This paper serves as a continuation of the concepts introduced in a finite element representation of time.  The first section will cover quantum equilibration, bells field theory (Quantum field theory) and dark matter and energy. The section after that will look at an application of the results of these to the variations in results of measurement of the Hubble constant and the crisis in cosmology.  
Equilibration 
In space-time modelled using finite elements, it was discussed that the null space represents information about the position of the particles. In equations 1 and 2, the equivariant distribution was introduced. However, the case may be made that there is no formal basis for assuming that the particles or at least the configuration of the position of the particles according to bohmian mechanics takes this equivariant distribution, thus an effort will be made to explain how such a distribution occurs within the context presented in this text
. 	In order to derive the equivariant distribution of particles (which is assumed to be a state that occurs initially, that is at the beginning of the universe or at time t=0), as opposed to quantum non-equilibrium (Towler et al), let us consider or refer back to the black hole Equation 30,    =  says that the area, i.e. horizon area of a black hole is constantly reducing, however, assuming that the horizon area of the black hole is made up of all the elements in the null space in the universe (limit of 0 cosmological constant), we can infer that the number of elements in the null space of each P-refined field in the observable universe is constantly decreasing with time. As described previously in section 2 (Black hole thermodynamics), this means that entropy is increasing (this will be discussed in more detail later) but it also means that the total number in the null space is constantly decreasing. Thus, it can be assumed that initially(at time t=0), the no of elements in the null space were maximum. 
	In the paper on “Time scales for dynamical relaxation to the Born Rule’’, M.D Towler at al showed that quantum equilibrium can occur (with Quantum equilibrium meaning relaxation to the Born-rule distribution, by assuming  two conditions:
· Non-equilibrium systems naturally tend to become Born-distributed over the course of time, on a coarse-grained level, provided the initial conditions have no fine-grained microstructure and 
· Once in quantum equilibrium, a system will remain in equilibrium, thereafter, as was originally noted. 
Based on the above two conditions, it was shown that (Valentini et al):
          			ꚍ   ≈                                        32

where ꚍ is the time to relaxation, ⋲ is the length of the coarse-graining cells and ΔE is the energy spread of the wave function.
 Assuming the length of the coarse-graining cells is directly proportional to the no of elements in the null space, 
                        ꚍ ≈                                         33
Note that equation 32 defines a time scale closer to t =0 (that is at initially)

Therefore from 32, we can say that initially when the number of elements were maximum, ꚍ was approximately zero (or at its minimum), so that the particle configuration was approximately at equilibration. Furthermore, assuming condition two which states that once in quantum equilibrium (Born rule distribution), a system will remain in equilibrium thereafter, it can be shown that the particle distribution will always follow the initial distribution of equilibrium. 
The logical  question then becomes, why is the length of the coarse-grained cells equal to the number of elements in the null space. The answer would be that assuming each cell in the null space can contain a finite amount of information,  then it is clear that the fewer elements there are in the null space, the more information each cell may contain (that is at least the greater the information density) per element, consequently, the more the elements, the less information may be contained in each element in the null space. 
	 In the paper on “Time scales for dynamical relaxation to the Born rule” , Towler et al derived the coarse-gained density by averaging out 1024x1024 cells over the length of each coarse-grained cell here the length of each coarse-gained cell(e.g. 32) was proportional to the number of cells. Thus, it is clear that the number of cells and hence the length of each coarse-grained cell would be inversely proportional to the amount of information it would contain; that is averaging out 1024 x 024 cells over (4x4) coarse grained cells would be different from over 32x32 cells. 
	Another approach h would be to consider that in space-time modelled using finite elements, entropy increases over the entire universe as the number of elements in the null space decreases (explained in the previous section by the fact that an increase in entropy in space-time modelled using finite information is directly correlated to a loss of information, thus the smaller the number of elements in the null space, the greater the loss of information, this is analogous to a coarse graining. Thus, the coarse-graining length is assumed to be directly proportional to the number of elements in the null space. 
	Furthermore, note that the null space represents the positions of particles which we have assumed to be initially an unknown in bohmian mechanics, especially at the microscopic level, hence the analogy seems to have a relevant physical basis. That is, the position of each individual particle is not known but rather the configuration of many particles, similar to how coarse-graining may be defined.  











Quantum Field Theory (QFT)
       It has been seen in the previous section that the no of elements in the null space is continuously decreasing , that is based on equation 30, 
		
      Furthermore, from section 1, it was shown that the null space represents the positions of particles as well as the amount of energy and momentum of a system (group of particles) or a single particle which does not change the amount of energy and momentum we know about. Based on such a definition, it seems that the null space represents a zero amount of energy and momentum. 
From the previous sections, it is also clear that the number of elements in each null space also depends on the energy and momentum density (amount of P-refinement), and there is a direct relationship between the level of P-refinement and the number of elements in the null space and vice-versa. 
In  (Bell 1986), a version of Quantum field theory is derived by assuming that the configuration of the world consists of  particles located at points of a finite number of discrete lattice points (^). According to ( Andrea Oldofredi in stochasticity and Bell type Quantum Field theory), the configuration in the theory (Bell 1986) was specified by the number of fermions q(x) at each lattice site x ⋲ ^. Thus (Bell 1986)
Q = r(^) :={q ⋲ N^ : }                                             34

According to the theory, each configuration, given by the number of fermions at each lattice point “jumps” into another configuration randomly. By another configuration, we mean a configuration with a different number of fermions within a certain interval of fermions within a certain interval of time. These equivariant random jumps between two configurations corresponds to the creation and annihilation of particles and assumes the form (Andre oldofredi):
           Ϭt (q, q’) =                                                               35 
Where + means the probabilities of a certain configuration P(q) or P(q’) is non-negative. 
	In order to show this may be represented in space-time modelled using finite elements, let us assume that each element in the null space contains information about the position of the particle, and in this case the position of the particle is situated at a distinct point; that is each element has distinct points where a particle is located and the position of each particle is a unique number attributed to each element. Thus, for a given amount of P-refinement, we will assume a finite number of elements in the null space as well as a finite number of particles (due to the fact that the amount of energy and momentum density is finite). Assuming this is the case then, there will be a finite number of ways which the particles can be arranged in the elements, such that each configuration is unique and corresponds to a unique arrangement. In this case, we may say that in the beginning (at t=0), when the no of elements in the null space was at its maximum, there were a maximum number of ways such particles. Thus, let the number of ways of arranging the particles be a set:
Q = (X(1), X(2), X(3)……………. XN)                                                          36
Where each arrangement corresponds to a different number of particles at each point in the lattice (element position), and each arrangement is an element of the set Q. ( Note each lattice point is unique). 
	In space-time modelled using finite elements we assume that the number of elements in the null space is continuously decreasing with time,  hence assuming the number of elements is continuously decreasing, that would mean that some elements of the set Q would be erased, thus if we imagine that at some moment in time t, particles were arranged in a certain configuration within the set Q, and that configuration made use of certain elements in the null space )that is some of the particles were located at points of a certain element), and then that element is removed from the null space, the particles will have to again be arranged in another configuration whereby the element which was removed is no longer a part of. 
For example, suppose you have 3 elements and 3 particles, the configuration for the number of particles will be:
                                                            Element    A    B      C
                                                                                 
                                                                                 
                                                                                         
				                         				
where each configuration will form a set Q, where Q = {X1, X2, X3, X4………….. X8} and each row in the matrix above represents a different configuration and each column represents a different element. 
Assuming at time t0, the particles are arranged in the elements in configuration  1 (1,1,1) , then at time t2, element C is removed that would mean that the particles can only be arranged in each configuration 4 (2,1,0), 5(3,0,0)and 6(0,3,0) such that at t2, 
Q = {x4, x5 and x6}
Assuming that at time t0, the probability of each configuration is 1/8, at time t2, the probability of each configuration will be 1/3. 
From the above, three configurations {x4, x5 and x6}, you can see that from the state of the system at t0, configuration x1 = {1, 1, 1}, the system may transition to a configuration with particles created or annihilated [x5 or x6] or stay the same [x4] at least for element B.  That is the number of particles in each element may change or stay the same as the configuration changes. 




D. Matter 
The previous section on Quantum field theory mentions that as the number of elements in the null space keeps decreasing, the probability distribution for the position of particles keeps changing. This is very relevant as we will see as pertains dark matter in space time modelled using finite elements. But first, let us consider the geometry of the universe. From experience, it is known that the universe has a flat geometry, hence this means that the analogy of using P-refined elements to represent curvature cannot be extended to the entire universe. 
	In order to model the dynamics of the universe( a flat universe), let us resume the definition in previous sections. It was explained that as the curvature of a certain region increases to infinity, the number of elements used to represent that region(the number of P-refined elements goes to 0), thus subsequently as the number of P-refined elements goes to  infinity (P refined elements) the curvature of that region goes to zero. Thus, in a flat universe modelled using finite elements, in space-time, every element in the observable universe will be a P-refined element representing the amount of energy and momentum in that region, that is relative to an observer overseeing the entire observable universe, there will be no null space( elements representing the null space), as the entire number of elements will be P-refined. However, in such a universe, there will still be singularities. Assuming such singularities represents points of infinite curvature, then to the observer, such points will represent points of 0 P refined elements, and all the elements there will be the elements representing the null space. [This is because infinite curvature represents 0 P-refined elements and hence all the elements represent the null space which give information only about position]. 
	It was shown that the number of elements in the observable universe of P-refined elements for a flat universe in each region is decreasing , as described by equation 30:
	            			         							
Thus, to such an observer, the number of elements in the observable universe will be continually decreasing. 
	Let us assume a thermodynamic analogy for this universe. Assuming that such an observer does not have information as to every single detail going on in the universe, (does not have access to the information on every single P-refined element), such a situation is analogous to an observer  looking at a  collection of gas molecules inside a bottle. Supposing we extend the analogy further, we can assume that the universe modelled using finite elements is not in equilibrium, because the probability of its microstates changes with time. This is because the number of elements representing the energy and momentum in the universe continually decreases with time, hence the probability that the universe is in any particular state given by its energy and momentum is continually changing, due to equation 30).
 From equation 30,  and in the limit of 0 cosmological constant, where it was assumed that:
Ln (number of elements in the universe )  + ln (number of elements in singularity) = 0;
It can be said that as the number of elements in the universe is continually decreasing, the number of elements in the singularity is continually increasing. 
	This means that in space-time modelled using finite elements, elements are continually taken from each region, and although the detail of each element taken from each region may be unknown, we can estimate the number of elements taken from each region. It has been seen that in a region with less curvature, there will be fewer elements in the null space, due to the fact that most of the elements will be P-refined while for elements in regions of greater curvature, there will be more elements in the null space.
 Assuming  that there are 100 elements in the null space of the entire universe, we know that the distribution of this elements will be according to the curvature in each area, with the greater amounts of elements in regions of greater curvature. Assuming in time t0, 20 elements are taken out of the null space, the question then arises, will the elements be taken equally out of each null space? In such a scenario, let us divide the universe into 4 regions with 40 elements in one region, 30 elements in the second, 20 elements in the third, and 10 elements in the fourth. The probability distribution of elements removed from each region will be:
Region 1  ----  
Region 2 ----   
Region 3 ----   
Region 4 -----  
	
Thus, we will have for:
         Region 1 ….. log2 () = -1.32
         Region 2 ….. log2 ( = -1.73
         Region 3 …… log2( = -2.32
         Region 4 …… log2( = -3.32
Total = -8.7
The distribution of the 20 elements removed in each region will then be:
Region 1 : 
	Thus, we may say that the number of elements removed from each region is inversely related to the curvature in that region. Combining this two modes, we may assume that the entire universe may be modelled thermodynamically as a region away from equilibrium (due to the reduction in the number of elements in each region) with the source of deviation from equilibrium (singularities) having a field over the entire universe such that the potential of this field depends on the density of energy and momentum in each region ( in regions with less energy and momentum density, the potential is greater and in regions with more energy and momentum density, the potential is less) 
	We may then define a scalar field potential due to a source (singularity) where its value at every point depends on the energy and momentum density at that point and is responsible for the nonequilibrium behaviour (the reduction in the number of elements) at every point in the universe. 
	In their paper on the “Emergence of Modified Newtonian gravity from thermodynamics”, Peter Van and Sumiyoshii Abe show that non-relativistic gravity may be derived based on the second law of thermodynamic s for dissipative systems, in which the scalar field potential is also treated as a thermodynamic variable. In the limit of a solar scale, Newtonian gravity appears while on a larger scale such as the galaxy scale, a candidate for MOND appears. Thus, it appears that statistically in the universe modelled using finite elements, MOND is the gravitational dynamics which emerges based on the statistical nature of the microscopic dynamics of the universe governed by general relativity. 


D. Matter 
In space-time modelled using finite elements, let us create a model to describe how MOND naturally appears as described due to the scalar field potential.  Let us describe the field potential as the no of elements removed at each point. We will then use the Laplacian of the field potential to describe each region based on the scale.  In reality it is the negative of this Laplacian that should correspond to the force of gravity at that point.  
	Assuming we have a region with a total of 550,000 elements. Let this region represent a galaxy. Note that for the observer, all the elements in this region represent P-refined elements. In a smaller area of this galaxy, we will have 300,000 elements, and in an even smaller area of the galaxy e.g. a solar system, we will have 200,000 elements and so on. Let us derive the characteristic of the Laplacian of the field potential at each region in the galaxy, that is at each scale. For example, it would appear as below:
                
	No of elements 
	Scale 

	100,000
	 

	200,000
	 

	300,000
	 

	400,000
	Below is the solar scale

	500,000
	 

	600,000
	 

	700,000
	700,000 below could be the galaxy scale 


		Table 1 – No elements at each scale.

In space-time modelled using finite elements, we have shown that the greater the energy density, the more the elements in the null space, and to an observer looking at the whole universe(due to the flat geometry) of the universe, all the elements will appear to be P-refined. Thus, the greater the curvature, the grater the no of P-refined elements. We have also seen that the number of elements removed (field potential) from each region is proportional to the number of elements in that region by the formula as described previously. 
             No of elements removed =  log (Probability of elements)				38

An excel file was created to simulate the characteristic curves obtained as a function of the Laplacian of the field potential (no of elements removed) vs distance  both on a smaller spatial scale (e.g.  a solar system) represented by a smaller no of elements vs a much larger scale such as that of a galaxy represented by an even larger number of elements). 
The tables below present different time scales where each table corresponds to a different time interval for example the first table corresponds to time t=0, the second table t=1 and so on of the dynamics. Note, the first column in the table represents the number of elements at each scale, the second column represents the probability of removing an element from that region, the third column represents the no of elements removed(field potential) due to the probability as described in the second column, the fourth column represents the Laplacian, which is the change in the number of elements removed ( i.e. the change in the field potential in that region (Ɵ)). 


	No of elemets
	Probability distribution
	Field Potential
	Laplacian

	100000
	0.018181818
	-5.781359714
	-5.781433674

	200000
	0.036363636
	-4.781359714
	-4.781384755

	300000
	0.054545455
	-4.196397213
	-4.196407944

	400000
	0.072727273
	-3.781359714
	-3.781363903

	500000
	0.090909091
	-3.459431619
	-3.459432151

	600000
	0.109090909
	-3.196397213
	-3.196395449

	700000
	0.127272727
	-2.974004791
	-2.974001472

	800000
	0.145454545
	-2.781359714
	-2.78135528

	900000
	0.163636364
	-2.611434712
	-2.611429449

	1000000
	0.181818182
	-2.459431619
	-2.459425718


Table 2 -  Dynamics at time t=0
Figure 1 below shows the Laplacian of the scalar field potential versus radius on a small scale, obtained from table 4 and highlighted in table 3:

Figure 1 – Curve of Laplacian vs distance on a small scale at time t=5. In reality the negative of this Laplacian should  be used for estimating the force of gravity.

	No of elements
	Probability distribution
	Field Potential
	Laplacian 

	99972.96723
	0.001161135
	-6.758357294
	-6.57E-05

	199975.74
	0.002322616
	-6.065061056
	-2.84E-05

	299977.362
	0.003484084
	-5.659550104
	-1.70E-05

	399978.5127
	0.004645546
	-5.371846288
	-1.15E-05

	499979.4053
	0.005807006
	-5.148690207
	-8.40E-06


Table 3 -  Dynamics at time t =5 for small scale used for creating Figure 1 



	No of elements 
	Probability distribution
	Field Potential 
	Laplacian 

	99988.43721
	0.018179954
	-5.781507641
	-7.39666E-05

	199990.4373
	0.036362374
	-4.781409798
	-2.50425E-05

	299991.6072
	0.054544643
	-4.196418676
	-1.07318E-05

	399992.4373
	0.07272685
	-3.781368092
	-4.18946E-06

	499993.0811
	0.090909024
	-3.459432684
	-5.32791E-07

	599993.6072
	0.109091176
	-3.196393686
	1.76336E-06

	699994.052
	0.127273313
	-2.973998152
	3.31969E-06

	799994.4373
	0.145455439
	-2.781350847
	4.43329E-06

	899994.7771
	0.163637558
	-2.611424186
	5.263E-06

	999995.0811
	0.181819669
	-2.459419817
	5.90091E-06


Table 3 – Dynamics at time t=1 shown here jus for reference 
Figure 2 below shows the Laplacian vs distance on a larger scale, which will include all the rows in table 4. 
	No of elements
	Probability distribution
	Field Potential 
	Laplacian 

	99972.96723
	0.001161135
	-6.758357294
	-6.57E-05

	199975.74
	0.002322616
	-6.065061056
	-2.84E-05

	299977.362
	0.003484084
	-5.659550104
	-1.70E-05

	399978.5127
	0.004645546
	-5.371846288
	-1.15E-05

	499979.4053
	0.005807006
	-5.148690207
	-8.40E-06

	599980.1346
	0.006968463
	-4.96636057
	-6.38E-06

	699980.7512
	0.008129919
	-4.812204279
	-4.98E-06

	799981.2854
	0.009291375
	-4.678668781
	-3.95E-06

	899981.7565
	0.010452829
	-4.560882623
	-3.17E-06

	999982.1779
	0.011614283
	-4.455519659
	-2.56E-06

	1099982.559
	0.012775736
	-4.360207512
	-2.07016E-06

	1199982.907
	0.013937189
	-4.273194524
	-1.66732E-06

	1299983.227
	0.015098642
	-4.193150474
	-1.33182E-06

	1399983.524
	0.016260094
	-4.119041369
	-1.04848E-06

	1499983.8
	0.017421547
	-4.050047529
	-8.06338E-07

	1599984.058
	0.018582999
	-3.985508171
	-5.97245E-07

	1699984.3
	0.01974445
	-3.924882821
	-4.15054E-07

	1799984.529
	0.020905902
	-3.867723767
	-2.55033E-07

	1899984.745
	0.022067354
	-3.813655979
	-1.13483E-07



Table 4 – Dynamics at time t =5 


Figure 2 – Curve of Laplacian vs distance on a larger scale, Again, In reality the negative of this Laplacian should  be used for estimating the force of gravity.

In the paper on “Emergence of modified Newtonian gravity from Thermodynamics”, Peter Van and Sumiyoshi Abe, show that, a field potential when treated as a thermodynamic variable has a negative field energy, hence it is gravitational by deriving the following dissipative field equation:
	                                         = (Δ2Ɵ - 4ΠGƿ)                                             37
            Where G, ƿ(r,t), ꚍ and l are Newton’s gravitational constant, the mass density of a fluid, the relaxation time and a macroscopic spatial scale of variations of the whole system respectively. They show that at a sufficient scale, the equation relaxes to :
			        Δ2Ɵ = 4ΠGƿ given by the characteristic curve of the graph below (Peter Van et al):
[image: ]
          Figure 3- Small scale gravitational dynamics (Peter et al)
 On the other hand, at a larger scale, the general equation relaxes to Δ2Ɵ = k(ΔƟ2), the solution to which appears to be MOND-Like in character. 
The same may be said for the dynamics presented in the graphs below for spacetieme modelled using finite elements as the field potential (the change in the number of elements) is negative while the change in the field potential (Laplacian) may be described by the negative of the curves shown in the graphs presented.  
Assuming  the Laplacian (Δ2Ɵ) of the field replicates MOND dynamics at a certain scale then in such a region, you should expect that the no of elements removed on smaller scale to match the curves provided in  the paper by Peter Van and Suiyoshi Abe on a small scale (with fewer number of elements), as well as reproduce MOND like characteristics on a larger scale (with a greater number of elements).
Note that the excel file used to generate the curves is attached. Finally, it should be noted that in the graphs, the dynamics presented by the characteristic curve stays the same irrespective of what base of logarithm is used (log2, log10, LN, etc.).
Another interesting feature of the curves is that after a certain scale represented by a number of elements, the Laplacian (change in the field potential) is no longer negative but positive. 
That is, should we assume that the negative Laplacian represents a gravitational field represented by a finite number of elements, then it can be seen that at a certain scale represented by an even greater number of elements, the Laplacian turns positive; the field represented by the Laplacian acts in an opposite manner to its gravitational behaviour, analogous to a repulsive force). This is shown in Table 5 and Figures 4 and 5 below:

Figure 4- Laplacian vs distance for table 5 at t =5, note the transition from a negative field to a positive one at a certain scale. The greater scales here are represented by a larger number of elements. 

Figure 5 – Laplacian vs distance at the greatest scales (highlighted in red) in table 5. Note in reality the negative of this Laplacian should be used for estimating the force of gravity 

	No of elements
	Probability distribution
	LN(Probability distribution)
	Laplacian 

	99972.96723
	0.001161135
	-6.758357294
	-6.57E-05

	199975.74
	0.002322616
	-6.065061056
	-2.84E-05

	299977.362
	0.003484084
	-5.659550104
	-1.7E-05

	399978.5127
	0.004645546
	-5.371846288
	-1.15E-05

	499979.4053
	0.005807006
	-5.148690207
	-8.4E-06

	599980.1346
	0.006968463
	-4.96636057
	-6.38E-06

	699980.7512
	0.008129919
	-4.812204279
	-4.98E-06

	799981.2854
	0.009291375
	-4.678668781
	-3.95E-06

	899981.7565
	0.010452829
	-4.560882623
	-3.17E-06

	999982.1779
	0.011614283
	-4.455519659
	-2.56E-06

	1099982.559
	0.012775736
	-4.360207512
	-2.07E-06

	1199982.907
	0.013937189
	-4.273194524
	-1.67E-06

	1299983.227
	0.015098642
	-4.193150474
	-1.33E-06

	1399983.524
	0.016260094
	-4.119041369
	-1.05E-06

	1499983.8
	0.017421547
	-4.050047529
	-8.06E-07

	1599984.058
	0.018582999
	-3.985508171
	-5.97E-07

	1699984.3
	0.01974445
	-3.924882821
	-4.15E-07

	1799984.529
	0.020905902
	-3.867723767
	-2.55E-07

	1899984.745
	0.022067354
	-3.813655979
	-1.13E-07

	1999984.951
	0.023228805
	-3.762362181
	1.253E-08

	2099985.146
	0.024390256
	-3.713571565
	1.253E-07

	2199985.332
	0.025551707
	-3.667051144
	2.269E-07

	2299985.51
	0.026713158
	-3.622599014
	3.187E-07

	2399985.68
	0.027874609
	-3.580039066
	4.02E-07

	2499985.843
	0.02903606
	-3.539216767
	4.78E-07

	2599986
	0.030197511
	-3.499995776
	5.476E-07

	2699986.151
	0.031358962
	-3.462255193
	6.114E-07

	2799986.296
	0.032520412
	-3.425887314
	6.702E-07

	2899986.437
	0.033681863
	-3.390795777
	7.245E-07

	2999986.572
	0.034843314
	-3.356894024
	7.747E-07

	3099986.704
	0.036004764
	-3.324104014
	8.214E-07

	3199986.831
	0.037166215
	-3.292355142
	8.649E-07

	3299986.954
	0.038327665
	-3.261583322
	9.054E-07

	3399987.073
	0.039489115
	-3.231730207
	9.432E-07

	3499987.189
	0.040650566
	-3.202742528
	9.786E-07

	3599987.302
	0.041812016
	-3.174571518
	1.012E-06

	3699987.411
	0.042973466
	-3.147172419
	1.043E-06

	3799987.518
	0.044134916
	-3.120504055
	1.073E-06

	3899987.622
	0.045296367
	-3.094528457
	1.1E-06

	3999987.723
	0.046457817
	-3.069210545
	1.126E-06

	4099987.822
	0.047619267
	-3.044517833
	1.151E-06


Table 5 – Dynamics at time t=5 including transition from a negative Laplacian to a positive one at certain scales (shown in red). 
Appendix 
In Bell’s representation of QFT , the stochastic dynamics of the system that is represented by the particle positions at the lattice replaces the dynamics created by the wavefunction, and although Bell hinted that a guiding equation can be recovered in the continuum limit, it is assumed in space-time modelled using finite elements that the guiding equation holds true in the limit of a small energy or small number of particles 
This can be seen clearly by considering the fact that the no of elements in the null space, representing the position of particles  is proportional to the energy and momentum represented by the P-refined eelement. Thus, the smaller the no of elements in the null space, the smaller the energy if the system and vice-versa.  
Let us consider the case where there is a single element in the null space. In such a scenario, the number of elements in the null space is maximum and constant, if we assume it is not possible for the null space elements to go to 0. Hence we may then treat the single constant element as a continuum such that it may be divided infinitely . (A bit like assuming, we have a square, and we can draw an infinite number of smaller squares in the square.)
In general, we may then assume that such a sub-system then evolves according to the guiding equation as described in bohemian mechanics.  This may be analogous to the continuum limit hinted at by Bell. 
Finally, the status of the quantum equilibrium hypothesis for particles was derived explained in the paper as occurring due to the fact that the number of elements which represent the null space being maximum at time t=0, and then decreasing after. Another consequence of this result would be that in space-time modelled using finite elements, it may be that inside Black holes, the number of elements used to model the black hole would be increasing with time. Assuming  that the singularity of the black hole takes elements from the null space of a black hole, given by the formula in equation 30, and we know that the entropy of a black hole represented by the horizon radius is non-decreasing, we have shown that what happens is the rest of the universe supplies elements to replace the lost elements that have been taken from the horizon of the black hole (and the scalar field representing this elements removed in the universe  was represented as being responsible for the Quantum equilibrium hypothesis  and other effects; e.g. the appearance of MOND), we may then say that the elements representing the null space of black holes, either remains constant or increases with time. This would mean that the quantum equilibrium hypothesis (or Born's rule) is violated somehow in a quantum description of black holes and they are in fact in states of quantum non equilibrium.
 A possible test for this would be to consider the area laws in Quantum information. If black holes in fact are in states of quantum non-equilibrium, then it should be that the area laws (describing the entanglement entropy between two systems as proportional to the area of the boundary separating them) would be valid for local or non -local interactions between the two systems. 









This section of the paper will serve to complete the description of space-time using finite elements described previously and in the paper on “A finite element representation of time”. 

Background 
The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogenous and isotropic models of the universe within the context of general relativity and were first introduced by Alexander Friedmann in 1922 from Einstein’s field equations of gravitation for the Friedmann-Lemaitre-Robertson-Walker metric and a perfect fluid with a given mass density p and pressure P [6].  The rate of expansion of the universe is expressed using the Hubble’s constant and today there is a discrepancy in the value when measured using different methods. Hence, the purpose of this section of the paper will be to explain why this difference exists using space-time modelled with finite elements [7]. No new equations will be expressed here, all that will be shown is why the discrepancy in the measured value is correct and why it continues. Please note that the word finite element representation of does not mean that space-time is modelled using the Finite element method, but the word finite element is the term chosen to create the simplest picture of the model referred to in [7]. 

Model
In this paper, it was shown in Table 1 that dark matter and dark energy can arise if the observable universe is discretised on a logarithmic scale as shown in Table 1. If one is to examine the attached excel file, one will see that if the elements represent a certain distance, then as time goes on, the distances (expressed as the difference between the elements in each successive column) change. In other words, if we associate a distance metric, d, to table 1, then as shown in the excel file attached, this metric, d, changes after each iteration(time)- see tab accelerated expansion in excel sheet attached. So if one looks at the tab dynamics in the excel sheet, and measures the metric, d, in columns (A,D,H,L,P,T), it is clear that space-time modelled using finite elements can be used to represent a dynamical expanding space-time (also shown in tab accelerated expansion). 
 However, if one observes the results of the expansion as shown in table 6 below, two observations, exist which may be key to understanding why the discrepancy in the observations of the Hubble constant occurs. 







		No of elements (The distance metric d is the difference between successive columns)
	d at time t1
	d at time t2
	d at time t3
	d at time t4
	d at time t5

	1001
	1000
	#NUM!
	#NUM!
	#NUM!
	#NUM!

	2001
	1000
	1001.391385
	1002.096324
	1002.807582
	1003.525278

	3001
	1000
	1000.812524
	1001.221695
	1001.63283
	1002.045949

	4001
	1000
	1000.57613
	1000.865601
	1001.156016
	1001.447383

	5001
	1000
	1000.446734
	1000.670923
	1000.895664
	1001.120959

	6001
	1000
	1000.364934
	1000.547938
	1000.731303
	1000.915029

	7001
	1000
	1000.308505
	1000.463135
	1000.618018
	1000.773154

	8001
	1000
	1000.267213
	1000.401098
	1000.535171
	1000.66943

	9001
	1000
	1000.235681
	1000.353736
	1000.471934
	1000.590276

	10001
	1000
	1000.210812
	1000.316387
	1000.422076
	1000.527879


Table 6 – The variation of the metric at each scale with time (Accelerated expansion tab)


FINDINGS 
The first observation from the data is that although space is expanding, because d, is increasing, the expansion slows down across space. This means that if we imagine space is a field at one point in time, then at larger spatial scales, the expansion of space is slowing down in that field. The second observation from the data is that each point in space is expanding at a faster rate with respect to time. So even, if we imagine the space represented previously; as the expansion slows down with an increase in scale or distance, it grows with respect to time. This phenomenon, observed when space-time is modelled using finite elements is best illustrated in the table 7 below:
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                          Table 7 – Expansion in space (columns) and time(row)

Imagine three galaxies A, B and C at point 1,2, and 3 in space. As described, the expansion of space (at point 1, time t=0, galaxy A, the expansion is 3, hence A3), slows with an increase in spatial scale. That is, if we assume that Point 1 , 2, 3 represent an increase in spatial scale respectively,  Thus the expansion at Point 1 time t=0 is 3, point 2 time t=0 is 2 and point 3 time t=0 is 1. Now as we said each point in space is expanding faster with respect to time, meaning that if galaxy A moves from its initial position (point 1 at time t=0) to point 2 (at time t=1) as shown in the table 7 above, it will experience an even faster expansion, because the new point that it is in is expanding faster in this new moment than it was previously. 

This illusion gives us the impression that all of space is expanding faster, however it is clear from using the data from the finite element representation of time; shown in the spreadsheet attached, that space-time is actually the reason for this(and this is due to the effects of the expansion in time) rather than the expansion in space. The question is then, why this explains the discrepancy in the expansion of space we observe? and to answer this, the data directly collected from the attached sheet (and shown in table 8 below) will be used to explain this phenomenon. 

	d at time t1
	d at time t2
	d at time t3
	d at time t4
	d at time t5

	1000
	#NUM!
	#NUM!
	#NUM!
	#NUM!

	1000
	1001.391385
	1002.096324
	1002.807582
	1003.525278

	1000
	1000.812524
	1001.221695
	1001.63283
	1002.045949

	1000
	1000.57613
	1000.865601
	1001.156016
	1001.447383

	1000
	1000.446734
	1000.670923
	1000.895664
	1001.120959

	1000
	1000.364934
	1000.547938
	1000.731303
	1000.915029

	1000
	1000.308505
	1000.463135
	1000.618018
	1000.773154

	1000
	1000.267213
	1000.401098
	1000.535171
	1000.66943

	1000
	1000.235681
	1000.353736
	1000.471934
	1000.590276

	1000
	1000.210812
	1000.316387
	1000.422076
	1000.527879


Table 8 – Expansion in spatial scale (columns) and time (rows)

If one uses the constant speed of light, c , as light is used to measure the expansion in measurements of the expansion of space-time, it is evident that the measured expansion of space-time will be different if space-time does in reality behave consistently with the data shown in space-time modelled using finite elements. 

Why? Well, as space expands, the distances between points get bigger (spatial scale increases) and because each point expands faster in time, that would mean that light which moves at a constant speed c, would feel a slow expansion initially. This is because initially, light will move across points in space (when space-time is smaller) before those points have increased greatly in time, which means that you may notice that the expansion seems to decrease across a spatial scale, however after space has expanded sufficiently, then light moving still at a constant speed will get to points in space such that they have already expanded in time fast enough. Hence, you will not notice that the expansion slows across space, because by the time light gets to that point, that point will have already increased greatly in time (space-time). This will mean, that a measurement of the expansion of space using a constant speed phenomenon such as light will always give us an expansion value of the Hubble’s constant that shows the discrepancy we presently have today. This is best illustrated in table 9 below. 
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                             Table 9 – Expansion in space(column) and time(row) at earlier moments 

	
As shown in this table, because light travels constantly, and space is smaller, it would mean that light will cross distances in shorter intervals, meaning that those distances will expand slower in time, hence one may observe that the rate of expansion behaves differently at this moment as hinted by the data in space-time modelled using finite elements. 

However, as space expands and the distances get larger, even though the expansion slows with respect to space, because the time it takes for light to get to those new points in space owing to the constant speed of light has increased, those points will have more time to expand (due to the fact that the same points; points 1,2,and 3 in space expand faster in time). Hence, the value of the expansion using light will give the illusion that the rate of expansion in space does not slow down with scale. This is shown In table 10 below
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Table 10 – Expansion in space (column) and time (row) at later moments 
As shown in table 10, if one is looking at a galaxy(A,B or C), due to the fact that the distances covered takes more time for light, to get between those 3 points, one would get a different rate of expansion measuring this system than when one is measuring a system in the early history.
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Laplacian vs distance for entire table 5 at t=5  
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Laplacian



Laplacian at the greatest scales vs distance at time t=5 (highlighted in red in table 5 below) 
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Laplacian vs distance on a smaller scale 
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Laplacian vs distance on a larger scale 
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