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Introduction

Home range estimation is a key output from animal tracking datasets, but the inherent properties of animal

movement can lead traditional methods to under- or overestimated their size. Autocorrelated Kernel

Density Estimation (AKDE) methods were designed to be statistically efficient while explicitly dealing

with the complexities and biases of modern movement data, such as autocorrelation, small sample sizes, and

missing or irregularly sampled data.

This tutorial is a companion piece to our manuscript “Autocorrelation-informed home range estimation: a

review and practical guide”. The AKDE family of home range estimators will be run using R software

(https://www.r-project.org/) and the ctmm package (Calabrese et al., 2016). For any definitions, check the

main manuscript or the Glossary. The techniques and mitigation measures available in this package include:

Method When to run? What does it do? R function
AKDE Tracking data is

autocorrelated
Estimates range distributions from autocorrelated
data, by conditioning on an autocorrelation
model.

akde(…, debias =
FALSE)

AKDEc If using GRF-based
KDEs (such as
AKDE)

Removes the tendency of Gaussian reference
function (GRF) methods to overestimate the area
of home ranges.

akde(…, debias =
TRUE)

pHREML Small (absolute and
effective) sample sizes

Improves upon ML and REML autocorrelation
estimation, mitigating small sample size biases.

ctmm.select(…,
method = "pHREML")

wAKDEc Irregular sampling
schedules or missing
data

Upweights observations that occur during
under-sampled times, while downweighting those
occurring during over-sampled times.

akde(…, weights =
TRUE)

Parametric
bootstrap

Extremely small
effective sample size

Calculates and corrects for autocorrelation
estimation biases, by simulating from an
approximate sampling distribution.

ctmm.boot(...)
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AKDEc and pHREML are default arguments within the akde() and ctmm.select() functions, respectively.

Both measures will run automatically if arguments debias and method are left unspecified. For most

situations, we recommend keeping both of these arguments as the default.

# Installing & loading package:
install.packages("ctmm")
library(ctmm)

We provide a guide to home range estimation using the following workflow:

• Step 1. – Formatting and loading an animal tracking dataset;

• Step 2. – Checking for the range residency assumption;

• Step 3. – Selecting the best-fit movement model through model selection;

• Step 4. – Feeding a movement model into the home range estimator;

• Step 5. – Evaluating additional biases, applying mitigation measures.

Data Preparation

We will use two datasets, both available within the ctmm package: African buffalos (Syncerus caffer), and

Mongolian gazelles (Procapra gutturosa). Information on the data collection protocol is available in Cross

et al. (2009) and Fleming et al. (2014). The ctmm package requires data to conform to Movebank naming

conventions (https://www.movebank.org/node/2381). We recommend uploading your data to Movebank

(http://www.movebank.org/) as this will facilitate data preparation, and ensure that your data are correctly

formatted for ctmm. If needed, Movebank allows you to keep your data private.

We will focus on the simplest data structure:

• animal ID or ID — An individual identifier for each animal tracked;

• timestamp or t — The date and time corresponding to a sensor measurement;

– Example: 2021-01-01 18:31:00.000

∗ Format: yyyy-MM-dd HH:mm:ss.SSS

• longitude or x — The geographic longitude of the location as estimated by the sensor.

– Example: -121.1761111

∗ Units: decimal degrees, WGS84 reference system.

• latitude or y — The geographic latitude of the location as estimated by the sensor;
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– Example: -41.0982423

∗ Units: decimal degrees, WGS84 reference system.

Location can also be described as UTM locations instead of latitude/longitude. In this case, you should

provide UTM easting, UTM northing, and UTM zone. For all terms and conventions, please see the full

vocabulary list here: http://vocab.nerc.ac.uk/collection/MVB/current/.

Step 1. – Formatting and loading an animal tracking dataset

You can import data into R through the read.table() or read.csv() functions; make sure to navigate to

the appropriate folder or working directory. For example:

# First, list all files in your current directory:

list.files() # make sure this leads to the location of your file

# Second, load the correct file:

animal0_longlat <- read.csv(here("example_data_longlat.csv"))

head(animal0_longlat)

## ID timestamp longitude latitude

## 1 animal0 2005-07-14 05:35 30.59648 65.24774

## 2 animal0 2005-07-14 07:35 30.53256 65.27085

## 3 animal0 2005-07-14 08:34 30.52398 65.26446

## 4 animal0 2005-07-14 09:35 30.52848 65.25948

## 5 animal0 2005-07-14 10:35 30.53382 65.26643

## 6 animal0 2005-07-14 11:34 30.49970 65.27868

animal0_utm <- read.csv(here("example_data_utm.csv"))

head(animal0_utm)

## ID timestamp UTM.Easting UTM.Northing UTM.zone

## 1 animal0 2005-07-14 05:35 387730.0 7238204 36N

## 2 animal0 2005-07-14 07:35 384846.3 7240894 36N

## 3 animal0 2005-07-14 08:34 384418.1 7240197 36N

## 4 animal0 2005-07-14 09:35 384606.5 7239634 36N

## 5 animal0 2005-07-14 10:35 384885.8 7240399 36N

## 6 animal0 2005-07-14 11:34 383347.9 7241826 36N
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# Finally, convert to telemetry object:

animal0a <- as.telemetry(animal0_longlat)

## Minimum sampling interval of 59 minutes in animal0

animal0b <- as.telemetry(animal0_utm)

## Geocentric coordinates not found. Looking for UTM coordinates.

## Minimum sampling interval of 59 minutes in animal0

# if left unspecified, as.telemetry() will assume timezone = UTC

Both these files represent the same individual, with either longitude/latitude, or UTM coordinates (easting,

northing, and UTM zone). The as.telemetry() function will immediately identify the columns if they are

correctly named, then output the minimum sampling interval for each individual in the dataset. In this

example, animal0 has a minimum sampling interval of 59 minutes.

1.1. Buffalo tracking data

For this tutorial, we will use data already prepared into a list of telemetry objects. We can load it directly

from the ctmm R package with the data() function:

data("buffalo")
animal1_buffalo <- buffalo[[4]] # selecting individual number 4
head(animal1_buffalo)

## timestamp longitude latitude t x y
## 17517 2006-04-25 05:09:00 31.73749 -24.19705 1145941740 -51803.35 -2715.663
## 17518 2006-04-25 06:09:00 31.73653 -24.19929 1145945340 -51569.29 -2845.660
## 17519 2006-04-25 07:09:00 31.73946 -24.20100 1145948940 -51340.72 -2576.353
## 17520 2006-04-25 08:09:00 31.73987 -24.20092 1145952540 -51344.11 -2533.788
## 17521 2006-04-25 10:09:00 31.74086 -24.20365 1145959740 -51029.45 -2474.771
## 17522 2006-04-25 11:09:00 31.74098 -24.20370 1145963340 -51022.23 -2463.655

# Plotting locations:
plot(animal1_buffalo)
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This dataset showcases an irregular sampling schedule: the buffalo nicknamed “Pepper” had a sampling rate

shift from one fix every hour to one fix every two hours. We will use this dataset to highlight data irregularity

and the wAKDE mitigation measure.

1.2. Gazelle tracking data

data("gazelle")
animal2_gazelle <- gazelle[[11]] # selecting individual number 11
head(animal2_gazelle)

## x y t
## 2742 18152.70 -8539.799 0
## 2743 15931.16 -32069.788 1306800
## 2744 17678.84 -28632.329 1396800
## 2745 23135.50 -23820.789 1486800
## 2746 -20310.78 20348.792 2419200
## 2747 -17920.31 20598.668 2509200

# Plotting locations:
plot(animal2_gazelle)
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Mongolian gazelles have a home range crossing time of a few months, and with a maximum longevity

around 10 years, it is impossible to get a considerable effective sample size no matter the study duration

(Fleming et al., 2019). We will use this dataset to highlight how to check effective sample size and apply

the parametric bootstrap mitigation.

Data Analysis

Step 2. – Checking for the range residency assumption

First, we want to check if our first tracking dataset (animal1_buffalo) can be used for home range estimation

by checking for range residency. To achieve this, we calculate the semi-variance function (SVF), and

visualize it through the variogram() function.

Variograms are an unbiased way to visualize autocorrelation structure, representing the average square

displacement (y-axis) over a specific time lag (x-axis). To facilitate interpretation, we have the SVF of

animal1_buffalo zoomed out (right) to showcase all time lags and (left) zoomed in to showcase time lags

up to two months:
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level <- 0.95 # we want to display 95% confidence intervals
xlim <- c(0,2 %#% "month") # to create a window of 2 months

SVF <- variogram(animal1_buffalo)
par(mfrow = c(1,2))
plot(SVF, fraction = 1, level = level)
abline(v = 1, col = "red", lty = 2) # adding a line at 1 month
plot(SVF, xlim = xlim, level = level)
abline(v = 1, col = "red", lty = 2)
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We can see that the variogram flattens (i.e., reaches an asymptote) after approximately 1 month (red line).

This also indicates at how coarse the timeseries needs to be to assume independence (no autocorrelation), and

corresponds to when traditional methods —such as minimum convex polygons (MCPs) and Kernel

Density Estimators (KDEs)— could be applied without violating their assumptions.

Step 3. – Selecting the best-fit movement model through model selection

It is necessary to choose a home range estimator that accounts for the autocorrelated structure of the data,

now that we see that it is not independently and identically distributed (non-IID). We need to test what

movement model may explain the autocorrelated structure of our tracking data. We can run different move-

ment processes with maximum likelihood (ML) or other parameter estimators, such as perturbative

Hybrid REML (pHREML). To facilitate further comparisons, we will run both ML and pHREML with

the ctmm.select function.

# Calculate an automated model guesstimate:
GUESS1 <- ctmm.guess(animal1_buffalo, interactive = FALSE)
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# Automated model selection, starting from GUESS:
FIT1_ML <- ctmm.select(animal1_buffalo, GUESS1, method = 'ML')
FIT1_pHREML <- ctmm.select(animal1_buffalo, GUESS1, method = 'pHREML')
## reminder: it will default to pHREML if no method is specified.

summary(FIT1_ML)

## $name
## [1] "OUF anisotropic"
##
## $DOF
## mean area speed
## 11.24296 20.01326 747.72143
##
## $CI
## low est high
## area (square kilometers) 431.446013 706.20245 1047.55828
## t[position] (days) 6.775273 12.18604 21.91786
## t[velocity] (minutes) 31.861346 35.81413 40.25730
## speed (kilometers/day) 15.948352 16.54124 17.13385
summary(FIT1_pHREML)

## $name
## [1] "OUF anisotropic"
##
## $DOF
## mean area speed
## 10.34454 15.65772 746.09401
##
## $CI
## low est high
## area (square kilometers) 439.064822 773.50766 1201.09155
## t[position] (days) 6.664052 13.36206 26.79221
## t[velocity] (minutes) 31.807736 35.75689 40.19636
## speed (kilometers/day) 15.949646 16.54326 17.13658

Within these summaries, $name provides the selected best-fit model, $DOF provides information on the degrees

of freedom (where $DOF["area"] corresponds to the effective sample size of the home-range area esti-

mate), and $CI are the parameter outputs (area, position autocorrelation timescale, velocity autocorrelation

timescale, and speed).

The typical pool of candidate models includes isotropic (when diffusion is the same in every direction;

symmetrical) and anisotropic (when diffusion varies with direction; asymmetrical) variants. The automated

model selection shows that OUF anisotropic (anisotropic Ornstein-Uhlenbeck foraging process) is our best-fit

model. This movement process features a home range, correlated positions, and correlated velocities. To

check the full model selection table, we can run the following command:
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FIT1_pHREML_verbose <- ctmm.select(animal1_buffalo, GUESS1, verbose = TRUE)
summary(FIT1_pHREML_verbose)

ΔAICc ΔRMSPE (km) DOF[area]
OUF anisotropic 0.0000 2.224045 15.657669
OU anisotropic 295.0898 2.634793 9.638283
OUF isotropic 330.2236 3.564231 11.204035
OUf anisotropic 1890.8878 0.000000 333.620712

By adding the argument verbose = TRUE we have access to the model selection table. By default, model

selection is based on Akaike’s Information Criterion adjusted for small sample sizes (AICc). The ctmm

package also offers BIC, LOOCV, and HSCV. LOOCV seems to work slightly better for very small datasets,

but we recommend AICc for the majority of datasets.

Step 4. – Feeding a movement model into the home range estimator

Now we can fit this movement process into the akde() function, and estimate the home range of

animal1_buffalo. This function currently defaults to the area-corrected AKDE, or AKDEc (Fleming

& Calabrese 2017):

# Run an area-corrected AKDE:
UD1_ML <- akde(animal1_buffalo, FIT1_ML)
UD1_pHREML <- akde(animal1_buffalo, FIT1_pHREML)

summary(UD1_pHREML)$CI # home range area estimation

## low est high
## area (square kilometers) 429.6573 756.9343 1175.357

We have calculated our home range for animal1_buffalo, resulting in an estimation of 757 km2 (with 95%

confidence intervals: 430–1,175 km2).

Step 5. – Evaluating additional biases, applying mitigation measures

5.1. Buffalo tracking data

summary(UD1_pHREML)$DOF["area"] # effective sample size of animal1

## area
## 15.65772
nrow(animal1_buffalo) # absolute sample size

## [1] 1725
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Our output here also reveals more information regarding our dataset: the effective sample size (N) and

the absolute sample size (n). We can return this measure with the summary function: in our case, the N

for animal1_buffalo is 15.7. Comparatively, our absolute sample size is easy to output, as it is the total

number of observations within our dataset (n = 1,725).

As mentioned earlier, animal1_buffalo had a device malfunction that led GPS fixes to shift from one fix

per hour, to one fix every two hours. As such, this individual is particularly suited for a weighted AKDEc

(or wAKDEc), so we can re-run the function with weights set to TRUE:

UD1w_pHREML <- akde(animal1_buffalo, FIT1_pHREML, weights = TRUE)

summary(UD1w_pHREML)$CI # home range area estimation (weighted)

## low est high
## area (square kilometers) 432.2234 761.4551 1182.376

Our new home range area estimation for animal1_buffalo is 761 km2 (with 95% confidence intervals: 432–

1,182 km2). We can now plot our home range estimate for animal1_buffalo:

# Creating an extent that includes both UDs at the 95% CI level:
EXT <- extent(list(UD1_ML, UD1_pHREML, UD1w_pHREML), level = 0.95)

# Plotting pHREML (with and without weights) side-by-side:
par(mfrow = c(1,2))
plot(animal1_buffalo, UD = UD1_pHREML, ext = EXT)
title(expression("pHREML AKDE"["C"]))
plot(animal1_buffalo, UD = UD1w_pHREML, ext = EXT)
title(expression("pHREML wAKDE"["C"]))
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For animal1_buffalo, the difference between model parameter estimators is not substantial; we only have

a ~5.7% AKDE area underestimation by ML compared to pHREML. However, the data fits the spatial

locations much better.

( 1 - summary(UD1_ML)$CI[1,2] / summary(UD1w_pHREML)$CI[1,2] ) * 100

## [1] 5.742588

5.2. Gazelle tracking data

We can also check the difference with animal2_gazelle’s tracking data, where the small effective sample

size issue is clearer:

GUESS2 <- ctmm.guess(animal2_gazelle, interactive = FALSE)

FIT2_ML <- ctmm.select(animal2_gazelle, GUESS2, method = 'ML')
FIT2_pHREML <- ctmm.select(animal2_gazelle, GUESS2, method = 'pHREML')

UD2_ML <- akde(animal2_gazelle, FIT2_ML)
UD2_pHREML <- akde(animal2_gazelle, FIT2_pHREML)

With animal2_gazelle, we have a more substantial area underestimation by ML compared to pHREML

(~15.2%). We can also see that our effective sample size is only 4.5, with an absolute sample size of 49 (N

≪ n).

( 1 - summary(UD2_ML)$CI[1,2] / summary(UD2_pHREML)$CI[1,2] ) * 100

## [1] 15.19245
summary(UD2_pHREML)$DOF["area"] # effective sample size

## area
## 4.528926
nrow(animal2_gazelle) # absolute sample size

## [1] 49

At this point, we have selected a movement process, fed it into a home range area estimation with different

model parameter estimators, and corrected for irregular sampling rates. With small effective sample sizes,

it is important to see if parametric bootstrapping may be worth it to further reduce our estimation error.

In order to do so, we can check the expected order of bias from pHREML:

# Expected order of pHREML bias:
1/summary(FIT2_pHREML)$DOF['area']^2

## area
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## 0.04875392

The bias is currently 𝒪(5%) (“in the order of” 5%). As such, we will run parametric bootstrapping for

animal2_gazelle. The relative error target is 1% by default (argument error = 0.01), but can be adjusted

if necessary.

start_time <- Sys.time() # start recording running time
BOOT <- ctmm.boot(animal2_gazelle, FIT2_pHREML, trace = 2)
## note: this function incurs substantial computational cost, may take hours.
( total_time <- Sys.time() - start_time ) # output running time

summary(BOOT)

## $name
## [1] "OUF isotropic"
##
## $DOF
## mean area speed
## 3.196957 3.530735 10.000358
##
## $CI
## low est high
## area (square kilometers) 3429.704883 14089.021613 32137.455223
## t[position] (months) 0.000000 1.781242 3.758819
## t[velocity] (hours) 2.248230 10.481973 48.870349
## speed (kilometers/day) 5.590052 8.072361 10.551247
1/summary(BOOT)$DOF['area']^3 # expected order of bias

## area
## 0.02271981

We can see that the expected order of bias was reduced to 2.3%, which is comparable to the numerical error

target of 1%. To reduce the numerical error further, we would need to change the default relative error target

of ctmm.boot, but the computational cost would continue to increase, and the comparably large statistical

bias (2%) would remain.

Now we will calculate the AKDEc based on the estimated parameters, and plot the home range of

animal2_gazelle. Because of small effective sample size, we set optimal weights to TRUE for improved

statistical efficiency:

UD2_bpHREML <- akde(animal2_gazelle, BOOT, weights = TRUE)
summary(UD2_bpHREML)$CI

## low est high
## area (square kilometers) 3231.504 13274.82 30280.25

Finally, we have calculated our home range for animal2_gazelle, with an estimated area of 13,274 square
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kilometers (with 95% confidence intervals: 3,231–30,280 km2). Our uncertainty with animal2_gazelle is

substantially higher than with animal1_buffalo, as expected due to the small effective sample size.

# Creating an extent that includes both UDs at the 95% CI level:
EXT <- extent(list(UD2_pHREML, UD2_bpHREML), level = 0.95)

# Plotting pHREML and bootstrapped-pHREML side-by-side:
par(mfrow = c(1,2))
plot(animal2_gazelle, UD = UD2_pHREML, ext = EXT)
title(expression("pHREML AKDE"["C"]))
plot(animal2_gazelle, UD = UD2_bpHREML, ext = EXT)
title(expression("Bootstrapped pHREML wAKDE"["C"]))
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The results presented here were generated with R version 4.1.1, and ctmm version 0.6.0.

Glossary

– Home range: the area repeatedly used throughout an animal’s lifetime for all its normal behaviors and

activities, excluding occasional exploratory moves.

– Range residency: the tendency of an animal to remain within their home range.

– Home range crossing time: the time required for an animal to cross the linear extent of its home range.

– Absolute sample size (n): the observations in a dataset.
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– Effective sample size (N): number of range crossings that occurred during the observation period. Can be

roughly estimated by dividing the duration of the tracking dataset by the average home range crossing time

parameter.
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