal values). Arcs between rectangles
represent possible relationships between instances of the concepts they connect. Different
colors denote different ontologies.

"https://github.com /kubajal /covidepid/releases/download /v0.1/covidepid.owl
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Health Condition (ICD10CM)

+icd10: string
+ nameEn: string
+ nameP!: string

livesWith hasCommorbidity T T hasDiagnsois
\ COVID Patient (Covidepid)
IPessm ((FOkIF) + covidHospitalizationlength: int
+ covidSymptomsDays: int
+ age: number subClassOf | * covidinpatient: bool
+ gender: bool + hadChemotherapy: bool
+ testDate: date + hadDesaturation: bool
+ testResult: bool + hadRemdesivir: bool
+ infectionDate: date + hadSteroids: bool
livesin takesMedicine
\ y
Place (Covidepid) Chemical Substance (ATC)
+ livingArea: number +ate: string
+ nameEn: string

+ nameP!: string

Figure 4.2: High-level overview of the data model used in the study. The concepts of Disease,
Medicine and Person were taken from the ICD-10CM [36], ATC [37] and FOAF [38] domain-
specific ontologies. The custom covidepid ontology plays an integrational role.

4.2. Data pipeline

Table recaps the elements of the implemented data pipeline, presented already in the
methodological part of the thesis in Figure (refer to Section [£.2]). A more detailed de-

scription of each step follows.

Step 1: Data collection through a user interface

React JSON Schema Formﬂ has been used as a rapid application development framework to
implement the user interface for entering the survey data. The features of the user interface

included:

1. entering a new record
2. editing an existing record

3. listing all existing records by their identifiers, creation date or creator

One of the main challenges for this step was to detect possible collisions in the case when
two parties would try to edit the same record in parallel. The problem was solved by checking
the MD5 hash used as a basis of their edition.

As a result of this step, a JSON file was produced for each record entered through the
user interface (see Step 1. in Table and in Figure .

https://github.com /rjsf-team /react-jsonschema-form
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step method input result
number
1. user interface paper surveys JSON data
2. a Python program JSON data RDF data
3. Apache Jena RDF data the RDF data extended by
RDF inferences
4. RStudio the RDF data extended by | insights about the data
RDF inferences

Table 4.1: Partial results obtained in each step of the data pipeline. Refer to Figure as a
reference architecture of the system.

Step 2: JSON-to-RDF mapping

Consequently, the obtained JSON files were transformed into a single RDF file using the rdfiib
v6.0.1 [67] library in Python.

The library provides a number of methods for handling RDF data. It has built-in support
for various RDF namespaces, including RDFS [11] and OWL [12]. Additionally, it provides
export to a few data serialization formats: Turtle [10] and RDF/XML [54] among others. It
also provides limited support for SPARLQ queries and RDF entailments [48]. It is suitable
for simple processing and extraction of RDF data. It was used in the thesis primarily as
a method of transformation between JSON and RDF representation of the epidemiological
data.

As a result of this step, all JSON files obtained in the previous step were transformed into
a single RDF file (see Step 2. in Table and in Figure [2.1)).

Step 3: Loading the RDF data into a triple store

The next step involved loading the RDF file into a triple store (an RDF database) called
Apache Jena [45] which has been configured to conduct inferences on imported data using
an RDFS reasoneIEﬂ The Apache Jena triple store was exposed as a REST API using the
Fuseki Wrappelﬂ This enabled seamless integration of Apache Jena with external software,
such as RStudio.

This step provided inferences, primarily for the observed comorbidities and medicines (see
Step 3. in Table and in Figure . It made it distinctly easier to answer the following
questions later on:

1. how many patients had immunological diseases?

2. how many patients were treated continually using cardiovascular system drugs, unrelated

to COVID-197

Shttps:/ /jena.apache.org/documentation /inference/#rdfs
4The RDFS Reasoner IRI: http://jena.hpl.hp.com/2003/RDFSExptRuleReasoner
Shttps://jena.apache.org/documentation /fuseki2 /fuseki-configuration.htm]
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Step 4: Data analysis

Finally, RStudio was used to query Apache Jena using SPARQL [48] and statistically analyze
the retreived data using the coin package [68] (see Step 4. in Table and in Figure .
Refer to Section for more information on the methods of hypothesis testing used in the
thesis.

4.3. Risk factors of severe COVID-19 in children

In the following section, an analysis of the influence of patient’s comorbidities on COVID-19
severity was verified using statistical tests. The input of the statistical analysis consisted of
data provided by the Linked Data pipeline, as was implemented in Section [4.2

4.3.1. High-level overview of the data

The data collected in the first phase of the epidemiological study numbered 303 cases of
COVID-positive inpatients that were admitted to the Pediatric Hospital of the Medical Uni-
versity of Warsaw between December 2020 and July 2021. Figure[4.3] depicts the partitioning
of the sample subject to the thesis. Of the 303 patients, 90 fulfilled the requirements to be
considered in the COVID-19 severity analysis. The requirements included:

1. COVID-19 as the main diagnosis

2. passing the preselection in the Emergency Room — the patient required hospitalization
and was admitted to the hospital

Figure [£.4] presents the histogram of patients’ hospitalization lengths. The distribution
fails the Shapiro-Wilk test of normality available in the R package [46] with the p-value < 0.01.
Figure presents the observed counts of comorbidities per disease class, according to
the ICD-10CM ontology [36]. All comorbidity classes except for two turned out to be under-
represented in the observed sample to be taken into account as a possible risk factor of
COVID-19 severity in children (refer to the methodology of the statistical tests in Section [2.4)).

4.3.2. Hypothesis testing

Based on the obtained comorbidity class counts, only the following two classes passed the min-
imal criteria regarding the observed counts: E00-E89 — Endocrine, nutritional and metabolic
diseases| and |Q00-Q99 — Congenital malformations, deformations and chromosomal abnor-
malities.

Table presents the results of the Mann-Whitney-Wilcoxon U test for both investigated
(risk factor - hospitalization length) pairs. The tests were conducted with the significance level
set to 0.05.

The results indicate that patients EOO-E89 — Endocrine, nutritional and metabolic diseases
had a statistically different length of hospitalization compared to patients that did not have
this class of comorbidities.
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data source:
epidemiological

study

303 COVID-positive
patients

COVID was the
main diagnosis?

124: the main diagnosis
other than COVID-19 (e.g.
emergency or contracted)

179: COVID was the
main diagnosis

outpatient?

89: outpatient 90: inpatient

Figure 4.3: Classification of patients. The sample consisted of 90 patients registered in the
epidemiological study that 1) had COVID-19 as their main diagnosis 2) were severe enough
to be admitted to the Pediatric Hospital. The data were obtained between December 2020
and July 2021. The sample investigated in the thesis is marked green.
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Figure 4.4: The histogram of hospitalization lengths. The p-value obtained using Shapiro-
Wilk’s normality test was smaller than 10719,
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10

— cut-off count = 9 (10% of the size of the sample)

Count

E00- QO0- GO00- JOO- POO- FO1- LOO- 100- NOO- ROO- Z0O-
E69 Q9% G%3 J99 P96 F99 199 199 N99 R99 799

Comaorbidity class (ICD10CM ontology)

Figure 4.5: Counts of the observed comorbidity classes in the study sample of 90 patients.
Only two pass the required minimum count of observations equal to 9 (refer to Section ):
E00-E89 — Endocrine, nutritional and metabolic diseases| and |Q00-Q99 — Congenital malfor-
mations, deformations and chromosomal abnormalities

00-Q99
‘Q Q ‘ E00-E89
Congenital malformations, - o
- Endocrine, nutritional
deformations

— and metabolic diseases
and chromosomal abnormalities

Hospitalization 0.17 0.005
length

Table 4.2: Results of the Mann-Whitney-Wilcoxon U test of hospitalization lengths in two
subpopulations. Table cells contain the reported p-values. Cells with results considered

statistically significant were marked green, otherwise the cell was marked red. The significance
level was set to 0.05.
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Chapter 5

Discussion

This chapter evaluates the usefulness of Linked Data as a data-processing paradigm. It reviews
its features in the context of:

1. its data-processing capabilities, including the results obtained in Section
2. the design (Section [4.1]) and implementation (Section[d.2]) of the obtained data model

5.1. The role of Linked Data in the epidemiological study

The most interesting use case of the Linked Data approach during the analysis of COVID-19
severity in children was the calculation of the number of comorbidities per disease class. These
kinds of multi-domain, analytical queries is where this approach to data processing shines. In
the case of this study, it enabled cross-sections of the data in a presentable way. The results
of the query are presented in Figure

Figure depicts the problem of counting the comorbidities per disease class. It involved:

1. integrating the anonymized raw data about patients’ comorbidities, provided by the
Medical University of Warsaw, with the ICD-10CM taxonomy of diseases

2. querying the asserted data and its hierarchy of classes (the ICD-10CM taxonomy) at
the same time in order to count the comorbidities in a per disease class manner

The asserted relationships are marked with solid lines. The dashed line represents in-
ferences that can be made about disease B that distinctly simplifies the aggregation in the
following way. Without the inference, the aggregation would have to be formulated separately
for each possible height of the hierarchy subtree. On the other hand, due to the transitive na-
ture of the ’is subclass of’ relationship, a direct link between disease B and the hierarchy root
(E00-E89) can easily be inferred. The link can then be reused as an invariant of a single
query, expressed in SPARQL [48], tremendously simplifying data processing.

Listing [5.1] presents the SPARQL query, used to obtain statistics of comorbidities. In
order to improve readability, Line 1. substitutes the list of prefixes for namespaces of RDF
Schema [I1] and the covidepid ontology. The 3. line returns the counts of comorbidities,
aggregated per ICD-10CM diseases. Lines 5-6 match any patients with the classes of their
comorbidities. Lines 8. and 9. constrain the results to only those disease classes, which do
not have a direct antecedent of degree 2 in the hierarchy of disease classes (i.e. they are on
the first level of the hierarchy class). E

LA technical note for advanced users of RDFS: the query in Listing omits a few technical clauses in
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Figure 5.1: Varying depth of class hierarchy is the problem of calculating counts of the
hasComorbidity relationship for the [K00-E89 — Endocrine, nutritional and metabolic diseases
class of diseases. The asserted data are represented using solid lines. Without the inferences
(the dashed line), different formulations of the aggregating query are needed for all subtree
heights. Colors have the following meaning — yellow: ICD-10CM disease classes, red: FOAF
ontology (patients), purple: the integrational layer (the covidepid concepts).

Listing 5.1: Aggregation of comorbidities in SPARQL [48]. Calculation of comorbidity class
frequency using class hierarchy traversal along the triples inferred using transitivity of the
rdfs:subClassOf relation.

<...prefixes...>

SELECT 7healthConditionClass (count(?healthConditionClass) as 7cnt)
WHERE {
?patient covidepid:hasComorbidity ?disease
?7disease rdfs:subClassOf 7diseaseClass
FILTER NOT EXISTS {
?7diseaseClass rdfs:subClassOf 7diseaseClassParent
?diseaseClassParent rdfs:subClassOf covidepid:HealthCondition
}
}

GROUP BY 7diseaseClass

the query that filter out: 1) rdfs:Resource as the root of the inheritance hierarchy, 2) reflexivity of the
rdfs:subClassOf relation.
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5.2. Statistical results

The results of a statistical analysis of the obtained data (Section ) suggests that there
is a significant difference between hospitalization lengths of patients with the E00-E89 —
Endocrine, nutritional and metabolic diseases compared to those without such a comorbidity
(p-value = 0.005).

The obtained statistical result indicates the fundamental role Linked Data could play in
epidemiology. It should not be treated however as a final conclusion about COVID-19 severity.
The reasons are three-fold:

1. the level of granularity when counting disease classes is very low; it treats diseases of
various etiology within the same subtree in the same way

2. the study sample size (90) was small in comparison to the related work (|27], [29], [25])
3. patient’s hospitalization length is a very vague indicator of COVID-19 severity

Regarding the first point, other aggregation levels of the investigated comorbidities in the
"subclass of” hierarchy are also possible, e.g. the level 2 or 3. This would require a bigger study
sample though as the sample obtained in the first phase of the study is quite small (90 cases)
and there are currently not enough cases to aggregate reasonably on other hierarchy levels.
Provided there is more data available, it is trivial to reformulate the query in Listing [5.1] to
also capture higher levels of granularity.

Regarding the second point, further monitoring of the patients admitted to the hospital
is desired in order to increase the studied sample. With the ongoing second phase of the
epidemiological study, new cases will be provided shortly. The data pipeline implemented in
Section L2l will facilitate curation of their data.

Regarding the third point, the investigated COVID-19 severity indicators could also in-
clude other attributes of patient’s hospitalization, such as: number of symptoms, occurance
of desaturation, blood test results, among others. As a rule of thumb, the more relation-
ships would turn out to be statistically significant for a given comorbidity class, the stronger
premises the comorbidity class would have to be a risk factor. In the case of blood tests,
integration of new types of data would be required into the already existing model. With
the gained experience regarding modeling using the Linked Data approach in the covidepid
ontology, this seems to be feasible.

5.3. Technical aspects

The bulk part of the work in the thesis was invested into implementation of data collection
and its curation as described in Section It required a lot of time and dedication to:

1. align two different programs to use the same data conceptual model: the user interface
on one hand and the JSON-to-RDF transformer on the other hand

2. mix four different kinds of software in the data pipeline: a JavaScript program, a Python
program, Apache Jena and RStudio

As a result, the implemented data transformations should be radically simplified. This
can be achieved by using software such as the proprietary REDCapﬂ or OpenClinicaﬂ (GNU

Zhttps:/ /www.project-redcap.org/
3https://github.com/OpenClinica/OpenClinica
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LGPL license). It remains unclearhow those programs could provide export of the stored data
into an RDF format, e.g. Turtle [10].

Alternatively, a different approach to data transformations could be taken. Instead of map-
ping the JSON files to RDF using a custom Python program written in the rdflib v6.0.1 [67]
library, a set of RM[E| rules for data transformations could be defined. The RDF Mapping
Language (RML) is a generic mapping language, aiming at expressing transformation rules
of various non-RDF data formats to RDF. The entry threshold of this approach seems low
in comparison with the custom-code-based solution for JSON-to-RDF data transformation.
Unfortunately, using RML assumes using the custom JavaScript-based user interface that
produces the JSON files at the same time, whereas an all-in-one solution would be desired.

Summing up, the Linked Data approach requires a lot of effort in the technical aspect
of data curation. In the end, the user is often left with a multi-staged data pipeline that is
complex to maintain. Although this thesis provides a proof of concept of such a Linked Data
curation pipeline, further research has to be done in the area of‘tools aimed specifically at
epidemiology.

“https://rml.io/docs/
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Chapter 6

Conclusions

This chapter sums up the results obtained in the thesis and concludes them. It emphesizes
the crucial role that the Linked Data approach played in obtaining them.

6.1. Linked Data in epidemiology

Overall, the two main features of Linked Data as a tool in data management are:

1. the syntax for both metadata and data through the annotations using Internationalized
Resource Identifiers

2. the semantic data model based on graph theory and computational logics

Those features enable the following advantages in data processing over the traditional
semantic-agnostic approach to data management:

1. seamless integration of various domain-specific ontologies that provide meaning to the
data

2. relying on a declarative data model rather than on iterative data processing in order to
extract cross-sections from the data

The thesis presented a minimal example of benefits that Linked Data could provide in
the context of an epidemiological study. In the case of the study at the Pediatric Hospital
of the Medical Univesity of Warsaw, the Linked Data paradigm enabled integration of var-
ious domain-specific ontologies by providing a common standard to express links between
heterogenous data. It was used as a framework for the integration of various domain-specific
ontologies, including: ICD-10CM [36] and FOAF [3§].

Additionally, by bringing machine-interpretable semantics to the data, the Linked Data
approach enabled answering an analytical query concerning counting comorbidities in COVID-
positive patients in a per ICD-10CM disease class manner. Using semantics of the data in an
explicit way, it was easy to formulate an aggregating cross-section of the asserted data that
involved traversing complex hierarchy classes. The query used knowledge inferred from the
asserted data. The obtained query result was used to assess the influence of the comorbidity
type on the patients’ hospitalization length. It transpired that there is a statistically significant
difference between the median of hospitalization length in patients with metabolic diseases
compared to those that do not have such comorbidities.

41



Ultimately, Linked Data enables concise formulation of queries that would otherwise re-
quire multi-staged data processing. As a result, introducing formal semantics to the data and
means to integrate various domain-specific ontologies the way that the Linked Data paradigm
does, can be viewed as a massive improvement to data analytics in general.

On the other hand, some knowledge of mathematical formalisms, such as graph theory,
description logics and computational complexity is advised when dealing with Linked Data as
the paradigm heavily relies on those mathematical formalisms. It has a steep learning curve
which entry-level users may find discouraging. The user can quickly get overwhelmed by
the syntax of IRIs and RDF, nitty-gritty details of formal specifications and analysis of time
complexity of the algorithms performed under the hood when conducting semantic inferences.
Additionally, there is a lack of high-quality open-source user interfaces that would enable easy
collection and curation of epidemiological surveys in a Linked Data format. Further efforts
should be put into solving that problem. Finally, the current state of the open-source modeling
tools available in the Linked Data community leaves a lot to be desired.

Nonetheless, RDF triples stores — such as Apache Jena [45] — together with reasoners —
such as Pellet [60] — provide an exciting alternative to traditional data stores. They enable
seamless integration of both data and metadata from different domains. Thus, the Linked
Data paradigm may find users primarily in an interdisciplinary setting, including epidemiol-

ogy.

6.2. Future work

In order to provide high-quality results of the epidemiological study at the Pediatric Hospital
of the Medical University of Warsaw, future work requires extending COVID-19 severity
indicators definition by additional attributes of patient’s hospitalization, such as blood tests,
occurance of desaturation, etc. Additionally, the second phase of the epidemiological study
ought to be finished in the upcoming months. It will extend the already available study
sample, enabling more confident statistical results.

The future work will entail:

1. verifying the impact of continous use of various medicine types on the COVID-19 out-
comes in children patients

2. investigating COVID-19 spread dynamics based on the timeline of infections within the
patient’s family

The results of the epidemiological study will be published in a scientific article.

42



List of Figures

[1.1. Phases of the epidemiological study|. . . . . . .. ... ... ... ... .... 8
[2.1. Data processing pipeline| . . . . . . . . ... L 13
13.1. An example of an RDF triple represented as a graph| . . . . . ... ... ... 18
I3.2. An example of an RDF graph| . . . . . ... ... .. ... ... . 0 0. 19
3.3, The semantic stack of Linked Datal . . . . . ... ... ... ... ... ... 27
13.4. Expressivity of RDES| . . . . .. .. ... o 28
13.5. Expressivity of OWL| . . . . . . . . .. o 29
4.1. Layers of the obtained data model] . . . . . . ... ... ... ... ... ... 31
[4.2. High-level overview of the data model used in the study| . . . . . .. ... .. 32
4.3. Classification of the study sample cases|. . . . . . . . . .. ... .. ... ... 35
4.4. Histogram of hospitalization lengths| . . . . . . ... .. ... ... ... ... 35
4.5. Summary of the observed comorbidities| . . . . . . ... ... ... ... ... 36
|b.1. Varying depth of the taxonomy of diseases according to ICD-10CM| . . . . . . 38

43






List of Tables

[2.1. The scheme of the investigated statistical hypotheses| . . . . . . . . .. .. .. 13
3.1. Raw data vs. data with annotationsl . . . ... ... ... ... .. .... .. 17
3.2. A bDubset of Extended Backus-Naur Form| . . . ... ... ... ... ..... 22
4.1. Partial results obtained in each step of the data pipelinel . . . . . . . . . ... 33
4.2. Results of the Mann-Whitney-Wilcoxon U test| . . . . . ... ... ... ... 36

45






Bibliography

[1]

2]

3]

[4]

[5]

(6]

17l

8]

9]

[10]

[11]

[12]

[13]

[14]

World Health Organization. Coronavirus disease (COVID-19) — Overview.
https://www.who.int /health-topics/coronavirus, accessed on: 14th December 2021.

Avneet Kaur et al. COVID-19 Infection: Epidemiology, Virology, Clinical Features,
Diagnosis and Pharmacological Treatment. Current Pharmaceutical Design, 27, 01 2021.

World Health Organization. COVID-19 disease in children and adolescents: Scientific
brief. 09 2021.

World Health Organization. WHO Coronavirus (COVID-19) Dashboard.
https://covid19.who.int, accessed on: 12th December 2021.

Maria Nicola et al. The socio-economic implications of the coronavirus pandemic
(COVID-19): A review. Int. J. Surg., 78:185-193, June 2020.

World Wide Web Consortium. What is Linked Data?
https://www.w3.org/standards/semanticweb/data, accessed on:  14th December
2021.

Mark Wilkinson et al. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data, 3, 03 2016.

Maulik Kamdar, Javier Fernandez, Axel Polleres, Tania Tudorache, and Mark Musen.
Enabling Web-scale data integration in biomedicine through Linked Open Data. 2, 09
2019.

Richard Cyganiak, David Hyland-Wood, and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. W8C Recommendation, 02 2014.

Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle. W3C Recommendation, 02
2014.

Ramanathan Guha and Dan Brickley. RDF Schema 1.1, 02 2014.

Sean Bechhofer, Frank Harmelen, James Hendler, Ian Horrocks, Deborah Mcguinness,
Peter Patel-Schneider, and Lynn Stein. OWL Web Ontology Language Reference. 02
2004.

Tim Berners-Lee. Linked data - design issues, 2006.
https://www.w3.org/Designlssues/LinkedData.html, accessed on:  18th October
2021.

Tim Berners-Lee. What the Semantic Web Can Represent. 01 1998.

47



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Tim Berners-Lee and Robert Cailliau. WorldWideWeb - Proposal for a HyperText
Project, 1990. https://www.w3.org/Proposal.html, accessed on: 19th October 2021.

T Berners-Lee, James Hendler, and Olli Lassila. The Semantic Web. Scientific American,
284:35, 01 2001.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data: The Story so Far.
International Journal on Semantic Web and Information Systems, 5:1-22, 07 2009.

Dean Allemang and James Hendler. Semantic web for the working ontologist - modeling
in RDF, RDFS and OWL. 01 2008.

Aakash Ahmad et al. An Overview of Ontologies and Tool Support for COVID-19 Ana-
lytics. 10 2021.

Leila Bayoudhi, Najla Sassi, and Wassim Jaziri. An Overview of Biomedical Ontolo-
gies for Pandemics and Infectious Diseases Representation. Procedia Computer Science,
192:4249-4258, 01 2021.

Biswanath Dutta and Michael Debellis. CODO: An Ontology for Collection and Analysis
of Covid-19 Data. 09 2020.

Schriml Lynn et al. Disease Ontology: A backbone for disease semantic integration.
Nucleic acids research, 40:D940-6, 11 2011.

Yongqun He et al. CIDO, a community-based ontology for coronavirus disease knowledge
and data integration, sharing, and analysis. Scientific Data, 7, 12 2020.

Lindsay Kim et al. Hospitalization Rates and Characteristics of Children Aged <18 Years
Hospitalized with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, March 1-
July 25, 2020. MMWR. Morbidity and mortality weekly report, 69, 08 2020.

Miranda Delahoy et al. Hospitalizations Associated with COVID-19 Among Children
and Adolescents — COVID-NET, 14 States, March 1, 2020-August 14, 2021. MMWR.
Morbidity and Mortality Weekly Report, 70, 09 2021.

Centers for Disease Control and Prevention. COVID-NET: COVID-19-Associated Hos-
pitalization Surveillance Network. https://www.cdc.gov/coronavirus/2019-ncov/covid-
data/covid-net /purpose-methods.html, accessed on: 12th December 2021.

Micaela Sandoval, Duc T. Nguyen, Farhaan S. Vahidy, and Edward A. Graviss. Risk
factors for severity of COVID-19 in hospital patients age 18-29 years. PLOS ONE,
16(7):€0255544, July 2021.

Rebecca Woodruff et al. Risk Factors for Severe COVID-19 in Children. Pediatrics, 10
2021.

Sara Rubenstein et al. COVID-19 in Pediatric Inpatients: A Multi-Center Observational
Study of Factors Associated with Negative Short-Term Outcomes. Children, 8(11), 2021.

Kristina Gaietto et al. Asthma as a risk factor for hospitalization in children with COVID-
19: A nested case-control study. Pediatric allergy and immunology, 11 2021.

48



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

Sara Assaf et al. Asthma and severe acute respiratory syndrome coronavirus 2019: current
evidence and knowledge gaps. Current Opinion in Pulmonary Medicine, Publish Ahead
of Print, 10 2020.

Krishan Chhiba et al. Prevalence and characterization of asthma in hospitalized and
non-hospitalized patients with COVID-19. Journal of Allergy and Clinical Immunology,
146, 06 2020.

Eduardo Garcia-Pachon et al. Asthma prevalence in patients with SARS-CoV-2 virus
infection detected by RT-PCR not requiring hospitalization. Respiratory Medicine,
171:106084, 07 2020.

Manon Grandbastien et al. SARS-CoV-2 Pneumonia in Hospitalized Asthmatic Patients
Did Not Induce Severe Exacerbation. The Journal of Allergy and Clinical Immunology:
In Practice, 8, 06 2020.

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5:199-220, 1993.

World Health Organization. ICD-10: international statistical classification of diseases
and related health problems: tenth revision, 2004.

WHO Collaborating Centre for Drug Statistics Methodology. ATC classification index
with DDDs, 2021., 2020.

Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Namespace Document
2 Sept 2004, FOAF Project, 2004. http://xmlns.com/foaf/0.1/.

W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). 01 2008.
Kenneth Ross and Charles Wright. Discrete Mathematics, volume 70. 01 1992.

Patrick Hayes and Peter Patel-Schneider. RDF 1.1 Semantics. W&C Recommendation,
02 2014.

Mark A. Musen. The protégé project: a look back and a look forward. Al Maitters,
1(4):4-12, 2015.

Patricia Whetzel et al. BioPortal: Enhanced functionality via new Web services from
the National Center for Biomedical Ontology to access and use ontologies in software
applications. Nucleic acids research, 39:W541-5, 06 2011.

Dirk Merkel. Docker: lightweight linux containers for consistent development and de-
ployment. Linuz journal, 2014(239):2, 2014.

Apache Software Foundation. Apache Jena. https://jena.apache.org/, accessed on: 14th
December 2021.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2021.

Pascal Hitzler. A review of the semantic web field. Communications of the ACM, 64:76—
83, 01 2021.

Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language, March 2013.

49



[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

|66]

Michael Uschold. Ontology and database schema: What’s the difference?  Applied
Ontology, 10:243-258, 12 2015.

Stefan Decker, Sergey Melnik, Frank Harmelen, Dieter Fensel, Michel Klein, Michael
Erdmann, and Ian Horrocks. The semantic web: the roles of XML and RDF. [FEE
Internet Computing, 4, 10 2000.

Cory Doctorow. Metacrap: Putting the torch to seven straw-men of the meta-utopia.
http://www.well.com/ doctorow/metacrap.htm, accessed on: 14th December 2021.

Aaron Swartz. Aaron Swartz’s A Programmable Web: An Unfinished Work. Synthesis
Lectures on the Semantic Web: Theory and Technology, 3:1-64, 02 2013.

David Hyland-Wood. What’s New in RDF 1.1. W&8C Working Group Note, 02 2014.

Fabien Gandon and Guus Schreiber. RDF 1.1 XML Syntax. W3C Recommendation, 02
2014.

Robin J. Wilson. History of Graph Theory. CRC Press, 2013.
Lisa Ehrlinger and Wolfram Wo%. Towards a Definition of Knowledge Graphs. 09 2016.

Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lindstrom.
JSON-LD 1.1. A JSON-based Serialization for Linked Data. W3C' Recommendation, 02
2014.

Drew Mcdermott and Dejing Dou. Representing Disjunction and Quantifiers in RDF.
volume 2342, pages 250-263, 06 2002.

Shudi Gao, C. M. Sperberg-McQueen, Henry Thompson, Noah Mendelsohn, David
Beech, and Murray Maloney. W3C XML Schema Definition Language (XSD) 1.1 Part
1: Structures. W3C' Recommendation, 04 2012.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A practical owl-dl reasoner. Web Semantics, 5(2):51-53, June 2007.

James Hendler. Tonight’s Dessert: Semantic Web Layer Cakes. page 1, 05 2009.

Ian Horrocks, Peter Patel-Schneider, and Frank Harmelen. From SHIQ and RDF to
OWL: the making of a web ontology language. Web Semantics: Science, Services and
Agents on the World Wide Web, 1:7-26, 07 2003.

Ian Horrocks. Owl: A description logic based ontology language. In Peter van Beek,
editor, Principles and Practice of Constraint Programming - CP 2005, pages 58, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

Michael Uschold and Michael Griininger. Ontologies: Principles, methods and applica-
tions. The Knowledge FEngineering Review, 11, 01 1996.

Maurizio Lenzerini. Data Integration: A Theoretical Perspective. pages 233-246, 01
2002.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Refer-
ence Manual, The (2nd Edition). Pearson Higher Education, 2004.

50



[67] The RDFLib Team. rdflib. https://rdflib.readthedocs.io/en/stable/, accessed on: 14th
December 2021.

[68] Torsten Hothorn, Kurt Hornik, Mark A. van de Wiel, and Achim Zeileis. A Lego system
for conditional inference. The American Statistician, 60(3):257-263, 2006.

51



	Introduction
	The COVID-19 pandemic
	The epidemiological study at the Pediatric Hospital of the Medical University of Warsaw
	Goals & motivations of the thesis
	Contributions
	Related work
	Linked Data in epidemiology
	Severity of COVID-19 in children aged 0-18

	Structure of the document

	Methodology
	Conceptual foundations of Linked Data
	Designing the model
	Implementation
	Evaluation

	Conceptual foundations of Linked Data
	Linked Data
	Background
	Raw data vs. annotated data
	The driving idea: linking heterogenous data

	Resource Description Framework
	The core concept: triples
	RDF as an abstract data model based on graphs
	Syntax
	Syntax vs. semantics
	Semantics

	The semantic stack of Linked Data
	The four layers
	Layer 0 – RDF as the basis
	Layer 1 – Metamodels: RDFS & OWL
	Layer 2 – Domain-specific ontologies
	Layer 3 – Data integration


	Results
	Data model: the covidepid ontology
	Data pipeline
	Risk factors of severe COVID-19 in children
	High-level overview of the data
	Hypothesis testing


	Discussion
	The role of Linked Data in the epidemiological study
	Statistical results
	Technical aspects

	Conclusions
	Linked Data in epidemiology
	Future work


