AMTraC-19 (v7_7d) user guide

Cameron Zachreson,! Sheryl L. Chang,'! Oliver M. Cliff,! and Mikhail Prokopenko!
L Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia, 2006.



I. SUMMARY

This document describes how to simulate COVID-19 pandemics in Australia using the AMTraC-19 simulation plat-
form. Part (A) describes the steps involved in using the population generation component of the platform to convert
census data from the Australian Bureau of Statistics (ABS) into surrogate populations for use with the epidemic
simulator. Part (B) describes how to set up and run the epidemic simulator, including how to implement various
types of Social Distancing intervention strategies.

II. PART A: POPULATION GENERATION
A. Input data

The following datasets are required as inputs into population_generation_2016.cpp (note that the datafiles listed here
are for 2016, the code will need to be modified slightly if different input file names are used) :

e AGE.dat - the age group distribution for each census district (Statistical Local Area Level 1). The columns
correspond to the following:
. column 1: SA1 identifier (7-digit code)
. column 2: TOTAL, number of individuals residing in the corresponding SA1
. column 3: M0-4, number of males between 0 and 4 years of age

. column 4: F0-4, number of females between 0 and 4 years of age

1

2

3

4

5. column 5: M5-18, number of males between 5 and 18 years of age

6. column 6: F5-18, number of females between 5 and 18 years of age

7. column 7: M19-29, number of males between 19 and 29 years of age

8. column 8: F19-29, number of females between 19 and 29 years of age

9. column 9: M30-64, number of males between 30 and 64 years of age
10. column 10: F30-64, number of females between 30 and 64 years of age
11. column 11: M644, number of males over the age of 64

12. column 12: F644, number of females over the age of 64

e CDinSLA.dat - a list of correspondences between Statistical Area Level 1 (SA1) and Statistical Area Level 2
(SA2). [Note: prior to 2011, areas on the scale of SA1 were referred to as “Census Districts”, and those on the
scale of SA2 were referred to as “Statistical Local Areas”.]

e DZinSLA.dat - a list of correspondences between Destination Zones (DZN) and SA2s (DZN is the partition used
by the ABS for partitioning workplaces).

¢ HOUSEHOLD_COMPOSITION.dat - the distribution of household composition types for each SA1. These are
listed in the following order:

1. column 1: the SA1 identifier (7-digit code)

2. column 2: S, single adults

3. column 3: CWOC, couples without children (two adults)

4. column 4-7: CWC1-4, couples with from one to four children (two adults, 1-4 children)
5

. column 8-12: SPF1-5, single parent family with one adult and from one to five children (one adult, 1-5
children)

6. column 13-17: G2-6, non-family groups from with 2 to 6 adults.



e TravelToWork.dat - the list of commuter numbers between SA1 and DZN partitions. This is formatted as
follows:
1. column 1: SA1 identifier (7-digit code)
2. column 2: DZN identifier (11-digit code)

3. column 3: number of commuters

e DistanceSLA.txt - the matrix of geographic distances between the centroids of each SA2 pair (this was created
using the ArcMAP GIS software platform with ABS-provided shapefiles) - the top row lists the SA2 identifier
for each column and row of the distance matrix.

e postcode_enrolment_2016.dat - a list of postcodes and number of enrolled students for reach school (primary
and secondary school) in Australia for the year 2016. These are documented by the Australian Curriculum
Assessment and Reporting Agency (ACARA), not by the ABS.

e Postcode2016_SA2_2016.dat - a correspondence between postcodes and SA2 partitions (these are not exact
correspondences - see Zachreson et al. 2018 for a description of how they were generated using ArcMAP to
analyse partition overlap).

B. Compiling and running generate_population_2016.cpp

This script must be located in the same directory as debug.h, utils.hpp, enums.h, and generate_population.h. The
header file ‘generate_population.h’ (lines 6 and 9) must be edited with appropriate locations for input and output
directories. If new input files are used (i.e., for different census years) the ‘generate_population_2016.cpp’ script must
be edited to read the data in from the correct files.

If these small changes are not made, compilation errors will occur. Otherwise, the code can be compiled from the
Linux command line using gcc, specifying C++11 libraries and optimisation:

g++ generate_population_2016.cpp -std=c++11 -O2

The resulting program can then be executed without input arguments, and will produce command line output related
to the population generation process.

C. population generation output files

A successful run of the program will produce the following outputs:

e population.dat* : A 5 x N matrix where each row represents an individual Agent generated by the software and
the columns correspond to the following:

1. Age group - an index between zero and 4, corresponding to the age groups listed above, (index increasing
with age).

2. Household - an index corresponding to the household group to which the Agent belongs

3. Household Cluster - an index corresponding to the Agent’s household cluster

4. Working Group - an index corresponding to the Agent’s work group (zeros indicate that the Agent does
not belong to a working group, and negative indices indicate school mixing groups).

5. SA1 - the region at Statistical Area Level 1 in which the Agent lives.



4

e WG.dat* : a 3x Npzy matrix in which each row represents a destination zone partition (DZN) and the columns
correspond to the following:
1. The 11-digit DZN code corresponding to a unique employment region.

2. The number of working groups in all previously listed DZNs (i.e., the value for the first item in the list is
Z€ero).

3. The number of working groups located in the corresponding DZN.

Since the working groups are indexed as they are generated, this list allows specification of the working group
indices located in each DZN region.

e CD_DZ Nstudents.dat : a list of student commuter numbers between each SA1 — DZN pair. The columns
correspond to:

1. The 7-digit SA1 code.
2. The 11-digit DZN code.
3. The number of students residing in the corresponding SA1 and going to school in the corresponding DZN.

This data set is redundant in that it can be reproduced by cross-referencing population.dat and WG.dat. In
combination with the TravelToWork.dat input file, it gives an estimate of commuting numbers between each
SA1 and DZN location.

e SLA_Age output.dat : This is a matrix where each row corresponds to a unique SA2 partition and the columns
correspond to the following:

1. The 5-digit SA2 identifier.

2. Columns 2 - 6 correspond to the number of individuals from each of the five age groups, residing in the
corresponding SA2.

e SCHOOLinDZ.dat* : a matrix where each row corresponds to a different school and the columns correspond to
the following:

1. The school’s index.
2. The DZN in which the school is located.
3. The number of students attending the school.

This dataset allows reconstruction of the spatial distribution of schools, conditional on their student populations.

*these data files are used by the epidemic simulator in the final implementation of the population data structure.
The file names not marked with an (*) are only produced for validation and visualisation purposes.

IIT. PART B: EPIDEMIC SIMULATOR

This section is divided into two parts. The first will describe how to run simulations of COVID-19 pandemics with
no interventions. The second will describe how to apply social distancing interventions as described in the article by
Chang et al. “Modelling transmission and control of the COVID-19 pandemic in Australia” (2020).

A. Basic epidemic simulator

The AMTraC-19 simulator as described in Chang et al. (2020) is implemented as follows.



1. compilation

To compile the AMTraC-19 program, navigate to the directory containing the source files and execute the commands
in the bash script called ‘re_compile’. This will use GNU Autotools to configure and make the program. Makefile.am
contains the compiler flags and lists headers and .cpp source files while configure.ac contains generic configuration
commands. This should produce an executable called “AmTraC.exe”.

2. input arguments and files

Table I lists the basic input arguments, their flags, and default values.

argument flag default value description

modulates transmission probability
trans_scaler -t 3.33 (3.33 corresponds to Ry = 2
for 2006, 2011, and 2016)

n_runs -r 1 number of instances
n_days -d 196 number of days for the simulation
./AmTraC_outputs/ directory into which AmTraC will write
database_output | -b 2016_population_1/ (note: this directory must

contain a sub-directory called ‘results’)

./AmTraC_inputs/
database_input -f 2016_population_1/ directory from which AMTraC-19 will read input

(bool) flag telling AMTraC-19 to use a specific
0 (false) set of random number seeds

read from the file
database_input /‘loaded_seed.dat’

reuse_seed -u

TABLE I. Input arguments, their command line flags, and a brief description of the parameters.

Some details: The database_input and database_output strings are likely to be different for each implementation,
remember to create a folder called ‘results’” within the database_output directory. The file ‘loaded_seed.dat’ should
contain a column of at least n_runs integer values (they will be read out from the list sequentially as each run
begins).

The value trans_scalar independently controls Ry (as described in Cliff et al. “Investigating Spatiotemporal Dynamics
and Synchrony of Influenza Epidemics in Australia: An Agent-Based Modelling Approach” (2018)) and we found that
this dependence was consistent across the 2006, 2011, and 2016 populations, however, the relationship is expected
to depend on population structure/demographics and may vary in other situations. Calibration can be carried out
by initialising many independent index cases and locating the mean number of secondary cases produced for each
value of trans_scalar tested. An updated description of Ry calibration is included in the manuscript by Zachreson et
al. “Interfering with influenza: nonlinear coupling of reactive and static mitigation strategies” (2020), which includes
Age-stratified biases for a more accurate calibration of Ry.

The following input files are necessary for the program to run:



e population.dat*

e WG.dat*

e CDinSLA .dat*

e DZinSLA.dat*

e SCHOOLinDZ.dat*

e SLA.dat : a two-column data file, the first column contains the list of 5-digit SA2 codes, and the second column
contains a dummy index list of increasing integers.

e SeedSLAs.dat: a data file containing information relevant to continuous seeding of index cases: a matrix with
rows equal to the number of international airports into which index cases can be introduced. The first column
is the daily incoming international air traffic, and the subsequent columns list the 5-digit SA2 identifiers for
SA2s within infection range of the corresponding airport (i.e., the airport corresponding to the row). The
probability of a new index case being introduced is then a function of the incoming traffic and a scaler value
‘expected_number_infected_” which is defined in the file ‘epidemic.cpp’ (the default is 0.00004, the proportion
of infections per incoming traveller). This format can be used for a broad range of seeding conditions that do
not have to correspond to airport traffic. The first entry in a row simply corresponds to the relative incoming
infection strength, while the subsequent entries are the SA2 regions affected by that infection strength. The
probability of infection for each individual residing in the SA2 regions listed in each row is equal to

; (1)

where the last term is the total number of individuals living in all SA2s listed in the corresponding row. On
average, each incoming ‘passenger’ has a 0.004 % chance of producing an index case.

Pindex = |incoming passengers (row)] x [4 x 107°] x [n affected individuals] !

*produced by the generate_population.cpp script.

8. command line output

The simulation will produce command line output to monitor the progression of each run. This provides useful
information on the number of index cases, incidence, prevalence etc.. [Note: if a segmentation fault is produced just
after the program initialises, double-check that all required input files are located in the input directory.]

4. output files

The simulation will create two layers of output directories, one for the entire set of runs, and a subdirectory for each
individual run. The names of these directories contain important information about the parameters used (parameter
information will also appear in the command line output):

The upper-level directory name is formatted as: T[trans_scaler] D[date]_[time] AP

The initials _AP stand for ‘airport’ and indicate the type of seeding algorithm used for introducing index cases, airport
seeding is the default for the variable seed_type which controls how seeding is implemented. This can be altered, but
at this point only two other options have been implemented. These are (a) NumberOfSLAs and (b) PopulationRan-
dom, which implement random seeding protocols and require the additional command line flags with specified values.



These will not be discussed here as the seeding protocols were specific to a particular investigation by Cliff et al.(2018).
The subdirectory names for each run are formatted as: R[run index]-[date]_[time]

Each simulation will produce the following output files:

e I_SLA.dat, a matrix of timeseries incidence data, with one column for each SA2 region (the row indices correspond
to simulation each day of the simulation).

e I SLA-[0-4].dat, each file corresponds to the location-specific incidence timeseries for each of the five age groups.
e I detection_Ag.dat, a matrix of timeseries incidence (detection) data, with one column for each age group (the
row indices correspond to each day of the simulation).

e Lillness_Ag.dat, a matrix of timeseries incidence (illness) data, with one column for each age group (the row
indices correspond to each day of the simulation).

e Linfection Ag.dat, a matrix of timeseries incidence (infection) data, with one column for each age group (the
row indices correspond to each day of the simulation).

e P _SLA.dat, as with I_.SLA.dat, but tabulating prevalence rather than incidence.
e P_SLA-[0-4].dat, location-specific prevalence timeseries for each age group.

e P_detection_Ag.dat, as with I_detection_Ag, but tabulating prevalence (detection) rather than incidence (detec-
tion).

e P_illness_Ag.dat, as with I_detection_Ag, but tabulating prevalence (illness) rather than incidence (illness).

e P_infection-Ag.dat, as with I_detection-Ag, but tabulating prevalence (infection) rather than incidence (infec-
tion).

e IP.dat, the incidence timeseries (first column) and prevalence (second column) for the whole population.

e Jinfected_Pinfected_CDI_CDP.dat - a four-column data set. The first column is the incidence of infected indi-
viduals (including asymptomatic cases), the second column is the prevalence of infected individuals (including
asymptomatic cases), the third column is the incidence of SA1 regions transitioning from 0 infected residents
to > 0 infected residents, and the fourth column is the number of SA1 regions with > 0 infected residents, the
row numbers correspond to time in days.

B. Social distancing interventions

Pandemic interventions have been included in the program, as described in Chang et al. (2020). These include
randomly-assigned social distancing, case isolation, household quarantine, and school closure.

1. input arguments and files

In addition to the input files listed for the basic implementation, application of social distancing interventions requires
the following:

The input file ‘SD_intervention_input.dat’, which must be located in the input directory specified by the command
line argument with flag -f. This file will specify the intervention-specific parameters. Follow the format contained



in the existing parameter file, the order of parameter specification is not important. The free parameters associated
with social distancing interventions are:

e SD_intervention: boolean flag for turning on social distancing [0, 1]

e 1n_ill_ SD_trigger: cumulative number of illnesses triggering social distancing]

e compliance_rate_SD: proportion of population who comply with social distancing, range [0, 1]

e duration_SD: number of days social distancing measures apply after they are implemented

e Fol_SD_community: multiplier for community interactions under social distancing, range [0, +o0]
e Fol SD_work: multiplier for workplace interactions under social distancing, range [0, 4+00]

e Fol_SD_home: multiplier for household interactions under social distancing, range [0, +00]

e CLintervention: boolean flag for turning on case isolation [0, 1]

e compliance_rate_CI: proportion of population who comply with case isolation, range [0, 1]

e Fol CI_community: multiplier for community interactions under case isolation, range [0, +oc]
e Fol Cl_work: multiplier for workplace interactions under case isolation, range [0, 4+00]

e Fol_CI_home: multiplier for household interactions under case isolation, range [0, +0o0]

e HQ_intervention: boolean flag for turning on home quarantine [0, 1]

e compliance_rate_HQ: proportion of population who comply with home quarantine, range [0, 1] (NOTE: home
quarantine compliance is conditional on case isolation compliance.)

e Fol HQ_community: multiplier for community interactions under home quarantine, range [0, +00]
e Fol HQ_work: multiplier for workplace interactions under home quarantine, range [0, +00]

e FoIl HQ_home: multiplier for household interactions under home quarantine, range [0, +oc]

e School_closure: boolean flag for turning on school closure [0, 1]

e n_ill_SC_trigger: cumulative number of illnesses triggering school closure]

e duration_SC: number of days school closure measures apply after they are implemented

e Fol_SC_community: multiplier for community interactions under school closure, range [0, +c0]
e Fol SC_work: multiplier for workplace interactions under school closure, range [0, +o0]

e FoI_SC_home: multiplier for household interactions under school closure, range [0, 4+00]

e p_parent_stays_home: probability that a parent will stay home under school closure, range [0, 1].
In order for AMTraC-19 to read the parameter inputs listed in ‘SD_intervention_input.dat’, the commandline argu-
ment:
-q <name of parameter input file>

must be entered at runtime. The default argument is “SD_intervention_input.dat”, as mentioned above, this file must
be located in the database input directory specified by the command line argument with flag -f.



2. command line output

The command line output will display the numbers of individuals who are affected by each of the social distancing
measures. It will also print the input parameters at the beginning of each run. [Note: if a segmentation fault
is produced just after the program initialises, double-check that all required input files are located in the input
directory.]

3. output files

In addition to the output files listed for the basic implementation of the program, the following additional output file
will be created:

e CI_.HQ.dat - a two-column data set. The first column is the number of individuals affected by case isolation,
and the second column is the number of individuals affected by home quarantine.

C. Vaccination intervention

Pharmaceutical interventions (i.e., vaccination campaigns) have been included by allocating two types vaccines (prior-
ity and general), using predefined age-dependent vaccine allocation ratios, as described in Zachreson et al. (2021). Two
types of vaccination campaigns are implemented: pre-pandemic coverage and progressive vaccination rollout.

1. input arguments and files

Simulation of vaccination rollout requires the input file “pharm_intervention_input.dat”, which must be located in the
input directory specified by the commend line argument with flag -f. This file will specify the vaccination-specific
parameters as follows:

e Pharm_intervention: Boolean flag for turning on vaccination [0, 1].
e n_vac_pre_epidemic_1: the number of individuals receiving the priority vaccine in a pre-pandemic mode.

e n_vac_per_week_1: the number of individuals receiving the priority vaccine per week in a progressive rollout
mode.

e n_vac_pre_epidemic_2: the number of individuals receiving the general vaccine in a pre-pandemic mode.

e n_vac_per_week_2: the number of individuals receiving the general vaccine per week in a progressive rollout
mode.

e p_vac_65_and_over: the number of vaccines allocated to older adults aged over 65, in each iteration of the
age-stratified allocation cycle

e p_vac_18_to_64: the number of vaccines allocated to adults aged between 18 and 64, in each iteration of the
age-stratified allocation cycle

e p_vac_children: the number of vaccines allocated to children aged under 18, in each iteration of the age-stratified
allocation cycle

e VEs_1: the efficacy for susceptibility for the priority vaccine

e VEi_1: the efficacy against infectiousness for the priority vaccine
e VEd_1: the efficacy for disease for the priority vaccine

e VEs 2: the efficacy for susceptibility for the general vaccine

e VEi 2: the efficacy against infectiousness for the general vaccine

e VEd_2: the efficacy for disease for the general vaccine



10

In order for AMTraC-19 to read the parameter inputs listed in ’pharm_intervention_input.dat’, the following command
line argument must be entered at runtime:

-V <name of parameter input file>

The default argument is “pharm_intervention_input.dat”.

2. command line output

The command line output will display the discrete-step (i.e., for each simulation day) and the cumulative (i.e., total)
number of vaccinated individuals by age groups (i.e., in accordance with the vaccine allocation ratio) and the type
of vaccine received (i.e., priority or general). It will also print out the input parameters at the beginning of each
run.

3. output files

In addition to the output files listed in section III.A.4, the following additional output files are created:

e I_detection.VACge_Ag.dat, a matrix of timeseries incidence (detection) data for the individuals who have re-
ceived the general vaccine, with one column for each age group (the row indices correspond to each day of the
simulation).

e I_detection VACpr_Ag.dat, a matrix of timeseries incidence (detection) data for the individuals who have re-
ceived the priority vaccine, with one column for each age group (the row indices correspond to each day of the
simulation).

e Linfection VACge_Ag.dat, a matrix of timeseries incidence (infection) data for the individuals who have re-
ceived the general vaccine, with one column for each age group (the row indices correspond to each day of the
simulation).

e Linfection VACpr_Ag.dat, a matrix of timeseries incidence (infection) data for the individuals who have re-
ceived the priority vaccine, with one column for each age group (the row indices correspond to each day of the
simulation).

e [infGE_IinfPR_Idet GE_IdetPR.dat - a four-column data set. The first column is the incidence of infected in-
dividuals (including asymptomatic cases) for those who have received the general vaccine, the second column
is the incidence of infected individuals (including asymptomatic cases) for those who have received the priority
vaccine, the third column is the incidence of detected individuals (including asymptomatic cases) for those who
have received the general vaccine, and the fourth column is the incidence of detected individuals (including
asymptomatic cases) for those who have received the priority vaccine. The row numbers correspond to time in
days.

e Vaccinations_general Ag.dat - a four-column data set recording the number of individuals that received the
general vaccine by age groups. The first column is the total number of individuals, the second column is the
number of children (aged < 18), the third column is the number of adults aged 18 — 64, the forth column is the
number older adults (aged > 65). The row numbers correspond to time in days.

e Vaccinations_priority_Ag.dat- a four-column data set recording the number of individuals that received the
priority vaccine by age groups. The first column is the total number of individuals, the second column is the
number of children (aged < 18), the third column is the number of adults aged 18 — 64, the forth column is the
number older adults (aged > 65). The row numbers correspond to time in days.



