
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

856

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8018049420/2020©BEIESP
DOI: 10.35940/ijeat.D8018.049420
Journal Website: www.ijeat.org


Abstract: There are many software architecture recovery

techniques which has been discovered which automatically
recover software architecture from the software implementation.
In this project we will propose a research approach for comparing
different software architecture recovery techniques. A dependency
(code dependency) is a file that something you are trying to install
requires. It can be a library of a third-party organization. These
dependencies effect the application but it is very hard to make any
software without using these external dependencies. But these
code dependencies have some disadvantages too. Firstly, we will
specify about the code dependencies and their impact on software
design. Then we will describe some software architecture recovery
techniques. We will take a project (Bash) as our research base and
we will apply these recovery techniques to the project. We will use
some software testing tools to compare these algorithms (software
recovery techniques) with each project.

Keywords: Software engineering, clustering algorithm,
dependency, architecture, ground-truth.

I. INTRODUCTION

Software architecture: It is the set of structures required to
know about the system which also includes elements of
software, their properties and relationships among them
Importance of software architecture:
 Communication among stakeholders: Software

architecture representations helps stakeholders to
involve in communication who have an idea about
developing systems which are computer based.

 Early design decisions: Architecture gives much
importance to early decisions on design which has a
much greater impact on the upcoming work on
software engineering.

 Graspable model: IT (software architecture) include a
possible graspable model of entities working together
along with system that is structured

Revised Manuscript Received on April 25, 2020.
* Correspondence Author

Prathamesh Borhade*, Computer science and engineering, Vellore
Institute of Technology, Vellore, India. Email:
prathamesh.borhade29@gmail.com

Rajvardhan Deshmukh, Computer science and engineering, Vellore
Institute of Technology, Vellore, India. Email: rajvardhan1999@gmail.com

Rishav Agarwal, Computer science and engineering, Vellore Institute of
Technology, Vellore, India. Email: rishavagarwal2717@gmail.com

Samridhi Murarka, Computer science and engineering, Vellore
Institute of Technology, Vellore, India. Email: samridhi.m98@gmail.com

Debajit Datta, Computer science and engineering, Vellore Institute of
Technology, Vellore, India. Email: debajit.datta2000@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

A. Layers of software architecture:

Presentation layer: User interface is the first layer of
software application. It translates works and the outcomes
into those which users understands easily.

Application layer: This layer involves in activities like
commands processing, calculations evaluation, decisions
which are logical. It acts as an intermediate between the
other two layers.
Data layer: The lowest layer of the architecture. Database
helps in storing and getting all the details. Then these details
are reverted back for evaluation to logical layer and then to
user.

B. Code dependencies

Dependency is a broad software engineering term used to
refer when a piece of software relies on another one. The
extent to which one module depends on other is called a
dependency. Program X uses Library Y.
Mainly there are two types of code dependencies:
Include dependencies (Internal dependencies): The
include dependencies include the header files of the program
through which we import some main functionalities of the
program.
Ex: #include<stdio.h>.
Symbol dependencies (External dependencies): These are
the dependencies between activities of a project and outside
the project which have to be included in the schedule of a
project. They include the dependency between the code files
which we use in the software. We show them using
dependency graphs. A project consists of many files in which
many files will be dependent on the other code files. We can
view them as a tree concept in such a way that the subtrees or
the children of the previous nodes depend on their parent node
which has the main functionality. The code dependencies
mentioned show a great impact on architecture recovery
techniques. Software architecture recovery techniques help in
getting back the original ground truth architecture of the
software which was setup by the developers while
implementing the software.

II. RELATED WORKS

[1] This paper compared several architecture recovery
techniques based on their effectiveness and applicability. This
paper introduces the recovery of basic versions of
ground-truth architecture using a new module-based
technique. This paper also concludes the importance of
accuracy of code dependencies used for recovering software
architecture. [2]

Software Architecture Recovery Techniques

Rajvardhan Deshmukh. Prathamesh Borhade, Samridhi Murarka, Rishav Agarwal, Debajit
Datta

mailto:samridhi.m98@gmail.com
mailto:debajit.datta2000@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D8018.049420&domain=www.ijeat.org

Software Architecture Recovery Techniques

857

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8018049420/2020©BEIESP
DOI: 10.35940/ijeat.D8018.049420
Journal Website: www.ijeat.org

The authors of this paper in their research developed and
implemented a scalable and precise tool that could precisely
extract code dependencies of software projects written in
C/C++.This tool helps in identifying the dependencies which
are inconsistent in nature.

This tool helps the developers to perform large-scale
refactoring tasks.[3] Igor Ivkovic and Nenad Medvidovic in
their paper used the ground-truth architecture as the basis for
comparative analysis of different software recovery
techniques. They have assessed several recovery techniques
using different metrics to identify the components and
structure of a system architecture. This paper identifies
several paths for further exploration in software architecture
recovery. [4] Ivo Krka and Chris Mattmann in e their paper
presented their experiences in recovering the ground -truth
architecture of open source systems namely Chromium,
Hadoop, ArcStudio and Bash.Their study focuses on the
feasibility of obtaining system ground truth architecture for
large systems. [5] Zhihua Wen and Vassilios Tzerpos in their
research paper introduced an effective measure for software
clustering algorithms based on MoJo distance. This paper also
explains the vibrant features of MoJoFM. MoJoFM is a
distance metric for software clustering. The evaluation of the
similarity between two different decompositions of the system
software is usually performed using this distance metric. [6]
Mark Shtern and Vassilios Tzerpos in their research paper
discuss the challenges faced during the evaluation of the
effectiveness of several software clustering algorithms. This
paper introduces a novel set of indicators that are used to
evaluate the effectiveness. The goal of this research paper is
to study the reasons for the discrepancies in MoJoFM. [7]
This paper discusses new hybrid algorithms used for software
clustering such as basicMQ and TurbboMQ. This paper
compares the stability and feasibility of the algorithms.

III. FRAMEWORK MODEL

If you are using Word, use either the Microsoft Equation
Editor or the MathType add-on (http://www.mathtype.com)
for equations in your paper (Insert | Object | Create New |
Microsoft Equation or MathType Equation). “Float over text”

should not be selected.

A. Approach

 Extract the dependencies of the project.
 Give these dependencies as input to the recovery

techniques (algorithms).
 Algorithms to be used: ACDC, WCA, LIMBO.
 Get the subsystems of the entire software system through

these algorithms as output.
 Compare the results with the results of the k means

clustering technique.

B. Extraction and visualization of code dependencies

For extracting and visualizing the code dependencies from
the code bases, we’re going to use a software called

“Softagram”. It is mainly used for extracting the code

dependencies of mainstream languages such as C, C++, C#,
Java, JavaScript, Python and PHP. This software collects
metrices like LOC and commit counts to help identifying
bottlenecks. It provides UI for displaying the code

dependencies. This software has a feature called as “Internal

dependency view” which displays how the repositories are

dependent on each other.

Figure. 1 Code dependency graph of the project

“Fuchsia” by Google

C. Figures and Tables

1. K means clustering

It is a clustering technique. It groups modules in a
mathematical way by considering the centroid of the
modules which we want to cluster. K means can do
clustering at central and hierarchical level. Central level-
clustering between the different modules. Hierarchical level
– clustering within the modules. As shown in the picture at
first the data sets or modules are considered to be placed on a
2d plane and two centroids or mean values are placed
randomly on the plane. Then a Euclidean line is considered
in which the data sets which are on the either side of that line
are assumed to be closer to the centroids which are present
on those respective sides.

The mean of these data sets is taken and a new centroid
will be formed and thus the centroid position changes
making it closer to those particular data sets on one side of
that Euclidean line. This similar procedure is followed for
the data sets on other side of that line. Now again a Euclidean
line is considered and the data sets which are on the either
side of that line are assumed to be closer to the new centroids
which are present on those respective sides. Hence the
location of centroid changes again and it becomes closer to
those sets. The whole procedure is continued until the
number of data sets which were found in last but first
iteration and the last iteration are equal. This is the way in
which the k means algorithm is used in making clusters.

2. ACDC (Algorithm for Comprehensive Driven
clustering)

It’s a technique for software clustering and hence it is used

in decomposing large software systems into subsystems. It
gives clusters which follow commonly occurring patterns
while decomposing large software systems. It follows a
pattern driven approach. It identifies the interaction between
the entities (procedures and variables). It creates clusters with
limited number of objects. The grouped clusters help in better
understanding of a program.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

858

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8018049420/2020©BEIESP
DOI: 10.35940/ijeat.D8018.049420
Journal Website: www.ijeat.org

Some ways through which subsystem patterns can be derived
through clustering are: In a source file, set of procedures and
variables can be combined to form a cluster. Clustering based
on pattern of source files. A set of independent files
functioning on a purpose which is similar. Supporting
libraries pattern. Set of procedures accessed by majority of
subsystems. The ACDC recovery technique maintains the
system’s decomposition as the system evolves Why K Means
does not show better results when compared to ACDC
algorithm?

K means algorithm works best with limited data
sets(modules). But if the there are many data sets, the whole
graph becomes messy. Software systems contain many
modules and its dependency graph is too messy. So,
it(k-means) will be unable to differentiate between the
clusters. Hence k means does not show better results when
compared to ACDC algorithm.

3. LIMBO Algorithm

It is a hierarchical clustering algorithm. It gives the data’s

reduced model on which clustering is performed. A group of
objects are summarized in a dcf. Then by following the
scalable bottleneck algorithm a dcf tree is built by clustering
child dcf’s. All the clustered data sets(summary) will be in the

leaf nodes dcf’s. The intermediate nodes include only those

which are emerged by combining those dcf nodes which are
children to them.

Figure. 2 Working of LIMBO algorithm

4. Weighted Combined Algorithm

Weighted combined algorithm is a hierarchical clustering
technique which is based on the code dependencies. This
algorithm measures the distance between the cluster of the
software entities and then groups them based on their cluster
distance. The algorithm proceeds with single cluster which
has an associated feature vector. The cluster distance is
calculated for all the clusters and the clusters which are
similar are merged or grouped together. Here, the user defines
the specific number of clusters to be grouped. The process
continues until the algorithm reaches the number of clusters
specified by the user.

IV. DISCUSSION

MoJoFM: MoJoFM is a distance metric for software
clustering. The evaluation of the similarity between two
different decompositions of the system software is usually
performed using this distance metric. The software resources
are basically divided into sets. These sets are further divided

into partitions. MoJoFM metric calculates the partition
distance of these sets. From the table given below, we can
observe that the include dependencies dominantly improve
the accuracy of the recovered architecture over symbol
dependencies except for ACDC.

Table 1. MoJoFM results for Bash
Algorithm Include

dependencies
Symbol

dependencies
Transitive

dependencies
Functional

dependencies

ACDC 51 56 37 48

WCA-UE 33 23 23 28

LIMBO 33 26 26 21

K-means 58 54 48 46

Architecture-to-Architecture (a2a): a2a measures the
distance between the two architectures. Given below are the
a2a results of the Bash project. From this table we can
conclude that the combination of systems and techniques
which use these dependencies rely more on symbol
dependencies than on include dependencies. It can be
observed that K-means show greatest improvement when it
uses symbol dependencies compared to include
dependencies. WCA-UE follows K-means in this aspect.

Table 3. a2a results for Bash
Algorithm Include

dependencies
Symbol

dependencies
Transitive

dependencies
Functional

dependencies

ACDC 64 79 79 40

WCA-UE 64 80 80 39

LIMBO 62 78 78 37

K-means 66 83 83 40

Normalized Turbo Modularization Quality: Based on
the dependencies, the cohesion and organization clusters
quality are measured using the metric called “TurboMQ”.

Here we can see that the TurboMQ scores of the symbol
dependencies are greater than that of include dependencies.
This clearly depicts that the symbol dependencies assist
software recovery techniques obtain architecture with better
cohesion than the include dependencies

Table 3. TurboMQ results for Bash
Algorithm Include

dependencies
Symbol

dependencies
Transitive

dependencies
Functional

dependencies

ACDC 8 21 5 28

WCA-UE 0 6 6 9

LIMBO 7 12 7 6

K-means 0 16 5 13

Comparison of software architecture recovery algorithms
with baseline algorithms

Here, we will be comparing ACDC, WCA and LIMBO
algorithms with K-means (a simple unsupervised machine
learning algorithm). From the table given below, we can
conclude that the only algorithm to produce consistently
better results than K-means is ACDC. In the above
comparison, we have taken all the metrics into consideration.

Software Architecture Recovery Techniques

859

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8018049420/2020©BEIESP
DOI: 10.35940/ijeat.D8018.049420
Journal Website: www.ijeat.org

WCA and LIMBO always gave worst results when compared
to K-means.

Table 4: Wilcoxon Signed Rank for Each Algorithm
When Compared to K-Means

Metrics ACDC WCA-UE LIMBO

MoJoFM <.001 <.001 <.001

a2a .42 .11 <.001

TurboMQ <.001 <.001 <.001

V. CONCLUSION

The paper explains the basic structure of the software
architecture and how its individual components are dependent
of different types of dependencies such as include
dependencies and symbol dependencies. We also study the
different factors which affect the accuracy and efficiency of
the recovery techniques. In order to measure the impact of
dependencies on software architecture recovery techniques,
we have used certain metrics such as MoJoFM and
Normalized TurboMQ. This paper compares the efficiency of
three different software recovery techniques namely, ACDC
(Algorithm for Comprehensive Driven Clustering), LIMBO
and WCA (Weighted Combined Algorithm). We have taken
K-means as the baseline algorithm for the comparison.
Generally, most of the recovery techniques extracted better
ground truth architecture when using symbol dependencies
compared to include dependencies. There are many other
metrics that can be used to compare the efficiency of these
recovery techniques which significantly makes some room for
more research and exploration. There are some architecture
recovery techniques which might perform better than ACDC
which also makes some room for further exploration and
research. The research can also be done on the software
architecture recovered by these techniques by making use of
some parameters.

REFERENCES

1. “Comparing software architecture recovery techniques using accurate
dependencies” by Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin

Tan, Derek Rayside.
2. “Generating Precise Dependencies for Large Software” by Pei Wang,

Jinqiu Yang, Lin Tan, Robert Kroeger, and David Morgenthaler.
3. “A Comparative Analysis of Software Architecture Recovery

Techniques” by Igor Ivkovic and Nenad Medvidovic..
4. “Obtaining Ground-Truth Software Architectures” by Ivo Krka and

Chris Mattmann.
5. “An effectiveness measure for software clustering algorithms” by

Zhihua Wen and Vassilios TzerposJ.
6. “Refining Clustering Evaluation Using Structure Indicators” by Mark

Shtern and Vassilios Tzerpos.
7. “Clustering of Software Systems using New Hybrid Algorithms” by Ali

Safari Mamaghani and Mohammad Reza Meybodi.

AUTHORS PROFILE

Prathamesh Borhade is a third-year undergraduate

pursuing computer science and engineering from Vellore
institute of technology. He is a machine learning
enthusiast and an aspiring data scientist currently working
at Samsung Prism Project. He has also worked at Rapid

Circle as a Machine Learning Intern. Email:
prathamesh.borhade29@gmail.com

 Rajvardhan Deshmukh is currently pursuing his
B.Tech in Computer Science and Engineering from
Vellore Institute of Technology, Vellore, India. He is a
full stack web-developer with an industrial experience in
Pune Municipal Corporation. He is also a Data Science

and Machine Learning enthusiast and has done several projects based on it
during his three years in college. He is the Projects Head of IEEE Computer
Society, Vellore and has been actively participating in several Hackathon.
He has also conducted a few Hackathons at the university level. Email:
rajvardhan1999@gmail.com

Rishav Agarwal is in third-year. He has developed

several projects in the platform of Web Developement.
Recently, he's been involved in the field of Data Sciences.
He has been an active part of several chapters like IEEE-
Computer Society and also been performing as part of the

VIT Dance Club. Email: rishavagarwal2717@gmail.com

Samridhi Murarka, is currently a third year

undergraduate student pursuing Computer Science from
Vellore Institute of Technology, Vellore. She is a UI/UX
designer. She is an active IEEE Computer Society
member and has led the media and design for the

community in several events. She has a passion for integration of technology
and business. She is currently researching more on Natural Language
Processing and has developed an extractive summarizer as a part of a team of
4 members. Email: samridhi.m98@gmail.com

Debajit Datta is currently a third-year undergraduate

pursuing Computer Science and Engineering from
Vellore Institute of Technology, Vellore. He is an
experienced front-end developer with experience of
working in the non-profit organization management

industry. He has been an active member of the clubs and chapters in the
university and has participated is several hackathons at university level. He
has been an active member of Developers Student Clubs VIT, a student
chapter powered by Google Developers Group and Venturesity VIT, a
student chapter. He has industrial exposures from five different industrial
internships within the three years of B. Tech. He has also presented a
research paper at ic-ETITE’20 conference organized by IEEE and supported

by ACM. Email: debajit.datta2000@gmail.com
.

mailto:prathamesh.borhade29@gmail.com
mailto:rajvardhan1999@gmail.com
mailto:rishavagarwal2717@gmail.com
mailto:samridhi.m98@gmail.com

