
real-time Simulated Open Field Environment

rtSOFE and Convolver User Manual

Version 1.1

Bernhard U. Seeber,
Tong Wang,

Hendrik Noeller, Manuel Hornung, Clara Hollomey and Max Kirchmeier

November 5, 2021

1

Contents

1 Introduction 3

2 Architecture Overview 3

3 Execution 4

4 rtsofe.exe 5
4.1 Parallelization Environment Variables . 5
4.2 Configuration . 5

4.2.1 Image Source Simulation . 5
4.2.2 Memory Usage . 7
4.2.3 Rendering . 7
4.2.4 Configuration Examples and Templates . 8

4.3 Coordinate System . 8
4.4 Valid Roomfiles . 8
4.5 Troubleshooting . 9
4.6 Bugs that we live with . 9

5 convolver.exe 9
5.1 Audio Routing . 9
5.2 Partitioned FFT Convolution . 11
5.3 Application States and OSC Control . 12
5.4 Troubleshooting . 12

6 OSC Tools – Python and Matlab utilities 12

7 License 13

8 List of Contributors 14

9 Funding Acknowledgment 14

A Material properties file 15

B Source directivity file 15

C Speaker mapping file 16

D Ambisonics LUT file 16

E Impulse response file 17

F Equalization filters file 17

G Receiver directionality SOFA files 17

H OSC address patterns and parameters 17
H.1 rtsofe.exe . 18
H.2 convolver.exe . 19

Bibliography 21

2

1 Introduction

rtSOFE.exe and convolver.exe are the two main applications that form the real-time Simulated Open
Field Environment (rtSOFE) for real-time auralization of virtual acoustics: rtSOFE.exe for the offline
and online simulation of spatial room impulse responses (IRs) and convolver.exe for real-time convolution
of a stream of IRs with audio from files or sound card channels, the summation of multiple such convo-
lutions to create early and late reflection parts or multiple simultaneous sound sources, and loudspeaker
equalization. They can also be used independently to simulate IRs for other purposes or to convolve
signals with an IR from a different source. This manual explains their use starting from an overview of
the technology.

2 Architecture Overview

The two applications divide the required tasks for (real-time) auralization amongst them:
rtsofe.exe creates an IR from a 3D room geometric model using the image source method based on

the approach by Borish (1984) and follows the earlier SOFE implementation presented in Hafter and
Seeber (2004) and Seeber et al. (2010). It can render image sources into IRs with different approaches:
binaural rendering, nearest speaker mapping, 2D-Ambisonics. It can either write that IR to a file and
exit (static mode for offline simulation) or receive source/receiver position updates over open sound
control (OSC) (e.g. from a motion tracker), render new IRs in real-time and send them to convolver.exe
over a TCP connection (real-time mode).

convolver.exe manages multiple real-time convolutions with time varying IRs. Each IR is either
received from an instance of rtsofe.exe or read from a file. Signals can come from audio files or through
a sound card input.

Together they can be connected to create various configurations relevant for hearing research, from
high-order offline simulations for pre-determined experiments or auditory modeling to online simulation
of source trajectories for real-time auralization or model-in-the-loop approaches. A common configuration
is convolving different orders of an IR separately to be able to update them independently. A simulation
of the entire IR is usually not feasible in real time because of the high computational cost of high order
image source (IS) simulations. Luckily, the most perceptually relevant reflections are the lowest order
ones which are relatively cheap to compute. To exploit this situation, a possible setup comprises one
instance of rtsofe.exe computing early reflections (e.g., up to order 3) with a high refresh rate and a
second instance calculating later reflections (e.g. to order 10) that takes more time to compute. The
diffusely reverberant rest of the IR could assumed to be position independent and loaded from a file.
The specific orders may vary depending on the application, available computer and used room model.
This setup is illustrated in figure 1.

3

convolver.exe

*
FIR

*
FFT

*
FFT

∑

Soundcard

late-ir.mat
Orders 11-100

sandstorm.wav

rtsofe.exe
Orders 0-3

rtsofe.exe
Orders 4-10

Outputs 1..36

TCP

OSC

OSC

OSC

TCP

Figure 1: Common setup for real-time auralization with two instances of rtsofe.exe and one IR for late,
diffuse reverberation loaded from a file. The input signal can come from a file or as real-time input from
the sound card.

3 Execution

Both applications do not have a graphical user interface (GUI) and need to be started from the command
line. Shared .dll files are provided in the same folder as the binary files.

The applications can receive their configuration through the command line and through configuration
files, with selected parameters also being updatable via OSC messages. Because the configurations are
usually extensive but largely reusable, config files are the recommended mechanism. They are expected
to be .ini files, formatted as follows:

this is a comment

key = value

mode = interactive # this is also a comment

other-key = 42

A complete list of available configuration options (including their default values and detailed ex-
planations) can be obtained by running rtsofe.exe --help / convolver.exe --help. To execute an
application with a given configuration, run:

convolver.exe --config myconfig.ini

To start (multiple) applications asynchronously in their own windows, start a new command prompt
or Powershell window, run:

start /high rtsofe.exe --config myconfig1.ini

start /high rtsofe.exe --config myconfig2.ini

start /high rtsofe.exe --config myconfig3.ini

start /high convolver.exe --config myconfig.ini

In the following, when discussing a configuration key it is always written in a typewriter-font with
an example value, like this: sampling-rate = 44100.

The first time rtsofe.exe or convolver.exe runs from a new directory, e.g. through a Windows batch
file, both process will evaluate the system it runs on and generate FFTW3 ”Wisdom” files and save
it in the working directory before exiting. This process takes some extra time during the initialization
of rtsofe.exe and convolver.exe, but it usually runs only once. If the two programs can locate existing
wisdom files, they will use the existing files instead.

4

4 rtsofe.exe

4.1 Parallelization Environment Variables

rtsofe.exe evaluates a few environment variables to initialize the OpenMP parallelization of the IS com-
putation. They need to be set before launching the application.

� OMP NUM THREADS sets the number of threads

� OMP SCHEDULE selects the scheduler (we recommend guided)

� KMP AFFINITY controls the distribution of threads across the hardware. balanced assigns one
thread to each physical core and only uses hyper threaded cores if there aren’t enough physical
ones. compact assigns the threads to hardware cores in ascending order, always filling the hyper
threaded cores of a physical core together. If the number of threads is equal to the number
virtual cores, they should be identical. For lower thread counts, balanced usually yields better
performance.

For early reflections or if convolver.exe runs on the same computer, the best results are achieved when
using 2-4 threads in balanced mode. For late reflections, one thread per virtual cores should be used.

Note: The observation above may vary for different hardware configurations.
When running the whole rtSOFE system in the interactive mode, including one or more rtsofe.exe pro-

cesses and the convolver.exe process, on one computer with hyper-threading enabled, it is recommended
to start each process with the start /affinity [mask] option to prevent running different processes
on two logical cores of a physical core. This is useful to maximize the refresh rate when rtSOFE do not
occupy all cores on the computer.

Though the exact hardware requirement for running rtSOFE in the interactive mode depends on the
maximal reflection order, it is recommend to run rtSOFE on a computer with a two-core CPU, at least.

4.2 Configuration

The first option to set is mode = static or mode = interactive, which controls whether rtsofe.exe will
write one IR to a file or compute updated IRs and send them over a TCP connection. In the static mode,
rtsofe.exe will run once with given parameters and exit, generating a file named imuplse responses.mat

containing the multi-channel impulse response, if the program finishes successfully. With write-sources

= 1, an additional file image sources.mat will be generated, containing all visible and invisible simulated
image sources. The default value for write-sources is 0 or false, because exporting all image sources
to the disk is a slow process, especially when simulating high order image sources.

If interactive mode is selected, the application renders the IR with initial parameters and listens to
OSC commands for parameter updates to render the next IR. rtsofe.exe needs to open two ports for
network communication: a UDP port to receive OSC packets and a TCP port to which a convolver
connects to receive IRs. They are set using osc-input-port = 56789 and output-port = 1234. The
rtsofe.exe process will keep running until it receives an OSC message with an address pattern ’/exit’.

All other parameters configure the simulation. Some of them can be changed over OSC in interactive
mode, but they still should be configured with an initial value for the first computation.

4.2.1 Image Source Simulation

To load room geometry, pass an .obj file using room = myroom.obj and the accompanying material
description using materials = materials.txt. If your file is rejected because it supposedly con-
tains invalid geometry but you are sure this is a mistake or want to use the file anyway, you can set
room-force-load = true to circumvent the test. Please refer to section 4.4 for more info on invalid
room geometry.

Source- and receiver positions are provided using source-pos and receiver-pos as xyz coordinates
by writing out the argument three times:

arguments that receive a vector of values are filled

by writing one line for each element.

For example, to set source-position to [6, 9, 1.5]

source-position = 6

source-position = 9

source-position = 1.5

5

The source can have a direction-dependent frequency response which can be enabled by passing a file
describing the characteristics using source-directivity = directivity-file.txt. To determine the
orientation of the source, three specific parameters and two default behaviours are possible. If multiple
ones are provided, a later option overwrites all previous ones.

� If the receiver position uses the default value, the source will look along the Y-Axis

� If a receiver position is given, the source will look at the initial receiver position

� source-look-at a point in 3D space the source will look at

� source-transform a custom 3×3 rotation matrix to transform source directions by pre-multiplication

� receiver-transform a custom 3 × 3 rotation matrix to transform receiver directions by pre-
multiplication. Example for specifying a source-transform or receiver-transform in the configuration
file:

a custom receiver coordinate transformation matrix; can be used to give

the receiver a custom rotation around all directions

first column

receiver-transform = 0.42335

receiver-transform = 0.44894

receiver-transform = -0.78691

second column

receiver-transform = -0.6533

receiver-transform = 0.75305

receiver-transform = 0.078148

third column

receiver-transform = 0.62767

receiver-transform = 0.48101

receiver-transform = 0.61209

� lock-source-to-receiver (interactive mode only) the source will follow the receiver to always
look at it

To control the depth of the IS simulation, you can combine a variety of termination criteria. Further
branching of the IS tree will be stopped once any of the criteria is reached and the simulation finishes if
all branches are stopped.

� If no termination criteria are given, rtsofe.exe will refuse to run because it’s a little afraid of
unbounded execution.

� order = 7 defines the highest order that will be computed (inclusive)

� max-invis-parents = 3 defines the maximum number of invisible parent sources. This is useful
because sources with a high number of invisible parents are more likely to be invisible themselves.

� max-distance = 500 defines the maximum distance to the receiver in meters.

� max-sources = 100000 defines a maximum number of sources.

� attenuation-threshold = -90 defines the maximum attenuation in negative dB. This is approx-
imated using an upper bound, so some sources with stronger attenuation might still be created.

rtsofe.exe uses a protrusion check to ensure sound is not obstructed on its path through the room.
If you use a simple shoebox room with no obstructions inside, you can save resources by deactivating it
using protrusion-check = false.

To increase refresh rates in interactive mode, the re-computation of ISs and visibility checks can be
skipped for small movements of source or receiver. In such a case, only source positions are recomputed
and the new IR is then rendered using the old ISs visibility information. These thresholds are set in
meters:

source-movement-threshold = 0.05

receiver-movement-threshold = 0.1

6

4.2.2 Memory Usage

Memory for all created ISs will be dynamically allocated. Nevertheless, there is an option to pre-allocate
memory for a certain number of ISs with the parameter is-buf-size = 65536 which can be beneficial
in real-time mode. If rtsofe.exe needs more memory than is physically available, the program will exit
with a bad allocation error.

The theoretical upper bound of the number of image sources for a model with k walls up to order n
is k ∗ (k − 1)(n−1). However, this only applies if no other termination criteria are given.

4.2.3 Rendering

rtsofe.exe always renders using 32bit floating point representation. The sampling rate can be set using
sampling-rate = 44100.

When using multiple instances of rtsofe.exe to compute different parts of the same IR, it is crucial
to ensure no order is rendered by more than one instance. While the upper limit can be set in the
simulation as explained above, lower order sources are inevitably created in the process. They instead
have to be discarded during rendering using min-order = 4 (inclusive: in this example, order 4 will also
be rendered).

The frequency characteristics of each reflection are modeled by an inverse FFT creating a finite
impulse. It includes reflection coefficients along the reflection path, source directivity, air absorption and
receiver directivity when using binaural synthesis. Its length in samples is set using impulse-length.
Higher values yield a better frequency resolution but reduce IR sparsity and add the latency. The air
absorption depends on the humidity that can be set using humidity = 0.2.

The delay of an impulse is determined from the speed of sound in meters per second: speed-sound =

344. To avoid artificially strong comb filtering, this delay can be randomly jittered for sources starting
from a set order. Note that setting the delay-jitter parameter too large or the jitter start order too
low can cause audible artifacts with moving sound sources or receivers since the jitter is computed anew
on every new IR rendering.

delay-jitter = 0.005

delay-jitter-start-order = 5

To spatially render each IR, i.e. to translate the position of an image source to a placement of the
impulse into one or more IR channels, the speaker mapping informs the system how many loudspeakers
are available, at what angle they are located and which channel of the matrix holding the spatial im-
pulse response they are linked with. They are assumed to be equidistant to the listener, which can be
ensured with loudspeaker equalization filters (see convolver.exe). This can be read from a .mat file using
speaker-mapping-file and speaker-mapping (see section C).

To render room impulse response (RIR) for loudspeaker array reproduction, set the parameter
render-mode = LS array. To render binaural room impulse response (BRIR) with head-related transfer
function (HRTF) rendering, set the parameter render-mode = binaural.

For playing back on a loudspeaker array, the user can choose between 2D-Ambisonics and 3D-nearest
speaker rendering, set LS-method-1 = nearest or LS-method-1 = ambi 2d.

If you want to use a different method for sources above a certain order:

LS-method-1 = ambi_2d

LS-method-2 = nearest

LS-method-switch-order = 3

When using Ambisonics rendering, a lookup table (LUT) with precomputed coefficients must be
provided: LS-ambi-lut-file-2D = 2D lut basic.mat. Ambisonics rendering currently only considers
azimuth and ignores elevation. The LUT must have an angular grid of 0:0.1:359.9 and contain a copy
of the speaker mapping it was generated for. This speaker mapping will be compared to the configured
one and must be identical or a subset of it.

When using binaural rendering, the number of channels will be set to 2. The first IR channel will be for
the left ear and the second for the right ear. Parameters speaker-mapping-file and speaker-mapping

are overridden and ignored.
The HRTF dataset must be saved in the spatially oriented format for acoustics (SOFA) format,

as defined in AES69-2020, by Majdak and Noisternig (2020). binaural-hrtf-file = C:\file01.sofa
instructs rtsofe.exe to load the HRTF dataset and to linearly interpolate the dataset to an internally used

7

high spatial resolution during the initialization stage. In the rendering stage, the nearest HRTF pair to
the sound direction will be selected from that lookup table to map a reflection. Alternatively, the user may
use binaural-hrtf-rt-interp = 1 to instruct rtSOFE to skip interpolation in the initialization stage
and linearly interpolate the HRTF filters during IR rendering in real-time. Real-time HRTF interpolation
takes more time to process each buffer, but uses less memory and provides a spatial resolution as high
as linear interpolation and numeric precision can provide.

In addition, please make sure that the SOFA file satisfies the following requirements:

� has the same sampling rate as the rtsofe.exe configuration and uses ”Hz” as unit of sampling rate

� contains at least 2 HRTF pairs

� filter length of the HRTF filters has to be divisible by 8

� unit for additional delays (if provided) is ”samples”.

SOFA files are available from online databases.

4.2.4 Configuration Examples and Templates

To give an overview of application areas of rtSOFE and their setup, a few example configurations are
provided in the directory: rtSOFE/ExampleConfiguration/Configurations.

The example use cases demonstrate how to use rtSOFE in static and interactive mode, and how to
use the Python OSC utilities and the MATLAB multi-channel IR receiver.

A detailed description of use cases regarding each example configuration can be found at desc.txt
in each subfolder.

4.3 Coordinate System

The orientation of an xyz coordinate system in relation to azimuth/elevation angles is not universally
standardized. Coupling other systems (such as a motion tracker) to rtSOFE may require coordinate
transforms. rtSOFE accepts positions and rotation matrices of sources and receivers in the following
coordinate system (from the viewpoint of the origin):

� positive X points to the right

� positive Y points to the front

� positive Z points upwards

� 0◦ Azimuth points to the front (along the Positive Y axis)

� 90◦ Azimuth points to the right (along the Positive X axis) ⇒ Azimuth is right-turning

� 0◦ Elevation points along the horizon

� 90◦ Elevation points upwards (along the positive Z axis)

4.4 Valid Roomfiles

rtsofe.exe can load the room model from an .obj file created by e.g. Blender. Please consider the following
limitations:

Walls are flat A wall is a polygon of at least three points. All these points have to lie within a 2D
plane. Curved surfaces are not supported.

Walls have one side A wall is only reflective to sound rays impinging from the side of the surface
normal. If the corners in the obj file are listed in counter-clockwise order from a certain point of view,
that point is on the side of the surface normal which is the reflective side. To make a wall reflective on
both sides, you need to add a second wall behind it that has its normal pointing in the other direction

8

Walls need to be assigned materials Each wall must be assigned one type of material. rtSOFE
needs frequency dependent reflection coefficients of the wall materials to render reflections. Relevant
material characteristics, including reflection coefficients at different frequencies, should be provided in a
separate file. Please refer to section A for more information on creation of the material definition file.

Parallel walls need distance Two parallel walls that are too close to each other pose a problem for
3D simulations. In the realm of computer graphics, this phenomenon is known as z-fighting and causes
visible flickering or striping since it is left to floating point noise which surface occludes the other. This
problem is exacerbated at long distances because absolute resolution diminishes for large floating point
values. In rtsofe.exe it can cause sound to get “trapped” between the surfaces. To avoid these issues,
“wall-sandwiches” are required to have a small distance that makes it obvious which wall is in front of
the other. This applies to scenarios like the double-sided wall described above, as well as putting smaller
patches of a different material onto a larger wall to model e.g. a window or an absorber. We recommend
a distance of 1mm = 0.001m which introduces a negligible acoustical error but is large enough to not
disappear into floating point noise even at a distance of 100m. Please check 32 bit floating point precision
if you are creating larger models with parallel walls in close proximity.

rtsofe.exe examines .obj files for walls that violate these criteria. The checks are not perfect, so you
should inspect your models manually as well. In case the test produces a false positive, you can set
room-force-load = true to circumvent it.

4.5 Troubleshooting

� When I run two instances of rtsofe.exe on the same computer, one crashes. Make sure
they don’t have the same ports configured for receiving OSC messages or sending IRs.

� rtsofe.exe terminates during initialization or throws a bad-allocation. You have set
is-buf-size too big. Please refer to section 4.2.2.

4.6 Bugs that we live with

� When the line of sight between the receiver and an IS intersects exactly with edges of a wall, the
test decides randomly if this IS is considered “visible” or not. However, the point-in-polygon test
is so much faster than anything else that we live with it.

5 convolver.exe

5.1 Audio Routing

convolver.exe is a real-time audio application that requires an ASIO sound card or audio interface to
run. Convolutions are always between a multichannel IR and a single channel signal.

Basics Set sample-rate = 44100 and buffer-size = 128 to match the configurations in the sound
card’s proprietary settings dialogue.

Input Signals Input signals are configured separately and assigned to convolutions later. They can ei-
ther pull their data from a .wav file or a sound card input, determined by input-from-file = false. If a
file is requested you need to set input-file = sandstorm.wav, otherwise you need to set input-channel
= 7.

Only single-channel input signals are supported; if the input file has more than one channels, the first
channel will be used with the multi-channel IR and other channels will be ignored.

Convolvers Convolution is handled in a convolver object that either receives its IR from a file or an
instance of rtsofe.exe as determined by ir-type = File or TCPMatrix. For the former set ir-file

= my ir.mat (see section E for format info). If your IR file contains multiple timesteps you can use
repeat-ir = true to loop back to the beginning when all IRs were consumed. For the latter set
rtsofe-host = 192.169.0.12 and rtsofe-port = 6500.

When an IR is updated from rtsofe.exe or by reading the next timestep from a file, the convolver can
put a small crossfade to cover up the transition. You can set the length in samples using intra-fade =

9

64. Overlapping crossfades are not supported, so please keep your crossfade length below the shortest
expected interval between updates.

The convolution can either be computed in the time- or frequency domain. The former option
is set using part-scheme = FIR, the latter using a configuration string in the form part-scheme =

256-4x256-0x1024. The former is more expensive to compute but handles updates without additional
latency or artifacts. The latter is cheaper on the CPU but adds additional delay to IR updates and can
introduce update artifacts if set up incorrectly. Refer to section 5.2 for more information on correct Fast
Fourier transform (FFT) Convolution setup.

The transition between the end of FIR part and the beginning of the FFT part is handled with fading
to reduce the possible artifacts. You can set the length in samples using inter-fade = 64

Multiple Convolvers convolver.exe supports multiple input signals and convolvers in one instance.
Each convolver can be assigned one of the input signals, sharing signals between convolvers is expressly
supported. All convolvers must have the same number if IR channels.

To set the number of signals, use num-signals = 3. The first input signal will use the aforementioned
keys, all other ones can be configured by appending the index to the key:

input-from-file = false

input-channel = 7

input-from-file-2 = true

input-file-2 = sandstorm.wav

input-from-file-3 = false

input-channel-3 = 1

To use multiple convolutions set num-convolvers = 3. As with input signals, append numbers to
the keys to configure all convolvers:

num-convolvers = 2

ir-type = File

ir-file = my_ir.mat

part-scheme = 1024-0x1024

input-signal = 1

ir-type-2 = TCPMatrix

rtsofe-host-2 = 127.0.0.1

rtsofe-port-2 = 6500

part-scheme-2 = FIR

input-signal-2 = 2

Please note that ir-type-1 or input-from-file-1 are not valid parameters.
Having this layer of abstraction for input signals might seem like an unnecessary detour, but comes

in handy when sharing input signals between convolvers. It is especially recommended to share the same
input signal between multiple convolvers that cover different segments of the same IR. This reduces the
opportunity for user error when changing input channels or files.

input-signal and num-signals both default to 1. This means that all convolvers use the same
input signal unless stated otherwise, making single signal configurations easier to write:

input-from-file = true

input-file = sandstorm.wav

num-convolvers = 2

ir-type = TCPMatrix

rtsofe-host = 127.0.0.1

rtsofe-port = 6500

rtsofe-host-2 = 127.0.0.1

rtsofe-port-2 = 6501

10

Channel Assignments Just like setting up speaker angles in rtsofe.exe, you read assignments
from IR channels to hardware outputs by using channel-assignments-file = mapping.mat and
channel-assignments-var = mapping AEC. Channel Assignment files are the same format as read by
rtsofe.exe for speaker mappings, see section C for more info.

EQ Filters After summing up the result of all convolutions each channel can be equalized individually
to calibrate the loudspeakers. These filters consist of an finite impulse response (FIR) filter and an
integer delay per channel. The delay is available separately to time align loudspeakers without convolving
with leading zeros in the FIR filters. Filters are loaded form a .mat file given by eq-filters-file =

filters.mat as a matrix of filters and a vector of integer delays. The name of the variable containing
the matrix is set using eq-filters-var = filters-ampl and the delays using eq-filters-shift-var

= index-shift. Additionally, a copy of the speaker mapping must be contained as a variable named
speaker mapping and is checked against the loaded channels assignments. The exact format is described
in section F. To enable them, eq-filters-on = true must be set.

Recording The convolver can record the final output signal as it is sent to the sound card, including
EQ filters and channel assignments. The file will contain as many channels as the highest used sound card
output, unused outputs in between will be filled with silence. To enable recording, set record-output =

true and recording-file = convolution result.wav. If you want the convolver to exit after record-
ing a fixed number of seconds, set recording-length = 120 and stop-after-record = true.

5.2 Partitioned FFT Convolution

To be able to use FFT based convolution without adding latency to the signal itself, convolver.exe uses
partitioned convolution. The IR is sliced into multiple segments, each of which is handled by an FFT
that can be at most as long as the position in the IR to ensure that enough time has passed to fill the
buffer for the FFT. The first segment of the IR is covered using direct form convolution since there is
no time to fill a buffer.

To configure a partitioned convolution you use a string of the format:

{Direct Form Length}-{Num FFT Blocks}x{FFT Length}(:{Num Threads})-...

For example:

256-6x128-6x256-0x1024:3

This translates to: Cover the first 256 samples using direct form convolution, the next 768 samples
using 6 blocks of FFT128, the next 1536 samples using 6 blocks of FFT256 and all remaining samples
by as many blocks of FFT1024 as required, computed on 3 threads.

The caveat of partitioned convolution is that the IR is only updated once every FFT blocksize. This
means that an update that changes parts of the IR spanning multiple FFT blocks of different blocksize
(or an FFT and direct-form block) is not applied synchronously, which can lead to audible artifacts,
especially if an impulse moves from one block to the other and is either represented twice or not at all
during this transition period. The convolver will print a warning when applying an update of this nature
and you should alter your partitioning settings in this case.

We recommend you use partitioning schemes involving multiple FFT blocksizes only with IRs that do
not change 1. When convolving an IR that is computed segement-wise by multiple rtsofe.exe instances,
we recommend the following setup:

� Early Reflections use part-scheme = FIR

� Later Reflections use part-scheme = 1024-0x1024. You need to ensure that the first 1024 samples
of that IR segment will not contain any information to prevent artifacts due to the different update
speeds between the direct segement and the FFT1024. Reduce 1024 until this condition holds.

� Late Reflections with a static IR use whatever partitioned convolution scheme you desire.

1or in the highly unlikely event that you can guarantee that updates will only ever concern ares of the IR covered by a
single FFT blocksize

11

5.3 Application States and OSC Control

By default, the convolver will listen to OSC messages on UDP port 7000 for playback commands and
configuration changes. The port can be changed by setting osc-port = 7001. The convolver behaves
as a state machine, as illustrated in figure 2.

/Quit

Initializing Ready Playing Terminating

Configuring

/Play

<recording
finished>

/Stop

/Config/<key>

Figure 2: State diagram of the convolver

After initialization, the convolver waits for a /Play to start playback, which includes both play-
back of signals from files as well as inputs from the sound card. Playback can be stopped using /Stop

or by sending a configuration change using /Config/ConfigurationKey. In the latter case, the argu-
ment will be used as the new value for the configuration key, the corresponding objects re-initialized
using the new settings and the convolver goes back to waiting for a /Play. It will quit on /Stop or if
stop-after-record = true.

If osc-controlled = false this functionality is not available. The convolver goes directly to the
playback state and only quits because of stop-after-record = true or a system interrupt.

Initializing Playing

<recording
finished>

Figure 3: State diagram of the convolver without OSC control

5.4 Troubleshooting

� xyz can’t be set twice. Make sure that you have added numbers (-2, -3) for all keys, e.g.:

input-from-file = true

input-file = sandstorm.wav

input-from-file-2 = true

input-file = the_lick.wav # !!! should be input-file-2 !!!

� the output sounds horrifyingly choppy/distorted and audio files play too fast/slow.
Make sure you have set the same sample rate and buffer size in the convolver config file and your
sound card’s setup. If this does not help and/or audio is also distorted in other applications, try
turning you computer off and on again.

6 OSC Tools – Python and Matlab utilities

To obtain real-time receiver position and transformation from a OpenVR compatible VR headset, the
script openvr-poses-osc-send.py is provided. It has been tested with Steam VR software and an
HTC Vive pro eye VR headset. This script also serves as a template for building OSC bundles, which
contains one or more OSC commands. All parameter updates in the same OSC bundle will be processed
to produce the next IR update.

To send OSC commands to rtsofe.exe and convolver.exe for quick testing, two python scripts are
available in Y:/resources/rtSOFE/OSC Python Utils. They are based on a script by Niklas Löcherer.

12

osc command sender.py sends text from stdin as OSC messages to a single UDP socket. User input
is split at spaces, the first word is used as the messages address and all others as arguments. They are
converted into float or int if possible. The words ’true’ or ’false’ (any capitalization) are converted to
the integers 1 and 0. For example:

python3 osc_command_sender.py --ip 192.168.0.7 --port 54321

>>> \Play

>>> \Config\InputFile sine_1khz.wav

>>> \Example\Command 1.0 5 false sometext

osc position sender.py connects to one or two instances of rtsofe.exe and sends source positions
to them. If the argument --manual is given, they can be entered by the user:

� Three digits are sent as xyz coordinates

� Two digits are interpreted as azimuth and elevation and are sent as a vector of length --radius

pointing in that direction

� One digit is interpreted as azimuth, elevation defaults to 0◦.

� No digits are interpreted as azimuth and elevation = 0◦.

If --manual is not given, positions are automatically sent along a geometrical path. --rate sets the
updates per second, --velocity the speed in meters per second. --trajectory selects between line

and circle. The line goes from --point-a to --point-b, the circle is centered around --point-a and
has radius --radius. The circle repeats --revolutions times. To pass vectors, write all components
into the command line without brackets or commas. Scientific notation is supported:

python3 osc_position_sender.py --point-a 6.0 0.9e1 1.8

MATLAB scripts are provided for interaction with rtSOFE running in interactive mode. The scripts
contains MATLAB functions that performs the following tasks:

� mk osc msg.m: Make OSC messages

� mk osc bundle.m: Make OSC bundles from messages and bundles

� read mcIR from stream.m: Read the multi-channel IR from bitstream

MATLAB scripts provided under e.g. rtSOFE 1.1/ExampleConfiguration/Configurations/config03

demonstrates how to use the functions above. A list of OSC address patterns is provided in the appendix.

7 License

Copyright (c) 2015-2021, Bernhard Seeber and the rtSOFE development team at the Professorship for
Audio Information Processing (AIP), Technical University of Munich, Germany.

rtSOFE.exe v1.1 and convolver.exe v1.1 is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software Foundation,
version 3 of the License. You should have received a copy of the GNU General Public License along
with this program. If not, see https://www.gnu.org/licenses/. The source code of v1.1 is available
on written request to aip@ei.tum.de.

Auxiliary files developed at the Professorship for Audio Information Processing, like Python and
Matlab tools to control rtSOFE, the configuration files for rtSOFE, and the example files demonstrating
different use cases of rtSOFE.exe and convolver.exe, are licensed under a Creative Commons Attribution
4.0 International (CC BY 4.0) License, see https://creativecommons.org/licenses/by/4.0/ for more
information. This allows you to freely adapt them to your application.

Libraries re-distributed in the rtSOFE package have their own license terms which are reproduced in
the respective *.rights-file.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

13

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

When publishing work using rtSOFE, please cite:

Seeber, B.U., Kerber, S., and Hafter, E.R. (2010). A System to Simulate and Reproduce Audio-Visual
Environments for Spatial Hearing Research, Hearing Research 260, 1-10.

. . . or a subsequent technical publication about rtSOFE (currently in preparation). Thanks!

8 List of Contributors

rtSOFE development is based on the Matlab version of the room acoustic simulation SOFE by Bernhard
Seeber (Hafter and Seeber, 2004; Seeber et al., 2010), which is conceptually identical to rtSOFE in that
it follows the geometrical acoustics approach with backtracking and visibility checking Borish (1984).
rtSOFE is the C++ implementation of SOFE for real-time simulation and rendering. Many students and
team members have worked with Bernhard to develop rtSOFE. All contributed in one way or another
to this version, through helping our understanding or contributing code. The following is intended to be
a complete list of contributors and contributions, but please bear with me if I have overlooked someone
or some contributions and let me know.

AIP team members

Bernhard U. Seeber Simulation and programming concepts, project management, supervision,
development, documentation, debugging and system test pipeline, creation
of the Matlab version SOFE

Tong Wang Development incl. binaural rendering, use and test cases, documentation
Clara Hollomey Documentation, development, supervision
Samuel W. Clapp Initial Ambisonics rendering, supervision

AIP students

Manuel Hornung Development first rtSOFE version, real-time code and modularization con-
cepts, documentation

Niklas Löcherer Development testing pipeline, test cases, debugging
Hendrik Nöller Verification and debugging, data exchange formats, testing pipeline, test

cases, documentation
Max Kirchmeier Development modularization of convolver, extension to multiple sound

sources and overlapping impulse responses
Sebastian Pods Development initial version real-time convolver
Giorgio Fabbro Code review
Felix Enghofer Parallel rendering concept
Julian Fährmann Convolver approaches
Markus Grabichler Backtracking aspects.

9 Funding Acknowledgment

The development of rtSOFE was funded by the BMBF Bernstein Center for Computational Neuroscience,
BMBF 01 GQ 1004B, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– Projektnummer 352015383 – SFB 1330 C5.

14

Appendices

A Material properties file

Amaterial properties file contains a list of frequency dependent reflection factors, each one associated with
a material name. The reflection factors are used by rtsofe.exe to compute the reflection spectrum. Please
note that the reflection factors should be given in the amplitude domain, while reflection, absorption and
scattering coefficients are usually given in the energy domain.

The frequency grid points are given inside the file.
Materials files are text files containing comments, one or more lines defining the frequency grid points,

and one or more lines containing one material each.
Comments are prefixed with # and span until the next newline. Lines beginning with # are ignored

entirely, lines containing a # in the middle will only be evaluated up to the #.
Lines starting with frequencies define the frequency grid points for all following materials until the

next line beginning with frequencies. They contain a list of frequencies in increasing order separated
by one or multiple space and/or tab characters. For example:

frequencies 125 250 500 1000 2000 4000 8000 20000

It is recommended to define frequencies up to 20 kHz; the lowest and highest defined value is repeated
to zero and Nyquist frequency, respectively. Lines starting with anything else than # or frequencies
define a material. The text until the first tab or space character is interpreted as the name which is
followed by the reflection factor at the frequencies given by the most recent frequencies line. The
number of reflection coefficients must match the number of frequencies. For example:

plywood 0.84 0.88 0.91 0.95 0.94 0.94 0.94 0.94 # 3/8" Plywood paneling

The following is an example of a valid materials file:

Example materials file

All numbers are REFLECTION FACTORS

They are also purely fictional, please don’t use them

frequencies 2000 5000 10000 20000

fresh-bread 0.99 0.98 0.81 0.74

stale-bread 0.99 0.98 0.85 0.83 #five days old

frequencies 1000 2000 5000 10000 20000

vegetable-lasagna 0.67 0.52 0.42 0.24 0.25

B Source directivity file

Directivity files contain a number of frequency dependent attenuations in dB each associated with a
direction given in spherical coordinates. They are used to inform rtsofe.exe on how to attenuate sound
radiating from the source to different directions. The frequency grid points are given inside the file.
Modeled to the data gathered in Flanagan (1960), the format only allows for directions that move along
azimuth or elevation with the other fixed at 0◦. The format is similar to the materials files explained in
appendix A.

Directivity files are text files containing comments, one or more lines defining the frequency grid
points, and one or more lines containing samples along azimuth and elevation.

Comments and frequency line work in exactly the same way as materials files.
Lines starting with az or el define a sample in a direction. az or el defines wether the angle is along

azimuth or elevation, followed by an angle and the attenuations at the frequencies given by the most
recent frequencies line. The number of attenuations must of course match the number of frequencies.
For example:

az 42 0.0 0.5 0.0 -0.5 0.25

15

The following is an example of a valid directivity file:

Example directivity

All numbers are GAINS IN DB (AMPLITUDE)

They are also PURLEY FICTIONAL

frequencies 250 500 1000 2000

az 0 0.0 0.0 0.0 0.0

az 90 0.0 1.2 0.5 0.5

az 180 1.0 0.0 -0.5 -1.0

az 270 0.0 1.2 0.5 0.5

el 0 0.0 0.0 0.0 0.0

el 90 0.0 -0.5 -0.5 -0.5

el 180 1.0 0.0 -0.5 -1.0

It is advisable to ensure azimuth and elevation have a point at 0◦ and 180◦ each with identical values
since the axes intersect at those angles. If not, interpolation might produce unpredictable results around
those points. Values at 0◦ are usually unity gain. Levels are formally defined at 1m distance (unity gain
for 1/r-law).

C Speaker mapping file

Speaker mappings contain a list of loudspeaker positions and soundcard output channels. They are
stored as an n× 4 matrix inside a MAT-file. MAT-files are binary files containing MATLAB workspace
variables (MathWorks, 2021). The rtSOFE applications use a shared library included with MATLAB to
read these files.

Since the mapping is contained in a single variable, one MAT-file may contain multiple speaker
mapping variables and each application therefore needs to be provided a file name and a variable name
to read a speaker mapping. This enables the use of a single MAT-file as a collection of speaker mappings
or the inclusion of a speaker mapping in other files (such as ambisonics LUTs, see appendix D) for
cross-verification purposes.

Each speaker mapping is a n× 4 matrix containing four columns and as many rows as loudspeakers.
The columns contain azimuth, elevation, soundcard output and index. Index always needs to equal the
index of the row and is use to provide some protection against accidentally or ineptly altered speaker
mappings. The applications will refuse to load a file if the index does not correspond to the row. An
example is given in table C.

Azimuth Elevation Output Index
-110 0 5 1
-30 0 1 2
30 0 2 3
110 0 6 4
0 0 3 5

Table 1: An exemplary speaker mapping. Note how soundcard outputs are shuffled and are non-
contiguous. Column headings are not part of the MAT-file.

D Ambisonics LUT file

Ambisonics LUTs contain the pre computed weighting coefficients necessary to perform 2D Ambisonics
panning along the horizontal plane. There is one coefficient per channel for each angle in the range
of [0, 360◦[with a step size of 0.1◦. The coefficients are stored in a MAT-file, a binary file containing
MATLAB workspace variables (MathWorks, 2021).

The MAT-File contains three variables:

� speaker mapping contains the speaker mapping the LUT was computed for. This variable needs
to follow the format described in appendix C.

16

� LUT is an n × 3600 matrix containing the weighting coefficients. Lines represent IR channels and
are ordered according to speaker mapping.

� azim s degree is a 1 × 3600 vector containing the angles in degrees that the columns of LUT

correspond to. This vector is currently required to be exactly equal to 0:0.1:359.9, no other
grids are supported.

E Impulse response file

IR files contain one or several pre-computed multichannel IRs for use with convolver.exe. They are
useful for rendering measured IRs, for hybrid rendering of rtSOFE-simulated (early) reflections with
offline-simulated or measured late reverberation or for rendering IRs transitions at pre-defined times to
simulate trajectories or room changes. If multiple IRs are given, a time interval needs to be supplied
that dictates how often a new IR is loaded. They are stored in a MAT-File, a binary file containing
MATLAB workspace variables (MathWorks, 2021).

Data is stored in a variable named impulse response that either has a shape of points× channels

if a single IR is given or points× channels× steps if multiple IRs are given. If the latter is the case, a
second variable update interval of type uint64 should be supplied that contains the interval between
IR updates in microseconds (10−6 seconds).

F Equalization filters file

Equalization (EQ) filters files contain a set of FIR filters for equalizing individual loudspeaker or head-
phone channels with a fixed filter. The convolver output of each channel is filtered with its respective
filter and an integer delay is applied to allow for amplitude spectrum, phase and delay correction, the
latter without the computational burden that convolving leading zeros in the filters would cause. The
filters are stored in a MAT-File (MathWorks, 2021).

The MAT-File must contains three variables:

� speaker mapping contains the speaker mapping the filters were measured for. This variable exhibits
the format described in appendix C.

� eq filters is an n × L matrix containing the L filters of length n. The columns are ordered
according to the lines in speaker mapping, NOT the hardware outputs. The variable name may
vary (option: --eq-filters-var).

� index shift is a 1×L vector containing the integer delays. The columns are ordered according to
the lines in speaker mapping, NOT the hardware outputs. The variable name may vary (option:
--eq-filters-shift-var).

G Receiver directionality SOFA files

SOFA-files are used to define receiver directionality, i.e. the head-related transfer functions needed for
binaural rendering. rtSOFE uses the FIR type of a SOFA file as defined by AES69-2020 (Majdak and
Noisternig, 2020). Additional requirements can be found in section 4.2.

H OSC address patterns and parameters

This section lists parameter names (as in configuration files), OSC address patterns, number and type
of arguments for rtsofe.exe and convolver.exe that can be changed through OSC messages.

17

H.1 rtsofe.exe
Parameter Name Address Pattern Arguments Note
source-pos /source-pos 3, float in x,y,z order
receiver-pos /receiver-pos 3, float in x,y,z order
source-transform /source-transform 9, float rotation matrix, col. major order
receiver-transform /receiver-transform 9, float rotation matrix, col. major order
order /order 1, float
max-invis-parents /max-invis-parents 1, float
max-distance /max-distance 1, float
attenuation-threshold /attenuation-threshold 1, float
max-sources /max-sources 1, float
(none) /exit (none)

18

H.2 convolver.exe
Parameter Address Pattern Default Description
(none) /Play (none) start playing
(none) /Stop (none) stop playing
(none) /Quit (none) stop the convolver process
buffer-size /Config/Init/BufferSize 32 Buffer size (samples)
channel-assignments /Config/Init/ChannelAssignments Specifies output channels

of the sound card to be
used. Add multiple of
these in order of the IR
channels. Overwrites
channel-assignments-file
and channel-assignments-
name

channel-assignments-file /Config/Init /ChannelAssignmentsFile .mat file to read channel
assignments from. Looks
for a matrix with the
name given in channel-
assignments-var which
represents each speaker
as a row. The collumns
are azimith, elevation,
playback channel, id.
Channels can be selected
freely with arbitrary
gaps, as long as they
are physically present
on the soundcard. This
determines the number of
channels the convolver is
operating on. You should
always load the same
file as speaker mapping
in rtSOFE. Can be
overwritten with by
channel-assignments.

channel-assignments-var /Config/Init/ChannelAssignmentsVar Name of the varaible to
read from ChannelAssign-
mentsFile. For more info
see channel-assignments-
file. Can be overwritten
by channel-assignments

collect-durations /Config/Init/CollectDurations 0 Whether to collect
measured durations; nec-
essary for 99th-percentile
calculation but causes
memory growth and
(miniscule) slowdown

device /Config/Init/Device (None) Device name
eq-filters-file /Config/Init/EQFiltersFile MAT-file holding loud-

speaker equalization fil-
ters.

eq-filters-on /Config/Init/EQFiltersOn 0 Whether to apply
loadspeaker-equalization

eq-filters-shift-var /Config/Init/EQFiltersShiftVar index shift Variable containing the
additional integer delays
for the filters. Their order
is assumed to correspond
to eq-filters-filter-var

eq-filters-var /Config/Init/EQFiltersVar eq filters ampl Variable containing the
filters. Their order is as-
sumed to correspond to
IR Channels (LS IDs),
NOT hardware channels

eval /Config/Init/EvalMode 0 Whether to run convolver
for ’eval-time’ and quit

eval-time /Config/Init/EvalTime 10 How long to run the con-
volver in eval-mode for.

exp-update-freq /Config/Init/ExpectedUpdateFreq 120 Expected frequency of IR
updates, for timing mea-
surement

19

Parameter Address Pattern Default Description
log-level /Config/Init/LogLevel info Log level
num-convolvers /Config/Init/NumConvolvers 1 Number of separately run convolver-instances

(for early/late reflections, or multiple sound
sources)

num-signals /Config/Init/NumSignals 1 Number of audio sources
record-output /Config/Init/RecordOutput 0 Whether to record the output. Channels in

the output file will be ordered according to
ChannelAssignments and include silent chan-
nels if there are unused soundcard channels in
between.

recording-file /Config/Init/RecordingFile out.wav Filename for recording output
recording-length /Config/Init/RecordingLength 0 How much of the output should be recorded

(in seconds)
sample-rate /Config/Init/SampleRate 44100 Sampling frequency (Hz)
stop-after-record /Config/Init/StopAfterRecord 1 Whether to stop the convolver after recording

is finished
warn-on-wait /Config/Init/WarnOnWait 0 Whether to print a warning when one of the

FFT-pipelines has to wait for input or a free
output slot.

const-ir-offset /Config/Init/ConstIROffset 0 Start Const IR at offset x
input-signal /Config/Init/InputSignal 1 Index of the input signal the convovler is con-

nected to (one based)
inter-fade /Config/Init/InterFade 0 Overlap-fading between segments to touch

up segments updating asynchronously
intra-fade /Config/Init/IntraFade 32 Fade length within each segment whenever

an IR changes. When using a partitioning
scheme (preset) that involves FFTs this can-
not exceed the smallest FFT length.

ir-file /Config/Init/IRFile IR file name (.mat). Contains a 3D matrix
impulse response of shape length x channel x
timestep and a uint64 called update interval
which dictates the mircoseconds (1/1000000
second) until the ir for the next timestep is
loaded

ir-length /Config/Init/IRLength 0 IR length; determines length of File/Const IRs
and truncates IRs received over network

ir-type /Config/Init/IRType 0 Type of IR-source: TCPMatrix, File
pad-channels /Config/Init/PadChannels 0 Whether to repeat a lower-channel File-IR to

ChannelAssignments.size()
part-scheme /Config/Init/PartScheme FIR Partitioning scheme. Overwritten by part-

scheme-preset
part-scheme-preset /Config/Init/PartSchemePreset -1 Partitioning scheme index (1-3: schemes from

old convolver). If in valid range overwrites
part-scheme

repeat-ir /Config/Init/RepeatIR 0 Whether to repeat Const/File IRs after they’re
finished

rtsofe-host /Config/Init/RTSofeHost Hostname for rt sofe
rtsofe-port /Config/Init/RTSofePort 0 First listening port for TCP connections to re-

ceive impulse responses from rt sofe

20

References

Borish, J. (1984). Extension to the image model to arbitrary polyhedra. The Journal of the Acoustical
Society of America, 75(6):1827–1836.

Flanagan, J. (1960). Analog measurements of sound radiation from the mouth. The Journal of the
Acoustical Society of America, 32(12):1613–1620.

Hafter, E. and Seeber, B. (2004). The Simulated Open Field Environment for auditory localization
research. In Proc. ICA 2004, 18th Int. Congress on Acoustics, Kyoto, Japan, 4.-9.04.2004, volume V,
pages 3751–3754. Int. Commission on Acoustics.

Majdak, P. and Noisternig, M. (2020). AES69-2020: AES standard for file exchange – Spatial acoustic
data file format. Audio Engineering Society, Inc.

MathWorks (2021). MAT-file Versions. https://www.mathworks.com/help/matlab/import_export/

mat-file-versions.html. Accessed on 2021-11-04.

Seeber, B., Kerber, S., and Hafter, E. (2010). A system to simulate and reproduce audio-visual environ-
ments for spatial hearing research. Hearing Research, 260(1-2):1–10.

21

