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Abstract

Social networks give free access to their services in ex-
change for the right to exploit their users’ data. Data shar-
ing is done in an initial context which is chosen by the
users. However, data are used by social networks and third
parties in different contexts which are often not transpar-
ent. In order to unveil such usages, we propose an ap-
proach which focuses on the effects of data sharing in im-
pactful real-life situations. Focus is put on visual content
because of its strong influence in shaping online user pro-
files. The approach relies on three components: (1) a set of
visual objects with associated situation impact ratings ob-
tained by crowdsourcing, (2) a corresponding set of object
detectors for mining users’ photos and (3) a ground truth
dataset made of 500 visual user profiles which are manu-
ally rated per situation. These components are combined
in LERVUP, a method which learns to rate visual user
profiles in each situation. LERVUP exploits a new im-
age descriptor which aggregates object ratings and object
detections at user level and an attention mechanism which
boosts highly-rated objects to prevent them from being over-
whelmed by low-rated ones. Performance is evaluated per
situation by measuring the correlation between the auto-
matic ranking of profile ratings and a manual ground truth.
Results indicate that LERV U P is effective since a strong
correlation of the two rankings is obtained. A practical im-
plementation of the approach in a mobile app which raises
user awareness about shared data usage is also discussed.

1. Introduction

The ubiquitous use of online social networks (OSNs)
shows that their services are appealing to users. Most OSNs
implement a business model in which access is free in ex-
change for user data monetization [11]. Intrusiveness is
likely to grow with the wide usage of Al techniques to in-
fer actionable information from users’ data. Automatic in-
ferences happen in the back-end of OSNs or of associated
third parties and are not transparent for users. Data can
be exploited in contexts unforeseen when sharing them ini-
tially. The main objective of our work is to improve user

awareness about data processing through feedback contex-
tualization. To do this, we introduce a plausible decision-
making system which combines machine learning and do-
main knowledge.

User awareness is increased by linking the sharing pro-
cess to impactful situations such as searching for a job, an
accommodation, or a bank credit. Photos are in focus be-
cause they constitute a large part of shared data and con-
tribute strongly to shaping user profiles [2]. The main tech-
nical contribution is a method that rates visual user profiles
and individual photos in a given situation by exploiting situ-
ation models, visual detectors and a dedicated photographic
profiles dataset. The proposed method, named LERVU P
from LEarning to Rate Visual User Profiles, learns a rank-
ing of user profiles which attemps to reproduce human pro-
files ranking. LERV U P exploits a new descriptor which
combines object impact ratings and object detections in a
compact form. The contributions of objects with high rat-
ings are boosted in order to mimic the way humans assess
photographic content. We compare manual and automatic
rankings of user profile ratings and obtain a positive corre-
lation between them. This result holds promise to help users
better understand the effects of online data sharing and, ul-
timately, to better control their data.

2. Related work

The main promise of OSNs is to connect people and al-
low them to exchange information within affinity-based net-
works. Participation in OSNs can have positive or negative
effects, depending on the way the shared information is in-
terpreted in different contexts [4]. This interpretation pro-
cess is influenced by human and/or technical biases. Human
biases fall in two main categories that are often studied in
relation to demographic factors such as gender or ethnic-
ity [50]. Implicit biases [18] might influence one’s deci-
sions without that person being conscious of them. Explicit
biases [9] are assumed and used intentionally. Technical
imperfections lead to the occurrence of algorithmic biases.
The inherently partial mapping of complex real-life pro-
cesses into computer systems [16] is a first source of bias.
For instance, the introduction of deep architectures brought



important progress in classification [8, 26], but accuracy is
still affected by internal representation limitations [32]. A
second bias is due to the variable accuracy of predictions
due to the inherent difficulty of visual objects [7] and/or
the availability of skewed [47] and imbalanced data [21].
While affected by biases, approaches like ours are needed
to make Al-powered decision-making more transparent to
users. Notably, impact and profile ratings are potentially
biased toward the opinions of the persons involved in the
experiments. Object detection is biased because the detec-
tion dataset is incomplete and detectors are imperfect.

Below, we illustrate contexts in which users’ lives are
influenced by their online activity. The authors of [1] and
[31] create fictitious Facebook profiles in which they vary
only one type of personal data to assess its influence during
a job search. No significant discrimination due to family
structure and sexual orientation is found in [1], while a neg-
ative effect is elicited for radical religious stance. The user’s
supposed origin has a significant effect on the number of
replies a person gets to a job application [31]. The chances
to obtain short-term accommodation online are influenced
by the assumed racial origin [14]. Rather accurate credit-
worthiness is automatically obtained in [12] based on one’s
interests and the analysis of the list of friends. These stud-
ies focus on sensitive signals and contributed to a degree
of public awareness about their effects. Our objective is to
include weaker signals for which there is little or no aware-
ness. Such signals seem innocuous in the initial sharing
context, but their interpretation might change in other situ-
ations, and users should be informed about such changes.

The prediction of user traits from shared data received
much attention in the last decade. The threats induced by
geolocation mining were studied in [15]. In [24], Facebook
likes were exploited to predict sexual orientation, political
opinions, race and personality traits. A hierarchical organi-
zation of privacy aspects and methods that predict privacy
traits were proposed in [34]. The authors of [13] imple-
mented an instructional awareness system which provides
feedback about content whose publishing might be harmful
to the users. These works explore interesting aspects of pri-
vacy but do not provide a systematic way to map predictions
to real-life situations and do not focus on visual data.

The understanding of the effects of visual content shar-
ing was pioneered by [2], with the introduction of disclosure
dimensions such as security, identity and convenience. The
study concludes that user feedback should provide warn-
ings to prevent mistakes, inform about the effects of data
aggregation and estimate the appropriate audience. The au-
thors of [54] used hand-crafted visual features to predict
the privacy status of an image with encouraging results but
far from practical usability. Transfer learning from gener-
alist deep models as a way to improve privacy prediction
was proposed in [43]. An important step forward was made

in [33], with the creation of a taxonomy of privacy-related
attributes and of a dataset dedicated to privacy prediction.
Interestingly, the resulting model provided more consistent
predictions compared to users’ judgments, indicating that
users might fail to follow their own privacy-related prefer-
ences. A multimodal prediction model which mixes visual
content and tags is introduced in [48]. Performance is im-
proved by exploiting predictions from neighboring photos
from the user’s stream. These approaches are relevant in-
sofar they focus on improving users’ control over shared
data by predicting the privacy for individual images. Our
approach is different because feedback is proposed both at
user profile and image levels. Equally important, it is linked
to situations to better model real usage of shared data.

Image analysis is central in our study because it extracts
actionable information from shared photos. A choice be-
tween deep learning-based image classification and detec-
tion is needed. Classification [20, 25] provides global labels
for each image, while detection [28, 37] delineates image
regions which contain specific objects. Detection is better
suited in our work since useful information is most often
conveyed by localizable objects, which might be missed in
classification. Object detection witnessed the proposal of
increasingly accurate methods [19, 37, 38, 39]. However,
the most accurate models are often too complex for edge
computing. This is important insofar one objective here is
to inform users about the potential effects of sharing be-
fore it is done on their smartphones. More compact models
which search for a trade-off between performance and com-
plexity were proposed in [17, 36, 41]. Consequently, we
compare models which are usable on smartphones and are
either generic [39] or specifically designed for edge com-
puting [41]. Note that the use of other detection models
could further boost reported performance.

3. Proposed method
3.1. Preliminary experiment

We hypothesize that linking feedback about the effects of
personal data sharing to real-life situations improves its ef-
ficiency compared to existing approaches. We designed an
experiment to test this hypothesis using four real-life situa-
tions: bank loan, accommodation search, IT job search and
waiter job search. A set of 20 photos that depict objects with
potentially negative effects is selected. Objects with differ-
ent negative ratings for each situation as obtained in Subsec-
tion 3.3 are kept. They include: casino, knife, cannabis leaf,
rifle, etc. Participants assume that they are about to share a
photo and that an Al-driven assistant advises against shar-
ing. They see the following messages which implement:

* existing feedback [33, 43]: "The app predicts that the
image should not be shared because it automatically
detected object X in the image.”



* proposed feedback: “You are in situation Y. The app
predicts that the image should not be shared because it
automatically detected object X in the image. Object X
is negatively perceived in situation Y.”

The rest of the interface is identical. Each participant sees
only one type of message to avoid interferences between
feedback types. Images are presented randomly to avoid
ordering effects. Participants are asked to answer the fol-
lowing question: “Would you follow the advice provided
by the app and not share the image?”. They can respond
”No”, "Maybe” or ”Yes”. We encode these three responses
as 0, 1 and 2 for results analysis. There were 50 partici-
pants for each of classical and proposed feedback. The av-
erage scores for the existing and proposed feedback are 0.86
and 1.13 respectively, with the corresponding standard de-
viations being 0.87 and 0.91. The large standard deviation
values are normal since the negativeness of depicted objects
is variable. A t-test with independent samples is applied to
the sets of averaged photo scores. It shows that the differ-
ence is significant with p < 0.001. We can conclude to a
strongly increased efficiency of the proposed feedback com-
pared to the classical one. To instantiate feedback related to
real-life situations, we introduce a method which learns to
rate the effect of shared data both for individual images and
entire user profiles.

3.2. Notations

The following notations are used below: an user U*
whose profile is rated; the set of v photos of U defined as
Pt = {P}, P}, ..., P!} and analyzed automatically to rate
the profile; a set of w visual objects D = {O*, 0?,...,0%};
an object detector d(O},, P) which detects the k*" occur-
rence of visual object O' in the j*" photo; a situation model
S = {r(0Y),r(0?),...,7(O™)} defined by a set of visual
objects rated via crowdsourcing r; a set of visual profiles
for z users C = {U',U?,...,U®} with manual profile rat-
ings m(U") collected by crowdsourcing; an automatic pro-
file rating ur(U?) of U" in situation S.

3.3. Crowdsourcing Situation Ratings

The interpretation of a object might vary between con-
texts, and so would the effects of sharing its images. Situa-
tions are modeled by crowdsourcing visual objects ratings.
Impactful situations were selected: accommodation search
(ACC below), bank credit demand (BANK), job search as
IT engineer (IT) and job search as a waitress/waiter (WAIT).
ACC and BANK are applicable to a large part of the popula-
tion. IT and WAIT are relevant for population segments, but
the respective job searches require different profiles. De-
tectable objects from the Openlmages [27], ImageNet [40]
and COCO [29] datasets were rated to boost detector cover-
age. A limitation here is that task-relevant objects are miss-
ing and D could be enriched.

A rating interface is created which includes for each sit-
uation: the object name, illustrative thumbnails and a 7-
points Likert scale with ratings between -3 (strongly neg-
ative influence) to +3 (strongly positive influence). There
were 56 participants in total, with 14 rating sets per sit-
vation. The final rating r is obtained by averaging their
contributions. The resulting detection dataset D includes
269 objects with  # 0 for at least one situation. Inter-
rater agreement, which is important for tasks prone to bias
such as the one proposed here, is computed using the av-
erage deviation index (AD) [6]. The obtained AD varies
between 0.48 for I'T and 0.65 for W AIT. These values are
well below AD < 1.2, the maximum acceptable value for
a 7-points Likert scale defined in [5]. Beyond rater agree-
ment, the qualification of annotators is important. We define
expertise as having working experience in BANK, IT and
WAIT and having a landlord experience for ACC. Depend-
ing on the situation, the number of annotators with exper-
tise in each situation was: two for BANK, six for IT, four
for WAIT and four for ACC. Their ratings were generally
well aligned with those provided by the other annotators.
For instance, the AD agreement between average scores of
experts and of other participants is only 0.17 for IT. This
finding indicates that the obtained ratings are representative.

The mean object ratings are -0.13 for BANK, 0.03 for
ACC, 0.09 for IT and 0.27 for WAIT (standard deviations
are 0.68, 0.7, 0.58 and 0.6 respectively). This illustrates the
tendency of participants to be stricter when deciding about a
bank loan than elsewhere. The is intuitive because granting
a loan has tangible monetary consequences, which are eas-
ily internalized by participants. Inversely, WAIT, a situation
with less serious implications, has the highest rating.

A clustering of visual objects based on their rating sim-
ilarities across situations is shown in Fig. 1. It includes 40
patterns (cluster centroids) discovered by using the lowest
silhouette criterion in K-means. These patterns confirm that
object interpretation varies across situations. Averaged neg-
ative ratings are stronger since they reach -3, while averaged
positive ratings have a maximum value of 1.15. Consistent
with mean ratings, BANK and ACC have a larger number of
negatively rated objects compared to IT and WAIT. While
the negative range is stronger, a majority of objects have
low positive scores. Patterns P27, P30 and P32 include 31,
27 and 21 objects, respectively. Some cluster ratings vary
strongly between situations. P23, P35 and P39 are positive
for WAIT but neutral or even negative elsewhere. These
patterns include objects related to junk food and alcohol.
P1, P2 and P3, which include objects related to weapons,
have only negative ratings. The relatively low number of
strong ratings indicates that the dataset should be enriched
with highly rated objects in order to allow a finer-grained
computation of visual profile ratings. More details about
objects crowdsourcing are given in the supp. material.
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P10
P11
P13
P14
P15
P16
P17
P19(5
P20(4

P23(5
P25(6
P26(8
P29(6
P31(7
P34(5
P35(8
P36(5
P37(3
P40(3

the corresponding number of objects are provided under each column. Rating colors go from red (strongly negative) to green (strongly
positive) with stronger intensity indicating a higher absolute value of rating. The object details of the patterns are shown in Table 4 of the

supplementary material.

3.4. Focal rating

Figure 1 indicates that a majority of objects have low rat-
ings and they might overwhelm the less numerous but more
significant highly-rated objects. Boosting the influence of
latter is important and this is done using Eq. 1:

L r(OY)

r(OY = *
o) = T oniy

(D

where: K and ~y control the strength of the focal rating.

This function is inspired by attention mechanisms [49]
which were used to improve the performance of deep learn-
ing applications, such as object detection [28]. Note that
K > |r(0")| is needed to preserve the sign of fr after scal-
ing with . fr will have little influence on objects that have
low initial 7(O'). The higher the absolute value of 7(O') s,
the more its effect will be boosted by Eq. 1. The effect of
focal rating is illustrated in the supp. material.

3.5. Crowdsourcing Visual User Profile Ratings

We collect manual ratings m(U?) for users U' in situa-
tion S via crowdsourcing. Like object rating, visual profiles
are evaluated using a 7-point Likert scale that goes from
-3 (strongly unappealing) to +3 (strongly appealing). Rat-
ings are collected from 9 participants for 500 users from the
YFCC dataset [46] with 100 images per profile. YFCC was
sampled because it includes images that were shared pub-
licly under Creative Commons licenses which allow reuse.
The images of each profile are shown on a single page,
along with the possible situation rating. Participants are
asked to look at all the photos and provide a global rating
for each user in each situation. As illustrated in the sup-
plementary material, the evaluated situations are presented
in the interface. Profiles were presented randomly to par-
ticipants to avoid ordering bias. Similar to Subsection 3.3,
inter-rater agreement is analyzed using the AD index [6].
AD values are 0.86 for ACC, 0.77 for BANK, 0.74 for IT
and 0.83 for WAIT. These values are within the acceptabil-
ity bounds defined in [5] (AD < 1.2). There were at least
two expert annotators for each situation whose ratings were
well aligned with those of other participants.

A clustering based on the similarity of profile ratings
across situations which minimizes silhouette is presented in
Fig. 2. There are 57 patterns discovered for the 500 profiles

in the dataset. The ratings of the same users vary signifi-
cantly from a situation to another. Our hypothesis that pro-
file perception is context-dependent is confirmed. Unlike
the object rating patterns from Fig. 1, positive ratings are in
the majority here and positive ratings are stronger. The most
populous patterns are positive, with 24 users in P33, 21 in
P41 and 19 in P40. Most negative patterns include a limited
number of profiles. Patterns such as P26, P27, P28 are rated
positively in some situations and negatively in others. This
finding supports the creation of per-situation rating predic-
tors. Due to space limitations, details about profile rating
crowdsourcing are given in the supp. material.

3.6. Baseline Rating of Visual User Profile

We attempt to obtain a reliable estimation of profile rat-
ings in the modeled situations by using: (1) object rat-
ings from Subsection 3.3, (2) object detections proposed
by models learned with dataset D and (3) the set C of vi-
sual profiles rated in Subsection 3.5. Given a photo P?, de-
tectors search for objects from D and scores are predicted
for all these objects by default. In practice, a threshold is
needed to decide if an object is actually present. We define:

d(O}, P)),
0,

if d(O}, P!) > n(0")
otherwise

dy (O, P}) = { )
where: d(O};, P}) is the detector for object O' which evalu-
ates the confidence of the k" raw prediction of O' in photo
P n(O!) is a detection threshold for O'.

The threshold value 1(O') in Eq. 2 can be set to a sin-
gle value for all objects. This value can be optimized by
maximizing the correlation between automatic and manual
profile ratings over a validation set V. However, it does
not account for performance variations of object detectors.
Instead, we implement a filtering-based attribute selection
mechanism [35] which: (1) determines optimal thresholds
for individual detectors and (2) selects only the individual
detectors which are most relevant in context. We compute:

(r™(0"), 7™ (0")) PR(&}(0"), M},(0Y)
3)

where: 7™ (O') is the optimal correlation between manual
and automatic rankings of profiles obtained using a single

max
vne[0.01,1]
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name and the corresponding number of objects are provided under each column. Rating colors go from red (strongly negative) to green
(strongly positive) with stronger intensity indicating a higher absolute value of rating.

O'; ™ (O) is the detection threshold associated to 7 (O')
which ranges from 0.01 to 1 and is tested with a step of
0.01; PR is the Pearson correlation coefficient; S{Z (Ol) and
MZ(Ol) are the sets of automatic and manual rankings of
profile ratings from ) obtained for each 7 tested.

Eq. 3 optimizes the correlation between automatic and
manual user ratings when a single detector is activated. If
several values of ™ (O') maximize 7™ (O"), the smallest of
them is used to keep more occurrences of O'. The outputs of
Eq. 3 need to be aggregated in order to decide which subset
of D is best in S. The optimal 7 (D) is selected with:

T"(D) = argmax PR(EL(DT), M,(D7)) (4
vre[-1,1]

where: 7 is a correlation value between -1 and 1, with a step

of 0.01; D7 is a subset of D which activates only a subset of

detectors; and the PR, £™ and M are the same as in Eq. 3.

Eq. 4 provides the correlation threshold which selects the
best subset of object detectors D™ for visual profiles in V.
Individual detectors from D are activated with:

(oL, piy = { DOk By, i 77(0Y) 2 7 (D)
’ 0, otherwise

®)

High values of 7™ (D) create a sparse D™. Only
highly relevant detectors which provide strong correlations
7™ (O) for situation S are activated. The disadvantage of
using a high 7 (D) is that the coverage D™ is low, and only
a subset of profiles can be reliably characterized. Inversely,
low values of 7 (D) lead to a dense D™ and ensure good
profile coverage at the expense of the relevance of individ-
ual detectors. Eq. 5 finds a balance between the relevance
of individual detectors and profile coverage.

The baseline rating of user profiles ur(U?) in S com-
bines object ratings r for detections from D™ obtained with
Eq. 5. It is defined as:

Z;:l S (0 3k, dm (0}, P})

ur(U?) = P

(6)

where: n; is the total number of detections of O' filtered
using Eq. 5, |P?| - the cardinality of the subset of U? photos
with at least one visual detector activated.

The denominator |P?| produces an averaged profile rat-
ing and facilitates the comparison of visual profiles that in-
clude a variable number of images. Assuming that the nu-
merator gives the same result for two users, the rating will

be lower for the one which has more images with detections
activated. In this way, profiles that include fewer but more
salient detected objects are prioritized.

3.7. Learning to Rate Visual User Profiles

The baseline method from Subsection 3.6 performs a
simple aggregation of available components but does not
exploit them fully. We hypothesize that a supervised learn-
ing approach is better suited for profile rating. LERVUP
builds on the baseline and includes an image-level descrip-
tor, a module which makes descriptors more compact at user
level, and a model which performs the final prediction.

3.7.1 Image-level descriptor

Individual photos are a core factor in the manual rating of
user profiles. It is thus interesting to aggregate object de-
tections at the image level. Such a descriptor is equally in-
teresting insofar it provides understandable feedback about
individual photo contributions to the profile rating. The de-
scriptor includes three attributes defined as follows:

piy — Xt r(O)Ir(0)>0] 355 o[dn (04, PY)>0]
folF0) = i1 XkLolldn (O}, P))>0]

i\ _ ity r(OD[r(0)<0] i [dn (04, P7)>0]

fn(P'j): =1 S klo A\ kot
’ 121 Xk=oldn (O, P)>0]
Jy = it Yile dn (04, PY)
JelF) = i1 il ldn (0, P7)>0]
™)

where: dAn(Off, P/) is the filtered confidence of the k'"
detection with the optimal n estimated in Eq. 3 for each
O'; ny is total number of O' detections; r(O!) is the O!
rating; fp,f, and f. are the positiveness, negativeness and
confidence attributes of the image; [] is the Iverson bracket,
valued 1 if the inner condition is true and zero otherwise.

fp and f,, are designed to favor images that include ob-
jects with strong impact ratings. The higher the absolute
values of 7(O') are on average, the more salient f, and f,,
will be. f. gives an average of the valid detection scores
from the image and favors images that include high confi-
dence object detections over the others. Note that Eq. 7 is
applicable if at least a valid detection exists in the image.
Otherwise, the image is not considered in LERV U P.



3.7.2 User-level descriptor

Image-level descriptors is aggregated at user level to mimic
the way humans rate visual user profiles. This is challeng-
ing because visual objects with different ratings appear in
isolation or jointly in one or several profile images. The
user-level descriptor aggregation method is described in Al-
gorithm 1. First, we construct 6;, a set of image descriptors
for each user U*. The sets §; are aggregated into F, which is
exploited to train a clustering model M. M is subsequently
used to infer clusters which group together patterns in the
underlying structure of each user profile. K-means, with
K = 4 clusters, is chosen for its effectiveness and simplic-
ity. Other K values were tried but did not improve the ob-
tained results. The mean and variance of image descriptors
from the clusters are concatenated in a final feature vector
fi. It constitutes a better representation of the user profile
compared to raw use of object ratings and object detections.
fi captures in a compact form patterns from an initial high-
dimensional space defined by an array of object detectors
and thus avoids the curse of dimensionality [22]. The pro-
posed descriptor is an alternative to classical dimensional-
ity reduction techniques [42, 51]. A comparison to the two
forms of compression of raw representations is proposed.

Algorithm 1: User Profile Rating Descriptor

F«+—190
for U’ in C do
for P} in P* do
o f s fe ImageDescriptor(Pj)
L 0 0, U{fy i, £}
| F <+ FU®b;

M < TrainClusteringModel (F)
for U’ in C do
fie—0
clusters < M(6;)
for cluster in clusters do
mv < MeanVariance(cluster)
L f* < Concatenate (f!,mv)

3.7.3 LERVUP training

Visual profile rating is modeled as a regression problem that
exploits the user-level descriptor described in Algorithm 1.
LERVUP training is deployed as a pipeline process. First,
individual object detections are validated within each im-
age. Second, the image-level descriptor is constructed per
image. Third, clustering is applied to group together simi-
lar image descriptors and discover relevant patterns for the
entire training set. Fourth, the discovered patterns are con-
catenated to build the user descriptor. Finally, a random for-
est regression model is used to learn the rating of visual user
profiles. Random forest was chosen because it is robust to

data that contain non-linear relationships between features
and target variables [23, 44, 53]. Note that the training is
scalable since its optimization takes less than an hour per
situation on a standard Intel Core 7 processor.

4. Evaluation

The main objective of this first evaluation is to assess the
feasibility of the task. Note that the user profiles dataset
is not large enough to split it into train, validation and test
subsets which have sufficient size. We thus split the dataset
in training and validation sets £, and V which include 400
and 100 profiles, respectively. The optimal configuration of
each method on V is obtained using grid search and reported
below. Details about optimized parameters and their ranges
are given in the supp. material. Results are also provided for
the ablation of 50% of user profiles or 50% visual objects.

4.1. Object Detection Dataset and Models

The coverage ensured by the detection dataset is impor-
tant to enable processing of different types of visual content.
As we mentioned, we merge three existing datasets: Open-
Images [27], ImageNet [40] and COCO [29]. Whenever an
object is present in more than one dataset, a balanced sam-
pling is performed. The resulting dataset includes 269 ob-
jects and 137976 images. We limit imbalance by retaining
at most 1000 images per object. The average and standard
deviation of the distribution are 513 and 305, respectively.

Detectors are trained with mobile and generic models.
The mobile model (MOBI) is a MobileNetV2 [41] with
depthwise convolutions, which offer a good precision/speed
tradeoff. The detection head is a Single Shot MultiBox
Detector [30], a fast single-stage method that is adapted
for edge computation. The generic model (RCNN) uses
Inception-ResNet-v2 [45] with atrous convolutions and a
Faster RCNN module [39] for detection. While not de-
signed specifically for mobile devices, tests showed that it
is usable on recent Android smartphones. Details about de-
tector training are provided in the supp. material.

4.2. Methods

We test the following variants of the proposed methods:

* BASE and BASE, - ranking based on Eq. 6 with a
unique detection threshold and with ™ (O') optimized
per object via Eq. 3 and object selection from Eq. 4.

* BASE]" - version of BASE, with fr(O') (Eq. 1).

* REGrqyw and REG)p., - supervised methods using
random forest but with the raw features used in BASE
and 16-dimensional PCA-compressed feature which
offer the best compression performance.

 LERVUP and LERVUP?" - supervised learning
method described in Subsection 3.7 with r(O!) and
fr(O") (Eq. 1) used for object ratings, respectively.



RCNN MOBI
ACC | BANK | IT | WAIT || ACC | BANK | IT | WAIT

BASE 040 | 0.28 | 0.36 | 0.65 0.38 027 | 041 | 0.58
BASE, 0.45 028 | 036 | 0.65 0.42 026 | 041 | 058
BASE,/," 0.45 033 | 036 | 0.65 0.42 030 | 041 | 0.58
REG,qw 0.31 023 ] 035 | 059 0.36 0.19 ]043 | 047
REGpcq 0.45 030 | 043 | 0.60 0.32 0.09 | 0.24 | 0.63

LERVUP 048 | 048 | 046 | 0.66 | 044 | 027 | 047 | 0.68
LERVUPT™ | 055 | 050 | 0.50 | 0.68 || 0.49 | 0.42 | 0.51 | 0.68
LERVUP/”_ ., [ 047 | 049 [047] 066 [ 035 | 028 [048| 0.67
LERVUP) ., | 043 | 042 [ 047 066 || 047 | 035 [048 | 0.64
Table 1. Pearson correlation between automatic and manual rank-

ings of the ratings of visual user profiles. Best results in bold.

« LERVUP/ ., and LERVUP)’ .. - variants of
LERVU P'" learned with half of the profiles and half

of the objects from D, respectively.

4.3. Results

The performance of the different methods tested is pre-
sented in Table 1. Correlations are analyzed using Cohen’s
interpretation of the Pearson correlation coefficient [10].
Correlation is considered weak for values between 0.1 and
0.3, moderate between 0.3 and 0.5 and strong above 0.5. All
evaluated methods provide a positive correlation between
manual and automatic rankings of the profile ratings, with
a wide majority of reported correlations in the moderate or
strong ranges. This is a first positive result since the eval-
uated task is a complex one. Performance variations ob-
served along different axes are discussed below.

The comparison of the two object detectors is globally
favorable to RCNN. This result is intuitive insofar RCNN
is built with a higher capacity deep network architecture.
WALIT is the easiest situation, with up to 0.68 correlation
obtained for both detectors. This good behavior for WAIT
is explained by the fact that MOBI is known to provide good
detections for large objects [41]. However, MOBI also has
the worst results by a large margin compared to RCNN. The
maximum correlation value obtained with MOBI for BANK
is 0.42 while the corresponding value for RCNN is 0.5.
These results point out that further performance improve-
ment should be achievable with better object detectors.

The best global results are obtained with LERV U P/T.
Six out of eight of the correlations provided by this method
are in the strong range defined by [10], with the other in
the moderate range. LERV U P?" clearly outperforms the
baselines. This finding validates the utility of the learning-
based approach, which models automatic profile ranking
as a regression problem. LERVUP/7 is also better than
LERVU P, with up 15 points gained over it (BANK with
MOBI detector). The boosting of highly-rated objects via
the attention mechanism from Eq. 1 is thus validated.

The four modeled situations have variable performance.
WAIT is the easiest situation (correlation up to 0.68) be-
cause the detection dataset contains a large number of food
and beverage-related objects, which are often easy to detect.
WAIT approximates an upper-bound performance one can

expect with the available detection dataset. BANK is the
most challenging situation tested, particularly for MOBI,
which offers a maximum correlation of 0.42. More object
detectors are required to improve results for this situation.

Among the baselines, BASE]" is better than BASE,
and BASE. The introduction of focal rating has a smaller
effect on the baseline compared to LERV U P. Object se-
lection (Eq. 4) and the use of individual detection thresholds
(Eq. 3) have a larger impact than focal rating.

Results for REG.q, and REGy,., are particularly inter-
esting since these methods exploit a random forest training
like LERV U P. The difference is that raw user represen-
tations, complete or compressed, are fed into REG, while
LERVU P exploits the proposed compact descriptor. The
difference of performance in favor of LERV U P validates
the relevance of the proposed descriptor.

To test the influence of the amount of training data, we
ablate half of the user profiles in LERVU PIJ;T 509 and half

of the visual objects in LERVU Pgl 509> respectively. The
comparison of results obtained with the full training set
(LERVUPI™) to the ablated versions confirms that addi-
tional data is clearly beneficial. Interestingly, removing ob-
jects has a stronger effect on RCNN results, while remov-
ing users has more impact on MOBI results. An explana-
tion for this finding is that RCNN detection is more precise
than MOBI and thus benefits more from the availability of
a larger dataset. The ablation results have practical signifi-
cance since the more data are clearly useful. Note that the
effort needed to add the profiles and objects is significant
and datasets enrichment is left for future work.

4.3.1 LERVUP implementation

We describe an implementation of the proposed approach in
an Android app which raises users’ awareness !. It provides
feedback about the effect of image sharing in the modeled
situations. The app is designed to enforce user privacy and
the entire processing is done on the user’s device. It is pos-
sible to create a profile made of local images, of images
already shared on social media, or a combination of them.
We note that user assistance is most effective for local im-
ages than for those which were already shared. A traffic
light coding of the feedback (from red - negative to green -
positive) [3] is used in the app to facilitate its understand-
ing. Fig. 3 summarizes profile-level feedback (a) and photo-
level feedback (b). Individual profile ratings are difficult to
interpret in isolation. A reference community is created by
sampling 5000 visual YFCC profiles which are processed
with LERVUP. The target profile rating is provided by
comparison to the reference community. The same page in-
cludes thumbnails for images ranked by their impact in the
situation. The user can select any photo for a detailed view

'https://ydsyo.app/
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Figure 3. Illustration of LE RV U P-based feedback integrated in
a mobile app at profile level (a) and photo level (b).

of its effects (Fig. 3 (b)). Feedback is based on the photo
impact rating given by Eq. 7 and is color-coded for each
situation. The detected objects are highlighted using bound-
ing boxes. The same screen contains two buttons that in-
stantiate a control mechanism for local photos. "DELETE”
removes the photo from the device. "MASK” changes its
visibility to avoid uploads to social networks. Such control
is desirable also for photos which were already shared but
is not permitted by existing APIs.

5. Discussion and Conclusion

We presented a new approach that unveils potential real-
life effects of photo sharing. It is implemented for four sit-
uations but is extensible in terms of situations, types of data
included, object detection models and profile rating meth-
ods. Below, we discuss the implications of the work, point
out its merits, limitations and perspectives of improvement.

The main objective is to help users understand how their
shared data could reflect on their real lives. While promis-
ing, the approach is affected by a combination of human
and technical biases. However, such biases are inherent to
any Al-driven computer system and will also appear in real
decision-making processes, which are mimicked here. For
instance, crowdsourced object and profile ratings will re-
flect an average bias of the participants who provided inputs
in the experiments. In a real context, where shared data is
analyzed by a single person to reach a decision, the bias will
be personal. Averaging ratings is a good way to reduce bias
since any extreme individual opinions will be smoothed. In
the future, it would be interesting to collect data from a
larger pool of participants and cluster them in order to see if
there are large rating differences between sub-communities.
It is also important to note that we encode both positive and
negative human biases since participants are asked to rate
objects and profiles on a symmetric scale. This approach
is more balanced than that of studies whose objective is to
elicit negative biases [13, 15]. Ideally, decision-making pro-
cesses should be bias-free but it is realistic to assume that
biases cannot be eliminated. It is thus important to act to-
ward at least removing the most damaging of them, which

are related to sensitive demographics such as ethnicity, reli-
gion or gender. This topic will be part of our future work.

Technical biases are due to imperfections in the detec-
tion model, the available data and the LE RV U P model.
Detection model imperfection can be reduced via the use of
more powerful deep detection architectures [28, 36]. How-
ever, since the rating is most useful if done on the users’
devices, models should remain tractable at the edge. A
second technical bias is due to detector availability. Three
existing datasets are merged to improve detector coverage.
They seem sufficient for WAIT, which is well mapped in
the detection dataset, but probably not for the other situ-
ations. We will extend the dataset with priority given to
new objects which are highly rated in at least one situation.
A third technical bias is due to data imbalance. We lim-
ited the maximum number of images per object to reduce
imbalance while also preserving accuracy. The imbalance
will be further reduced with new annotations for both ex-
isting and new detectors. A fourth bias is related to the fo-
cus on images. The approach is extensible to other relevant
data types, such as likes and texts studied in [24] and [34].
We intend to exploit them in order to obtain more relevant
and broader profile ratings. Finally, LERV U P provides
performance gains compared to a series of baselines. The
proposed method constitutes a first attempt to tackle profile
rating, and important improvements over it are possible.

LERVUP is implemented to mimic real decision-
making processes and make them more transparent. A key
challenge regarding transparency is related to the explain-
ability of the decision-making process. The experiment pre-
sented in Section 3 indicates that the high-level explanation
of situation-based feedback is more efficient than existing
feedback. Future work will focus on: (1) adding sufficient
profiles to the dataset in order to obtain train, validation and
test splits which are large enough and (2) improving the ex-
plainability of learned models, especially that of deep object
detectors, which is the most challenging [52]. The rest of
the processing is easier to explain from a technical perspec-
tive but still requires a fair amount of Al-related knowledge.

The code is available 2. An anonymized and modified
version of the dataset is provided 3.
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