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Abstract For the unconstrained optimization of black box functions, this paper
introduces a new randomized algorithm called VRBBO. In practice, VRBBO
matches the quality of other state-of-the-art algorithms for finding, in small and
large dimensions, a local minimizer with reasonable accuracy. Although our theory
guarantees only local minimizers our heuristic techniques turn VRBBO into an effi-
cient global solver. In very thorough numerical experiments, we found in most cases
either a global minimizer, or where this could not be checked, at least a point of
similar quality with the best competitive global solvers.

For smooth, everywhere defined functions, it is proved that, with probability arbitrar-
ily close to 1, a basic version of our algorithm finds with O(ne~2) function evaluations
a point whose unknown exact gradient 2-norm is below a given threshold ¢ > 0, where
n is the dimension. In the smooth convex case, this number improves to O(nloge™1t)
and in the smooth (strongly) convex case to O(nlogne™!). This matches known
recent complexity results for reaching a slightly different goal, namely the expected
unknown exact gradient 2-norm is below a given threshold € > 0.

Numerical results show that VRBBO is effective and robust in comparison with the
state of the art local and global solvers on the unconstrained CUTEst test problems
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1 Introduction

In this paper we consider unconstrained black box optimization (BBO) or derivative-
free optimization (DFO); see, e.g., [3,15,58]. The labels BBO and DFO are used
in practice synonymously, though with slightly different emphasis. Algorithms for
BBO/DFO repeatedly call an oracle (a black box, to which BBO refers) that returns
for any given x € R™ a real function value f(z) uniquely determined by z, possibly
also oo or NaN (not a number). In this way, they try, using no other information about
f (such as continuity, Lipschitz constants, differentiability, or derivative information,
to which DFO refers), to find a minimizer of the underlying function f. However,
although no such information is used for executing the algorithms, the motivation
and analysis of the algorithms always assumes, at least informally, that the function f
has reasonable mathematical properties. To be able to give performance guarantees,
such properties are essential.

1.1 Related work

A huge amount of literature exists about BBO problems and how to solve them, and
we only mention a few pointers to the literature. A thorough survey for derivative-
free optimization methods was given by LARSON et al. [41]. Another useful paper
suggested by R10os & SAHINIDIS [58] discusses the practical behaviour of derivative-
free optimization software packages. The techniques for solving BBO problems fall
into two classes, deterministic and randomized methods. We mainly discuss the
randomized case; for deterministic methods see, e.g., the book by CONN et al. [15] and
its many references. Randomized methods for BBO going back by RASTRIGIN [57],
Poryak [51], and VAN LAARHOVEN & AARTS [60] were later discussed especially
in the framework of evolutionary optimization [8,31,59]. There are also randomized
BBO optimization algorithms for deterministic problems, e.g., BANDEIRA et al. [9]
and HOLLAND [33]. For deterministic global BBO optimization see, e.g., HANSEN
[30] and for stochastic global BBO optimization see, e.g., ZHIGLJAVSKY [63]. Other
useful BBO references are AUDET & HARE [4], MORE & WILD [45], and MULLER
& WOODBURY [46].



Previous BBO software of the optimization group at the university of Vienna includes
the deterministic algorithms GRID [23,24] and MCS [34] and the randomized al-
gorithms SnobFit [35] and VXQR [49]. Software by many others is mentioned in
Section 7.3.

1.2 Known complexity results

This section discusses known complexity results in the deterministic and randomized
cases.

Throughout the paper, we use a scaled 2-norm ||p|| and its dual norm ||g||« of p,g €
R"™, defined in terms of a positive scaling vector s € R™ by

Ipll = > w2/s2 gl = [ s?g2. (1)

For the choice of a suitable scaling vector see Section 5.

Assumptions. For the mathematical analysis of our algorithm we assume, as cus-
tomary in the literature on complexity results, that

(A1) the function f is continuously differentiable on R™, and the gradient g(z) of
x € R™ is Lipschitz continuous with Lipschitz constant L;

(A2) the level set L£(20) :={z € R" | f(z) < f(2°)} of f at 20 is compact.

Under these conditions, a global minimizer Z of f exists and

f:=f():=inf{f(z) | x € R"} (2)
is finite. = is called an e-approximate stationary point if

lg(z)« <e (3)

holds. For fixed € > 0, e-approximate stationary points may also exist in regions
where the graph of f is sufficiently flat, although no stationary point is nearby. If
such a point is encountered, the convergence speed of optimization methods may be
extremely slowed down so that a spurious apparent local minimizer is found.

If 0 > 0 and the condition
f(@) > f(z)+g(x) (2 —2)+ %Hx’ —z|? for all z,2’ € R® 4)

holds then f is called o-strongly convex. In this case, the global optimizer 7 is
unique, and (3) guarantees that iterations are near 7.

Proposition 1 If f(x) is a o-strongly convex quadratic function, then (3) implies
flz) — F<e?/(20) and ||z — Z||? < /02 for x € R™.



Proof For fixed z, the right-hand side of (4) is a convex quadratic function of Z,
minimal when its gradient vanishes. By (1), this is the case iff 7; takes the value

: ~ 1
T — ﬁgl(:zc) fori=1,---,n, so that f > f(z) — Q—Hg(x)Hf for z € R™. Therefore
o o
we conclude from (3) and (4) that for z € R”

~ 1 2 ~ 2 ~ ~
J@) = F< 5olg@)? < o= and o =32 < =(fl@) - - 9@ (@ -D) <
since the gradient vanishes at 7. a

In exact precision arithmetic, the exact gradient vanishes at a stationary point. But in
finite precision arithmetic optimization methods may get stuck in nearly flat regions,
so that a spurious apparent local minimizer may be found. For a finite termination
a theoretical criterion should be used to get an e-approximate stationary point. For
a given threshold € > 0, a complexity bound of an unconstrained BBO method tells
how many function evaluations, N(g), are needed to find with a given probability

best

(or a related goal) a point x whose function value f(z") is below the initial

function value f(2°) and the unknown gradient norm ||g(z*)||, at this point is
below ¢, i.e.,

f(.ZbeSt) < sup{f(x) | = ]Rn7 Hg(x)H* <e, and f(fl') < f(:L'O)} (5)

(3) says that, in term of function evaluations, 2"t

is at least as good as the worst e-
approximate stationary point with the function value at most f(x"). Since gradients
and Lipschitz constants are unknown to us, we could not say which point satisfies
(5). But the result implies that the final best point has a function value equal to or
better than some point whose gradient was small. If gradients are small only nearby
a global optimizer, it will produce a point close to the local optimizer. If some iterate
passes close to a non-global local optimizer or a saddle point, it is possible that the
algorithm escapes its neighborhood. In this case, only a variant with restarts would
produce convergence to a point with a small gradient.

Under the assumptions (A1l)—(A2), the appropriate asymptotic form for the expres-
sion N (e), found by VICENTE [62], DODANGEH & VICENTE [20], DODANGEH, VI-
CENTE & ZHANG [21], GRATTON et al. [27], BERGOU, GORBUNOV & RICHTARIK
[11], and NESTEROV & SPOKOINY [47,48], depends on the properties (smooth,
smooth convex, or smooth strongly convex) of f; cf. Subsection 2.1 below.

case goal complexity
nonconvex E(llgll«) <e O(ne=?)
convex E(|lgll«) <e O(ne™ 1)
convex E(f—f)<e | Ome)
strongly convex | E(||g|l+) <e O(nloge™1)
strongly convex | E(f — f) <e | O(nloge™1)

Table 1: Complexity results for randomized BBO in expectation (BERGOU et al. [11]
for all cases)



BERGOU et al. [11] and NESTEROV & SPOKOINY [48] generalized this result to give
algorithms with complexity results for the nonconvex, convex, and strongly convex
cases shown in Table 1. In each case, the bounds are better by a factor of n than
the best known complexity results for deterministic algorithms (by DODANGEH &
VICENTE [20], VICENTE [62] , and KONECNY & RICHTARIK [14]) given in Table 2.
Of course, being a randomized algorithm, the performance guarantee obtained by
BERGOU et al. is slightly weaker, only valid in expectation. Moreover, they generated
step sizes without testing whether the function value is improved or not. This is the
reason why the algorithms proposed by BERGOU et al. [11] are numerically poor, see
Section 7.

case goal complexity
nonconvex gll« <e O(n?c~2)
convex gll« <e | O(n?e=")
convex f—f<e| Om2e1)
o-strongly convex | [|g]l« <€ O(n?loge™")
o-strongly convex | f—f<e | On?loge™1)

Table 2: Complexity results for deterministic BBO (VICENTE [62] for the nonconvex
case, DODANGEH & VICENTE [20] for the convex and the strongly convex cases,
KONECNY & RICHTARIK [14] for all cases)

The best complexity bound for a direct search with probabilistic (rather than expec-
tation) guarantees has been found by GRATTON et al. [27], only for nonconvex case.
They used Chernoff bounds to prove that a complexity bound O(nRe~2) holds, R is
the number of random directions (uniformly independently distributed on the unit
sphere) used in each iteration, satisfying

In(y)
R > log (1 — ln(’}/g)) ,

where 0 < 73 < 1 is a factor for reducing step sizes and v, > 1 is a factor for
expanding step sizes. If 43 = 0.5 and ~5 = 2, then R = 2.

1.3 Our contribution

We describe and test a new, practically very efficient randomized method, called
VRBBO (short for Vienna randomized black box optimization), for which
good local complexity results can be proved, and which is competitive in comparison
with the state-of-the-art local and global BBO solvers. An algorithm loosely related
to VRBBO (but without complexity guarantees) is the Hit-and-Run algorithm
by BELISLE [10].

A basic version of VRBBO. In Section 2, an extrapolation step, called extrapo-
lationStep is discussed and then a multi-line search with random directions, called
MLS-basic, is constructed, trying extrapolationStep. Section 3 first introduces



a basic version of our fixed decrease search algorithm, called FDS-basic to hope-
fully get a decrease in the function value. It has repeated calls to MLS-basic until
the function value is decreased. Then a basic version of VRBBO, called VRBBO-
basic, is introduced, which has repeated calls to FDS-basic until an ¢ approximate
stationary point is found; see Flowchart 1.

S —— S —— S ——
VRBBO-basic FDS-basic MLS-basic
S — S —— S ——
FDS-basic MLS-basic extrapolationStep
no yes no

Decrease in f

Minimizer found? directions used?

found?
yes no yes
a) b) c)

Fig. 1: Flowchart for (a) VRBBO-basic, (b) FDS-basic, (c) MLS-basic. Here R
is the number of random direction used by MLS-basic.

Complexity results for VRBBO-basic. Section 4 discusses our complexity bound
for the nonconvex case with the same order and factor as the one found by GRATTON
et al. [27] obtained by Chernoff bound. But with the difference that the constant
factor of our bound is obtained from a result of PINELIS [50]. Both complexity results
are better by the factor of R/n than those given in Table 1 and are more reasonable
than those given in Table 2. Our complexity bounds for the convex and strongly
convex cases are proven with probability arbitrarily close to 1, which are new results
and are more reasonable than those given in Table 2, only valid in expectation. Table
3 summarizes our complexity results for all cases, matching GRATTON et al. [27] for
the nonconvex case. As discussed in Section 1.2, GRATTON et al’s results for the
nonconvex case allow R = 2, while VRBBO-basic needs

R=(logn™") for agiven 0 <n < 1.
But logn~! cannot be large for reasonable value of 7. In practice, VRBBO-basic
works best with a much larger value R = O(n).



case goal complexity
nonconvex Pr(llgll« <e)>1-—nq O(nRe~?)
convex Pr(llgll« <e)>1-—n O(nRe™ 1)
convex Pr(f—f<e)>1—-n | O(nRes1)
o-strongly convex | Pr(|lg]l« <e)>1—1n O(Rlogne™1)
o-strongly convex | Pr(f — f<e)>1-n | O(Rlogne™1)

Table 3: Complexity results for randomized BBO with probability 1 — 5, for fixed
0 <n < 1 (GRATTON et al. [27] for the nonconvex case with R = 2 and present
paper for all cases, with R = 2(logn™1).

Heuristic techniques. We add many new useful heuristic techniques — discussed
in Section 5 — to VRBBO-basic that make it very competitive, in particular:

e Several kinds of search directions ensure good practical performance.

e Adaptive heuristic estimations for the Lipschitz constant are used.

e A sensible scaling vector is estimated.

e The gradient vector is estimated by a randomized finite difference approach.
These heuristic techniques improve the performance in practice, leading to the FDS
and VRBBO implemented documentations in Section 6.

Numerical results. In Section 7 we compare all solvers (including some good global
ones) on the unconstrained CUTEst test problems by GOULD [26] for optimization and
the test problems, called GlobalTest, by JAMIL & YANG [37] for global optimization
with 2 up to 5000 variables. The numerical results of show that VRBBO matches
the quality of global state-of-the-art algorithms for finding, a global minimizer with
reasonable accuracy. Although our theory guarantees only local minimizers, the FDS
together with our heuristic techniques turn VRBBO into an efficient global solver.
For example, FDS takes for large A initially only large steps, hence has a global
character.

2 A new line search technique

In this section, we describe a method that tries to achieve a decrease in the function
value using line searches along specially chosen random directions. In our algorithm
random directions are used because it is known that randomized black box opti-
mization methods have a worst case complexity by a factor of n lower than that of
deterministic algorithms (see cf. [9]).

A line search then polls one or more points along the lines in each chosen direction
starting at the current best point. Several such line searches are packaged together
into a basic multi-line search, for which strong probabilistic results can be proved.

The details are chosen in such a way that failure to achieve the desired descent
implies that, with probability arbitrarily close to one, a bound on the unknown
gradient vector is obtained.



2.1 Probing a direction

Let A > 0 be the threshold for improvements on the function value and let
f(x)— f(zLp), for every z,p € R™, be the gain along +p. First we give a theoretical
test that either results in a gain of A or more in function value, or gives a small upper
bound for the norm of at least one of the unknown gradients encountered though
our algorithm never calculates ones.

Assumption (A1) implies that for every z,p € R™, we have

flz )~ £(2) = 9@ p + 57l (6)

where v depends on = and p and satisfies one of

|v| < L, (general case) (7)
0<~y<L, (convex case) (8)
0<o<vy<L. (strongly convex case) 9)

Here o comes from (4). In all three cases,
r o1 2 r o1 2
9(z)"p = SLIpl" < fz +p) = f(z) < g(x)"p+ 5 Llp[" (10)
Continuity and condition (A2) imply that a minimizer Z exists and
ro = sup{||x —Z|| |z € R™ and f(z) < f(xo)} < 0. (11)

(Tt is enough that this holds with x° replaced by some point found during the itera-
tion, which is then taken as z°).

Proposition 2 Let x,p € R™ and A > 0. Then (A1) implies that

|f(z+p)+ flx—p) —2f(2)]

L>
lIplI

: (12)

and at least one of the following holds:
(i) f(x+p) < f(x) = A4,
(ii) f(x +p) > f(z) + A and f(z—p) < f(z) - 4,

1
(i) 197p| < A+ 3Ll

Proof Taking the sum of (10) and the formula obtained from it by replacing p with
—p gives (12).

Assume that (iii) is violated, so that A+ $L||p||%. If g(z)Tp < 0, then by (10)

Fle+p) ~ £() < o) Tp+ S LIpl? = —lgTpl + SLIpI? < ~A. (13)



If g(z)Tp > 0, then similarly

Flz — 1)~ £(2) < 9@ (-p) + 5LIPIP = ~lg"pl + S LIpl? < 4. (14)

If (13) holds we conclude that (i) holds. If (14) holds we get the second half of (ii),
and the first half follows from

Fla+p)~ F@) > o(a)"p ~ S Llpl? > A

Proposition 2 will play a key role in the construction of our basic multi-line search
MLS-basic detailed in Subsection 2.3:

o It establishes the well-known (EVTUSHENKO [25]) lower bound (12) for the Lipschitz
constant L which can be used to find reasonable approximations for L.

o If (i) holds, then the step p gives a gain of at least A, called the sufficient gain.
o If (ii) holds, then the step —p gives a sufficient gain.

o If neither (i) nor (ii) holds (no sufficient gain is found along +p) then (iii) holds,
giving a useful upper bound for the directional derivative.

In particular, this allows us to prove statements about the unknown gradient even
though our algorithm never calculates one.

2.2 Random search directions

For our complexity results, we need that sufficiently many search directions p satisfy
the angle condition of the form

g'p a

< =AY <0. (15)
lgll«lpl

sup

Here g is the gradient of the current best point and A* > 0 is a tuning parameter
for the angle condition.

Random directions are uniformly independent and identically distributed (i.i.d) in

[f%, % ™ computed by

p =rand(n,1) — 0.5, (16)
where rand(n, 1) generates a random vector uniformly distributed in [0, 1]™.

The following variant of the angle condition (15) plays a key role to get our com-
plexity bounds.

Proposition 3 For random search directions generated by (16) and scaled by

p = p(&/llpl)- (17)



satisfies ||p|| = 0 and, with probability >

K

[N

lg(@)l+llpll < 2v/enlg(2)" pl (18)

with a positive constant ¢ < 12.5.

Proof As defined earlier in Section 1.2, s € R™ is a scaling vector. Denote by s; the
ith component of s and define p, := p;/s; and g, := s;9;. Then by (1), ¢"p = 3'D
and ||g]l« = ||g]]2 and ||p|]| = ||P||2; so the results of Subsection 9.1 apply after scaling
and give ¢ = ¢p/4 < 12.5. |

This simulation result from Subsection 9.1 suggests that ¢ ~ 4/7.

2.3 A multi-line search

In this section, we construct a multi-line search algorithm, called MLS-basic. It
polls in random directions (satisfying (18), with probability > %, generated by (16),

and scaled by (17)) in a line search fashion a few objective function values each in
the hope of finding sufficient gains by more than a multiple of A.

2.3.1 An extrapolation step

As discussed in Section 1.3, the main ingredient of VRBBO-basic is FDS-basic
which has repeated calls to MILS-basic until at least a sufficient gain is found. The
accelerated ingredient of MILS-basic is extrapolation whose goal is to speed up
reaching a minimizer by expanding step sizes and computing the corresponding trial
points and their function values as long as sufficient gains are found. We discuss how
to construct extrapolation steps, called extrapolationStep, trying to hopefully
find sufficient gains. extrapolationStep may perform extrapolation along either
the search direction p or its opposite direction.

Let {z¥}>0 be the sequence generated by VRBBO-basic. In the kth iteration of
this algorithm, FDS-basic takes as input the (k — 1)th point xm = zF~1 and its

function value fm = f;_; generated by VRBBON-basic and returns the kth point
¥ = xm and its function value f, = fm as output if at least a sufficient gain is
found by MLS-basic; otherwise 2* = zF~! and f; = fr_1. In fact, after the kth
iteration of VRBBON-basic is performed, xm is the current trial point evaluated
by extrapolationStep, obtained from a sufficient gain, accepted as a new point,
and called the best point. Hence all points z*, for k = 1,2, - -, are the best points
found by extrapolationStep. The last point generated by VRBBO-basic is said
the overall best point.

Care must be taken to ensure that the book-keeping needed for the evaluation of the
lower bound for the Lipschitz constant comes out correctly. To ensure this during an

10



extrapolation step, we always use xm for the best point found by extrapolationStep
such that the next evaluation is always at xm+ p and a former third evaluation point
is at xm — p. The function values immediately after the next evaluation are then

fl:= f(xm—p), fm:= f(xm), fr:= f(xm+p). (19)
At this stage, we can compute the lower bound
A= max()\old, |fl + fr — 2fm|/52) (20)

for the Lipschitz constant L, valid by (12). Note that the initial Aojq is the tuning pa-
rameter Ay, however, it is updated by extrapolationStep and may be estimated
by a heuristic formula.

As defined earlier in Subsection 2.1, df := fm — fr is the gain and given the tuning
parameter 0 < ypin < 1, if the condition

df > A = A (21)

holds, a sufficient gain is found and the corresponding point is updated by overwriting
xm + p over xm, with the consequence that in this case

fl:= f(xm—2p), fm:= f(xm—p), fr:= f(xm). (22)

R denotes the number of the random search directions used in MLS-basic and
a denotes the list of R extrapolation step sizes. All components of the initial
list a are one, ie., a(t) = 1 for t = 1,---, R. These components are expanded
or reduced according to whether sufficient gains are found or not. Let ng, be the
number of sufficient gains found by extrapolationStep to exceed sufficient gains.
If the counter ng, remains zero, extrapolationStep cannot find a sufficient gain.
t is a counter for R taking 0,---, R. It does not change inside extrapolationStep,
but it is updated later outside extrapolationStep (inside MLS-basic).

We must be careful to make sure that the estimation of the Lipschitz constant is
correct, especially when an extrapolation step — improving the function value — is
tried. This estimation is computed

(i) after an opposite direction is tried. Since there is no sufficient gain along the
direction p, its opposite direction is tried. Then A is estimated according to (19).
(ii) after the first sufficient gain is found. For this estimation, £1, fm, fr are needed.
Since a sufficient gain is found, according to (22), the Lipschitz constant X is esti-
mated by (20).

In summary, extrapolationStep first takes the initial step size a, = 1, which is
necessary to approximate a lower bound for the unknown Lipschitz constant L. Then
it chooses step sizes from a(t) later while expanding it until a sufficient gain is found.
After a sufficient gain is found «, is saved as the new a(t). One of the following cases
is happened:

(i) A sufficient gain is found along the direction p.

(ii) A sufficient gain is found along the direction —p.

(iii) No sufficient gain is found along +p.

If either (i) or (ii) holds, extrapolationStep is successful at least with a sufficient
gain. But if (iii) holds extrapolationStep is unsuccessful without any sufficient
gain.

11



Algorithm 1 extrapolationStep, an extrapolation step

Input. The old best point xm and its function value fm, the search direction p, the threshold
for good improvement A > 0, the old approximation A,jq > 0 for the Lipschitz constant
L, the tth extrapolation step size a(t), the norm of trial step §, and maximum number of
function evaluations nfmax.

Tuning parameters. 7. > 1 (the factor for reducing/expanding step sizes), ymin (the
factor for extrapolation test), £ > 1 (maximum number of extrapolations).

Output. A newest best point xm and its function value fm, a new approximation \ for the
Lipschitz constant L, the number nsg of sufficient gains, and the tth extrapolation step
size a(t).

Initialization

1: Initialize ae := 1 and set A := Ag1q.- > necessary to approximate A below
2: for ngg =0,---,E do

| Try either an extrapolation step along p or —p |

3: Compute the trial point xr := xm + aep and its function value fr := f(xr).
4: Compute the gain df := fm — fr.
Stopping test

5: if nfmax is reached then > maximal number of function evaluation is reached

6: if df > 0 then > a gain is found; update the best point before a termination

7 Update xm := xr and fm := fr and stop extrapolationStep.

8: end if

9: end if

| Estimate the Lipschitz constant L after the first sufficient gain is found |

10: if nsg reaches one then > after the first extrapolation is done
11: Set ft := fm. > temporarily save the old best function value
12: Set fm := fe. > temporarily restore the new best function value
13: Estimate L by

X = max()\, [f1 + fr — 2fm|/62).

14: Set fm := ft. > restore the old best function value

15: end if
| Check whether a sufficient gain is found or not? |

16: if df > YminA then > a sufficient gain is found
17: if nsg reaches one then > the first iteration of an extrapolation
18: Set £f1 := fm. > save the old best function value
19: Set ae := al(t). > choose the extrapolation step size from a(t)
20: else
21: Expand the step size to ae := Yeare.
22: Set fe := fr. > since fr < fe during an extrapolation
23: end if
24: else if —p has been not tries already then > an extrapolation along —p is tried
25: Replace p by —p. > opposite direction is chosen

| Estimate L after finding an opposite direction is tried |
26: Set f1 := fr. > update the third former function value
27: Estimate L by
A= max(\, [f1 4 fr — 2fm|/(52).
28: else > no sufficient gain is found along +p
29: Terminate the for loop.
30: end if
31: end for
| Updating the best point and its function value |

32: if ngg > 0 then > extrapolation ends with a sufficient gain
33: Reduce the step size to ae := ae/7e. > no sufficient gain by the last point
34: Set xm := xm + aep, a(t) := ae, and fm:= fe. > updating the best point information
35: end if

12



2.83.2 A basic version of the MILS algorithm

For each random direction generated, our basic multi-line search (MLS-basic) using
extrapolationStep is performed where the following happens:

e A step in the current direction is tried.

e If a sufficient gain is found, a sequence of extrapolations is tried.

o If a sufficient negative gain is found, a step in the opposite direction is tried.

e If a sufficient gain is found in the opposite direction, a sequence of extrapolations
is tried.

e If no sufficient gain along +p is found, the step size is reduced.

Algorithm 2 MLS-basic, a basic multi-line search

Input. The old best point xm and its function value fm, the threshold A > 0 for good
improvement, the old approximation A > 0 for the Lipschitz constant L, maximal number
nfmax of function evaluations, and the list a of extrapolation step sizes.

Tuning parameters. v, > 1 (the factor for reducing/expanding step sizes), ymin (the
factor for extrapolation test), E > 1 (maximum number of extrapolations), dmin/dmax
(minimum/maximum norm of trial steps), vs (factor for adjusting 4), amin € (0,1) (mini-
mum threshold for step sizes), R > 0 (the number of random search directions).

Output. A newest best point xm and its function value fm, a new approximation A > 0
for the Lipschitz constant L, the number ngg of sufficient gains, and an updated list a of
extrapolation step sizes.

Initialization

1: Set Al:= .
2: fort=1,---,Rdo

| Compute search direction |

Compute the tth random direction p? by rand(n, 1) — 0.5,
Update 6¢ by

8" == max (5min, min (\/;W, 5max>). (23)

5: Scale the tth search direction by p? := pt(5¢/||p]|).

| Perform an extrapolation |

6: Perform: [xm, fm, A\*T1 a, ng,| = extrapolationStep (xm, fm, A\, a, A).
Stopping test
7 if nfmax is reached then > maximal number of function evaluation is reached
8: Stop MLLS-basic.
9: end if
| Reducing step sizes |
10: if nsg is zero then > there is no sufficient gain
11: Reduce the tth step size to
a(t) := max(a(t)/ve, ¥min)- (24)
12: end if
13: end for
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In (24), the extrapolation step sizes need to be reduced whenever no sufficient gain
is found. Hence, they need to be controlled by the tuning parameter opiy-

(23) is motivated at the end of this section since it is based on the details of Theorem
1, which asserts that one obtains either a sufficient gain of multiple of A or, with
probability arbitrarily close to 1, an upper bound of |g||. for at least one of the
unknown gradients encountered though our algorithm never calculates ones.

Theorem 1 Assume that (A1) holds and let nf be the counter for the number of
function evaluations, R be the number of random search directions, and Ay be the

improvement on the function value in MLS-basic. Moreover, let A = ymin A with
0 < Ymin < 1. Here nfmax is assumed to be sufficiently large.
(i) f decreases by at least

Ay = Amax(nf — 2R — 1,0) (25)

(Note that Ay may be zero, catering for the case of no strict decrease).
(ii) Suppose that 0 < n < % and R = [logan~Y]. If f does not decrease by more

than a multiple of A then, with probability > 1 —n, the original point or one of the
points evaluated with better function values has a gradient g with

lgll« < VenI'(6), (26)

where ¢ is the constant in Proposition 3 and I'(9) is defined by

Ir©):=Li+ % for some § > 0. (27)

Proof (i) Clearly, the function value of the best point does not increase. Thus (i)
holds if nf — 2R — 1 < 0. If this is not the case, then nf > 2R + 2. But in the for
loop of MLS-basic, R directions p are generated and at most two function values
are computed, unless an extrapolation step is performed. In the latter case, at least
nf — 2R — 1 additional function values are computed during the extrapolation stage,

each time with a sufficient gain of at least A. Thus the total sufficient gain is at least
(25).

(ii) Assume that f does not decrease by more than A. For t = 1,..., R, let p’ be the
tth random direction generated by (17), and let o be the best point obtained before
searching in direction pt. Then, from Proposition 2, we get

— L L 1)
lg(z))Tpt| < A+ §||pt|\2 <A+ §|\pt||2 =5 0(0), forallt=1, . R
Since the random direction is generated by (16), Proposition 3 implies that
loa)l = llg@")l-I1p'11/8 < (2venlg(a")p'1) /6 < VenI(o), forallt =1,.... R

14



1
holds with probability 5 or more. Therefore ||g(z!)|l« < /enI'(§) fails with a prob-

1
ability less than 3 for all t =1,..., R. Therefore, the probability that (26) holds for
at least one of the gradients g = g(a?) (t € {1,...,R}) is

R—1
1- ] Pr (Hg(xt)H* > Mr(g)) >1-97F
O

Note that (26) is guaranteed to hold although gradients are never computed. Since
gradients and Lipschitz constants are unknown to us, we could not say which point
satisfies (26). But the result implies that the final best point has a function value
equal to or better than some point whose gradient was small. If gradients are small
only nearby a global optimizer, it will produce a point close to the local optimizer.
If some iterate passes close to a non-global local optimizer or a saddle point, it is
possible that the algorithm escapes its neighborhood. In this case, only a variant
with restarts would produce convergence to a point with a small gradient.

As discussed earlier in Section 1.3, VRBBO-basic tries to find a point satisfying
(5). The goal of the scaling of the search direction (16) is that the bound \/enI'(d)
in (26) becomes below a given threshold € > 0. This is done by minimizing such a
bound. For fixed A, the scale-dependent factor (27) is smallest for the choice

5= +/24/L.

Accordingly, (23) is used to scale the random directions (16), safeguarded by the
sensible positive lower and upper bounds 0 < dpin < dmax < +00. As can be seen
from Subsection 2.3.1, a. is used for estimating L and here for adjusting 6. Due to

our experience, using the unfixed a, in (23) is useful. In fact, Sisa special case of

the term \/aeys A/ in (23) with a. = 1 and s = 2.

3 A randomized descent algorithm for BBO

In this section, we first consider a fixed decrease search for which an upper bound
of the unknown gradient norm for at least one of the points generated by the ex-
trapolationStep or of the total number of function evaluations is found. Then a
primary version of our algorithm is given.

3.1 Probing for fixed decrease

Based on the preceding results, we introduce the basic version of a fixed decrease
search algorithm (FDS-basic) whose goal is to perform calls to the basic multi-line
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search MLS-basic to hopefully find sufficient gains by a multiple of A. If either
there is no sufficient gain (ns; = 0) by MLS-basic or nfmax is reached, FDS-basic
ends. The main ingredient of VRBBO-basic is FDS-basic which takes for large
A many large steps, hence has a global character.

In the next algorithm, it is assumed that FDS-basic is tried in the kth iteration of
VRBBO-basic.

Algorithm 3 FDS-basic, a basic fixed decrease search

Input. The old best point xm and its function value fm, the threshold Ax_; > 0 for good
improvement, A*~1 > 0 for the Lipschitz constant L, maximum number nfmax of function
evaluations, and the list a*~1 of extrapolation step sizes at the (k — 1)th iteration of
VRBBO.

Tuning parameters. 7. > 1 (the factor for reducing/expanding step sizes), ymin (the
factor for extrapolation test), E > 1 (maximum number of extrapolations), dmin/dmax
(minimum/maximum norm of trial steps), vs (factor for adjusting 4), amin € (0, 1) (mini-
mum threshold for step sizes), R > 0 (the number of random search directions).

Output. A new best point xm and its function value £m, a new approximation A\* > 0 for
the Lipschitz constant L, and an updated list a* of extrapolation step sizes at the kth
iteration of VRBBO.

Initialization

: Set AR = Ak—1 gk .= ak-1 AL = A,
2: while true do

—_

| To hopefully get sufficient gains |
3: Perform: [xm, fm, \*, a¥, nsg] = MLS-basic(xm, fm, NFoak Ay .

Stopping test
if nfmax is reached or nsg is zero then
FDS-basic ends.
end if
end while

Theorem 2 Assume that (A1) and (A2) hold, nfmax is sufficiently large, denote by

fo the initial value of f and let A= Ymin A with the tuning parameter 0 < Ymin < 1.
Then:
(i) The number of function evaluations of FDS-basic is bounded by

2R+ (2R + 1)%‘_]0,

where f is the global minimum value.
(i) Denote by Ky the number of calls to MLS-basic by FDS-basic and assume
that

1
0<77§57 R=Tlogyn ], and 0 < dmin < dmax < 00.

Then FDS-basic finds a point x, with probability > 1 — n, satisfying

llg(x)]l« < \/Etn&i% r(h) < ﬁ(L5min +VL'A+ £> (28)
Z0:K;

61’1’1&}(
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Here c is the constant from Proposition 3 and, if A’ denotes the value of A before the
first execution of FDS-basic,

L2 PSS

L =
A0 Vs

with v5 > 0. (29)

Proof By (A2), f is finite. Denote by fiy1 the result of the (k + 1)th execution
of FDS-basic. In the worst case in each iteration ¢ € {1,---,k} of FDS-basic a
sufficient gain is found, i.e., the condition

f@ < f@*l —ZforEG {177k}
holds. But in the (k4 1)th iteration FDS-basic cannot find any sufficient gain and
ends. We then conclude that

k
F<h<f Z < fo-kA=fo—kA

by (24), so that k < (fo — f)/Z

Since a sufficient gain is found in each iteration £ = 1,---, k, 2R+ 1 function evalua-
tions are used. But in the (k + 1)th iteration, 2R function evaluations are used since
there is no sufficient gain. Hence (i) follows.

(ii) Ky is finite due to (i) and we have 2% < 1. Hence by Theorem 1 with probability
>1-27">1-y
<V in I"(6"
gl < on, min (6%)

holds. Thus it is sufficient to show that

2A

max

I(6) < Lowin + VLA + (30)

By the definition of § in (23), we have one of the following three cases:

CASE 1: § =4/ % In this case,
2A A A
I6)=Lé+ = =L/ 2= 42 A VA,
0 A Vs

/s [ A
A:=Ly/ =424/ —. 31
A Vs 51
[vs A
%T. In this case,

2A [AA
F(é) = Limin + 67 < Lipin + 2 )\7 < Lpmin + AV A.
min )

where

CASE 2: 6 = 0min

v
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CASE 3: 0 = Omax < 4/ %. In this case,

I(8) = Loy + 22 gL\/¥+ 24 A+ A

61’1’1&){ 5max 61’[1&)(

Thus in each case,

2A

émax

As discussed earlier, L is unknown and we replace it by an approximation value \.
Proposition 2 implies that

A< A <max(\°, L) <A’ + L, (32)
where A is the initial value of A\. Now (30) follows since by (31) and (32),

2
A2:%+4L+i—/\§ﬂ.
5

3.2 A basic version of the VRBBO algorithm

We now have all ingredients to formulate VRBBO-basic. It uses in each iteration
the fixed decrease search algorithm to update the best point. If either no sufficient
gain is found or nfmax is not reached in the corresponding FDS-basic call, A is
reduced by a factor of Q). Once either A is below a minimum threshold, VRBBO-
basic stops.
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Algorithm 4 VRBBO-basic, Vienna basic randomized BBO

Input. The initial point 0 and maximum number nfmax of function evaluations.

Tuning parameters. 7. > 1 (the factor for reducing/expanding step sizes), ymin (the
factor for extrapolation test), £ > 1 (maximum number of extrapolations), dmin/dmax
(minimum/maximum norm of trial steps), vs (factor for adjusting ), @ > 1 (factor for
adjusting A), Amin (minimal threshold for A), Amax (maximum threshold for A), amin €
(0,1) (minimum threshold for step sizes), Amax (the initial Lipschitz constant), R > 0 (the
number of random search directions).

Output. An overall best point xm and its function value fm.

1: Set A% := Amax, 6% := Smax, and Ag := Amax.
2: Compute the initial function value f(z?).
3: for k=1,2,3,--- do

| To hopefully find sufficient gains |

4: Choose xm := zF~! and fm := f(z#~1) as input for FDS-basic.

5: Perform: [xm, fm, \*, a¥] = FDS-basic(xm, fm, \* =1 a*=1 A, _,).

6: Choose z* := xm and f(z*) := fm as the kth best point and its function value.
7 if nfmax is reached or Ax_1 < Apin then

8: VRBBO-basic ends.

9: end if

| Reducing step sizes |

10: Reduce the step size to Ay := Ap_1/Q.
11: end for

As discussed above, A .x and Apax are initially tuning parameters but in an im-
proved version of VRBBO-basic they will be estimated by heuristic techniques in
Section 5. From Lines 1 and 10, the kth call to FDS-basic uses

Ak = Ql_kAmax~ (33)

It will be used in the next section to prove all theorems.

4 Complexity analysis of VRBBO-basic

We now prove the complexity results for the nonconvex, convex, and strongly convex
objective functions. We denote by N} the total number of function evaluations used
by VRBBO-basic up to iteration k.

4.1 The general (nonconvex) case

Theorem 3 Let {z*} (k=0,1,2,---) be the sequence generated by VRBBO-basic.
Assume that (A1) and (A2) hold, nfmax is sufficiently large, and the parameters

0<n <L 0<Ymin <1, Apax >0, dpax >0, >0
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are given. If the parameters are chosen such that

Amin = 9(82/71)7 (34)
K = lrlog(A{ZZXéAmin)—" (35)
R:= [log2 7771-‘ , (36)
6min = 0(6/\/5)7 (37)

then VRBBO-basic finds after at most O(ne~2) function evaluations with proba-
bility > 1 —n a point x with

lg(@)[l« = O(e). (38)
Proof We conclude from (33)—(35) that
Ay = QlieAmax < Apin for £ > K. (39)

Hence at most K steps of FDS-basic are performed. By (36), we have n; = 27 % < .
Thus by Theorem 2(ii) we have from (34) and (37), with probability > 1—n; > 1—n,
for at least one of the function values encountered,

1 2Amin
HgH* S ‘Inoir}( F((Sj) S v Een (L(Srnin + L/Amin + 7) = O(E)
J=0:

6ID3,X

From (33) and Theorem 2(i), the Kth call to FDS-basic uses at most

fo— T

2 2 1) ————
R+( R+ )’Ymian_KAmax

function evaluations; fcomes from (2) and is the global minimum value. Then

fo—F Q-1
’YminAmax Q_l '

fo—f
’Ymianij Amax

K
Nk <143 (2R+(2R+1) ) = 142RK+(2R+1)
j=1

Choosing Apin = O(e?/n) with (34) is possible, and K, R, 6., can clearly be chosen

to satisfy (35)—(37) and displays K = O(log %) and R = O(logn!). Finally, we
€

conclude that Nxg = O(nRe~2) = O(ne~2). O
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4.2 The convex case

Theorem 4 Let {z*} (k=0,1,2,---) be the sequence generated by VRBBO-basic
and let f be convex on L(z°). Moreover, assume that (A1) and (A2) hold and nfmax
is sufficiently large. Given 0 < n < 1, for any e > 0, if (34)~(37) hold then VRBBO-
basic finds after at most O(ne™1) function evaluations with probability > 1 —1n a
point x satisfying (38) and

f(z) — f = O(ery), (40)

where ro is given by (11) and f is the global minimum value.

Proof For £ > K, from (33)—(35), (39) holds. Hence at most K steps of FDS-basic
are performed. In fact in each step a point without sufficient gain is found satisfying
(28) by Theorem 2(ii). As discussed earlier after Theorem 1, these points are unknown
to us since the gradients and Lipschitz constants are unknown. The index set of these
points is denoted by U whose size is K. The convex case is characterized by (8), so
that

F>fi+(gHTE -2 forall £>0.

From (11), we have with probability > 1 — ¢
foor = fo < foar = F < (@@ =8) < g Ml -3

2
< ro\/&(mmiﬁ LA+ ’f) for (€ U.  (41)

max

We consider the following three cases:
CASE 1. The second term +/L’Ap in (41) dominates the others. Then for £ € U

feo1 = fo S foor = [ = O(v/ndy). (42)
Put Uy :={¢ € U | (42) holds}.
CASE 2. The first term i, in (41) dominates the others. Then for £ € U
Jior = fo < feor = [ = O(V16min) = O(e)- (43)
Put Us := {¢ € U | (43) holds}.
CASE 3. The third term 24, in

max

(41) dominates the others. Then for £ € U

foor = fo < foor = [ = O(VnAy). (44)
Put Us := {¢ € U | (44) holds}. Then we conclude from (33) and (42)—(44) that

Zfz 1—fz Zfz 1—fe Zfz1 fe Zfz1 fe

LeUu e, LeUsy LeUs
Ay
I R CD IR PR s

ey LeUs LeUs
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<Y o(WnA ) +06) Y At +Z ng

LeU e e
< ALY ORI+ ALLO@E) Y QT+ O(Vn)K.
e e

Hence (34) and (35) result in

Z f/ 1= f/ _ O(nsfl) + O(ngfl) + O(ﬁlog(nsfl)) = O(n671)7

e

so that we get in the same way as the proof of Theorem 2

fo—1—fe

NKg1+2RK+(2R+1)Z7 %
min4&3/

Leu

= OMnRe™") = O(ne™).

According Theorem 3, (38) holds at least for one of evaluated points. As a result,
at least for one of evaluated points (40) holds with probability > 1 — n by applying
(11) and (38) to (41). O

4.3 The strongly convex case

Theorem 5 Let {z*} (k=0,1,2,---) be the sequence generated by VRBBO-basic

and let f be a-strongly convex on L(x°). Moreover, assume that (A1) and (A2) hold
and nfmax is sufficiently large. Under the assumptions of Theorem 3, VRBBO-
basic finds after at most

O(nlogne™1)

function evaluations with probability > 1 —n a point x satisfying (38),

2

@) -F=0(5): (45)

and
€

o =31 = 0(). (46)

Proof For ¢ > K, from (33)—(35), (39) holds. Hence at most K steps of FDS-
basic are performed. In fact in each step a point without sufficient gain is found
satisfying (28) by Theorem 2(ii). As discussed earlier after Theorem 1, these points
are unknown to us since the gradients and Lipschitz constants are unknown. The
index set of these points is denoted by U whose size is K. The strongly convex case
is characterized by (9), so that f has a global minimizer  and

F) > (@) + 9@y~ 2) + 50lly —

for any = and y in £(2°). For fixed x, the right-hand side of this inequality is a
convex quadratic function of y, minimal when its gradient vanishes. By (1), this is
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s
the case iff y; takes the value z; — —g;(z) for i = 1,---,n, and we conclude that
o

7() > 1)~ 5-llg(@)]? for y € £(x"). Therefore

F2 (@) - ol (47)

The replacement of z by /=1 in (47) and (38) gives, with probability > 1 — 7,

llg* Mz _ en

240\ 2
< 7(L6mm + VL' Ay + e) . (48)

20 ~ 20 max

feor—fe<fo-F<

We consider the following three cases:
CASE 1. The second term +/L’Ap in (48) dominates the others. Then for £ € U

fe—1 = fo = O(nAy). (49)

Put Uy :={¢ € U | (49) holds}.
CASE 2. The first term 6y, in (48) dominates the others. Then for £ € U

féfl - f£ O(némm) - 0(52)' (50)
Put Us := {¢ € U | (50) holds}.

2A
CASE 3. The third term

51’1’18,)(

n (48) dominates the others. Then for £ € U

for— o= O, (51)
Put Us := {¢ € U | (51) holds}. Then we conclude from (33) and (49)—(51) that

Zfe1—fe Zfz1—ftz Zfe1 fe Zfel fe

e el LeUsy LeUs
TLA@
<> A o YA Y AR
Lel; LeUs LeUs
<O
Leu ZEU Leu
00
E l— 1 E 1—¢
max eU =1

Hence (34) and (35) result in

Z fg = O(nlogne™") + 0(e*)O(ne™?) + O(n) = O(nlogne™'),
tev

and we then obtain in the same way as the proof of Theorem 2

Nk <1+2RK + (2R +1) fo b [

A= O(nRlogne™') = O(nlogne™1).
U min434
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According to Theorem 3, (38) holds at least for one of evaluated points. As a result,
at least for one of evaluated points (45) holds with probability > 1 — n by applying
(38) to (45). (46) is obtained by applying (4), (45), and since g(z) = 0, i.e.,

e =37 < 2 (£@) - F- 0@ e -B) = 0(5).

o2

5 Some new heuristic techniques

In this section, we describe several heuristic techniques that improve the basic version
of Algorithm 4, VRBBO. While only convergence to a local minimizer is guaranteed,
the FDS together with our heuristic techniques turn VRBBO into an efficient global
solver. In fact FDS takes initially only for large A many large steps, hence has a
global character.

More specifically, we discuss the occasional use of alternative search directions (two
cumulative directions and a random subspace direction) and heuristics for estimat-
ing key parameters unspecified by the general theory — the initial desired gain, the
Lipschitz constant, and the scaling vector. Moreover, we discuss how to approximate
the gradient estimated by finite differences with step sizes extracted from the extrap-
olation steps. In Section 6, we combine Algorithm 4 with these heuristic techniques,
resulting in the global solver VRBBO.

5.1 Cumulative directions

We consider two possibilities to accumulate past directional information into a cu-
mulative search direction:
(i) With xm and fm defined in Section 2.3.1 the first cumulative direction is model
independent, computed by

P = Xm — Tinit, (52)

where iyt is the initial point of the current improved version of MLS-basic. Here
the idea is that many small improvement steps accumulate to a direction pointing
from the starting point into a valley, so that more progress can be expected by going
further into this cumulative direction.

(ii) The second cumulative direction assumes a separable quadratic model of the

form
f(xm + Z aipi) ~ fm— Z Vi(a;) (53)
i€l icl

with quadratic univariate functions ¥;(«) vanishing at o = 0. Here I is the set of
directions polled at least twice, and p; is the corresponding direction as rescaled by
an improved version of MLS-basic.
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By construction, we have for any ¢ € I three function values at equispaced arguments.
We write the quadratic interpolant as

2
f(xm+ ap) = fm — %d—k %h =fm — ¥(a),

where V(o) := %(d —ah). Let us recall the function values £1, fm, and fr satisfying
either (19) or (22). If fr < fm, the last evaluated point was the best one, so
fr < min(f1, fm).
In this case, (22) holds and we have
d := 4fm — 3fr — £1, (54)

and
h:=fr+ £l — 2fm. (55)

Otherwise, the last evaluated point was not the best one, so fm < min(£1,fr). In
this case, (19) holds and we compute d by

d:=fl—fr (56)
and h by (55).

Given the tuning parameter a > 0, the minimizer of the quadratic interpolant re-
stricted to the interval [—a, d] is

_fa ifd>0,
O"_{—a ifd<0 (57)
in case h < 0. Otherwise, we have
| min(a,d/2h) if d >0,
= {max(—a, d/2h) it d < 0. (58)

Assuming the validity of the quadratic model (53), we find the model optimizer by
additively accumulating the estimated steps ap and gains ¥ into a cumulative step
q with anticipated gain r.

5.2 Random subspace direction

When sufficient gains are found, the trial points are accepted as the new best points
and saved in X and their function values are saved in F. Denote by mg the maximum
number of points saved in X and by b the index of newest best point.

Throughout the paper, A.; denotes the kth column of a matrix A. Random subspace
directions point into the low-dimensional affine subspace spanned by a number of
good points kept from previous iterations. They are computed by

ms

Qrand
Qrand ‘= rand(ms - 1? 1) - 05’ Qrand ‘= HarandH , Pi= Z (arand)i(X:i - X:b)'
ran i=1,i#£b

(59)
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5.3 Choosing the initial A

First of all, we compute
dF := median |F; — Fp|. (60)
i=limg
Then if dF is not zero we approximate the initial desired gain
A = Apax min(dF, 1), (61)

where Ymax > 0 is a tuning parameter. Otherwise A := A ax, where Apax > 0 is
the initial gain.

5.4 Choosing the initial A

The initial value for A is Apax which is the tuning parameter, however, it is up-
dated by (20) provided that the best point is updated by extrapolationStep. Our
achievement is to approximate it by a heuristic formula based on the previous best
function values restored in F.

Let Aolg be the old estimation for the Lipschitz constant and «yy > 0 be a factor for
adjusting A\. We compute A by

% if aF = 0 and Aoyq = 0,
)\ p— /\Old lf dF = O and )‘Old 7é 0, (62)

dF .
™\ otherwise,

where dF is computed by (60).

5.5 Choosing the scaling vector

The idea is to estimate a sensible scaling vector s with the goal of adjusting the
search direction scaled by (17). We compute

dX,; = X,; — X, foralli=1,---,mg
and estimate the scaling vector

s:= sup (dX;), J={i|s; =0}, s;=1. (63)

i=1limg
Finally, the formula (17) is rewritten as

p=sop and p=p(d/|pl), (64)

where o denotes componentwise multiplication and ¢ is computed by (23).
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5.6 Estimating the gradient

With xm and fm defined in Section 2.3.1, finite difference quasi-Newton methods
approximate the gradient with components

~ f(xm+ age;) — fm
gi: o )

where e; is the ith coordinate vector. The most popular choice for « is the constant
choice

a; = max{1, ||z }v/Em, (65)

where €, is the machine precision; another choice for « is made now. After generating
each coordinate search direction, we approximate each component of the gradient in
a way that is a little different from the forward finite difference approach. The step
size generated by extrapolationStep is used instead of the general choice (65). The
reason of this change is that we don’t need to approximate the gradient by another
algorithm due to the additional cost. Let describe how to compute the gradient. If
extrapolationStep cannot find a sufficient gain in the ¢th iteration (nss = 0), fr is
computed and a(t) is unchanged. Given the old best point fmg4, the tth component
of the gradient is computed by

gt := (fr — fmoa)/a(t); (66)
otherwise, it is computed by

gr = (fm — fmgq)/a(t), (67)

where both fm,4 and a(t) are updated by extrapolationStep. We will add later
this computation to an improved version of MLS-basic.

6 The implemented version of VRBBO-basic

In this section, we discuss the implementation of VRBBO-basic with the improve-
ments which are of a heuristic nature, very important for efficiency, and do not
change the order of our complexity results. Thus VRBBO gives the same order of
complexity as the one by BERGOU et al. but with a guarantee that holds with prob-
ability arbitrarily close to 1; see Table 3. Numerical results in Section 7 show that,
in practice, VRBBO matches the quality of all state-of-the-art algorithms for un-
constrained black box optimization problems. VRBBO is implemented in Matlab;
the source code is obtainable from

http://www.mat.univie.ac.at/~neum/software/VRBBO.

It includes many subalgorithms described earlier in Sections 2—4. The others have
a simpler structure; hence we skip their details (which can be found at the above
website) and only state their goals and those tuning parameters which have not
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been defined yet. These subalgorithms are identifyDir, IbfgsDir, updateSY, up-
dateXF, updateCum, enforceAngle, direction, MLS, FDS, and setScales,
which are described below.

Before we compute the direction, the type of direction needs to be identified by
identifyDir. VRBBO calls direction to generate 5 kinds of direction vectors:
coordinate directions, limited memory quasi-Newton directions, random subspace
directions, random directions, and cumulative directions, as pointed out earlier in
more detail in Subsection 5:

e Coordinate directions are the coordinate axes e;, i = 1,---,n, in a cyclic fashion.
The coordinate direction values enhance the global search properties, decreasing on
average with the number of function evaluations used. Moreover, they are used to
approximate the gradient by the finite difference approach.

e Limited memory quasi-Newton directions are computed by lbfgsDir (standard
limited memory BFGS direction [36]). Due to rounding errors, the computed di-
rection may not satisfy the angle condition (15); hence it needs to be modified by
enforceAngle discussed in [39].

e updateSY, updateXF, and updateCum are auxiliary routines for updating the
data needed for calculating, limited memory quasi-Newton steps, random subspace
steps and cumulative steps, respectively.

These subalgorithms use cum (the cumulative step type), msmax (the maximum num-
ber of best points kept), mq,, ., (the memory for L-BFGS approximation), 0 < 7, < 1
and 0 < 7, < 1 (tiny parameters for the angle condition), scSub (random subspace
direction scale?), and scCum (cumulative direction scale?) as the tuning parameters.

We denote by C' the number of coordinate directions, by R the number of random
directions, and by S the number of subspace directions in each repeated call to a
multi-line search algorithm — an improved version of M LS-basic, called MLS; once
the cumulative direction and L-BFGS direction are computed. Here T is the number
of 5 kinds of directions satisfying 1 <T < C+ S+ R+2; C, R, and S are the tuning
parameters.

Denote by FDS the improved version of FDS-basic. Both setScales and FDS
work by making repeated calls to MLS. MLS polls in several suitably chosen direc-
tions (implemented by direction) in a line search fashion a few objective function
values each in the hope of reducing the objective by more than a multiple of A.
Schematically, it works as follows:

e At first, at most C iterations with coordinate directions are used. They are used
to approximate the gradient.

e Then, the L-BFGS direction is used only once since the gradient has been esti-
mated by the finite difference technique using the coordinate directions.

e Next, except in the final iteration, at most S iterations with subspace directions
are used. These directions are very useful, especially after performing the coordinate
directions and L-BFGS, due to our numerical experiments.

e After generating T — 1 directions without finding a sufficient gain, a cumulative
direction is used as final, Tth direction in the hope of finding a model-based gain.
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MLS-basic calls an improved version of extrapolationStep, which is the same as
extrapolationStep, except that it updates the cumulative step ¢ and the cumula-
tive gain r by updateCum whenever the second cumulative direction is used.

VRBBO initially calls the algorithm setScales to estimate a good scaling of norms,
step lengths, and related control parameters. Then it uses in each iteration FDS,
aimed at repeatedly reducing the function value by an amount of at least a multiple
of A to update the best point. If no sufficient gain is found in a call to FDS, A is
reduced by a factor of ). Once A is below a minimum threshold or nfmax is reached,
VRBBO stops.

An important question is the ordering of the search directions. In Section 7, it will
be shown that after coordinate directions are used the use of subspace directions
(limited memory quasi Newton and random subspace directions) is very preferable.
Changing the ordering of other directions is not very effective on the efficiency of
our algorithm.

The statement (i) of Theorem 1 remains valid when R is replaced by T, and the
statement (i) of it remains valid with probability > 1 — 26+5+2-T =1 — 2=F,

Let Ty be the maximal number of multi-line searches in setScales as the tuning
parameter. Then, setScales uses (27 4 1)Ty function evaluations which does not
affect on the order of the complexity bounds. Theorems 3, 4, and 5 are valid with
probability > 1 — 22+C+5-T =1 _ 2= R where 5 kinds of directions are used. Given
the tuning parameter alg € {0,1,2,3,4,5} (algorithm type), we now discuss the
factor of bounds depending on the number of search directions used in MLS-basic.
We would have the following cases:

o In the first case (alg = 0), T = R < n random directions are used. Then complexity
results considered as Table 3 are valid. This variant of VRBBO is denoted by
VRBBO-basicl.

e In the second case (alg = 1), T = R > n random directions are used. Then
complexity results considered as Table 3 are valid but with the factor of n2. This
variant of VRBBO is denoted by VRBBO-basic2.

e In the third case (alg = 2), random, random subspace, and cumulative directions
are used whose total number is 7' = S+ R+1 < n. The complexity results considered
as Table 3 are valid. This variant of VRBBO is denoted by VRBBO-C-Q, ignoring
the coordinate and limited memory quasi Newton directions.

o In the fourth case (alg = 3), coordinate, random, random subspace, and cumulative
directions are used whose total number is T'=C + S + R+ 1 > n. The complexity
results considered as Table 3 are valid but with the factor of n2. This variant of
VRBBO is denoted by VRBBO-Q, ignoring the limited memory quasi Newton
directions.

o In the fifth case (alg = 4), only subspace directions are ignored. The total number
of directions used is T'= C' + R + 2 > n; hence the complexity results are valid but
with the factor n2. This variant of VRBBO is denoted by VRBBO-S.

e In the sixth case (alg = 5), coordinate, L-BFGS, random, random subspace, and
cumulative directions are used successively whose total number is T = C+S+R+2 >
n. The complexity results considered as Table 3 are valid but with the factor of n?.
This variant of VRBBO is the default version.
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This defines six versions of VRBBO, the full algorithm and 5 simplified variants.
In Section 7, we compare them and show that each simplification degrades the algo-
rithm. This means that all heuristic components of VRBBO are necessary for the
best performance.

7 Numerical results

In this section we compare our new solver with other state-of-the-art solvers on a
large public benchmark.

7.1 Default parameters for VRBBO

For our tests we used the following parameter choices:

Common tuning parameters: F = 10; dmin = 10~ *\/n; dmax = 0.1v/n; Amin = 0;
Amax = 1073; Vs = 106; Ye = 4; Q = 2; Amax = 1; Qmin = 10750; Ymin = 1076;
VRBBO-basicl: R = fix(n/2) + 1 and alg = 0;

VRBBO-basic2: R =n and alg = 1;

VRBBO-C-Q: msmax = 5; R = fix(n/2) + 1; S = fix(n/5); To = 2 * mSmax;

scCum = 0; scSub = 0; Ymax = 1073; cum = 1; alg = 2;

VRBBO-S: C = n; R = min(fix(n/10) + 1,20); scCor = 0; cum = 1; v = &m;

Ya = 1020, mg, .. = 9; alg = 3;

VRBBO-Q: nsmax = 5; C =n; R = min(fix(n/10) + 1,20); S = min(fix(n/10),5);
scCor = 0; scSub = 0; cum = 1; mSmax = 5; To = 2 * MSmax; Ymax = 1073; alg = 4;
VRBBO: msmax = 5; mq,,, = 5; 170 = 2 *MSmax; C = n; S = min(fix(n/10) + 1, 5);
R = min(£ix(n/10) + 1, 20); scCum = 0; scCor = 0; scSub = 0; cum = 1; Ymax = 1073;
Yw = Em; Ya = 10720; alg = 5;

Table 4: The values of the tuning parameters

Although the best theoretical complexity is obtained for
2(logn™") for a given 0 < n < %7
the best numerical result are obtained for much larger R ~ n.

Amin = 0 implies that the algorithm stops due to nfmax or secmax. Here secmax is
maximal time in seconds.

In recent years, there has been an increasing interest in finding the best tuning
parameters configuration for derivative-free solvers with respect to a benchmark
problem set; see, e.g., [7,52,53]. In Table 4, there are 7 integral, 2 binary, 2 ternary,
and 14 continuous tuning parameters, giving a total of 25 parameters for tuning
our algorithm. A small amount of tuning was done by hand. Automatic tuning of
VRBBO will be considered elsewhere.
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7.2 Test problems used

We compare 29 competitive solvers from the literature (discussed in Subsection 7.3)
on all 549 unconstrained problems from the CUTEst [26] collection of test problems for
optimization and the test problems by JAMIL & YANG [37] for global optimization
with up to 5000 variables, in case of variable dimension problems for all allowed
dimensions in this range. For problems in dimension n > 21, only the most robust
and fast solvers were compared. To avoid guessing the solution of toy problems
with a simple solution (such as all zero or all one), we shifted the arguments by

&= (-1)"12/(2+0) foralli=1,...,n.

As discussed earlier, nfmax denotes maximal number of function evaluations and
secmax denotes maximal time in seconds. nf and msec denote the number of function
evaluations and the time in seconds, respectively. We limited the budget available
for each solver by allowing at most

360 if2<n <20,

420 if 21 <n < 100
720 if 101 < n < 1000
1800 if 1001 < n < 5000

secmax =

seconds of run time and at most

1007, 500n, 1000n  if 2 < n < 20,
100n, 500m, 1000n  if 21 < n < 100
1007, 500n if 101 < n < 1000
1007, 5000 if 101 < n < 1000

nfmax :=

function evaluations for a problem with n variables. We ran all solvers by monitoring
in the function evaluation a routine the number of function values and the time used
until the bound of this number was met or an error occurred. We saved time and
number of function values at each improved function value and evaluated afterwards
when the target accuracy was reached. In order to get the above choices for nfmax
and secmax, we made preliminarily runs to ensure that the best solvers can solve
most of the test problems. Both nfmax and secmax are input parameters for all
solvers.

A problem with dimension n is considered solved by the solver so if the target
accuracy satisfies

1074 if 1 <n <100
= — el — < — = )
Adso (fso fopt)/(flnlt fopt) >~ { 10_3 if 101 S n S 50007

where finit is the function value of the starting point (common to all solvers), fopt
is the best point known to us, and f,, is the best point found by the solver so.

Note that this amounts to testing for finding the global minimizer to some rea-
sonable accuracy. We did not check which of the test problems were multimodal, so
that descent algorithms might end up in a local minimum only.

31



The best point known to us was obtained through numerous attempts for finding
the best local minimizer or global minimizer for all test problems by calling sev-
eral gradient-based solvers such as LMBFG-DDOGL, LMBFG-EIG-MS and
LMBFG-EIG-curve-inf presented by BURDAKOV et al. [13], ASACG presented
by HAGAR & ZHANG [29] and LMBOPT implemented by KIMIAEI et al. [39]. The
condition [g¥||cc < 107° was satisfied for all test problems except those listed in
Subsection 9.2.

For a more refined statistics, we use our test environment (KIMIAEI & NEUMAIER
[44]) for comparing optimization routines on the CUTEst test problem collection
by GOULD et al. [26]. A solver is said efficient when it has lowest relative cost of
function evaluations and said robust when it has highest number of solved problems.
Performance profiles DOLAN & MORE [22] and data profiles by MORE & WILD
[45] for the two cost measures nf (number of function evaluations needed to reach
the target) and msec (time used in seconds) are displayed to identify which solvers
are competitive (efficient and robust) for small up to high dimensions. In fact, the
efficiency and robustness of all solvers are identified by the performance/data profiles.

7.3 Codes compared

We compare VRBBO with the following solvers for unconstrained black box opti-
mization. For some of the solvers we had to choose options different from the default
to make them competitive; if nothing is said, the default option were used.

¢ SNOBFIT, obtained from

http://www.mat .univie.ac.at/~neum/software/snobfit/snobfit_v2.
l.tar.gz

is a combination of a branching strategy to enhance the chance of finding a global
minimum with a sequential quadratic programming method based on fitted quadratic
models to have good local properties by HUYER & NEUMAIER [35].

¢ NOMAD (version 3.9.1) , obtained from
https://www.gerad.ca/nomad

is a Mesh Adaptive Direct Search algorithm (MADS) [1,2,5,6,42]. NOMAD1 uses
the following option set

opts = nomadset(‘max_eval’ nfmax,‘max_iterations’,2*nfmax,
‘min_mesh_size’,*1e-008’ ‘initial_mesh_size’,*10”)
while NOMAD2 uses the following option set
opts = nomadset(‘max_eval’ nfmax,‘max_iterations’,2*nfmax,

‘min_mesh_size’,*1e-008’ ‘initial_mesh_size’,*10’,'‘model_search’,‘0’).

¢ UOBYQA, NEWUOA, and BOBYQA obtained from
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https://www.pdfo.net/docs.html
are model-based solvers by POWELL [54,55,56].

e STP-fs, STP-vs, and PSTP, obtained from the authors of BERGOU et al. [11],
are three versions of a stochastic direct search method with complexity guarantees.

e BFO, obtained from
https://github.com/m0lmarpor/BFO,

is a trainable stochastic derivative-free solver for mixed integer bound-constrained
optimization by PORCELLI & TOINT [52].

¢ CMAES, obtained from
http://cma.gforge.inria.fr/count-cmaes-m.php?Down=cmaes.m,

is the stochastic covariance matrix adaptation evolution strategy by AUGER &
HANSEN [8]. We used CMAES with the tuning parameters

oCMAES.MaxFunEvals = nfmax, oCMAES.DispFinal = 0, oCMAES.DispModulo = 0,
oCMAES.LogModulo = 0, oCMAES.SaveVariables = 0, oCMAES.MaxIter = nfmax,
oCMAES.Restarts = 7.

¢ GLOBAL, obtained from
http://www.mat.univie.ac.at/~neum/glopt/contrib/global.f90,

is a stochastic multistart clustering global optimization method by CSENDES et al.
[16]. We used GLOBAL with the tuning parameters

oGLOBAL.MAXFNALL = nfmax, oGLOBAL.MAXFN = nfmax/5, oGLOBAL.DISPLAY =‘off’
oGLOBAL.N100 = 300, oGLOBAL.METHOD =‘unirandi’, and oGLOBAL.NGO = 2.

e DE, obtained from
http://www.icsi.berkeley.edu/~storn/code.html,

is the stochastic differential evolution algorithm by STORN & PRICE [59].
e MCS, obtained from

https://www.mat .univie.ac.at/~neum/software/mcs/,

is the deterministic global optimization by multilevel coordinate search by HUYER
& NEUMAIER [34]. We used MCCS with the tuning parameters

iinit =1, nfMCS = nfmax, smax = 5n + 10, stop = 3n, local = 50, gamma = eps,

hess = ones(n,n), and prt = 0.
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e BCDFO, obtained from Anke Troeltzsch (personal communication), is a deter-
ministic model-based trust-region algorithm for derivative-free bound-constrained
minimization by GRATTON et al. [28].

e PSM, obtained from
http://ferrari.dmat.fct.unl.pt/personal/alcustodio,

is a deterministic pattern search method guided by simplex derivatives for use in
derivative-free optimization proposed by CusTODIO & VICENTE [19,18].

e FMINUNC, obtained from the Matlab Optimization Toolbox at
https://ch.mathworks.com/help/optim/ug/fminunc.html,

is a deterministic quasi-Newton or trust-region algorithm. We use FMINUNC with
the options set by optimoptions as follows:

opts = optimoptions(@fminunc),'Algorithm’,‘quasi-newton’, ‘Display’,
‘Iter’,'MaxIter’,Inf, ‘MaxFunEvals’, limits.nfmax, ‘TolX’, 0,'TolFun’, O,

‘Objectivelimit’,~1e-50);
It is the standard quasi Newton method while finding step sizes by Wolfe condition.
¢ FMINSEARCH, obtained from the Matlab Optimization Toolbox at
https://ch.mathworks.com/help/matlab/ref/fminsearch.html,

is the deterministic Nelder-Mead simplex algorithm by LAGARIAS et al. [40]. We use
fminseach with the options set by

opts = optimset(‘Display’,'Iter’, ‘MaxIter’, Inf,‘'MaxFunEvals’ limits.nfmax,
‘TolX’, 0, ‘TolFun’,0,'0bjectivelimit’,-1e-50);
o GCES is a globally convergence evolution strategy presented by DIOUANE et al.
[20,21]. The default parameters are used.
¢ PSWARM, obtained from
http://www.norg.uminho.pt/aivaz

is particle swarm pattern search algorithm for global optimization presented by VAz
& VICENTE [61].

e MDS, NELDER, and HOOKE, obtained from
https://ctk.math.ncsu.edu/matlab_darts.html

are multidirectional search, Nelder-Mead and Hooke-Jeeves algorithms, respectively,
presented by KELLEY [38]. The default parameters are used.

e MDSMAX, NMSMAX, and ADSMAX, obtained from

http://www.ma.man.ac.uk/~higham/mctoolbox/
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are multidirectional search, Nelder-Mead simplex and alternating directions method
for direct search optimization algorithms, respectively, presented by HiIGHAM [32].

e GLODS, obtained from
http://ferrari.dmat.fct.unl.pt/personal/alcustodio/

is Global and Local Optimization using Direct Search by CUsTODIO & MADEIRA
[17].

e ACRS, obtained from
http://www.iasi.cnr.it/~1liuzzi/DFL/index.php/list3

is a global optimization algorithm presented by BRACHETTI et al. [12].
¢ SDBOX, obtained from
http://www.iasi.cnr.it/~1liuzzi/DFL/index.php/list3

is a derivative-free algorithm for bound constrained optimization problems by Lucip1
& SCIANDRONE [43].

e DSPFD, available at
pages.discovery.wisc.edu/%$7Ecroyer/codes/dspfd_sources.zip,

is a direct search MATLAB code for derivative-free optimization by GRATTON et al.
[27]. The default parameters are used.

VRBBO and the other stochastic algorithms use random numbers, hence give
slightly different results when run repeatedly. Due to run time constraints, each
solver was run only once for each problem. However, we checked in preliminary tests
that the summarized results reported were quite similar when another run was done.

Some of the other solvers have additional capabilities that were not used in our tests;
e.g., allowing for bound constraints or integer constraints, or for noisy function value).
Hence our conclusions are silent about the performance of these solvers outside the
task of global unconstrained black box optimization with noiseless function values
(apart from rounding errors).

7.4 Results for small dimensions (n < 20)

We have a self-testing and tuning for our solver in terms of the tuning parameter
alg shown in Figure 2. As can be seen from the data and performance profiles, two
competitive versions of our solver are VRBBO and VRBBO-Q. In fact, VRBBO
is somewhat more robust than VRBBO-Q while VRBBO-Q is somewhat more
efficient than VRBBO. As a result, VRBBO is recommended.

Results on CUTEst. Subfigures of Figure 3 display three comparisons among all
solvers in low to high budgets (nfmax € {100n,500n,1000n}) on CUTEst. The name
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of solvers is given in the horizontal axis of these subfigures, sorted by decreasing the
number of solved problems in decreasing order. As can be seen from these subfigures,
in low to high budgets UOBYQA is more robust and efficient than the others. By
increasing the budget, the efficiency and robustness of VRBBO are increased, so
that it is the fourth rank robust solver with low function evaluations cost in compar-
ison with the other line search, direction search, Nelder—-Mead solvers, etc., except
in comparison with a few model based solvers.

To have more accurate comparisons among the six most robust or most efficient
solvers, the data and performance profiles are displayed in Figure 4 whose subfigures
confirm that UOBY QA is more robust and efficient than the others in low to up
budgets.

In summary, for small scale problems from the CUTEst collection, the model-based
solvers are recommended and VRBBO is recommended in high budget since it
is somewhat more robust than a few known model-based solvers (NEWUOA,
BCDFO, and BOBYQA) although these solvers are somewhat more efficient than
VRBBO.

Results on GlobalTest. Subfigures of Figure 3 display three comparisons among
all solvers in low to high budgets (nfmax € {100n,500n,1000n}) on GlobalTest.
The name of solvers is given in the horizontal axis of these subfigures, sorted by
decreasing the number of solved problems in decreasing order. As can be seen from
these subfigures:

e In low budget BOBYQA and VRBBO are the first and second rank robust
solvers while BOBYQA and NEWUOA are the first and second rank efficient
solvers.

e In medium and large budgets MCS and GLOUS are the first and second rank
robust. In fact, by increasing the budget the global solvers have better behavior. In
this case, VRBBO and VRBBO-Q are comparable with the global solvers.

To have more accurate comparisons among the four most robust or most efficient
solvers, the data and performance profiles are displayed in Figure 4 whose subfigures
confirm that MCS and GLOUS are more robust and efficient than the others in
medium and large budgets, respectively.

In summary, the global solvers are more robust than local solvers on the GlobalTest
collection while our findings show that VRBBO is comparable with the global
solvers in terms of the efficiency and the robustness and is recommended for finding
the global minimum.
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Results for small dimensions 2—-20 on GlobalTest

2: For performance profiles p denotes the fraction of problems solved within

a factor 7 of the best solver. For data profiles p denotes the fraction of problems
solved within the number of function evaluations and time in seconds used by the
best solver. Problems solved by no solver are ignored.
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7.5 Results for medium dimensions (21 < n < 100)

For medium to very large scale problems, we ignored the model-based solvers in
our comparison, because they needed %n(n + 3) sample points to construct fully
quadratic models. There were a few too slow solvers even if secmax was expanded
they could not solve most of the problems. Hence we compared only either fast,
efficient or robust solvers and plotted the data and performance profiles for most
robust solvers on CUTEst and GlobalTest for medium up to very large problems.

Results on CUTEst. We conclude from the performance profiles and the data profiles
shown in Figure 5 that VRBBO and VRBBO-Q are much more efficient and robust
than other solvers.

Results on GlobalTest. We conclude from the performance profiles and the data
profiles shown in Figure 5 that:

e In low budget ADSMAX and VRBBO are the first and second rank robust
solvers while VRBBO is much more efficient than ADSMAX.

e In medium budget ADSMAX, SDBOX, and VRBBO are, respectively, more
robust than the others.

e In large budget, VRBBO is much more efficient and robust than others.

In summary, although VRBBO is comparable with the global solvers for small
scale problems from GlobalTest it is much more efficient and robust than them for
medium scale problems from GlobalTest.
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7.6 Results for large dimensions (101 < n < 1000)

Results on CUTEst. As discussed in Section 7.5, VRBBO, FMINUNC, and SD-
BOX were three rank robust and efficient solvers on CUTEst. Figure 6 displays
the performance profiles and data profiles to compare these solvers, showing that
VRBBO is much more robust than the others and is recommended for large scale
problems from CUTEst.

Results on GlobalTest. As discussed in Section 7.5, VRBBO, VRBBO-Q, ADS-
MAX, and SDBOX were four rank robust and efficient solvers on GlobalTest. We
conclude from the performance profiles and data profiles shown in Figure 6 that
VRBBO is the first rank efficient and second rank robust solver for large scale
problems from GlobalTest.
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7.7 Results for very large dimensions (1001 < n < 5000)

Results on CUTEst. We conclude from the performance profiles and data profiles
shown in Figure 7 that VRBBO is much more efficient and robust than the others
for large scale problems from CUTEst.

Results on GlobalTest. We conclude from the performance profiles and data pro-
files shown in Figure 7 that VRBBO is the first rank efficient and second rank
robust solver for large scale problems from GlobalTest.
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8 Conclusion

We constructed an efficient randomized algorithm for unconstrained black box opti-
mization problems. For the basic version of VRBBO with only random directions,
the complexity bound for the nonconvex case, with probability arbitrarily close to 1,
matches that found by GRATTON et al. [27] for another algorithm. We also proved
complexity bounds for VRBBO for the convex and strongly convex cases, with
probability arbitrarily close to 1, essentially matching the bounds found by BERGOU
et al. [11], only valid in expectation.

An improved version of our algorithm has additional heuristic techniques that do not
affect the order of the complexity results and which turn VRBBO into an efficient
global solver although our theory guarantees only local minimizers. This version
even was found in most cases either a global minimizer or, where this could not be
checked, at least a point of similar quality with the best competitive global solvers.

Two competitive versions of our algorithm were VRBBO and VRBBO-Q in low
to high budgets on CUTEst and GlobalTest due to using all various directions and
additional heuristic techniques. As a consequence of our extensive numerical results,
UOBYQA is our recommendation for small scale problems in low to high budgets
on CUTESt and MCS and GLODS on GlobalTest while VRBBO is our recom-
mendation for medium up to very large scale problems in low to high budgets on
CUTESt and GlobalTest.

9 Tools for VRBBO
9.1 Estimation of ¢

The following theorem was recently proved by PINELIS [50].

Theorem 6 There is a universal constant co < 50 such that for any fixed nonzero
real vector q of any dimension n and any random vector p of the same dimension n
with independent components uniformly distributed in [—1, 1], we have

(" p)(q"q) < con(p”q)® (68)

with probability > 1/2.

Pinelis also proved the lower bound 0.73 < ¢q for the best Pinelis value of the constant
¢o. The true optimal value seems to be approximately 16/7. This is suggested by
numerical simulation. To estimate ¢, we executed three times the Matlab commands

% run PinConst

N=10000;
nlist=[2:10,20,50,100,200,500,1000,2000,5000,10000,20000,50000,100000] ;
c0=PinConst (N,nlist);
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using the algorithm PinConst below. All three outputs,

co = 2.2582,cp = 2.2444,¢co = 2.2714

are slightly smaller than 16/7 = 2.2857....

Algorithm 5 PinConst, estimating the Pinelis constant

: Purpose: Estimate cp satisfying (68) with probability > 1/2
: Input: N (the total number of gradient evaluations), D (vector of dimensions used)

QOutput: ¢g
Set M = |D|.
fori=1,---,M do
for k=1,---,N do
Generate random g¢* and pF with length D;.

llg* ll21lp* 1|2
Compute gain(k) = ————.
(g%)Tp"|
end for ,
deain(i
Compute medgain(i) = median(gain) and c(i) = w.
i

: end for
1 ¢o = max(c).
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9.2 A list of test problems with fop

Here we list the CUTEst test problems for which our best point did not satisfy the
condition

19" [lo < 107°.

problem dim fopt llgloo llgll2

BROWNBS 2 —2.80e+ 00 || 2.08¢ —05 || 2.08¢ — 05
DJTL 2 —8.95¢+03 || 1.44e —04 || 1.44e — 04
STRATEC 10 2.22¢ + 03 8.10e — 05 || 1.42e — 04
SCURLY10:10 10 —1.00e +03 || 5.34e — 04 [| 5.50e — 04
OSBORNEB 11 2.40e — 01 3.47¢ — 02 || 3.47¢ — 02
ERRINRSM:50 50 3.77e 4 01 1.89¢ — 05 || 1.89¢ — 05
ARGLINC:50 50 1.01e + 02 1.29¢ — 05 || 5.28¢ — 05
HYDC20LS 99 1.12¢ + 01 5.54e — 01 || 8.79¢ — 01
PENALTY3:100 100 9.87e + 03 2.0le — 03 || 4.68¢ — 03
SCOSINE:100 100 —9.30e+01 [ 1.95¢ —02 [| 3.58¢ — 02
SCURLY10:100 100 —1.00e + 04 || 5.74¢e — 02 || 1.56e — 01
NONMSQRT:100 100 1.81e + 01 3.42¢ — 05 || 6.51e — 05
PENALTY2:200 200 4.71e + 13 3.85¢ — 04 || 1.07¢ — 03
ARGLINB:200 200 9.96¢ + 01 3.27¢ — 04 || 2.68¢ — 03
SPMSRTLS:499 499 1.69¢ + 01 1.08¢ — 05 || 3.59¢ — 05
PENALTY2:500 500 1.14e + 39 1.97e +26 || 4.08¢ + 26
MSQRTBLS:529 529 1.13e — 02 1.44e — 05 || 1.03¢ — 04
NONMSQRT:529 520 6.13¢ + 01 2.17¢ — 05 || 1.76e — 04
SCOSINE 1000 || —9.21e+02 || 3.38¢ —03 || 9.32¢ — 03
SCURLY10 1000 || —1.00e 4+ 05 || 5.49¢ +01 || 3.37¢ +02
COSINE 1000 || —9.99¢ + 02 || 5.00e — 05 || 6.34e — 05
PENALTY2:1000 1000 || 1.13¢+83 2.53¢ + 77 || 3.41e+77
SINQUAD:1000 1000 || —2.94e+05 || 1.21e —05 || 1.52¢ — 05
SPMSRTLS:1000 1000 || 3.19¢ + 01 9.75¢ — 05 || 2.26e — 04
NONMSQRT:1024 || 1024 || 9.01e + 01 1.73¢ — 04 || 1.28¢ — 03
MSQRTALS:4900 4900 || 7.60e — 01 1.88¢ — 03 || 3.56e — 02
SPMSRTLS:4999 4999 || 2.05¢ + 02 2.36e — 03 || 9.27¢ — 03
INDEFM:5000 5000 || —5.02¢ +05 || 1.43e — 05 || 2.00e — 05
SBRYBND:5000 5000 || 2.58¢ — 10 3.73¢ — 04 || 3.50e — 03
SCOSINE:5000 5000 || —4.60e +03 || 6.32¢ — 03 || 2.72¢ — 02
NONCVXUN:5000 | 5000 || 1.16e+ 04 3.94e — 05 || 7.19¢ — 04
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