
Comments on Project 1 Rubric and Linux Kernel Best Practices
Emily Tracey

North Carolina State University
Raleigh, North Carolina, USA

etracey@ncsu.edu

Leila Moran
North Carolina State University
Raleigh, North Carolina, USA

lmmoran@ncsu.edu

Peeyush Taneja
North Carolina State University
Raleigh, North Carolina, USA

Jonathan Nguyen
North Carolina State University
Raleigh, North Carolina, USA

jhnguye4@ncsu.edu

Shraddha Mishra
North Carolina State University
Raleigh, North Carolina, USA

smishra9@ncsu.edu

Figure 1: Screenshot from The Linux Kernel Report, 2017.

ABSTRACT
This paper aims to connect Linux Kernel best practices and the
rubric for Project 1. We present descriptions of each practice and
how different rubric criteria from project 1 relate to each practice.
We applied those practices in our team project and explain how
through this paper. Ultimately, we found we were able to connect
the rubric to all of the Linux Kernel best practices and our team
benefited greatly from these practices.

KEYWORDS
Linux Best Practices, GitHub, development model

ACM Reference Format:
Emily Tracey, LeilaMoran, Peeyush Taneja, JonathanNguyen, and Shraddha
Mishra. 2021. Comments on Project 1 Rubric and Linux Kernel Best Practices.
In Proceedings of ACM Conference (Conference’17).ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Linux Kernel Report from 2017 gives a list of some best prac-
tices for project development [1]. Throughout this paper we will
refer to these as "Linux Best Practices." The Project 1 rubric for
North Carolina State University’s graduate software engineering
class incorporates these ideas. Our goal is to comment on how this
rubric aligns with Linux Best Practices and provide some concrete
examples in our Team 25 group project.

2 COMMENTS ON BEST PRACTICES
The following sections will highlight each best practice and how
Project 1 aims to follow each practice. Each section will also include
examples from our team’s project.

2.1 Short release cycles are important
While Project 1 was a relatively short project, the short release
cycles practice still holds. Even just the due date for the project not
being a semester long prevents huge amounts of code integration
like Linux best practice states [1]. Additionally, the project rubric
was able to address this in the last point confirming that project
members are committing often. Having frequent commits from
team members allows local versions of the project to stay up to
date and prevents overhead with integration.

Our team generally followed the practice of committing when-
ever functionality of a new feature was completed or whenever
a team member requested it. Waiting for a complete feature lim-
ited "broken" code that was in existence and kept the number of
commits up since our defined features were relatively small and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Emily Tracey, Leila Moran, Peeyush Taneja, Jonathan Nguyen, and Shraddha Mishra

accomplished in a matter of days. The second case was used widely
to aid members in fixing bugs or adding a new viewpoint.

2.2 Process scalability requires a distributed
development model

This practice requires that responsibility across a project to be
distributed. A single talented developer can be easily outmatched as
a code base grows [1]. The project 1 rubric ensures this by including
points about how all users are contributing to the repository with
some evidence existing in commits. The rubric also requires the
use of issues which allows work to be easily defined and divided
among group members.

GitHub provides functionality to view contributions by each
user, so we met the rubric requirements by ensuring members
were contributing and there contributions are noted within the
repository. We also utilized GitHub’s issue tracking and progress
boards distribute development.

2.3 Tools matter
The Linux Best Practices emphasizes that tools are important and
that a project the size of Linux would collapse without appropriate
tools holding it up [1]. We see evidence of this in the project 1
rubric in several rows including: version control tools, style check-
ers, syntax checkers, and other automated tools. These tools do
not only allow for additional functionality for a project, but also
enables better team collaboration and code standards. Keeping a
well maintained code base is a desire for all developers, so hundreds
of tools have been created to aid in this goal. Having it emphasized
by in the project rubric simply fits the way development happens
today. Developers need to make use of those hundreds of tools out
there.

Our project used tools such as package managers like Maven [2]
and npm [4] to manage our Java and React dependencies respec-
tively. We found the intelliJ IDE extremely helpful in managing our
coding syntax and style with the addition of ESLint [3] to mange
code formatting for the frontend code. These are just some of the
many tools used.

2.4 Consensus-oriented model is important
A consensus-oriented model ensures that members of project agree
on what is being added and changed. Linux Best Practice empha-
sizes "proposed change will not be merged if a respected developer
is opposed to it" and "No particular user community is able to make
changes at the expense of other groups" [1]. The rubric handles
this component by "issues are discussed before they are closed"
and "Chat channel: exists." Both of these points require proof of
team communication and allow opportunities for group members
to speak out about a problems or concerns they might have.

Our team used a Discord channel to discuss project updates
and concerns. We also used our channel to discuss GitHub issues.
When appropriate, we attached comments to GitHub issues and pull
requests to gain consensus as well. Finally, we utilized pull requests
that were open and closed by separate team members frequently to
prevent a single member contributing non agreed upon code.

2.5 Strong “no regressions” rule
Linux Best Practice "no regressions" rule refers to the ability for
a project to update without breaking older versions or previously
existing functionality [1]. While Project 1 has a short time scale
and the opportunities to regress are few, the rubric requirements
concerning documentation and testing cover this practice. Using
workflows for all functionality (old and new) can help mitigate
regressions for the future and extensive documentation allows for
a snapshot of older versions of the project. Having these snapshots
and reasoning can help future designs not regress the old.

GitHub actions provided a great tool for managing tests and
automatically checking for failed tests upon pull requests. We used
several workflows to manage aspects of the system to confirm new
changes are not regressing any aspect. Documentation especially
in the form of JavaDocs helped us meet this practice as well.

2.6 There should be no internal boundaries
within the project

Having zero internal boundaries is beneficial to all team members.
Boundaries that could exist include restricted access to parts of the
code base, limits of editing rights, or even communication. Team
members should be free to work and update any portion of the
project provided they have a valid reason to. This practice is also
demonstrated in the rubric in "workload is spread over the whole
team" and the rows containing evidence that all team members
can run the code and configure tools across the code base. Keeping
members aware of all parts of the system is the first step in erasing
boundaries.

We accomplished this practice by not only allowing members
to choose which features they wished to develop, but also by al-
lowing members to switch or adapt as needed. Tools that are used
were first confirmed by the team and then implemented by any-
one. Specifically, the package.json (frontend configurations) and
pom.xml (backend configurations) were accessible to the whole
team and were updated by several members. To avoid communica-
tion barriers and confusion on where people were working in the
code base, we used a Discord chat channel and regularly checked
GitHub.

3 FINAL THOUGHTS
The Linux Best Practices connects heavily to the project 1 rubric
and exploring these connections has been beneficial for our team
to understand how and why we are graded the way we are. We
will definitely be considering the Linux Best Practices in our future
development not only for this semester, but in our professional
careers as well.

REFERENCES
[1] 2017. State of Linux Kernel Development 2017. The Linux Foundation®,

25–26. https://www.linuxfoundation.org/resources/publications/state-of-linux-
kernel-development-2017/

[2] 2019. Apache Maven. https://maven.apache.org/index.html
[3] 2021. ESLint. https://eslint.org/
[4] 2021. npmjs. https://www.npmjs.com/

https://www.linuxfoundation.org/resources/publications/state-of-linux-kernel-development-2017/
https://www.linuxfoundation.org/resources/publications/state-of-linux-kernel-development-2017/
https://maven.apache.org/index.html
https://eslint.org/
https://www.npmjs.com/

	Abstract
	1 Introduction
	2 Comments on Best Practices
	2.1 Short release cycles are important
	2.2 Process scalability requires a distributed development model
	2.3 Tools matter
	2.4 Consensus-oriented model is important
	2.5 Strong “no regressions” rule
	2.6 There should be no internal boundaries within the project

	3 Final Thoughts
	References

