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Detection of Sub-Community Graph in
N-Community Graphs using Graph Mining
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Abstract: Detection of sub-graphs in community graphs is an
important task and useful for characterizing community graphs.
This characterization leads to classification as well as clusterings
of community graphs. It also leads to finding differences among a
set of community graphs as well as buildings of indices of
community graphs. Finally, this characterization leads discovery
of knowledge from sub-graphs. This proposed approach of
detection of a sub-community graph from a group of community
graphs using simple graph theory techniques. So, that knowledge
could be discovered from the sub-community graph detected in a
set of community graphs. The proposed algorithm has been
implemented with two examples including one benchmark
network and observed satisfactory results.

Keywords : community graph, community adjacency matrix,
sub-community adjacency matrix, sub-community graph.

I. INTRODUCTION

Discovering a frequent sub-graph from a group of graphs

is said to be a graph pattern. So that these sub-graphs are
useful for building community graph indices, classification
and clustering, and finding differences among a group of
community graphs. The discovery of frequent sub-community
graph problems leads discovery of frequent sub-community
graphs in a group of community graphs. So that these frequent
sub-community graphs are useful in data analysis and data
mining for similarity search in databases of community graph,
clustering, classification of community graphs, indexing of
community graphs, etc. This proposed and revised algorithm
is for the detection of a sub-community graph in ‘n’ number of
community graphs using graph mining [13].

Il. LITERATURE FINDINGS

AGM is a frequent sub-structure mining algorithm
proposed by [6], which joins two frequent graphs of (Size-k)
with the same Size number of vertices in a sub-graph.

Apriori-based frequent mining was proposed by [1], where
the search starts from bottom to up. Discovering frequent
subgraphs from a large graph database adopts the Apriori
property proposed by [7]. The algorithm path-joining which
joins paths was proposed by [14]. An algorithm for mining of
frequent graphs from the isomorphic and symmetric graph
was proposed by [2]. A novel algorithm, gSpan is used for
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frequent pattern mining from a graph datasets proposed by
[15]. The identification of anomalous sub-graphs in an
entity-relationship graph was proposed by [4]. An algorithm
that detects of anomalies in all three types of possible changes
in graphs i.e., labels modifications, insertions of vertex/edge,
and deletions of vertex/edge was proposed by [3].

The proposed algorithm is the revised version of [13]. The
idea of detection of sub-graph was adopted from [12] where it
detects the common village sub-community graph.

The existing sub-structure mining methods [2, 7, 15] are
quite different from the proposed technique [13]. In the
proposed technique, the sub-community graph should be
known at the beginning and treated as input on ‘n” numbers of
community graphs for detection. However, the technique is
based on graph theory’s matrix comparison.

I11. PROPOSED ALGORITHM

The revised algorithm has three numbers of phases. The 1
phase reads and stores all the ‘n” numbers of names of datasets
in CommunityFileName[ ]. The datasets have the details of
the communities’ viz., the graph number, total numbers of
communities, the community numbers, and the pair of
community numbers for the edge. The 1% row has graph
number, the 2" row has the number of communities, the 3™
row has community numbers, and the 4™ row onwards has pair
of numbers for edge i.e., "from-community-number" to "to-
community-number”. Then it reads the sub-graphs dataset
which contains the details of the communities. The 1% row
contains the number of communities; the 2" row contains
community numbers, and from 3 row onwards has pair of
community numbers for edge i.e., "from-community-
number" to "to-community-number" of the sub-community
graph.

The 2™ phase starts verifying the sub-community graph in
‘n” numbers of community graphs. The Detection( ) is called
‘n’ numbers of times for detection of sub-community graph.
For every call of Detection( ), it passes a dataset from
CommunityFileName[ ] and "SubGraph.Txt" for verification.
In Detection( ), the community graph’s dataset and
sub-community graph’s dataset are represented as matrices
CM[ ][ ] and SM[ ][ ] respectively. Then the sub-procedure
ColumnCompare (') which enables to detect SM[ ][] in CM[
1[]- If SM[][]is found in CM[ ][ ] then it returns a value 1;
otherwise returns a value 0. So, the procedure
ColumnCompare( ) returns a value 0 or 1 and assigns to the
array, FlagValue[ ].
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Finally, FlagVvalue[ ] has ‘n’ values of 1 or 0 of ‘n’
community graphs.

The 3" phase is to display the detected community graph’s
adjacency matrix. The array FlagValue[ ] is called ‘n’
numbers of times. When array FlagValue[ ] has 1 value then
the procedure DetComGraph( ) is called for displaying the
adjacency matrix of the community graph where the
sub-community graph has been detected. The proposed and
revised algorithm has complexity O(n?).

A. Algorithm SCGraphDetection()
Algorithm Convention [5]
NC: To assign total numbers of community graphs.
CommunityFileName[NC]: Array to hold ‘NC’ numbers of
names dataset files.
FlagValue[NC]: To store 0 or 1.
SubGraph.Txt: Sub-community graph’s dataset file name.
CGN: To assign the community graph number.
NOC1: To assign the total numbers of communities of
community graph.
NOC2: To assign the total numbers of communities of the
sub-community graph.
{
read(NC);
for p:=1to NC
{ read(CommunityFileName[p]); }
/I to detect sub-community graph
for p:=1to NC
{ FlagValue[p]:= Detection(CommunityFileName[p],
"SubGraph.Txt"); }
/Ito display the adjacency matrix of detected community
/lgraph
for p:=1to NC
{ if(FlagValue[p]=1)
DetComGraph(CommunityFileName[p]); }
}

B. Procedure for displaying of detected community
adjacency matrix

Procedure DetComGraph(DataFile)

DataFile: To store the name of file of community dataset.
fc: To store from-community-number.
tc: To store to-community-number.
CM[NC+1][NC+1]: To store adjacency matrix of community
graph.
{
open(DataFile);
read(CGN);
CM[1][1]:=CGN;
read(NC);
for p:=1to NC
{
read(fc);
CM[1][p+1]:=CM[p+1][1]:=fc;
}
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while(Not End-Of-File)
{
read(fc);
read(tc);
for p:=1to NC {
/I row side detection
if (CM[p+1][1]=fc) break; }
for g:=1to NC {
[l column side detection
if (CM[1][q+1]=tc) break; }
CM[p+1][q+1]:=1;
}
I/ to display community graph’s adjacency matrix
for p:=1to (NC+1) {
for g:=1to (NC+1) {
display(CM[p][a]); } }
close(DataFile);

}

C. Procedure for detection of sub-community adjacency
matrix

Procedure Detection(CFileName, SCFileName)

CM[NOC1+1][NOC1+1]: To assign community adjacency
matrix.
SM[NOC2+1][NOC2+1]: To
adjacency matrix.
{
open(CFileName);
read(CGN);
read(NOC1);
open(SCFileName);
read(NOC2);
if(NOC2 > NOC1) return(0);
else
{
/I reading from CFileName
for p:=1to NOC1

{

assign  sub-community

read(a);
CM[p+1][1]:=CM[1][p+1]:=4;
}
while(Not End-Of-File)
{
read(a);
read( b);
for p:=1to NOC1
{ /I row side detection
if (CM[p+1][1]=a) break; }
for g:=1to NOC1
{ /I column side detection
if (CM[1][q+1]=b) break; }
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CM[p+1][g+1]:=1;
}
close(CFileName);
// reading from SCFileName
for p:=1to NOC2
{
read(a);
SM[p+1][1]:=SM[1][p+1]:=3;
}
while(Not End-Of-File)
{
read(a);
read(b);
for p:=1to NOC2 {
I row side detection
if (SM[p+1][1]=a) break; }
for g:=1to NOC2 {
/I column side detection
if (SM[1][g+1]=b) break; }
SMlp+1][q+1]:=1;
}
close(SCFileName);
// to count NOC2
total:=0;
for p:=1to NOC2 {
for q:=1to NOC1 {
if(SM[1][p+1]=CM[1][q+1]) total:=total+1; } }
if(total=NOC2)
{
for p:=1to NOC2 {
for g:=1to NOC1 {
if(SM[p+1][1]=CM[qg+1][1])
flag:= ColumnCompare (SM, NOC2, p, CM, NOC1, q);
1}
/I SM[ ][ ] and CM[ ][ ] have different community numbers
return(flag);
}
else
/I SM[ ][ ] and CM[ ][ ] have different community numbers
return(0);
}
}

D. Procedure to compare column community numbers
with row community numbers

Procedure ColumnCompare (SM, NC2, row2, CM, NC1,
rowl)

rowl: To assign row index of CM[ ][ ].
row2: To assign row index of SM[ ][ ].
{
for c2:=2 to NOC2 {
for c1:=2 to NOC1 {
if(SM[1][c2]=CM[1][c1])
if(SM[row2][c2]#CM[row1][c1])
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return(0); }

}

return(1);

}

IV. EXAMPLES AND EXPERIMENTAL RESULTS

A. Example-1 (Village Community Graph)

Social graphs [9, 10, 11, 12] have studied by the authors,
and considered as village community graphs in a panchayat. A
village has different communities living together and has a
relationship among them. Each community is treated as a
node with a number as its identifier. Hence a village is said to
be a graph with a set of community nodes. Sometimes it is
necessary to detect a sub-community graph among the
villages in a village community graph. An efficient algorithm
has been proposed by the authors who are able to detect those
villages’ sub-community graphs in ‘n’ numbers of village

Fig. 1. Village community graph.

For this purpose, the authors have proposed a village
community graph and shown in "Fig. 1", which has ten
villages namely V1 to V10. Each village is considered as a
community graph. V1 community graph has 1 to 15
communities; the V2 community has 1 to 16 communities, and

SO on.
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Fig. 2. (i) 1st village sub-community graph. (ii) 1st village
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Fig. 3. (i) 2nd village sub-community graph. (ii) 2nd
village sub-community adjacency matrix.
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The authors wish to detect two village sub-community
graphs shown in "Fig. 2" and "Fig. 3" from "Fig. 1". The path
of the 1* village sub-community graph is 1-2-4-7-6 which has
no cycle i.e., the 1% and the last nodes are different. Having no
cycle exists in the village sub-community graph; its existence
in the village community graph can have only one cycle. Such
a village community graph can be considered as the presence
of the input village sub-community graph. The village
sub-community graph having more than one cycle in a village
community graph must not be considered. Due to the criteria,
the 1% sub-community graph has successfully detected in
village community graphs V1, V2, V4, V7, and V9, and
shown in "Fig. 4". But the village community graph V10
which has the 1% village sub-community graph in it has three
numbers of cycles such as 1-2-4-1, 1-2-4-7-1, and 1-4-7-1.
Therefore the village community graph V10 has been
rejected.

Fig. 4. 1st village sub-community graph detected in
communities V1, V2, V4, V7, and V9.
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Fig. 5. 2nd village sub-community graph detected in
communities V1, V3, V4, V7, and V8.

Similarly, the path of the 2" village sub-community graph
is 3-5-8-7-6-3 which has a cycle i.e., the 1% and the last nodes
are the same. Having a cycle exists in the village
sub-community graph; such a village sub-community graph’s
existence in a village community graph can contain only two
numbers of cycles. Such a village community graph can be
considered as the presence of the input village sub-community
graph with a cycle. The village sub-community graph with
more than two cycles in a village community graph must not
be considered. Due to the criteria, the village sub-community
graph 3-5-8-7-6-3 has successfully detected in village
community graphs V1, V3, V4, V7, and V8 respectively and
shown in "Fig. 5". But the village community graph Vs
contains the 2" village sub-community graph. Though, the 2"
village sub-community graph has five cycles such as 3-5-6-3,
3-5-8-6-3, 6-7-8-6, 6-7-8-5-6 and 5-6-8-5. Hence V6 has been
rejected.

B. Datasets

Ten community graph dataset files "V1.TXT" to
"V10.TXT", and two datasets for sub-community graphs
"SUB-1.TXT" and "SUB-2.TXT" were created by the
authors. The dataset files "V1.TXT", "SUB-1.TXT", and
"SUB-2.TXT" are shown from "Fig. 6" to "Fig. 8".
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Fig. 6. Dataset of village community graph V1.
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Fig. 11. Detected community graph V1’s adjacency

matrix.

Fig. 8. Dataset of 2nd village sub-community graph.

C. Result-I

To detect the 1% village sub-community graph, input the
dataset "SUB-1.TXT" and 10 village community graphs
datasets from "V1.TXT" to "V10.TXT" to the algorithm
which is shown in "Fig. 9". Village community graphs V1,
V2, V4, V7, and V9 have successfully detected the 1% village
sub-community graph which is shown from "Fig. 10" to "Fig.

15" respectively.
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Fig. 9. The input of datasets 10 village community graphs
and 1st village sub-community graph.
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Fig. 12. Detected community graph V2’s adjacency
matrix.
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Fig. 13. Detected community graph V4’s adjacency
matrix.
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Fig. 14. Detected community graph V7’s adjacency Fig. 18. Detected community graph V1’s adjacency
matrix. matrix.

Community Graph U9’'s Community Adjacency Matrix Community Graph U3's Community Ad jacency Matrix

3 1 3 4 5 6 7 u3 1 2 3 4 5 6 ¢ 8 9 10 11
1 @ 1 8 1 8 @8 1 & 1 9 © © 1 © 0 0 © 0
2 1 g 1 90 0 0 Z 1 © 1 © 0 0 00 0 0 0 o0
3 1 g © 0 1 0 i 0 1 o0 0 1 1 8 © 0 © 0
4+ 0 g & 1 1 1 4 0 © ©© © 1 © 0 0 0 © 0
5 1 g 1 8 1 0 5 © 8 1 1 © © 0 1 1 © 0
6 O 1 1 1 o 1 6 i &9 1 8 8 © 1 © 60 1 0
70 g 1 0 1 06 Yy & © 9 © © 1 o 1 0 1 0

g 0 © ©© © 1 © 1 © 0 © 0
Fig. 15. Detected community graph V9’s adjacency 3 &8 8 8 © 1 0 0 ©& 0 0 0
matrix i@ @ © 0 © 0 1 1 9 0 8 1
' iT © © © © 0 © 0 0 0 1 0
D. Result-11 Fig. 19. Detected community graph V3’s adjacency

Enter Total Mumber of Community Graphs matriX.

Enter Community Graph Data File Name-1 : . . . .
Community Graph W's Community Ad jacency Matrix
Enter Community Graph Data File Mame-2 :

b3

l[cloNoRcRol ool lo il

Enter Community Graph Data File Name-3 : 16

Enter Community Graph Data File Mame—4 :
Enter Community Graph Data File Name-5 :
Enter Community Graph Data File Mame-6 :
Enter Community Graph Data File Name-7 :

Enter Community Graph Data File Mame-8 :

.TxT
UZ.TXT
U3.TXT
U4 . TXT
Us . TXT
U6 . TXT
U?.TXT
UB.TXT
U3.TXT

Enter Community Graph Data File Name-9 :

SRRSO DOREMN
DD D DD W
ERoRol ol RoNol Slor i
OO DO DU
[cloNol o Rololol lolol=g
P e e eSS ]
EHOOROROO D0
[l oRoloRoRololl o i)
QRRRERODOROOO

1
Z
3
4
5
6
7
8
9
0}

jary

Enter Community Graph Data File NMame-10 @ U10.TXT

Enter Sub-Community Graph Data File Name For Detection : SUB-Z.TXT

Fig. 20. Detected community graph V4’s adjacency
Fig. 16. The input of datasets of 10 village community matrix.

graphs and 2nd village sub-community graph. Commmity Graph U?'s Community Adjacency Matrix

Similarly, to detect 2" village sub-community graph, then
input 2" sub-community graph dataset "SUB-2.TXT" and 10
village community graphs datasets from "V1.TXT" to
"V10.TXT" to the algorithm and shown in "Fig. 16". The
village community graphs V1, V3, V4, V7, and V8 have
successfully detected the 2" sub-community graph which is
shown from "Fig. 17" to "Fig. 22" respectively.
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Fig. 21. Detected community graph V7’s adjacency
matrix.

Fig. 17. 2nd village sub-community adjacency matrix.
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Fig. 22. Detected community graph V8’s adjacency
matrix.

E. Example-11 (Dolphin Network)

The dolphin social network has 62 dolphins and there is a
frequent association among them, compiled by Lusseau et al.
[8]. The 62 dolphins are divided into four communities such
as Cl1, C2, C3, and C4. The communities C1, C2, C3, and C4
have dolphins’ codes from 1 to 20, 1 to 7, 1 to 15, and 1 to 20
respectively and shown in "Fig. 23".

1 1 & I 1

2 1 ¢ 1 I 1

4 & 1 ] 1 ]

o e & L] o 1 I 1

(i) (1i)

Fig. 24. (i) 1st dolphin sub-community graph. (ii) 1st
dolphin sub-community adjacency matrix.

The authors wish to detect two dolphin sub-community
graphs in the dolphin network shown in "Fig. 24" and "Fig.
25" respectively. The path of the 1% dolphin sub-community
graph is 1-2-4-6-7 with no cycle i.e., the 1¥ and last dolphin
nodes are different. Having no cycle exists in the dolphin
sub-community graph; its existence in a dolphin community
graph can have only one cycle. Such dolphin community
graphs can be considered as the presence of the input dolphin
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sub-community graph. So the dolphin community graph
which contains the dolphin sub-community graph having
more than one cycle must not be considered. Hence, the 1°
dolphin sub-community graph has successfully detected in
dolphin community graphs shown in "Fig. 26". But the 1%
dolphin sub-community graph with path 1-2-4-6-7 in dolphin
community graph C2 has three cyclesi.e., 2-4-6-2, 2-4-6-7-2,
and 2-6-7-2 respectively. Hence dolphin community graph C2
has been rejected.

- 2] s |8 |10 |13
° ° k] 0 1 0 0 1
5 1 0 1 0 0
° ° g 0 1 0 1 0
° 10 0 0 1 0 1
13 1 0 0 1 0

(i) (i)

Fig. 25. (i) 2nd dolphin sub-community graph. (ii) 2nd
dolphin sub-community adjacency matrix.

Fig. 26. 1st dolphin sub-community graph detected in
communities C1, C3, and C4.
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Fig. 27. 2nd dolphin sub-community graph detected in
communities Cland C4.

Published By:

WWW.IJEAT.ORG,

& Sciences Publication

Exploring Innovation



Detection of Sub-Community Graph in N-Community Graphs using Graph Mining

Similarly, to detect the 2" dolphin sub-community graph
has path 3-5-8-10-13-3 with a cycle i.e., the 1% and the last
dolphin nodes are the same. Having a cycle exists in the
dolphin  sub-community graph; such a dolphin
sub-community graph’s existence in a dolphin community
graph can have 2 cycles. Such a dolphin community graph can
be considered as the presence of the input dolphin
sub-community graph with a cycle. The dolphin
sub-community graph having more than 2 cycles in a dolphin
community graph must not be considered. So, the 1% dolphin
sub-community graph 3-5-8-10-13-3 has successfully
detected in dolphin community graphs C1and C4 and shown
in "Fig. 27".

F. Datasets

Four dolphin community dataset files from "DCL1.TXT" to
"DCA4.TXT", and two dataset files of dolphin sub-community
"DSUB-1.TXT" and "DSUB-2.TXT" were created by the
authors. The dataset files "DC1.TXT", "DSUB-1.TXT", and
"DSUB-2.TXT" are shown from "Fig. 28" to "Fig. 30".

Dolphin Community Number 4+——f |
Total Number of Dolphins +—] 20
Dolphin Numbers +—j 1 2

w
=
»
¥

b L B bd b
+

W b

From Dolphin Numbers
sraquinp] mpdgoeg o,

B b de Lo La L
-

Fig. 28. Dataset of dolphin community C1.

Total Number of Dolphin: +—] 5
Delphin Nambers R

§ o 4= b2 R

From Dolphin Numbers To Dolphin Numbers

ol B e e

Fig. 29. Dataset of 1st dolphin sub-community graph.

Total Number of Dolphins 4—
Dolphin Numbers 4+——
13

.8,\ To Dolphin Numbers

From Delphin Numbers

R

Fig. 30. Dataset of 2nd dolphin sub-community graph.

G. Result-1
Enter Total Number of Dolphin Commumity Graphs : 4

Enter Dolphin Community Data File Mame-1 @ DC1.TXT

Enter Dolphin Community Data File Name-Z @ DC2.TXT
Enter Dolphin Community Data File Name-3 @ DC3.TXT

: DC4.TXT

Enter Dolphin Community Data File Name-4

Enter Dolphin Sub-Community Data File Name For Detection @ DSUB-1.TXT

Fig. 31. The input of datasets of 4 dolphin community
graphs and 1st dolphin sub-community graph.

To detect the 1* dolphin sub-community graph in the
dolphin community graph, then input the 1% dolphin
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sub-community graph dataset "DSUB-1.TXT" and 4 dolphin
community graphs datasets from "DC1.TXT" to "DC4.TXT"
to the algorithm which is shown in "Fig. 31". The adjacency
matrix of the 1 dolphin sub-community graph’s adjacency
matrix has been detected successfully in the adjacency
matrices of dolphin community graphs C1, C3, and C4 and
shown from "Fig. 32" to "Fig. 35".

Dolphin Sub-Community Ad jacency Matrix

Fig. 32. The adjacency matrix of the 1st dolphin
sub-community graph.

Dolphin C1's Community Adjacency Matrix
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Fig. 33. Detected dolphin community graph C1’s
adjacency matrix.

Dolphin €3's Community Adjacency Matrix
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Fig. 34. Detected dolphin community graph C3’s
adjacency matrix.
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Dolphin C4’s Community Adjacency Matrix
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Fig. 35. Detected dolphin community graph C4’s
adjacency matrix.

H. Result-11
Enter Total Mumber of Dolphin Community Graphs @ 4

Enter Dolphin Commuunity Data File Mame-1 : DC1.TXT
Enter Dolphin Community Data File Mame-Z : DCZ.TXT
Enter Dolphin Community Data File Mame-3 : DC3.TXT

Enter Dolphin Commwnity Data File Mame-4 : DC4.TXT

Enter Dolphin Sub-Community Data File Name For Detection : DSUB-2.TXT

Fig. 36. The input of datasets of 4 dolphin community
graphs and 2nd dolphin sub-community graph.

Dolphin Sub-Community Ad jacency Matrix

Fig. 37. The adjacency matrix of the 2nd dolphin
sub-community graph.

Dolphin C1’s Community Ad jacency Matrix
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Fig. 38. Detected dolphin community graph C1’s
adjacency matrix.
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Dolphin C4’s Community Adjacency Matrix
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Fig. 39. Detected dolphin community graph C4’s
adjacency matrix.

Similarly, for the detection of the 2™ dolphin
sub-community graph in the dolphin community graph, the
authors have input 2" dolphin sub-community graph dataset
"DSUB-2.TXT" and 4 dolphin community graphs datasets
from "DC1.TXT" to "DC4.TXT" to the algorithm and shown
in "Fig. 36". Then the adjacency matrix of the 2" dolphin
sub-community graph has been detected successfully in the
adjacency matrix of dolphin community graph C1 and C4 and
shown from "Fig. 37" to "Fig. 39".

The algorithm was written in the C++ programming
language and compiled in TurboC++ compiler. The
experiment was run on MS-Windows 7 OS with Intel Core
15-3230M CPU + 2.60 GHz Laptop.

V. CONCLUSION

The authors have extended the earlier proposed algorithm
for the detection of a sub-community graph in ‘n’ numbers of
community graphs. Its literature survey, example, and the
algorithm can be found in [13]. A village community graph
and a benchmark dolphin network have been considered as
examples for the detection of sub-community graphs. In both
cases, the results have been found satisfactory.
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