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Language- and Task-independent 
Transfer Learning for Multilingual Text 
Analytics in the Pharmaceutical 
Domain based on Linguistic Linked 
Open Data Resources and Workflows 
 

1 Background and Motivation 
Semalytix provides solutions to customers in the pharmaceutical industry in order to foster patient centricity in medical 

drug development through text analytics on real-world data. According to the FDA, patient-centric drug development 

is “a systematic approach to help ensure that patients’ experiences, perspectives, needs, and priorities are captured 

and meaningfully incorporated into drug development and evaluation. As experts in what it is like to live with their 

condition, patients are uniquely positioned to inform the understanding of the therapeutic context for drug 

development and evaluation”. Crucially, the aforementioned definition refers to real-world patient experience (“what it 

is like to ​live​ with their condition”) rather than clinical outcomes that are regularly measured and evaluated under 

laboratory conditions in clinical trials. Real-world insights of this kind, comprising self-reported disease burdens, 

treatment experience and unmet needs of particular patient populations, are increasingly gaining importance in 

regulatory approval and value assessment procedures of new drug products. Semalytix provides access to these 

insights via their Pharos Pharma Analytics platform, based on text analytics from large volumes of patient-reported 

narratives that are gathered in social media. As an additional source of evidence, health outcomes reported through 

medical experts are used to complement the patients’ perspective. 

 

Given that pharmaceutical companies usually operate in multiple markets across the globe and approximately 40% of 

the global pharmaceutical annual revenue is generated in regions with native languages other than English, it is 

obvious that a strong demand for text analytics in multiple languages arises from this problem setting. However, the 

technical challenge of  providing and maintaining an analytics stack for the entirety of involved NLP tasks (entity 

tagging, concept detection, sentiment analysis, among various others) is too expensive to be addressed from scratch 

with dedicated language-specific models for every single language of interest. In addition, the language adaptation 

challenge is aggravated by an inherent domain adaptation problem due to the specifics of pharmaceutical/biomedical 

domain plus text genre effects (patient-generated social media narratives vs. medical experts’ reports from CRM data). 

 

Therefore, in this pilot project, we are working towards a language- and task-independent transfer learning (LTTL) 

architecture for cross-lingual projection of existing NLP models that were monolingually trained on domain-specific 

English data for which sufficient resources are available. LTTL avoids manual data labeling efforts in the target 

language by relying on a data processing pipeline that is based on Linguistic Linked Open Data (LLOD), thus 
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capitalizing on existing linguistic resources (bilingual translation dictionaries, monolingual word embeddings) from the 

openly accessible LLOD cloud and dedicated LLOD workflows developed in the Prêt-à-LLOD project. We demonstrate 

that LTTL can be effectively rolled out to a variety of NLP tasks (sentiment analysis and concept detection) in different 

languages (Spanish, French) and across text genres (social media patient narratives, medical experts reports from 

CRM data). In task- and language-specific experiments, LTTL is evaluated against sequential machine translation 

pipelines. From the results obtained, we can conclude that LTTL provides a very reasonable trade-off on the 

cost-effectiveness spectrum, outperforming machine translation baselines in many evaluation scenarios.  

The structure of this report is as follows: In Section 2, we describe the LLOD processing pipeline that underlies LTTL in 

order to fuel the learning framework with the required linguistic resources. Section 3 provides details about the 

technical underpinnings of the LTTL core, both in terms of learning framework and software architecture. An overview 

of the concrete linguistic resources (along with information about their most important characteristics and provenance) 

used in the experiments reported in this document is given in Section 4. Section 5 presents two experiments on 

cross-lingual transfer of sentiment analysis and cross-lingual concept detection. Section 6 covers conclusions and 

next steps, including an alignment of the achieved progress in the pilot so far, compared to the original work plan. 

2 LLOD Processing Pipeline 
In order to avoid manual data labeling efforts in the target language, LTTL capitalizes on existing LLOD resources 

(bilingual translation dictionaries, monolingual word embeddings). Figure 1 presents the data processing pipeline that 

has been developed in the Prêt-à-LLOD project in order to transform existing lexical resources into RDF and publish 

them as LLOD which is subsequently consumed by LTTL in order to induce task-specific machine learning models in a 

target language of interest that are needed in the Pharos NLP stack. 

 

Figure 1: Overview of LLOD Processing Pipeline (slightly adapted from Gracia et al., 2020) 

 

For a more detailed description of the LLOD pipeline and the individual processing steps involved, we refer to Gracia 

et al. (2020). Due to its genericity, this workflow has the potential to serve as a strong enabler of growing the LLOD 

cloud over time both in terms of data volume and richness. In combination with a language- and task-independent 
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transfer learning framework such as LTTL, we consider it as a highly versatile catalyzer for rapid induction of 

multilingual text analytics components.  

3 LTTL Architecture 

3.1 Transfer Learning Framework 
We approach language- and task-independent transfer learning (LTTL) by applying supervised cross-lingual projection 

methods to generate bilingual word representations (Søgaard et al 2019). We in particular draw on a neural network 

architecture to learn ​Bilingual Sentiment Embeddings ​(Barnes et al. 2018) which encode information relevant to 

sentiment analysis in a shared bilingual word embedding space. Based on the assumption that sentiment classification 

is not essentially different from other classification tasks, we adopt BLSE as a general framework. This allows us to 

learn bilingual task-informed embedding spaces for any task which can be expressed as text classification. For this, 

LTTL requires 1) monolingual word embeddings in both the source and target language, 2) ground-truth annotations in 

the source language, and 3) a bilingual dictionary that maps tokens from the source language to their translations in 

the target language. Annotations in the target language are required for evaluation only. 

During training (Figure 2), for each document in the source-language annotated corpus we look up the 

(source-language) word embeddings of its tokens, average them to represent the document and project this document 

vector ​a​S​ using a matrix ​M​S​. The resulting vector ​z​s​ is then passed to a softmax layer to derive the predicted label. 

Based on minimizing a cross-entropy loss between the predicted and the annotated labels, ​M​S​ and the parameters of 

the softmax layer are learnt to produce better sentiment predictions. Simultaneously, during each training loop, for 

every pair in the bilingual dictionary, we look up their word embeddings in the respective monolingual embedding 

space and project them using matrices ​M​S​ (source language) and ​M​T​ (target language) respectively. We optimize both 

matrices to minimize the Euclidean distance between the projected embeddings, so that the projections from the 

target language are as close as possible to the projections from the source language. 

 

Figure 2: Training LTTL on a source-language (SL) annotated corpus and a source-language to target-language (TL) bilingual 

lexicon using TL and SL word embeddings to represent individual tokens 
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When using a trained LTTL model to classify a target-language document (Figure 3), we apply the same steps as 

during training based on target-language embeddings (embedding lookup, averaging, projection, prediction using the 

softmax layer). The projection step, however, is calculated using the matrix ​M​T ​ ​which was optimized to project 

target-language embeddings close to the projections from the task-informed, source-language projection matrix ​M​S​. 

Thus, the resulting vectors are expected to result in equally appropriate predictions when passed to the softmax layer 

learnt with the source-language annotations. 

 

Figure 3: Predictions with LTTL on target-language (TL) text using TL word embeddings to represent individual tokens 

3.2 Software Architecture 
As described in the previous section, to train a bilingual model the LTTL framework requires bilingual lexical resources, 

monolingual pre-trained embeddings and annotated task-specific data in the source language. The software 

architecture that integrates these different resources into the learning framework is shown in Figure 4. 

 

 
Figure 4: High-level overview of LTTL software architecture. The modules required by the LTTL learning framework are a data reader, 

lexical resources and embeddings;  they are easily selected and parameterized using a configuration file.   
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The role of the ​Lexical Resources​ module is to integrate existing LLOD resources with the LTTL framework and allows 

for their pre-processing (deduplication, filtering) and composition. This module also provides for conversion scripts in 

order to render different data formats, so that, for experimentation, we can also integrate resources not (yet) available 

as LLOD. 

 

The ​Embeddings​ module enables the use of different types of pre-trained monolingual embeddings with LTTL. 

Notably, it accepts embedding configurations with different dimensions for the source- and target-language 

embedding spaces. This allows us to flexibly experiment with combinations of pre-trained embeddings. 

 

For handling and generating data sets, we created a ​Data Reader ​module that automatically interacts with 

Semalytix-internal corpora stored in a document database and prepares source- and target-language data sets. These 

datasets can be created for any available chosen class label and are saved in a JSON format to allow for easy creation 

and processing of a dataset for both languages. The creation of particular data sets based on existing corpora is 

entirely configuration-driven. The resulting data can directly be used with LTTL which applies all additional processing 

for training and evaluating a model (such as importing and autonomously splitting it into train-, test-, and development 

sets). An important ability of the reader is its compatibility with different language encodings that are not limited to 

Latin characters, which is especially important for transfer learning with other than Western-European languages. 

These abstractions, based on custom-created data sets in combination with a simple configuration step where 

concepts and tasks for LTTL are specified, enable language- and task-independent transfer learning. Any corpus for 

any language or task can be ingested via the same JSON format, allowing us to choose any desired language-task 

combination and customise it easily for individual experiments. 

4 Language Resources 
The LTTL framework requires two monolingual word embeddings spaces for the source and target language 

respectively, a bilingual lexicon with language pairs from source to target language, an annotated corpus for the 

source language labeled according to the task and an evaluation dataset in the target language. In this chapter, we 

describe the lexical resources  and the procedures used to obtain them. 

 

Up to this point, we have tried the LTTL framework in both sentiment and concept transfer tasks with European 

languages only. In our current experiments, English was used as the source language, and Spanish and French as 

target languages. In comparison, open-domain resources in English were easier to obtain due to English being a 

resource-richer language. On account of the biomedical or pharmaceutical nature of our use cases, we have also used 

domain-specific resources in this framework. Expectedly, pharma-domain resources were more difficult to find, 

especially in the target languages, and in some cases they were simply not available.  Furthermore, the availability of 

bilingual lexica for the different language pairs varies greatly. In cases of appropriate resources not being available, we 

generated our own lexica via triangulation with one or more pivot languages. The procedure used to generate these is 

described in section 4.3. 

4.1 Monolingual Word Embeddings  

In the LTTL framework, the pre-trained monolingual embeddings are used for two purposes. The first is to obtain 

sentence representations in the source and target languages and the second is to represent translation pairs in a 

shared projection embedding space. In our experiments, we used pre-trained Word2Vec embeddings that were 
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publicly available and trained on large corpora. We distinguish between open-domain and domain-specific word 

embeddings. All embeddings used in our experiments are described in Table 1 below: 

Table 1: Overview of monolingual embeddings used in experiments with the LTTL framework. 

The vocabulary of open-domain embeddings contains words which are not particular to a specific domain. Because 

they can be used in multiple tasks, they are more easily available than domain-specific embeddings, especially for the 

English language. These resources are trained in open-domain texts such as Google News or Wikipedia. Finding 

embeddings in other languages was more difficult, but still feasible. The vocabulary of domain-specific embeddings 

contains words from the biomedical domain, such as diseases, medical specialties, drug names, symptoms, among 

others. The corpora used to train these embeddings mostly comprise biomedical articles and abstracts from 

domain-specific repositories such as PubMed, PubMedCentral (PMC) or Scielo. These embeddings were difficult to 

find in both source and target languages. Depending on the target language they may not be readily available. 

4.2 Bilingual Translation Dictionaries 
Bilingual translation dictionaries have an important role in LTTL. They are not only used for mapping words into a 

shared bilingual embedding space, but also to optimize the projected embeddings. During training, this happens by 

minimizing the semantic distance in the shared bilingual space between embedding vectors corresponding to 

translation pairs. Two types of lexica were used: single-source lexica and extended lexica. Single-source lexica 

provide translations from a single data source and extended lexica incorporate translations from two or more lexical 

resources. The lexica presented here vary in terms of vocabulary size, the type of knowledge they provide, origin, and 

purpose. At this point it should be noted that, as a consequence of the framework’s architecture, only single word 

entries on both source and target languages are valid translation pairs that can be used productively in the tasks 

described above. Improvements to include multiword expressions and more linguistically informed sentence 

representations are to be researched in further work.  

4.2.1. Single-source Lexica 
Similarly to the monolingual embeddings, single-source lexica can be classified according to the type of knowledge 

they provide. In our experiments, we selected lexica according to the criteria of domain- and task specificity. 

Accordingly, broad- coverage open-domain lexica, a sentiment lexicon and a pharma lexicon were used as described 

in the following: 

 

● Apertium lexica were used in various experiments. These  are very comprehensive open-domain, 
broad-coverage lexica. They are available in multiple language pairs and include entries from different 
domains, thus making this the most linguistically rich and sophisticated resource out of the simple resources. 
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Embeddings  Language  Type  Vocabulary Size  Vector Dimensions 

google-news  English  open-domain  55,627  300 

PMC  English  domain-specific  2,515,686  200 

Sg-300-es  Spanish  open-domain  834,213  300 

scielo-wiki  Spanish  domain-specific  324,452  300 

fr-wiki  French  open-domain  2,500,733  300 



Originally, this resource was generated from an open-source machine translation platform with the same 
name. The available bilingual lexica were then converted into RDF and published as linked data by 
participants of this project. 
 

● The sentiment lexicon was used on a sentiment transfer task for the languages English and Spanish, which is 
reported in section 5.1.. This is an open-domain, task specific resource originally provided as a monolingual 
resource by Hu and Liu.  The monolingual variant English sentiment lexicon contains positive and negative 
opinion words and, in total, 5,749 entries . It was translated into Spanish by Barnes et al. using Google 
Translate to produce a bilingual EN-ES translation dictionary. Note that we do not make use of the polarity 
information provided for each entry. 
 

● The pharma lexicon is a domain specific lexical resource that contains entries from the biomedical domain for 
the language pair English-Spanish only. This lexicon is the smallest and has a total of 2,687 entries which 
were extracted from bilingual entity lexicalizations from the Semalytix Knowledge Graph – an in-house 
repository of pharma-specific knowledge. Entity types such as diseases and symptoms, medical professions, 
drug products and agents, drug manufacturers, and therapy areas, among others are entries in this 
dictionary.  
 

These lexica were pre-processed prior to being used in LTTL. Pre-processing comprises three steps: 

 

● Deduplication​: Duplicate entries are removed from the bilingual dictionary. 
 

● Disambiguation​: In case of translation ambiguities, i.e., more than one translation for a word, the translation 
candidate that occurs most frequently in the target language corpus (dependent on the task) is selected. This 
is done because there may be concurring translations for words inside the corpus. In this step, only those 
entries that are both present in the corpus and in the lexicon are disambiguated. Non-matches, i.e., 
translations that are not present in the target language corpus, are not discarded from the bilingual dictionary 
at this step.  

● Filtering​: In addition to the disambiguation step, all entries with translations in the bilingual dictionary that do 
not occur in the target language corpus are removed.  
 

During our experiments we tried all these variants of preprocessing. The specific lexica used in the experiments are 

reported in sections 5.1. and 5.2. accordingly. 

4.2.2. Extended Lexica 
Lexicon extensions have as a starting point Apertium, here referred to as the base lexicon. Then, other lexical 

resources are added to the base lexicon. The goal of this extension procedure is to semantically enrich the shared 

bilingual embedding space by exploiting potential complementaries in lexical content from the other sources, since 

these enrich the base lexicon with other types of knowledge, such as domain or task-specific knowledge from the 

pharma lexicon and sentiment lexicon, respectively. For this purpose, individual source lexicons are composed 

successively in a given order with the base lexicon being the starting point. This is done by adding novel entries or 

overwriting existing ones, in case there are conflicting translations in the source lexicons. After the extension 

procedure, the novel lexical resource is processed according to the processing procedure described in 4.2.1.  

 

As illustrated in Figure 5 below, we distinguish between three types of extensions: domain extensions, task extensions 

and full extensions. In the domain extension, domain vocabulary is added to the base lexicon. This means that entries 

with terms from the pharma domain are added to the base lexicon and in case of translation ambiguities, the 

translations from the pharmaceutical lexicon are given preference over the translations from the base lexicon. In the 

task extension, vocabulary related to the task (e.g., sentiment analysis or concept detection), is added to the base 

lexicon. Those entries from the sentiment lexicon are added to the base lexicon, and in case of translation ambiguities, 

the entries from the latter are preferred. The full extension adds both domain- and task specific vocabulary to the base 
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lexicon and in cases of translation ambiguities, the entries from lexical resources other than the base lexicon are 

preferred. Entries from the pharma lexicon are considered first, followed by entries from the sentiment lexicon. 

 

 
Figure 5: Extended lexicon generation procedure 

 
This procedure enriches the base lexicon in different ways and this has implications for the configurations where these 

lexica are used and subsequently for the results. Furthermore, the further processing of the extended lexicon by 

deduplication, disambiguation and filtering (as described in section 4.2.1) play an important role in the configurations 

used in the different experiments. The different configurations used and their results are reported in section 5.  

4.3 Cross-lingual Lexicon Induction  
In some cases, bilingual lexica of interest for a given task or domain may not be available for all language pairs. One of 

the solutions for this problem is cross-lingual lexicon induction. This approach consists of leveraging two or more 

readily available lexical resources in either the source or target language and using a pivot language, i.e., a language 

which has correspondences to both languages, as a means to create a mapping between the two languages of 

interest. 

 

More specifically, we used cross-lingual lexicon induction to bootstrap a bilingual dictionary for the language pair 

English-French using Apertium lexica either with one or multiple pivot languages via triangulation, as described in 

Figure 6 below for the example case of using Spanish as pivot.  
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Figure 6: Lexicon induction procedure via a single pivot. 

 
This procedure leverages corresponding entries between the pivot and the source and target language, respectively: 

For each entry that links a source language term t​S​ to its translation t​P​ in the pivot language, if there is an entry linking 

t​P​ to a target language term t​T​, a translation from t​S​ to t​L​ can be inferred and stored in a newly created source-target 

lexicon. Subsequently, all duplicate entries are removed from the resulting lexicon.  

 

Analogously, the same approach was used to create a bilingual dictionary via multiple pivots, as illustrated in Figure 7 

below: 

 

 

Figure 7: Lexicon induction procedure via multiple pivots. 

Using multiple pivots results in lexically richer resources due to a higher number of entries and different types of 

entries provenient from the different sources. It also makes it possible to use the framework in lower resource 

languages, considering that Apertium lexica are available for many language pairs. 

In addition to the vanilla cross-lingual induction approach, we added a pre-processing step, in which only entries that 

have the same part of speech (PoS) in both source and target language are included in the new bootstrapped lexicon. 

This procedure relies on the PoS information that is integrated into Apertium 2.0 via mapping lexical entries to the 

LexInfo ontology. 
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Table 2 below shows an overview of bootstrapped EN-FR lexica with either one or more pivot languages: 

 

Table 2: Overview of lexica created with cross-lingual lexical induction and their corresponding number of entries.   

 
As can be seen from the table, the more pivots are used, the more entries are part of the resulting lexicon. Also the 

PoS pre-processing provides an easy way to filter the entries so that they are more likely to be true correspondences. 

We postulate that words with the same PoS are more likely to be the correct translations because these words are 

used similarly in both languages. In return, we can see that this has a reducing effect on the lexicon.  

For comparison, we also induced a bilingual EN-PT lexicon using the same triangulation procedure (cf. last row in 

Table 2). This demonstrates, on the one hand, that it is easily feasible to scale our pipeline to other languages. On the 

other hand, comparing the statistics of the resulting lexicons suggests that the induced EN-FR lexicon may provide 

high lexical coverage to be used in LTTL. This hypothesis will be subjected to an empirical test in the experiments 

reported in the following.  

 

The work reported in this section bears a strong connection to the TIAD campaign (“Translation Inference across 

Dictionaries”)​1​ which is organized by UNIZAR, and the methods on lexical linking that are developed in WP3 (Task 3.2) 

of the Prêt-à-LLOD project. Until now, the procedures we apply in our work in order to infer translations for new 

language pairs are of baseline quality; in future work, we will seek collaboration with UNIZAR and other partners from 

WP3 in order to explore more sophisticated approaches to translation inference and capitalize on learnings from the 

TIAD task. 

5 Experiments and Results 
In this section we report the experiments and results for cross-lingual sentiment analysis and cross-lingual concept 

detection. 

5.1 Cross-lingual Sentiment Analysis 
The experiments we conducted for cross-lingual sentiment analysis using different lexical resources are described 

here. In these experiments, we investigated the impact of lexical resources on cross-lingual transfer of sentiment 

detection models. For this, we evaluated different configurations of lexical resources regarding their performance in 

terms of accuracy in the cross-lingual sentiment projection task.  

1 ​https://tiad2020.unizar.es/ 
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Lexicon  Number of entries 

Apertium EN-FR with pivot ES  15,785 

Apertium EN-FR with pivots ES and CA  60,447 

Apertium EN-FR with pivots ES, CA and EO  94,195 

Apertium EN-FR with pivots ES, CA and EO and 
PoS-preprocessing 

70,012 

Apertium EN-PT with pivots ES and CA  41,730 

https://tiad2020.unizar.es/


5.1.1. Medical Experts’ Transcripts 
For our experiments, we used a corpus containing non-parallel samples of comparable English and Spanish medical 

expert transcripts. The transcripts contain summaries of conversations between pharma representatives and medical 

experts. In these conversations medical experts are asked to provide their opinions and assessments about certain 

aspects of medical treatments, for e.g., about the safety and effectiveness of drugs. The examples below denote 

positive and negative assessments of these aspects, respectively: 

 
1. DRUG can be safely used in elderly patients with renal failure.​ (positive example, SAFETY aspect) 
2. No effect on glycaemic control when using DRUG as add-on. ​(negative example, EFFECTIVENESS aspect) 

 
In total, a collection of 21,400 English summaries was manually annotated with binary sentiment labels at the 

document level, resulting in 11,069 positive documents and 10,331 negative documents. These were used for training 

the cross-lingual transfer model in a cross-validation setting. Similarly, a set of 1,001 Spanish documents was 

annotated to create a test set for evaluation purposes only (559 positive documents, 442 negative documents). 

5.1.2. Lexical resources and experiment configurations 
We processed our simple and extended lexica according to the three step procedure introduced in section 4.2.1. Table 

3 below shows the number of entries before and after processing: 

 

Table 3: Overview of the lexical resources used in experiments with the LTTL framework with their corresponding number of entries 

before and after processing. 

Based on previous experiment results obtained with these lexica, we paired them with the monolingual embeddings 

that provided the best performance. In previous experiments, we observed that Apertium benefits most from 

domain-specific embeddings in the target language (scielo-wiki), while the Pharma lexicon achieves the best results 

with open-domain embeddings in both the source (google-news) and target language (sg-300-es). The sentiment 

lexicon accomplishes together with domain-specific source embeddings (PMC)  and open-domain embeddings in the 

target language (sg-300-es) the best results. In previous experiments, the combination of open-domain embeddings in 
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  Source lexicons  Number of Entries 
(Original) 

Number of Entries 
(Processed) 

Single-source  Apertium  28,611   5,084 

Single-source  BingLiu  5,749  1,362 

Single-source  Pharma  2,687  277 

Domain Extension  Apertium + Pharma  31,192  5,307 

Task Extension   Apertium + BingLiu   34,254  5,799 

Full Extension  Apertium + Pharma + 

BingLiu 

36,941  6,018 



the source language and domain-specific embeddings in the target language yields the best results when paired with 

the different extensions.  

5.1.3. Results 
Table 4 shows the results of cross-lingual projection using the LTTL framework  for each configuration of resources in 

terms of accuracy.  

 

Table 4: Results of experiments with different lexicons and monolingual embedding combinations. For evaluation target language 

accuracy was measured.   

If we compare the simple lexica, we can observe that the best accuracy in the target language occurs when Apertium 

is used (Acc = 0.768). This result supports the status of Apertium being a linguistically rich, general-purpose source of 

bilingual lexical knowledge. Despite the corpus being highly pharma-specific, the relative individual performance of the 

pharma and BingLiu lexica suggest that task-specific information is more important than technical domain knowledge. 

Furthermore we can observe the same complementarity of resources with the new processed lexica with respect to 

the monolingual embeddings used.  

 

We also see that lexical extensions based on the Apertium lexicon can be effective and provide slightly better results 

than when using Apertium alone (Acc=0.773) due to their richer bilingual lexical representations. This seems to be due 

the complementarity among original lexica, since general-purpose knowledge from Apertium paired with task-specific 

knowledge from BingLiu achieve the best performance overall. As analyzed in more detail in Hartung et al. (2020), the 

best LTTL configuration obtained from these experiments outperforms a purely translation-based transfer approach by 

a wide margin (approx. 24 points in target language accuracy), and also comes close to the performance of a 

dedicated source language classification model (with a performance gap of only 5 points in source language 

accuracy). 

5.2 Cross-lingual Concept Detection 

Apart from sentiment analysis, we also conducted experiments for the task of concept detection across languages. We 

define this task as a text classification problem based on a variety of pharma-related output labels, e.g. the safety or 

effectiveness of a drug product, or health-related quality-of-life variables as reported by patients, such as their ability 

to perform their work, for instance. We approach the problem of predicting these concepts via a multitude of individual 
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Lexicon  Monolingual Embeddings  Target language accuracy 

Apertium   google; scielo_wiki  0.768 

Pharma  google; sg300es  0.434 

BingLiu  PMC; sg300es  0.711 

Apertium + Pharma  google; scielo_wiki  0.763 

Apertium + BingLiu  google; scielo_wiki  0.773 

Apertium + Pharma + BingLiu  google; scielo_wiki  0.767 



binary classifiers. In the experiments reported in the following, LTTL is challenged to project such classifiers across 

languages.  

5.2.1 Available monolingual model and generation of test set labels 

In order to generate labeled data in the target language of interest for validation purposes, we rely on a heuristic label 

propagation procedure based on a monolingual classification model that is available in the Semalytix technology stack 

for processing English documents. It is a custom rule-based pattern matching engine that is largely based on manual 

rule engineering. There are two matching options for those rules: the literal matching of specific sequences of tokens in 

the text, or constraint-based matching that allows for additional complexity based on, e.g., regular expressions to 

capture morphological variation, part-of-speech tagging, dependency syntax or knowledge graph type constraints. 

In order to make use of this monolingual model for texts that are not written in English, foreign language texts are 

algorithmically translated into English. Thus, the concept detector model can be run on the translated texts in the same 

way as on originally English ones. The resulting concept labels are then propagated back to the original documents. 

An illustration of this process is depicted in Figure 8 below. 

Following this label propagation approach, we were able to generate sufficiently large testing samples for a great 

variety of concept detection problems, in the interest of subjecting LTTL to an extensive evaluation across individual 

tasks. It needs to be emphasized, though, that the resulting target-language labels were not manually checked for 

correctness. Hence, even though the underlying rule-based classifiers available for English are optimized for precision, 

the test collection resulting from this procedure must be considered a silver standard.  

 

 
Figure 8: Label propagation from labeled source language to unlabeled target language documents. 

5.2.2 Baseline Models 

As comparison to our LTTL model, we also generate two baseline models:  

● Baseline 1: Directly translate the rules used in the monolingual classifier into the target language, where they 
can subsequently be used as rule-based extractors. 

● Baseline 2:  Apply the monolingual classifier to English texts and, translate the resulting extractions, and 
subsequently use them as extractors in the target language.  
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Figure 9: Illustration of pattern translation procedure of Baseline 1. 

 
As illustrated in Figure 9, our approach for Baseline 1 (BL1) is to extract all patterns for each required concept in the 

source language (SL)​ ​and to then translate those to the target language (TL) using the DeepL translation API. After this 

step the resulting patterns are run on the target language silver standard test set. If a match is found, the given 

document is classified as a positive instance of the respective concept, otherwise a negative one.  

 

 
Figure 10: Illustration of pattern translation procedure of Baseline 2. 

Baseline 2 (BL2) is following a slightly different approach (illustrated in Figure 10). First the original English patterns for 

each required concept are executed on the English training data set. Then, all English phrases that match those 

patterns are extracted and translated into the target language using the same translation service. Subsequently, those 

extractions (which in comparison to Baseline 1 do not usually contain any regular expressions or other formal 

constraints) are then used as target language extraction rules and run on the target language silver standard test set, 

analogously to Baseline 1.  

5.2.3 Experiment 1: Medical Experts’ Transcripts 

The goal of this task is cross-lingual text classification on categorial labels from medical experts’ transcripts data for 

the language pair English-Spanish. The corpus used in this experiment for cross-lingual concept detection consists of 

the same non-parallel sample of comparable English and Spanish conversations transcripts between pharma 

representatives and medical experts as for the cross-lingual sentiment analysis task (cf. section 5.1). 

In this case it is particularly important that the medical experts in the data state their opinions and assessments about 

particular aspects related to the health outcomes of medical treatments. This results in the categorial labels from HCP 

insights concepts that our concept detection model aims to predict. For the same examples as in section 5.1 above, 

the labels to predict are SAFETY and EFFECTIVENESS: 
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(1) DRUG can be safely used in elderly patients with renal failure. → SAFETY 

(2) No effect on glycaemic control when using DRUG as add-on. → EFFECTIVENESS 

An important characteristic of this data is that due to its nature as expert transcripts, it is rather structured and 

homogenous, especially compared to the social media data to be analysed in the next task (cf. 5.2.4), which allows for 

much more variation in the data samples. 

 

To obtain the concept labels for the training, development and test sets, we ran the English-based Semalytix-internal 

concept detector for the two respective concepts on them. The labels for the Spanish data sets are propagated from 

their English translation, following the procedure outlined in section 5.2.1.   

For the lexica and embeddings the same ones as in the cross-lingual sentiment analysis task were used as well, but in 

different configurations. Table 5 below gives an overview of the applied processed lexica and their number of entries. 

For more information on the different lexica versions see section 4.2 on the bilingual translation dictionaries. 

 

Table 5: Number of entries for each EN-ES lexicon used in the experiments.  

Table 6 below presents the results achieved by LTTL for the EN-ES language pair (listing only the best-performing 

combinations of monolingual word embeddings, and all configurations of bilingual lexicons as introduced in Table 5), 

as well as the two baselines described in section 5.2.2 above. Results are reported in terms of precision, recall and 

F1-measure for the positive class. 

 

Overall, these results highlight an interesting difference across the two concepts investigated: While the translated 

rule-based baselines clearly perform best on the SAFETY concept, LTTL has an advantage on EFFECTIVENESS (with 

both baselines being strong competitors in terms of recall, though). On the latter concept, classification performance is 

lower in general across all approaches, which suggests a higher complexity of the task, and may also explain the 

relative superiority of the rule-based approach on SAFETY.  In fact, qualitative analysis reveals EFFECTIVENESS as the 

more heterogeneous topic in terms of a greater linguistic variability. In addition, the volume of training data available 

seems to have a strong impact as well: It is approximately four times higher for EFFECTIVENESS than SAFETY, which 

may undermine the relative performance of LTTL on SAFETY even further. 

In regard to the impact of the monolingual word embeddings, it is noticeable that the Spanish domain-specific 

scielo_wiki​ embeddings do particularly well, while for English the general ​google​ ones achieve among the best results, 

with some of them yielded by the ​PMC​ domain-specific embeddings. Regarding the lexica, there is no clear winning 

configuration. The general single-source ​Apertium​ lexicon outperforms the combinations for the concept of 

EFFECTIVENESS, whereas it stays behind the domain extension of​ Apertium+Pharma​ for SAFETY. Considering lexica 

sampling methods no superior one can be detected either, as the table shows that on the one hand ​disambiguated 

obtains the best results for SAFETY (however, only in combination with ​Apertium+Pharma​, while for just ​Apertium​ it is 

outperformed by ​filtered​). On the other hand the simple ​deduplicated​ version of ​Apertium​ on its own, as well as 

Apertium+Pharma​ does best. 
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Filter method  Lexicon combination  No. of entries 

Deduplicated 
Apertium  28,505 

Apertium+Pharma  30,708 

Disambiguated 
Apertium  25,355 

Apertium+Pharma  27,851 

Filtered 
Apertium  5,084 

Apertium+Pharma  5,361 



 

 

Table 6: Results for representative configurations of lexica and embeddings for EN-ES concept transfer in comparison to both 

baselines. Results are reported in terms of precision, recall and f1-measure for the positive class.  

 

5.2.4 Experiment 2: Social Media Data Experiments 

Taking into consideration the previous experiments and their results, we conducted another series of experiments 

which was designed in order to answer the following questions: 

● Is it possible to apply LTTL across a variety of tasks, relying on little configuration efforts (cf. section 3.2), but 
under otherwise identical conditions? 

● Can LTTL be effectively used on a language pair for which no bilingual lexicon is readily available, but needs 
to be induced beforehand? 

● Can LTTL be effectively combined with rule-based approaches in order to increase classification 
performance? 

For this set of experiments the setup of the cross-lingual concept detection task stays the same, but we now perform 

text classification on categorial labels from a WHO-based quality of life (QoL) taxonomy for the language pair 
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Lexicon  Embeddings  Precision  Recall  F1 

Safety 

Apertium 

Deduplicated 
google + 

scielo_wiki 
0.692  0.270  0.388 

Disambiguated 
google + 

scielo_wiki 
0.662  0.295  0.408 

Filtered  PMC + scielo_wiki  0.693  0.510  0.588 

Apertium+Pharma 

Deduplicated 
google + 

scielo_wiki 
0.686  0.285  0.402 

Disambiguated  PMC + scielo_wiki  0.787  0.500  0.612 

Filtered  PMC + scielo_wiki  0.695  0.525  0.598 

Baseline 1  0.830  0.760  0.793 

Baseline 2  0.982  0.560  0.713 

Effectiveness 

Apertium 

Deduplicated 
google + 

scielo_wiki 
0.590  0.655  0.620 

Disambiguated 
google + 

scielo_wiki 
0.584  0.605  0.594 

Filtered 
google + 

scielo_wiki 
0.588  0.600  0.594 

Apertium+Pharma 

Deduplicated 
google + 

scielo_wiki 
0.588  0.650  0.617 

Disambiguated 
google + 

scielo_wiki 
0.572  0.610  0.590 

Filtered 
google + 

scielo_wiki 
0.590  0.585  0.587 

Baseline 1  0.481  0.585  0.528 

Baseline 2  0.501  0.680  0.577 



English-French. Figure 11 below gives an overview of the areas the QoL taxonomy comprises and the specific topics 

included in them. We conducted experiments on the 21 of them that are in use at Semalytix and thus have an available 

pattern detection model. ​Self-esteem​ and ​Freedom, physical safety and security​ were therefore excluded and ​Religion​, 

Spirituality​ and ​Personal beliefs​ were grouped into one single concept. 

 

Figure 11:​ ​Overview of QoL areas and contained topics. 

As data we used a social media corpus, made up of posts from several medical online fora. Compared to the medical 

transcripts used in the experiments in section 5.2.3, this data contains extremely varied language as it is not authored 

by medical experts, but often by patients and their relatives. This also poses challenges for concept detection via the 

Semalytix-internal concept detector, as it may be difficult to find precise but widely applicable rules. 

Labeled data sets for both languages were created following the steps outlined in Section 5.2.1, i.e., tagging them via 

the English concept detector model and, in the case of the target language, propagating the obtained labels to the 

original French texts. Table 7 below gives an overview of the number of documents obtained this way for each 

concept. Numbers vary according to the available pattern detection results coming from the Semalytix-internal 

pipeline. As some concepts appear less frequently in the social media data corpus, their training and test sets contain 

fewer entries. All source data sets are automatically split into a training, development and test set (80/10/10) for 

training by the LTTL module. The target language sets are used for evaluation and thus automatically divided into a 

development and test set (50/50). 
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Table 7: Overview of number of documents for the source and target language data sets for all concepts ​for each positive and negative 

samples​.  

As the source language (English) is the same as in previous experiments, we used the same embeddings for it. For 

French, as we could not find suitable embeddings related to the pharmaceutical, medical or health domain, we 

employed the open domain open-access ​frwiki​ embeddings (for more details regarding the monolingual word 

embeddings see section 4.1.) Given that Apertium does not include an English-French lexicon, we created one via the 

pivot language Spanish (as the English-Spanish lexicon had worked well before) using the procedure described in 

section 4.3 on cross-lingual lexicon induction. We then also applied all filter methods to this lexicon, resulting in 3 

versions of it. As no suitable domain-specific lexicon was available to us for FR-EN at the time of the experiments, we 

could not conduct them for the combination of Apertium with such a lexicon in the way we did for the Spanish data. 

Furthermore, following the same approach as in our other experiments, we also obtained results for both baselines 1 

and 2 for the EN-FR concept detection task. They will be discussed below in context of the results stemming from the 

experiment configurations of the different lexica and embedding combinations. 

Additionally, following a detailed analysis into the classification predictions made by our different models, we explored 

the setting of combining both the baseline and the LTTL models in a sequential way. This was done by first executing 

the baselines and then LTTL, and vice versa. For each scenario, we ran the first model (Baseline 1 / 2 or LTTL)  and 

then extracted all data (from both the positive and the negative samples) that had not been matched by this model. 
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Concept   No. of documents in English 
data set 
per pos/neg samples  

No. of documents in French 
data set 
per pos/neg samples 

Activities of daily living  931  405 

Body image and appearance  1333  904 

Dependence on medicines  125  31 

Energy and Fatigue  3000  2549 

Financial resources  2451  859 

Health and social care  1825  623 

Home environment  840  287 

Mobility  1141  456 

Negative feelings  1685  1620 

Pain and discomfort  3000  3000 

Participation in and opportunities 

for recreation and leisure 
3000  2718 

Personal relationships  3000  3000 

Physical environment  955  423 

Positive feelings  3000  2277 

Religion, spirituality and personal 

beliefs 
3000  202 

Sexual activity  50  132 

Sleep and rest  823  523 

Social support  893  466 

Thinking, learning, memory and 

concentration 
430  186 

Transport  896  278 

Work capacity  707  184 



The unmatched data sample was then given to the other model as input data. This results in 4 different configurations: 

BL1+LTTL, BL2+LTTL, LTTL+BL1 and LTTL+BL2. After obtaining results for the second model, evaluation metrics 

were calculated for the entire data set. We report these below in comparison to those of the single models for 

LTTL+BL, as the latter sequence outperformed BL+LTTL in nearly all cases. 

Tables 8 and 9 below show the results of our experiments in terms of F1 measure, precision and recall for the positive 

class. The LTTL configuration employed the ​google​ embeddings for English, the ​frwiki​ ones for French and the 

Apertium disambiguated​ version of the EN-FR lexicon that was developed via a pivot language. This configuration was 

selected, as it yielded the overall best results in a first run for a subset of concepts on which we tested different lexicon 

and embedding configurations.  

Table 8: Results for EN-FR concept transfer with LTTL in comparison to both baselines. Results are reported in terms of precision, 

recall and f1-measure for the positive class.  

Table 8 depicts results for both baselines models in comparison to LTTL. While LTTL surpasses both baselines for a 

large number of concepts, in some cases (6 out of 21 concepts), it is actually outperformed by one of them (with BL1 

achieving better results than BL2, apart from the case of ​Sleep and rest​).  
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Baselines 

LTTL 
BL 1  BL 2 

Precision  Recall  F1  Precision  Recall  F1  Precision  Recall  F1 

Activities of daily living  0.562  0.425  0.484  0.569  0.482  0.521  0.718  0.616  0.663 

Body image and appearance  0.904  0.146  0.251  0.937  0.381  0.541  0.829  0.527  0.644 

Dependence on medicines  0.45  0.29  0.353  0.485  0.516  0.5  0.632  0.75  0.686 

Energy and Fatigue  0.455  0.781  0.575  0.853  0.633  0.727  0.638  0.635  0.636 

Financial resources  0.901  0.201  0.329  0.932  0.286  0.438  0.534  0.993  0.695 

Health and social care  0.981  0.164  0.281  0.498  0.738  0.595  0.698  0.593  0.641 

Home environment  0.519  0.801  0.63  0.953  0.143  0.248  0.596  0.646  0.62 

Mobility  0.822  0.305  0.445  0.961  0.268  0.419  0.626  0.794  0.7 

Negative feelings  0.955  0.106  0.19  0.955  0.157  0.269  0.629  0.642  0.635 

Pain and discomfort  0.794  0.333  0.469  0.783  0.357  0.49  0.713  0.703  0.708 

Participation in and opportunities 

for 

 recreation and leisure 

0.528  0.266  0.353  0.672  0.286  0.402  0.67  0.65  0.66 

Personal relationships  0.503  0.601  0.548  0.669  0.588  0.626  0.666  0.679  0.672 

Physical environment  0.498  0.56  0.527  0.983  0.404  0.573  0.722  0.712  0.717 

Positive feelings  0.472  0.817  0.598  0.553  0.316  0.402  0.789  0.234  0.36 

Religion, spirituality and personal 

beliefs  0.52  0.787  0.626  1  0.446  0.616  0.927  0.376  0.535 

Sexual activity  0.976  0.614  0.753  0.975  0.598  0.742  0.464  0.394  0.426 

Sleep and rest  0.941  0.182  0.304  0.927  0.507  0.655  0.642  0.473  0.545 

Social support  0.929  0.028  0.054  0.75  0.013  0.025  0.678  0.579  0.625 

Thinking, learning, memory and 

 concentration 
0.542  0.629  0.582  0.987  0.403  0.573  0.543  0.473  0.506 

Transport  0.485  0.795  0.602  0.555  0.543  0.549  0.703  0.647  0.674 

Work capacity  1  0.071  0.132  1  0.158  0.272  0.873  0.598  0.71 



An observation that holds true for a majority of the concepts ( approx. 62%) is that baseline 2 regularly exceeds 

baseline 1 and even when it is surpassed by BL1, it is mostly not by a large margin (except for ​Home environment​).  

Being designed as precision-oriented extraction rules for English documents, most of the baselines still favour 

precision after being transferred to French: For roughly 75% of the concepts at least one of the baselines shows a 

significantly better precision than LTTL. However, apart from a small number of cases, LTTL benefits from a much 

higher recall, which results in a better overall performance of this model. An explanation for this could be that the 

patterns employed in the concept detection model that the baselines are based on, loses coverage due to translation, 

but does usually not match more noise.  

 

Table 9: Results for EN-FR concept transfer with the combined pipelines for LTTL+Baseline. Results are reported in terms of precision, 

recall and f1-measure for the positive class.  

While we also conducted experiments for Baselines 1 and 2 in sequential combination with LTTL, in Table 9 we only 

report LTTL+Baselines 1 and 2 as the latter repeatedly outperformed the former combination. 

The presented results illustrate that there are common tendencies regarding which model obtains the overall best 

results: For the majority of concepts the performance of the LTTL+Baselines combination exceeds LTTL and is among 

the best configurations, apart from ​Financial resources​, where both models perform equally well. Winning results are 
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Combinations 

LTTL+BL1  LTTL+BL2 

Precision  Recall  F1  Precision  Recall  F1 

Activities of daily living  0.627  0.827  0.714  0.609  0.825  0.701 

Body image and appearance  0.822  0.587  0.685  0.848  0.732  0.786 

Dependence on medicines  0.578  0.839  0.684  0.6  0.968  0.741 

Energy and Fatigue  0.5  1  0.667  0.68  0.933  0.787 

Financial resources  0.533  0.999  0.695  0.533  0.999  0.695 

Health and social care  0.719  0.674  0.696  0.527  0.923  0.671 

Home environment  0.531  0.951  0.682  0.632  0.753  0.687 

Mobility  0.658  0.908  0.763  0.678  0.904  0.774 

Negative feelings  0.643  0.693  0.667  0.647  0.709  0.677 

Pain and discomfort  0.702  0.844  0.766  0.698  0.853  0.768 

Participation in and opportunities for 

 recreation and leisure 
0.617  0.79  0.693  0.661  0.815  0.73 

Personal relationships  0.548  0.939  0.692  0.627  0.932  0.75 

Physical environment  0.558  0.887  0.685  0.755  0.844  0.797 

Positive feelings  0.496  0.954  0.652  0.621  0.528  0.57 

Religion, spirituality and personal beliefs  0.558  0.936  0.699  0.96  0.718  0.822 

Sexual activity  0.697  0.871  0.774  0.695  0.864  0.77 

Sleep and rest  0.699  0.612  0.652  0.737  0.793  0.764 

Social support  0.69  0.635  0.661  0.688  0.633  0.659 

Thinking, learning, memory and 

 concentration 
0.534  0.844  0.654  0.647  0.72  0.682 

Transport  0.523  0.957  0.676  0.595  0.86  0.703 

Work capacity  0.868  0.609  0.716  0.872  0.63  0.732 



obtained by the combined models of LTTL+Baseline 1 or 2 by a sometimes considerable margin compared to LTTL for 

20 out of 21 cases.  

 

Another observation that holds true for many of the concepts, is that Baseline 2 regularly outperforms Baseline 1 not 

only when employed by itself, but also when used in sequence with LTTL (LTTL+BL2). Even when it is left behind 

Baseline 1, it is inferior only by a small margin. The only exception to this (​Home environment​) nevertheless has 

LTTL+B2 yielding better results. This likely stems from the advantage that the recall generally increases in the 

combined models, as the baselines add to the LTTL results in a sequential way (the extended coverage here seems to 

outweigh the potentially added noise). 

This shows that the LTTL model undoubtedly benefits from the sequential addition of the baseline models. Leading 

results are obtained by the sequential combination of LTTL+BL2 for nearly 80% of the concepts and by LTTL+BL1 in 

the other approximately 20%, except for the one case where no gain over LTTL alone has been achieved. 

Summing up, our LTTL system has proven to be applicable to a variety of tasks and concepts with little configuration 

efforts, thanks to its modular and easily configurable architecture. Moreover, we showed that it can be employed even 

when a bilingual lexicon for a particular language pair is not readily available, as it can be induced via one or more 

pivot languages without resulting in poor performance. Furthermore, the LTTL model can effectively be combined 

sequentially with rule-based concepts detectors, resulting in a noticeable increase of classification performance. 

6 Summary and Conclusions 
In this report, we presented the LTTL framework as a generalized transfer architecture which can be flexibly used in 

order to induce bilingual task-specific embeddings as lexical representations for NLP models that are needed for 

multilingual text analytics. Being embedded into an LLOD exploitation pipeline based on Prêt-à-LLOD core technology, 

LTTL is flexibly applicable to different languages and for various tasks, which we successfully demonstrated for the 

two tasks of sentiment analysis and health-related concept detection, both of which are of high practical relevance for 

multilingual text analytics in the pharmaceutical domain. Thus, the experiments reported provide evidence for LLOD 

lexical resources serving as catalyzers of cross-lingual transfer approaches which facilitate the scalability of real-world 

industrial solutions to a large variety of languages that are of relevance for global markets. In addition, we consider the 

outcomes of this pilot as corroborating the strong potential of the Prêt-à-LLOD value chain as an enabler of rapid 

model transfer frameworks, which may also involve rapid development of exhaustive benchmarking frameworks based 

on all available LLOD resources satisfying certain criteria (and possibly their combinations).  

 

The current achievements of Pilot IV as reported in this document are in line with the planned progress according to 

the specification outlined in the Pilot Specification Report (Deliverable D4.1), as can be seen from the status overview 

of the involved milestones presented in Table 10 in Appendix A. In future work, we plan to refine and extend the 

currently existing LTTL workflows with a particular emphasis on bilingual lexicon induction and extension (cf. Section 

4.3), as well as to integrate them into a running Pharos demo platform for evaluation and demonstration purposes.  
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Appendix A 

Table 10: Milestones and timeline for Pilot IV from the Prêt-à-LLOD Pilot Specification Report  
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Milestone ID  Goal  Due date (Project 
Month) 

Status  
(effective M24) 

MS-IV.1  Prototype implementation of language transfer for at 
least one type of component (e.g. supervised ML) and 
at least one pair of source and target language (English 

and e.g. Spanish) 

M9  achieved 

MS-IV.2  Individually implemented language transfer of all 
analytical components needed to populate a complete 
dashboard 

M15  achieved 

MS-IV.3  Discover and consume cross-lingual LLOD resources 
and services supporting manual language transfer of a 
complete dashboard 

M18  achieved 

MS-IV.4  Language transfer pipeline consuming LLOD resources 

for at least ​one type of analytical component; ​Pilot 
Report Version 1 

M24  achieved 

MS-IV.5  Language transfer pipelines consuming and 
transforming LLOD resources for ​all analytical 
components​ needed to populate a complete 
dashboard 

M32  in progress 

MS-IV.6  Evaluations complete  M33  to do 

MS-IV.7  Documentation complete  M35  to do 

MS-IV.8  Pilot Report Version 2  M36  to do 
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