
	 1	

A Design of Book Rating Database

Final Project Report

Pu Du
Tianyi Zhang
Pengfei Pan

Min Cui

CSC 4402 Spring 2017
Louisiana State University

April 24, 2017

	 2	

Table of Contents

1. Introduction……………………..………………………………………...3

2. E-R Diagram and Domain Analysis……………………………...……...3

2.1 E-R Diagram…………………………………………………………...3
2.2 Domain Analysis……………………………………………………….4

	
3. Implementation of SQL Queries…………………………………………5

APPDENDIX: tables.sql ... 13
	

	 3	

1. Introduction

In this project, we design a database of Books, which contains the relationship

between books and users, books and authors, books and publishers, books ratings
and users. This database can help us to find out the most popular books, the locations
and the authors and the publishers of the popular books, the popular books in a
specific age, and others related to popular books.

In this database, book crossing dataset is collected by Cai-Nicolas Ziegler in a 4-
week crawl from [bookcrossing.com](https://www.bookcrossing.com/). It contains
1,149,780 ratings of 271,379 books by 278,858 users. This dataset has too much
information, so we use the modified datasets, which contains enough information
but more clear.

2. E-R Diagram and Domain Analysis

In order to make our database more clearly and useful, we just put the essential

information in one table. We create five tables: books, users, Authors, publishers,
and book_ratings.

2.1 E-R Diagram

Each table has one primary key for identifying entities and accessing records
from other tables. Also, the corresponding attributes are showed in the below E-R
diagram. In order to select the result we are interested in, we have to know how all
these entities are related. The attributes of these tables are presented as follows:

Books: ISBN, Book_title, Author_ID, Year_of_Publication

Users: User_ID, Location, Age

Book-ratings: User_ID, ISBN, rating

Authors: Author_ID, Name, Phone, Gender, Address

Publishers: Publisher_ID, Name, Phone, Address, Website

where the primary keys are underlined for emphasis.

	 4	

Fig. 1 E-R diagram for the database of book-rating

2.2 Domain Analysis

1. Table Books:

ISBN: the set of all text strings

Book_Title: the set of all text strings

Author_ID: the set of all integer values

Year_Of_Publication: the set of all integer values

Publisher_ID: the set of all integer values

2. Table Users:

User_ID: the set of all integer values

Location: the set of all text strings

Age: the set of all integer values

3. Table Book-rating:

	 5	

ISBN: the set of all text strings

User_ID: the set of all integer values

Rating: the set of all integer values

Author_ID: the set of all integer values

4. Table Authors:

Name: the set of all text strings

Phone: the set of all integer values

Gender: the set of all text strings

Address: the set of all text strings

5. Table Publishers:

Publisher_ID: the set of all integer values

Name: the set of all text strings

Phone: the set of all integer values

Address: the set of all text strings

There are no other specific constraints about the domain. And we assume that a book only has
one first author.

3. Implementation of SQL Queries

 (1). "#Total users, total authors, total authors and total books". (This query
implement “count” aggregation function.)

select count(*)
from users;
select count(*)
from authors;
select count(*)
from publishers;
select count(*)

	 6	

from books;

(2). "#select ISBN with at least 1 full score of review"

select distinct ISBN
from book_ratings
where rating=10;

…..
(3). "#Find the number of books with rating > 4 and users in USA." (This query

implements natural join, string operations, “count” aggregation function.)

select count(ISBN)
from users natural join book_ratings
where rating>4 and location like '%usa%' and rating>4;

	 7	

(4). "#Find the average rating of books with the age of user is from 30 to 50." (This
query implements natural join, “avg” aggregation function.)

select avg(rating)
from users natural join book_ratings
where age>30 and age<50;

(5). "#Find the number of users in each location with book rating>8." (This query
implements natural join, “count” aggregation function, group by, order by)

select location, count(u.user_id)
from users natural join book_ratings
where rating>8
group by location
order by location;

……

(6). "#Find the author’s name and book_title which is published after 2010." (This
query implement natural join, order by)

select name, book_title
from authors natural join books
where year_of_publication>2010
order by name;

	 8	

(7). "#Find the author’s name with book rating =10." (This query implements
natural join.)

select a.name
from authors natural join books natural join book_ratings
where rating=10;

……..

	 9	

(8) "Find the book_title, publication’s name and rating of book which is published
after 2010." (This query implements natural join, order by)

select book_title, p.name, r.rating
from books natural join book_ratings natural join publishers
where year_of_publication>2010
order by rating;

……

 (9). "#select the books whose rating is grater than 5 , published by author id =
2,order by rating." (This query implements natural join, descent order.)

Select distinct Book_Title ,Rating,Year_Of_Publication
From books natural join authors natural join book_ratings
Where Author_ID =2 and Rating>5
order by Rating desc;

	 10	

	
(10). "# find the books rating and the users information." (This query implements
natural join.)

Select Book_Title, Rating, users.User_ID, Location, Age
From books natural join book_ratings natural join users
Where books.ISBN = 0001846086;
	

	
(11). "# find the user 1838 rated books and rating." (This query implements natural
join.)

Select User_ID, Book_Title,rating
From book_ratings natural join books
Where User_ID =1838 ;

	

	 11	

(12) "# find what age of user is likely to give high ratings." (This query implements
natural join, group by, order by, desc)

Select Age,avg(Rating)
From book_ratings natural join users
Where book_ratings.User_ID = users.User_ID
Group by Age
order by avg(Rating) desc;

…..
(13) "# Find books published after 2000."

select Book_Title
from books
where Year_Of_Publication > 2000;

…..

	 12	

(14) "# Order the average score of rated book". (This query implements group by ,
“avg” aggregation function.)

select ISBN, avg(rating)
from book_ratings
group by ISBN
order by avg(rating) desc;

…..

	 13	

APPDENDIX: tables.sql

Create Table books
drop table if exists books;
create table books
(ISBN varchar(13),
Book_Title varchar(255),
Author_ID int(11),
Year_Of_Publication int(10),
Publisher_ID int(11),
primary key (ISBN),
foreign key (Author_ID) references authors(Author_ID),
foreign key (Publisher_ID) references publishers(Publisher_ID)
);

Create Table users
drop table if exists users;
create table users
(User_ID int(11),
Location varchar(255),
Age int(11),
primary key (User_ID));

Create table Book_Ratings
drop table if exists book_ratings;
create table book_ratings
(User_ID int(11),
ISBN varchar(13),
Rating int(11),
primary key (User_ID, ISBN),
foreign key (User_ID) references users(User_ID),
foreign key (ISBN) references books(ISBN)
);

Create table Authors
drop table if exists authors;
create table authors
(Author_ID int(11),
Name varchar(255),
Phone int(10) Default NULL,

	 14	

Gender varchar(1) Default NULL,
Address varchar(255) Default NULL,
primary key (Author_ID));

Create table Publishers
drop table if exists publishers;
create table publishers
(Publisher_ID int(11),
Name varchar(255),
Phone int(10) default NULL,
Address varchar(255) default NULL,
primary key (Publisher_ID));

Github repo of this project:	https://github.com/ipudu/book-rating-database

