Representing COVID-19 information in collaborative knowledge graphs: the case of Wikidata

Houcemeddine Turkia,b(ORCID: 0000-0003-3492-2014), Mohamed Ali Hadj Taiebb(ORCID: 0000-0002-2786-8913), Thomas Shafeec(ORCID: 0000-0002-2298-7593), Tiago Lubianad(ORCID: 0000-0003-2473-2313), Dariusz Jemielniake(ORCID: 0000-0002-3745-7931), Mohamed Ben Aouichab(ORCID: 0000-0002-2277-5814), Jose Emilio Labra Gayof(ORCID: 0000-0001-8907-5348), Eric A. Youngstromg(ORCID: 0000-0003-2251-6860), Mus’ab Banath(ORCID: 0000-0001-9132-3849), Diptanshu Dasi(ORCID: 0000-0002-7221-5022), Daniel Mietchenj,[footnoteRef:0]*(ORCID: 0000-0001-9488-1870), on behalf of WikiProject COVID-19[footnoteRef:1] [0: * Corresponding author. E-mail: dm7gn@virginia.edu.]  [1:  Project members: Jan Ainali, Susanna Ånäs, Erica Azzellini, Mus’ab Banat, Mohamed Ben Aouicha, Alessandra Boccone, Jane Darnell, Diptanshu Das, Lena Denis, Rich Farmbrough, Daniel Fernández-Álvarez, Konrad Foerstner, Jose Emilio Labra Gayo, Mauricio V. Genta, Mohamed Ali Hadj Taieb, James Hare, Alejandro González Hevia, David Hicks, Toby Hudson, Netha Hussain, Jinoy Tom Jacob, Dariusz Jemielniak, Krupal Kasyap, Will Kent, Samuel Klein, Jasper J. Koehorst, Martina Kutmon, Antoine Logean, Tiago Lubiana, Andy Mabbett, Kimberli Mäkäräinen, Tania Maio, Bodhisattwa Mandal, Nandhini Meenakshi, Daniel Mietchen, Nandana Mihindukulasooriya, Mahir Morshed, Peter Murray-Rust, Minh Nguyễn, Finn Årup Nielsen, Mike Nolan, Shay Nowick, Julian Leonardo Paez, João Alexandre Peschanski, Alexander Pico, Lane Rasberry, Mairelys Lemus-Rojas, Diego Saez-Trumper, Magnus Sälgö, John Samuel, Peter J. Schaap, Jodi Schneider, Thomas Shafee, Nick Sheppard, Adam Shorland, Ranjith Siji, Michal Josef Špaček, Ralf Stephan, Andrew I. Su, Hilary Thorsen, Houcemeddine Turki, Lisa M. Verhagen, Denny Vrandečić, Andra Waagmeester, and Egon Willighagen.] 

a Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
b Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
c La Trobe University, Melbourne, Victoria, Australia
d Computational Systems Biology Laboratory, University of São Paulo, São Paulo, Brazil
e Department of Management in Networked and Digital Societies, Kozminski University, Warsaw, Poland
f Web Semantics Oviedo (WESO) Research Group, University of Oviedo, Spain
g Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB #3270, Davie Hall, Chapel Hill, NC 27599-3270, United States of America
h Faculty of Medicine, Hashemite University, Zarqa, Jordan
i Institute of Child Health (ICH), Kolkata, India
i Medica Superspecialty Hospital, Kolkata, India
j School of Data Science, University of Virginia, Charlottesville, Virginia, United States of America

Abstract. Information related to the COVID-19 pandemic ranges from biological to bibliographic, from geographical to genetic and beyond. The structure of the raw data is highly complex, so converting it to meaningful insight requires data curation, integration, extraction and visualization, the global crowdsourcing of which provides both additional challenges and opportunities. Wikidata is an interdisciplinary, multilingual, open collaborative knowledge base of more than 90 million entities connected by well over a billion relationships. It acts as a web-scale platform for broader computer-supported cooperative work and linked open data, since it can be written to and queried in multiple ways in near real time by specialists, automated tools and the public. The main query language, SPARQL, is a semantic language used to retrieve and process information from databases saved in Resource Description Framework (RDF) format. 
Here, we introduce four aspects of Wikidata that enable it to serve as a knowledge base for general information on the COVID-19 pandemic: its flexible data model, its multilingual features, its alignment to multiple external databases, and its multidisciplinary organization. The rich knowledge graph created for COVID-19 in Wikidata can be visualized, explored and analyzed for purposes like decision support as well as educational and scholarly research.
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1.  Introduction
The COVID-19 pandemic is complex and multifaceted and touches on almost every aspect of current life [1]. Coordinating efforts to systematize and formalize knowledge about COVID-19 in a computable form is key in accelerating our response to the pathogen and future epidemics [2]. There are already attempts at creating community-based ontologies of COVID-19 knowledge and data [3], as well as efforts to aggregate expert data [4]. Many open data initiatives have been started spontaneously [5-7]. The interconnected, multidisciplinary, and international nature of the pandemic creates both challenges and opportunities for using knowledge graphs [2-5, 8-12]. However, there have been no systematic studies of crowd-sourced knowledge graph generation by spontaneous groups of self-coordinated users, under the pressure of rapidly occurring phenomena, such as the pandemic. Our paper fills this gap.
For applications of knowledge graphs in general, common challenges include the timely assessment of the relevance and quality of any piece of information with regards to the characteristics of the graph and the integration with other pieces of information within or external to the knowledge graph.  Common opportunities are mainly related to leveraging such knowledge graphs for real-life applications, which in the case of COVID-19 could be, for instance, outbreak management in a specific societal context or education about the virus or about countermeasures [2-5, 8-12]. While this manuscript as a whole emphasizes the opportunities, we think it is worthwhile to highlight some of the challenges early on.
1.1. [bookmark: _heading=h.irum2l8i8dk0]COVID-19 data challenges
The integration of different data sources always poses a range of challenges [13], for example in terms of interoperability (e.g. differing criteria for COVID-19 deaths across jurisdictions), granularity (e.g. number of tests performed per jurisdiction and time period), quality control (e.g. whether aggregations of sub-national data fit with national data), data accessibility (e.g. whether they are programmatically and publicly accessible, and under what license) or scalability (e.g. how many sources to integrate, or how often to sync between them).
Integrating COVID-19 data presents particular challenges: First, human knowledge about the COVID-19 disease, the underlying pathogen and the resulting pandemic is evolving rapidly [14], so systems representing it need to be flexible and scalable in terms of their data models and workflows, yet quick in terms of deployability and updatability. Second, COVID-19-related knowledge, while very limited at the start of the pandemic, was still embedded in a broader set of knowledge (e.g. about viruses, viral infections, past disease outbreaks and interventions), and these relationships - which knowledge bases are meant to leverage - are growing along with the expansion of our COVID-19 knowledge [15]. Third, the COVID-19 pandemic has affected almost every aspect of our globalized human society, so knowledge bases capturing information about it need to reflect that. Fourth, despite the disruptions that the pandemic has brought to many communities and infrastructures [1], the curated data about it should ideally be easily and reliably accessible for humans and machines across a broad range of use cases [16].
1.2. [bookmark: _heading=h.p1otv54biogg]Organization of the manuscript
In this research paper, we report on the efforts of the Wikidata community (including our own) to meet the COVID-19 data challenges outlined in the previous section by using Wikidata as a platform for collaboratively collecting, curating and visualizing COVID-19-related knowledge at scales commensurate with the pandemic. While the relative merits of Wikidata with respect to other knowledge graphs have been discussed previously [17-19], we focus on leveraging the potential of Wikidata as an existing platform with an existing community in a timely fashion for an emerging transdisciplinary application like the COVID-19 response. 
As active editors of Wikidata, the authors have contributed a significant part of that data modelling, usage framework and crowdsourcing of the COVID-19 information in the knowledge graph since the beginning of the pandemic. We consequently have a unique perspective to share our experience and overview how to use Wikidata to host COVID-19 data, integrate it with non-COVID-19 information and feed computer applications in an open and transparent way.
The remainder of the paper is organized as follows: we start by introducing Wikidata in general (Section 2) and describe key aspects of its data model in the context of the COVID-19 pandemic (Section 2.1). Then, we give an overview of the language support (Section 2.2) and database alignment (Section 2.3) of COVID-19 information in Wikidata. Subsequently, we present snapshots of applications of the Wikidata’s COVID-19 knowledge graph to visualizing multidisciplinary information about COVID-19 (Section 3). These visualizations cover biological and clinical aspects (Section 3.1), epidemiology (Section 3.2), research outputs (Section 3.3) and societal aspects (Section 3.4). Finally, we discuss the outcomes of the open development of the COVID-19 knowledge graph in Wikidata (Section 4), draw conclusions and highlight potential directions for  future research (Section 5).
2. [bookmark: _heading=h.73kbju5wx0c6]Wikidata as a semantic resource for COVID-19
Wikidata is a large-scale, collaborative, open-licensed, multilingual knowledge base that is both human- and machine-readable. Notably, it is available in the standardized RDF (Resource Description Framework) format, where data is organized into entities (items) and the relationships that connect them to each other and outside data, named properties [20]. 
Wikidata is a peer production project, developed under the umbrella of the Wikimedia Foundation, which also hosts Wikipedia and an ecosystem of open collaborative websites around it. Similarly to Wikipedia, it relies on community-driven development and design and is both a-hierarchical and largely uncoordinated [21]. As a result, it develops entirely organically, based on the editor community’s consensus, which may be implicit (e.g. by the absence of modifications) or explicit (e.g. a policy on how to handle biographical information about living people). This community develops ontologies and typologies used in the database. 
This community-centric approach is both a blessing and a curse. On the one hand, it makes methodical planning of the whole structure and its granularity very difficult, if not impossible [22]: there simply is no central coordination system, and all major design decisions have to be approved through a consensus of all interested contributors. On the other hand, harnessing knowledge and skills of a broad range of human and automated contributors provides for an unparalleled flexibility and versatility of uses, and allows for rapid addressing of emerging and urgent phenomena, such as disease outbreaks[footnoteRef:2]. [2:  https://www.wikidata.org/wiki/Wikidata:WikiProject_Humanitarian_Wikidata ] 

The novelty of a bottom-up developed Knowledge Graph relies on an entirely organic growth of taxonomies and content, negotiated continuously by the involved parties. While the benefits of peer production and collaborative editing are well known, they are particularly visible in contemporary and fast changing topics [23]. This is because the crowd-sourced coordination does not require a long decision-making process, nor a chain of command. Additionally, the bottom-up approach allows for a better optimization of topics, by relying on “free market” spontaneous forces of individual editors. It is already known that the search habits of users seeking medical content changed dramatically as a result of the COVID pandemic [24]. However, the exact dynamics of how this peer network responded to the challenge, in particular to the urgent need for new taxonomies and knowledge graphs, has not been a topic of systematic analysis. Our paper fills this gap.
With respect to the COVID-19 data challenges (cf.  Section 1.1), Wikidata addresses them in several ways: First, it was designed for web scale data with flexible and evolving data models that can be updated quickly and frequently [20, 25], and its existing community has been using it to capture COVID-19-related knowledge right from the start.[footnoteRef:3] Second, Wikidata already contained a considerable and continuously expanding volume of curated background information - from SARS-CoV-1 and other coronaviruses to zoonoses, cruise ships, public health interventions, vaccine development and relevant publications - ready to be leveraged to explore the growing COVID-19-related knowledge in such broader contexts [15]. Third, both the Wikidata platform and the Wikidata community are highly multifaceted, multilingual and multidisciplinary [26, 27]. Fourth, the Wikidata infrastructure is digital-first, with high uptime and low access barriers, while its community is distributed around the globe and includes people from many walks of life [20], such that any particular disruption due to the pandemic only affects subsets of the Wikidata community, which also has experience with handling humanitarian crises, e.g. through the Zika experience [28] and through overlap with the Wikipedia community that has been covering disasters for two decades.[footnoteRef:4] [3:  The creation dates of the three core items: "COVID-19 pandemic" (Q81068910) 2020-01-05 https://w.wiki/3PCe (note that labels may change), "SARS-CoV-2" (Q82069695) 2020-01-14 https://w.wiki/3PCf and "COVID-19" (Q84263196) 2020-02-02 https://w.wiki/3PCi.
The creation and curation of these core items was accompanied by the creation of more specialized ones like “Category:COVID-19 pandemic” (Q83189805; 2020-01-19), “Wuhan Huanan Seafood Wholesale Market” (Q83264280; 2020-01-20), “Timeline of the COVID-19 pandemic” (Q83493517; 2020-01-24) or “Huoshenshan Hospital” (Q83554783; 2020-01-24).
As these items became available, they were quickly put to use for enriching the knowledge graph around them. For instance, when the paper “Recent advances in the detection of respiratory virus infection in humans” was published on 2020-01-15, the item Q82838328 about it had been linked to the "SARS-CoV-2" item within less than three days: https://w.wiki/3XAt .]  [4:  Cf. https://w.wiki/VDe ] 

An important caveat is that data integration through Wikidata poses some particular challenges of its own, such as data licensing (being in the public domain, Wikidata can essentially only ingest public-domain data [29]) or multilinguality (e.g. how to handle concepts that are hard to translate [30]), and for certain kinds of data (e.g. health data from individual patients), it is not suitable, although appropriately configured instances of the underlying technology stack might [31].
Here, we present how various types of data related to the COVID-19 pandemic are currently represented in Wikidata thanks to the flexible structure of the database and how useful visualizations for different subsets of the data linked to COVID-19 within the Wikidata knowledge base can be generated.

2.1. [bookmark: _heading=h.hpkgd540pfvs]Data model flexibility
In Wikidata, each concept has an item (a human, disease, drug, city, etc.) that is assigned a unique identifier (Q-number; brown in Fig. 1), and optionally a label, description and aliases in multiple languages (yellow in Fig. 1). The assignment of a single language-independent identifier for each entity in Wikidata helps minimize the size of the knowledge graph and avoids issues seen in databases such as DBpedia, where separate items are needed for each language [19]. Such a feature is allowed thanks to the use of Wikibase software - a MediaWiki variant adapted to support structured data - to drive Wikidata instead of other systems that represent entities using textual expressions, particularly Virtuoso in the context of DBpedia [19] and NewsReader [32].
The true richness of the knowledge base comes from the connections between the items: statements in the form of RDF triples (subject-predicate-object) where the subject is the respective item, the predicate is a Wikidata property (red in Fig. 1), and the object is another Wikidata item or piece of information (blue in Fig. 1). The properties that relate items are similarly each assigned an identifier (P-number). Some properties relate a Wikidata item as the object and can be taxonomic (e.g. instance of [P31], subclass of [P279] or part of [P361]) or non-taxonomic (e.g. significant person [P3342], drug used for treatment [P2176] or symptoms [P780]). Conversely, other properties can have an object that is a value (e.g. number of cases [P1603]), date (e.g. point in time [P585]), URL (e.g. official website [P856]), string (e.g. official name [P1448]), or external identifier (e.g. Library of Congress authority ID [P244] or Disease Ontology ID [P699]). Each statement can be given further detail and specificity via qualifiers (black in Fig. 1) or provenance via references (purple in Fig. 1), which themselves can be represented as RDF triples [25]. This process of adding statements about statements is generally known as reification [33] and differs from other projects like DBpedia, which  are based on a simple RDF representation without qualifiers and references [34]. The lack of reification in DBpedia makes it difficult to analyze epidemiological information as time series because values are not assigned dates. On the other hand, the excessive use of generic properties, particularly dbo:wikiPageWikiLink, to link DBpedia items according to how their corresponding Wikipedia articles are related in Wikipedia (e.g. wikilink or subcategory) does not always capture semantic relatedness as generic relations can sometimes represent comparisons and simultaneity and does not seem to be useful to drive automatic biomedical reasoning requiring knowledge resources with well-defined relation types to efficiently work. An example of such a deficiency is the consideration in DBpedia of a link to COVID-19 pandemic in Tunisia from the Wikipedia article about 2020 Nice Stabbing although the statement including the wikilink declares that the perpetrator had arrived as a migrant in late September 2020 at the island of Lampedusa, Italy, amidst the COVID-19 pandemic in Tunisia. 
The only situation where DBpedia retrieves precise relational statements (e.g. dbp:symptoms, dbp:treatment) as well as non-relational statements (e.g. dbo:confirmedCases, dbp:arrivalDate) from Wikipedia is when the information is extracted from infoboxes [35]. Even in this situation, the infobox-based creation of DBpedia statements suffers from several inconsistencies requiring the use of logical constraints and human efforts for their efficient elimination although properties are quite defined in infoboxes [35]. A practical example of this problem is the DBpedia item about Ahmed Al-Qadri, a former Syrian minister of Agriculture and Agrarian Reform, as of June 20, 2021[footnoteRef:5]. This item is described as having COVID-19 pandemic as a place of death (dbp:deathPlace) and not as a cause of death. [5:  https://web.archive.org/web/20210620223556/https://dbpedia.org/page/Ahmed_Al-Qadri] 

The advantage of Wikidata’s use of RDF over other competing semantic data formats, particularly property graphs, is that it applies reference schemas and consistency rules before assigning predicates to statements [36]. Its volume, variety, velocity and veracity place it at the forefront of ‘big data’ approaches [37, 38]. Entries in RDF triple stores are predefined entities, rather than simple text strings, and structured into uni-directional statements [39]. In Wikidata, this is further enhanced by the use of qualifiers to provide additional features of the statements. This structure makes building semantic databases using RDF more difficult and time-consuming than alternative systems, especially property graphs [36], but it allows a fully regular representation of statements in knowledge graphs where subjects, predicates and objects are standardized and semantically described. Avoidance of typos and synonyms of string-based systems then allows far faster and more precise information retrieval and usage [39].
In the context of the COVID-19 pandemic, an ontological database representing many aspects of the SARS-CoV-2 outbreak has been represented in Wikidata, building on pilot work that was started at the onset of the Zika pandemic [28] and led to the formation of WikiProject Zika Corpus[footnoteRef:6]. This Zika project—itself inspired by dedicated Wikiprojects for Medicine[footnoteRef:7] and for Source Metadata[footnoteRef:8]—laid many of the foundations for the current COVID-19 work in managing fast-changing information: it developed, documented and refined sets of SPARQL queries about an ongoing epidemic, the underlying pathogen, the disease and diagnostic or therapeutic options, and it piloted workflows for integrating distributed knowledge from multiple databases to build a consistent semantic representation of a topic for which relevant concepts were often not yet readily available through formal ontologies. [6:  https://www.wikidata.org/wiki/Wikidata:WikiProject_Zika_Corpus ]  [7:  https://www.wikidata.org/wiki/Wikidata:WikiProject_Medicine ]  [8:  https://www.wikidata.org/wiki/Wikidata:WikiProject_Source_MetaData ] 

Wikidata is apt to cover gaps in ontologies, as any user is entitled to create new classes and propose new properties. In contrast to DBpedia, which is based on scheduled scraping of Wikipedia, the openness of the Wikidata data model allows flexible, immediate representation by any stakeholder interested on a subject. For example, Wikidata has a concept for vaccine candidate [Q28051899] , but as it is not on a particular Wikipedia page, the concept has never been represented on DBpedia.
The core of the COVID-19 knowledge graph in Wikidata is formed by three main items (red in Fig. 2): COVID-19 [Q84263196], SARS-CoV-2 [Q82069695], and COVID-19 pandemic [Q81068910]. Those three core COVID-19-related Wikidata items have relatively simple links to one another. Mainly that SARS-CoV-2 causes COVID-19, which itself has had the downstream effect of the COVID-19 pandemic.
These three core items then link to a vast array of items related to all aspects of the disease, its causative virus, and the resulting pandemic (>17,000 Wikidata items as of 20 August 2020; blue in Fig. 2). 

[image: ]
Fig. 1. Data Structure of a Wikidata item. The simple, consistent structure of a Wikidata item makes it both human- and machine-readable. Each Wikidata item has a unique identifier (Brown). Items can have labels, descriptions and aliases in multiple languages (Yellow). They can include any number of statements having predicates (Red), objects (Blue), qualifiers (Black) and references (Purple) where the subject is the item. Finally, where additional Wikimedia resources are available about an item’s topic, those are listed (Green). Source: https://www.wikidata.org/wiki/Q84263196, available at: https://w.wiki/auF. License: CC BY-SA 4.0.

[image: ]
Fig. 2. Simplified skeleton of the data model of COVID-19 information on Wikidata. The three main COVID-related items (the ‘C3 items’)[footnoteRef:9] are represented in red, selected classes of items related to these are shown in blue, with the relations between them represented as arrows. The number of statements relating to each item from the relevant class is indicated next to the item (In the case of scholarly articles, relations to each of the three COVID-related items is indicated by colour). Relation types regularly used to define items within Wikidata classes are omitted (e.g. chromosome [P1057] for human genes), as of 20 August 2020[footnoteRef:10], available at: https://w.wiki/auD, license: CC BY 4.0. [9:  COVID and C3 stand for any subset of {COVID-19 [Q84263196], SARS-CoV-2 [Q82069695], COVID-19 pandemic [Q81068910]}.]  [10:  Source queries: https://w.wiki/Ypc, https://w.wiki/Ypd, https://w.wiki/Ype, https://w.wiki/Ypg, https://w.wiki/Yph, and https://w.wiki/Ypi.] 

When comparing the number of COVID-related Wikidata items with the number of COVID-related entries on the English DBpedia as of May 26, 2021, we find that only 8727 DBpedia entities have been defined for COVID-19 information, presumably only the entities having a corresponding article in English Wikipedia[footnoteRef:11]. The limitation of DBpedia in this context is explained by the narrower notability criteria used in Wikipedia for deciding whether a topic can have a Wikipedia article or not. This criterion disallows multiple aspects of COVID-19 from being included in Wikipedia and consequently in DBpedia [40]. [11:  For an update of the number of COVID-related items in English DBpedia, please see https://tinyurl.com/ftn5aef3 .] 

The collaborative work in Wikidata to populate and curate this data has been largely accomplished by WikiProject COVID-19[footnoteRef:12], launched in March 2020 [15]. This WikiProject itself has a Wikidata item [Q87748614], and items are linked to it using the property on focus list of Wikimedia project [P5008]. The Wikipedia wing of the project similarly works to enrich and validate COVID-19 information through manual fact-checking from referred scholarly publications and trustworthy mass media to prevent vandalism [41] and verify the coverage of the disease through Wikidata-driven analysis of the online encyclopedia [42]. This replication mainly serves to ensure the manual extraction of accurate COVID-19 information from Wikipedia to further enrich Wikidata by contrast to DBpedia that gives less interest to the verification and vandalism identification of Wikipedia information before automatically retrieving it to enrich DBpedia with updated statements [40].  [12:  https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19] 

These COVID-19-related items are linked to their respective classes or types using instance of [P31] or subclass of [P279] relations, and they are linked between each other using non-taxonomic relations defining knowledge about various and multi-disciplinary aspects of COVID-19 (Fig. 2). Biomedical relations between Wikidata items can be assigned nature of statement [P5102] or sourcing circumstances [P1480] qualifiers to state the status (e.g. official, hypothesis and de facto) and the occurrence probability (e.g. rarely, possibly and often) of the described semantic relation. The network of these items and relations forms a large-scale knowledge graph for COVID-19, where the three core COVID-19-related items noted above extensively link various classes, most notably: disease outbreaks [Q3241045] in regions such as continents, sovereign states, and constituent states, COVID-19 tracing apps [Q89288125], COVID-19 vaccines [Q87719492] and vaccine candidates [Q28051899], scholarly articles [Q13442814] and COVID-19 dashboards [Q90790055]. This graph with short paths to the core COVID items is augmented by biomedical, geographical and other more distantly related entities that are already available in Wikidata, representing an important overview of clinical and other knowledge [15, 25]. Such distantly related entities are also available in other open knowledge graphs, particularly DBpedia and YAGO, and contribute much to the value of a semantic resource [17, 18]. In Wikidata, several initiatives such as WikiCite for scholarly information [43-46] and Gene Wiki for genomic data [47] have enabled COVID-19 knowledge graphs to include classes like genes [Q7187], proteins [Q8054] or biological processes [Q2996394], along with the definition of semantic relations between items closely and distantly related to COVID-19. This, consequently, allows the expansion of the coverage of COVID-19 information in Wikidata and a better characterization of COVID-19-related items. 
In addition to relational statements that link items within the knowledgebase, non-relational statements link to external identifiers or numerical values [48]. Wikidata items are assigned their identifiers in external databases, including semantic resources, using human efforts and tools such as Mix’n’match [49]. These links make Wikidata a key node of the open data ecosystem, not only contributing its own items and internal links, but also bridging between other open databases (Fig. 3). Wikidata therefore supports alignment between disparate knowledge bases and, consequently, semantic data integration [47] and federation [49] in the context of the linked open data cloud [50]. Such statements also permit the enrichment of Wikidata items with data from external databases when these resources are updated, particularly in relation with the regular changes of the multiple characteristics of COVID-19. By contrast, DBpedia mainly uses Wikipedia for its enrichment and this does not support the coverage of multiple aspects of the analyzed disease [19, 34, 51]. Examples of Wikidata properties used to define external identifiers can be found in Table 1.
[image: ]
Fig. 3. Wikidata in the Linked Open Data Cloud. Databases indicated as circles (with Wikidata indicated as ‘WD’), with grey lines linking databases in the network if their data is aligned, source dataset last updated May 2020 (available at: https://w.wiki/bYM, license: CC BY 4.0).
Numerical statements are assigned to disease outbreak items for the COVID-19 pandemic to outline the evolution of the epidemiological status of different entities, from countries to provinces, cities and cruise ships. The properties used to define these statistical statements are shown in Table 1 and include data about the morbidity, the mortality, the testing and the clinical management of COVID-19 at the level of continents, countries and constituent states and also many smaller entities. Some Wikidata properties used to store this epidemiological information have been created in response to COVID-19 (e.g. Number of recoveries [P8010], number of clinical tests [P8011], and number of hospitalized cases [P8049]) proving the flexibility of the knowledge base. To keep records of the progress of the COVID-19 pandemic over time, each statistical statement is assigned a point in time [P585] relation as a qualifier. These epidemiological statements are retrieved from CC0 databases such as the COVID-19 DataHub database[footnoteRef:13] and are linked to them as references. These statements can be used to automatically infer other measures that are not supported by Wikidata but give a full overview of the epidemiology of COVID-19: let c be the total number of confirmed cases at a given day Z when the epidemiological evaluation takes place, d the number of confirmed deaths until that day, r the number of confirmed recoveries by that day, h the number of confirmed hospitalized cases on that day, t the number of clinical tests until that day. On the basis of these values (which could all be represented in Wikidata if matters related to the multi-level coverage of COVID-19 knowledge and conflicts of information from multiple sources are solved), the following measures can be inferred:  [13:  https://datahub.io/core/covid-19] 

· Confirmed active cases v = c – (d + r)
· Confirmed recovery rate a = r / c
· Confirmed patient-days p =∑h if all infection days are represented
· New confirmed cases ncZ = cZ - cZ-1
· New confirmed deaths ndZ = dZ - dZ-1
· New clinical tests ntZ = tZ - tZ-1
· New confirmed recoveries nrZ = rZ - rZ-1.
This set of COVID-19 information is integrated into Wikidata using human efforts, the QuickStatements tool[footnoteRef:14], the Wikidata API[footnoteRef:15], and bots mainly written in Python (e.g. CovidDatahubBot[footnoteRef:16]), which explains its quantity and coverage [25]. Data validation is accomplished at multiple layers: [14:  QuickStatements (QS) is a web service that can modify Wikidata, based on a simple text commands: https://quickstatements.toolforge.org/ ]  [15:  An application programming interface (API) is a machine-friendly interface of a web service that can be used to feed another computer program with needed information. The Wikidata API is available at https://www.wikidata.org/w/api.php ]  [16:  https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/CovidDatahubBot] 

· Wikidata properties can have constraint declarations associated with them which represent conditions on the use of those properties. As an example, property drug or therapy used for treatment [P2176] has a type constraint that states that the items described by it should be instances of health problem [Q2057971] and a value-type constraint that states that the referenced items should be instances of medication [Q12140].
· In 2019, Wikidata added a new namespace to define Entity schemas using the Shape Expressions (ShEx) language [53]. Entity schemas can be used to define expectations about the topology associated with some entities. Entity schemas are human readable and machine processable, facilitating their creation by domain experts and their use for validation. During the pandemic, entity schemas related to COVID-19 entities were created like virus taxon [E192], strain [E174], disease [E69], virus strain [E170], virus gene [E165], coronavirus pandemic local outbreaks [E188] and so on [15]. A remarkable aspect of entity schemas in Wikidata is their collaborative nature, which allows the entity schema ecosystem to evolve by users creating new schemas with different constraints or reusing existing schemas by importing existing ones.
· Another approach to validate the data has been the use of SPARQL queries. SPARQL is available as part of the Wikidata Query Service and it can be used not only to query the knowledge graph, but also to detect inconsistencies and check logical constraints and more complex patterns based on heuristics. It is also possible to check the edit history and use the ORES service to eliminate database vandalism [53].
Although Web Ontology Language (OWL) can define knowledge graphs with a richer semantic characterization of data models by providing a layer of Description Logics such as in DBpedia [19], the infrastructure developed for the validation of RDF data in Wikidata helps assure a high level of consistency of the Wikidata knowledge graph.
In the context of COVID-19, numerical statements related to epidemiology are constantly changing, and Wikidata’s structure benefits it in terms of recency[footnoteRef:17]. Wikidata`s speed can be tailored by independent users to be as fast as needed.  In the case of COVID-19,  while death counts on Wikidata might lag behind Wikipedia, bots and humans fill the data model directly, and do not wait for update cycles. As of June 2, 2021, DBpedia counts less than 160.000 deaths in Brazil[footnoteRef:18] while both English Wikipedia and Wikidata present counts of over 460.000[footnoteRef:19]. This is mainly due to the long delays between the regular updates of the DBpedia statements from Wikipedia. In fact, as of June 2, 2021, DBpedia information for COVID-19 pandemic in Brazil is inferred from the edition of October 30, 2020[footnoteRef:20], leaving it currently outdated. Even if DBpedia has been timely updated from infoboxes, the information infoboxes include can remain outdated in several languages due to the lack of activity on a particular page. An example of such a limitation is the epidemiological data in the infobox of the article about COVID-19 pandemic in France in Simple English Wikipedia as of May 28, 2021 that shows outdated values of confirmed cases and deaths going back to May 13, 2021[footnoteRef:21]. In that direction, the Wikidata Bridge project[footnoteRef:22] aims to develop Wikidata-driven infoboxes that can be editable in Wikipedia. That may benefit non-English Wikipedia projects in particular to have updated information in infoboxes. [17:  This can be illustrated, for instance, by a query for the number of COVID-related items that have been last modified in May and June 2021 (as of June 21, 2021): https://w.wiki/3XBL.]  [18:  https://web.archive.org/web/20210602140025/https://dbpedia.org/page/COVID-19_pandemic_in_Brazil]  [19:  https://en.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_Brazil&oldid=10260573, https://www.wikidata.org/w/index.php?title=Q86597695&oldid=1433353285]  [20:  https://en.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_Brazil&oldid=986289428]  [21:  https://simple.wikipedia.org/w/index.php?title=COVID-19_pandemic_in_France&oldid=7562853]  [22:  https://www.mediawiki.org/wiki/Wikidata_Bridge] 


Table 1
Examples of Wikidata properties used to define non-relational statements

	Wikidata ID
	Name
	Description

	Properties for the alignment with scholarly databases

	P496
	ORCID iD
	identifier for a researcher (Open Researcher and Contributor ID)

	P1153
	Scopus Author ID
	identifier for an author in the Scopus bibliographic database

	P214
	VIAF ID
	identifier for the Virtual International Authority File database

	P7859
	WorldCat Identities ID
	entity on WorldCat for authority control of authors’ data

	P1053	
	ResearcherID
	identifier for a researcher in a system for scientific authors, primarily used in Web of Science

	Properties for the alignment with clinical language resources and encyclopedias

	P494
	ICD-10
	identifier in the ICD catalogue codes for diseases - Version 10

	P672
	MeSH tree code
	Medical Subject Headings (MeSH) codes are an index and thesaurus for the life sciences (≠ MeSH ID, P486)

	P1417
	Encyclopædia Britannica Online ID
	identifier for an article in the online version of Encyclopædia Britannica

	P486
	MeSH descriptor ID
	identifier for Descriptor or Supplementary concept in the Medical Subject Headings controlled vocabulary

	P3098
	ClinicalTrials.gov Identifier
	identifier in the ClinicalTrials.gov database

	P6680
	MeSH term ID
	identifier of a "MeSH term" (Medical Subject Headings)

	P6694
	MeSH concept ID
	identifier of a Medical Subject Headings concept

	Properties for the non-relational characterization of Wikidata items

	P569
	date of birth
	date on which the subject was born

	P856
	official website
	URL of the official homepage of an item (current or former)

	P1603
	number of cases
	cumulative number of confirmed, probable and suspected occurrences

	P1120
	number of deaths
	total (cumulative) number of people who died since start as a direct result of an event or cause

	P3457
	Case fatality rate
	proportion of patients who die of a particular medical condition out of all who have this condition within a given time frame (equal to the quotient of the number of cases by the number of deaths as stated in a given day)

	P8010
	Number of recoveries
	number of cases that recovered from disease

	P8011
	number of clinical tests
	cumulative number of clinical tests

	P8049
	number of hospitalized cases 
	number of cases that are hospitalized

	P3488
	minimal incubation period in humans
	minimal time between an infection and the onset of disease symptoms in infected humans

	P3487
	maximal incubation period in humans
	maximal time between an infection and the onset of disease symptoms in infected humans

	P3492
	basic reproduction number
	number of infections caused by one infection within an uninfected population


2.2. [bookmark: _heading=h.txwl1g7bl2f7]Broad multilingual representation
Wikidata’s language-independent data model makes it well-adapted for multilingual representation. In English, French, German and Dutch, its biomedical language coverage is comparable to other semantic resources such as SNOMED-CT[footnoteRef:23], BabelMeSH[footnoteRef:24], and ICD-10[footnoteRef:25] (largely due to links with other biomedical ontologies and knowledge bases) [25]. However, its coverage over a larger lange set is markedly broader than those resources [55, 56]. Looking at the coverage of the 17,000 items that link to and from the three main COVID items (Fig. 2) and the 55,000 statements that relate them, distinct patterns emerge (Fig. 4E). More than 40% of the predicates (Curves B and D) and more than 90% of the objects (Curve C) of the statements related to COVID are represented in fifty languages or more. English is the unsurprising front-runner in items with COVID as the object, since many of those items are journal articles with untranslated titles (Fig. 4A). The names of the properties that link them (Fig. 4B,D) have much more even coverage, as do items with COVID as the subject (Fig. 4C). This broad but uneven coverage is particularly relevant for multilingual resources for natural language processing purposes in clinical contexts [57]. [23:  http://www.snomed.org/snomed-ct/sct-worldwide (Accessed February 3, 2021): SNOMED-CT supports English, French, Danish, Dutch, Spanish, Swedish, and Lithuanian.]  [24:  https://lhncbc.nlm.nih.gov/project/babelmesh-and-pico-linguist (Accessed on February 3, 2021): BabelMeSH supports Arabic, Chinese, Dutch, English, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, and Swedish.]  [25:  ICD-10:  International Classification of Diseases, 10th Revision [54]: ICD-10 supports Arabic, Chinese, English, French, Russian, Spanish, Albanian, Armenian, Azeri, Basque, Bulgarian, Catalan, Croatian, Czech, Danish, Dutch, Estonian, Persian, Finnish, German, Greek, Hungarian, Icelandic, Italian, Japanese, Korean, Latvian, Lithuanian, Macedonian, Mongolian, Norwegian, Polish, Portuguese, Serbian, Slovak, Slovenian, Swedish, Thai, Turkish, Turkmen, Ukrainian, and Uzbek.] 

The better coverage in English is explained in part by the higher support of this language in both biomedical language resources [58] and Wikipedia [59]. Cooperation with publishers such as Cochrane has a significant effect on English Wikipedia coverage, too [60]. The significant coverage of languages like French, Spanish, German, Chinese and Swedish in Medical Wikidata fits with their support by major biomedical multilingual databases: ICPC-2 [61] supports 24 languages[footnoteRef:26], SNOMED-CT supports 7 languages, LOINC[footnoteRef:27] supports 13 languages, BabelMeSH [62] supports 13 languages, and ICD-10 supports 42 languages. The situation is even worse for other multilingual open knowledge graphs, particularly DBpedia which failed to develop COVID-19 information in major languages like French and German as of June 20, 2020[footnoteRef:28]. [26:  ICPC-2 supports Afrikaans, Basque, Chinese, Croatian, Danish, Dutch, English, Finnish, French, German, Greek, Hebrew, Hungarian, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovenian, Spanish, and Swedish.]  [27:  https://loinc.org/international/ (Accessed on August 13, 2020): LOINC supports Chinese, Dutch, Estonian, English, French, German, Greek, Italian, Korean, Portuguese, Russian, Spanish, and Turkish.]  [28:  Please refer to https://web.archive.org/web/20210620132047/http://fr.dbpedia.org/page/COVID-19 and https://web.archive.org/web/20210620132401/http://de.dbpedia.org/page/COVID-19 as a proof of this assumption.] 

The support of other natural languages can also be explained by the use of bots that extract multilingual terms representing clinical concepts based on natural language processing techniques and machine learning[footnoteRef:29] [63] and by the involvement of research institutions and scientists speaking these languages, particularly German and Dutch, in adding biomedical information to Wikidata [64, 65]. The near-100% coverage for properties with COVID-19 as the subject in the most spoken languages (Fig. 4B) resulted from early systematic volunteer translation drives for common properties by WikiProject Labels and Descriptions[footnoteRef:30] and others [30]. Language coverage of medical Wikidata labels (particularly for diseases’ class) seems influenced by several factors. Most obvious for a collaborative project is the number of speakers of each language among the contributor community [26]. However, there also appears to be an impact from the overall number of Wikidata labels for each language [27] and to the number of medical Wikipedia articles in each language [66] (Table 2). [29:  An example of such a Wikidata bot can be Edoderoobot 2, which is specifically working on labelling, thereby translating structured data into prose in the respective language. Further information about this bot can be found at https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/Edoderoobot_2.]  [30:  https://www.wikidata.org/wiki/Wikidata:WikiProject_Labels_and_descriptions] 
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Fig. 4. Language representation of COVID-19-related statements. A-D) Language coverage for items and properties used in statements when either the object or subject is one of the three COVID-related items (as per Figure 2; note: log y-axis). The eight most common languages in Wikidata are shown: en=English, fr=French, de=German, es=Spanish, zh=Chinese, ar=Arabic, ja=Japanese, ru=Russian.)  E) Percentage of the items covered in order from highest to lowest coverage. faceted by categories A-D. Data shown for top 150 languages in each category (note: languages not necessarily in same order for each), as of August 15, 2020 (available at: https://w.wiki/auE, license: CC BY 4.0; live data: https://w.wiki/Yj$, https://w.wiki/Yk3, https://w.wiki/Yk5, and https://w.wiki/Yk6)
These correlations can be interrogated by querying Wikidata to find out the current status of the editing of this knowledge graph and of Wikipedia in 307 languages (Table S3; top-ranking items for each variable summarised in Tables 3 and 4). Query results largely match previously published trends for Wikipedia and Wikidata (Table 2), though we note that Arabic (ar) and Chinese (zh), appear  in the top 10 languages in the Wikidata COVID-19 subset, while being absent from the top 10s for other sets described in Table 4. Coverage differed across languages and variables, and most of the distributions showed marked positive skew. Nonparametric analysis of correlations (Spearman’s rho) found large magnitude associations (rho .65 to .97, median = .84, Supplementary Table S4), statistically significant even following stringent Bonferroni correction. To account for skew and data spanning multiple orders of magnitude, log10-transformed data was used for subsequent analyses. Pearson’s correlation coefficients between all variables was high (Figure 5). A principal component analysis for the 90 languages with complete data on all 7 indicators found that a single component explained 81% of the variance, with loadings ranging from .80 to .95. The smallest PCA loading and Spearman’s correlation were for the number of viewers, which though still a strong association, was less correlated than the other variables by a substantial margin.
Table 2
Languages ranked by medical content from the literature: Number of medical Wikipedia articles, number of Wikidata labels, number of native speakers, and number of Wikidata users. Style code: Italic for languages appearing in all four lists; bold for those appearing in only one.

	
	Medical Wikipedia, 2013 [66]
	Wikidata labels, 2017 [27]
	Population, 2019 [67]
	Wikidata users, 2018 [26]

	Rank
	Language
	Number of medical articles
	Language
	Rate of labels
	Language
	Native speakers (millions)
	Language

	1
	English
	29072
	English
	11.04%
	Chinese
	1323
	English

	2
	German
	7761 
	Dutch
	6.47%
	Spanish
	463
	French

	3
	French
	6372
	French
	6.02%
	English
	369
	German

	4
	Spanish
	6367 
	German
	5.08%
	Hindi
	342
	Spanish

	5
	Polish
	5999
	Spanish
	4.07%
	Arabic
	335
	Italian

	6
	Italian
	5677
	Italian
	3.9%
	Bengali
	228
	Russian

	7
	Portuguese
	5269
	Swedish
	3.89%
	Portuguese
	227
	Dutch

	8
	Russian
	4832
	Russian
	3.54%
	Russian
	154
	Japanese

	9
	Dutch
	4391
	Cebuano
	2.21%
	Japanese
	126
	Danish

	10
	Japanese
	4303
	Bengali
	1.94%
	Western Punjabi
	82.5
	Portuguese



Table 3
Languages ranked by medical content from Wikidata queries (as of August 11, 2020). The Medical Wikipedia query yields Wikipedia articles associated with Wikidata items that have a Disease Ontology ID [P699] or are in the tree of any of the following classes: medicine [Q11190], disease [Q12136], medical procedure [Q796194] or medication [Q12140]. The Medical Wikidata labels query yields labels of Wikidata items that have a Disease Ontology ID [P699] or a MeSH Descriptor ID [P486] or are in the tree of any of the same four classes. The Wikipedia and Wikidata users column provides a snapshot from the Wikidata dashboard that lists Wikidata users who also edit Wikipedia by number of such users per Wikipedia language. Style code: Italic for languages appearing in all three lists; bold for those appearing in only one.
	
	Medical Wikipedia articles
https://w.wiki/Z6a
	Medical Wikidata labels
https://w.wiki/Z6h
	Wikipedia and Wikidata users
https://w.wiki/Z6W

	Rank
	Language
	Number of medical articles
	Language
	Number of labels
	Language
	Number of users

	1
	English
	16670
	English
	65986
	English
	9600

	2
	German
	8911
	French
	37053
	French
	2580

	3
	Arabic
	8596
	German
	22432
	German
	2490

	4
	French
	7258
	Spanish
	21505
	Spanish
	2330

	5
	Spanish
	6979
	Arabic
	18581
	Russian
	1790

	6
	Italian
	6498
	Italian
	18074
	Italian
	1430

	7
	Polish
	6071
	Japanese
	17992
	Chinese
	1120

	8
	Portuguese
	5652
	Dutch
	17985
	Japanese
	1090

	9
	Russian
	5564
	Chinese
	17462
	Portuguese
	979

	10
	Japanese
	4651
	Russian
	17165
	Arabic
	688



Similarly, the current representation of COVID-19 Wikidata items in natural languages seems to be linked with COVID-19-related Wikipedia pages, edits and pageviews for a given language, as shown in Table 4. This is confirmed by the high correlation (Pearson r = 0.93) of the language distribution of COVID-related Wikidata labels with the number of COVID Wikipedia pages in language editions and the moderate correlation (Pearson r > 0.65) between the number of Wikidata COVID-related labels in a given language and the quantity and edit statistics of medical content in Wikidata and Wikipedia (Fig. 5). Such relationships are strengthened by the high correlation (Pearson r > 0.9) between the number of medical Wikidata labels in a given language and the number of medical Wikipedia articles in language editions as well as the number of native speakers jointly editing Wikipedia and Wikidata.
To investigate the possible causes of these highly correlated datasets, we compared them to two external metrics for each language: the number of native speakers of each language [67] and the maximum Human Development Index for countries where that language is an official language [68]. This data was available for fewer languages (N = 57 each, 19 pairs) and the sparse overlap precluded including both simultaneously in analyses. The number of native speakers showed a similar positive skew to earlier data, so was also log10-transformed. Even though these analyses are necessarily exploratory, maximum development correlated more strongly than did the number of speakers (Figure 5B; Table S4). Cohen’s q values (an effect size for differences between correlation coefficients) of a size considered unusually large for the social sciences (> 0.5) were observed when comparing correlation of development index versus number of speakers with the number of medical Wikidata labels and with the number of users. Further medium q values (differences > 0.3) were observed for correlation to the number of medical Wikipedia articles and to the number of COVID Wikipedia pages. Correlation differences were negligible with regard to development versus number of speakers as associated with the number of edits or pageviews [69].
The observation here that current language coverage in Wikidata and Wikipedia correlates more closely to countries' development index than to the number of speakers of each natural language aligns with previous work demonstrating low correlation of Wikidata to the number of speakers [27]. 
We interpret this as a potential ‘need gap’, where languages that have a large number of relatively low-income speakers remain relatively underserved. To address this, it may be necessary to encourage and/or support contribution by speakers of under-resourced and unrepresented languages to medical Wikidata projects, analogous to those Wikipedia projects[footnoteRef:31]. [31:  Current efforts to enhance the coverage and language support of medical knowledge in Wikipedia are mainly driven by Wikimedia Medicine. For further information, please refer to https://meta.wikimedia.org/wiki/Wiki_Project_Med. An example of the initiatives under this umbrella is the Special Wikipedia Awareness Scheme for The Healthcare Affiliates project, focused on languages of India. An explanation of this project can be found at https://en.wikipedia.org/wiki/Wikipedia:SWASTHA.] 
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Fig. 5. A) All-versus-all pairwise correlations of log10-transformed values of seven metrics for 307 languages (data from sources detailed in tables 3 and 4). Histograms on diagonal indicate skew, scatter plots below diagonal indicate data and trendlines, ellipsoids above diagonal indicate Spearman’s r correlation coefficient. B) Cohen’s q coefficient comparing correlation of the seven metrics to maximum human development index versus to the number of native speakers. C) Highest correlated variable pair. D) Lowest correlated variable pair. [Available at: https://w.wiki/zV6, License: CC-BY 4.0].
In addition to the intrinsic value of increased language coverage, it would also help in ensuring  culturally relevant contextualizations in Wikidata’s medical and other domains.
Table 4
Languages ranked by COVID-19-related content from Wikidata queries and other live data (as of August 13, 2020). The COVID-19 pandemic Wikipedia pageviews column represents daily average user traffic (averaged over 2020) to the article about the COVID-19 pandemic in the respective language. The COVID Wikidata labels query sorts languages by the number of labels of Wikidata items with a direct link to and/or from any of the core COVID-19 items - Q84263196 (COVID-19), Q81068910 (COVID-19 pandemic) and Q82069695 (SARS-CoV-2) - excluding items about humans (3131) or scholarly publications (40164). The COVID Wikipedia articles query filters those Wikidata items for associated Wikipedia articles and sorts languages by the number of such articles. The values in the COVID Wikipedia edits column represent the revision counts per Wikipedia language as taken from the dashboard listing Wikimedia projects by total number of revisions to COVID-19-related articles. Style code: Italic for languages appearing in all four lists; bold for those appearing in only one.
	
	COVID-19 pandemic Wikipedia pageviews
https://w.wiki/ZTG
	COVID Wikipedia articles
https://w.wiki/ZSt
	COVID Wikidata labels
https://w.wiki/ZSq
	COVID Wikipedia edits
https://w.wiki/y9u

	Rank
	Language
	Avg. daily pageviews
	Language
	Number of articles
	Language
	Number of labels
	Language
	Number of edits

	1
	English
	52872
	English
	561
	English
	1429
	English
	250306

	2
	Russian
	41246
	Arabic
	517
	Dutch
	785
	German
	126359

	3
	Spanish
	37722
	German
	431
	Arabic
	623
	French
	42029

	4
	Chinese
	27598
	Portuguese
	427
	Catalan
	579
	Chinese
	41545

	5
	German
	20707
	Korean
	408
	German
	561
	Spanish
	30869

	6
	Italian
	8490
	Chinese
	396
	French
	517
	Arabic
	19963

	7
	French
	7959
	Vietnamese
	392
	Japanese
	503
	Russian
	18719

	8
	Portuguese
	7648
	French
	379
	Chinese
	483
	Japanese
	11508

	9
	Japanese
	5227
	Spanish
	370
	Portuguese
	463
	Ukrainian
	10599

	10
	Arabic
	4300
	Indonesian
	363
	Spanish
	433
	Hebrew
	10386



2.3. [bookmark: _heading=h.422ghkvze39h]Alignment to external databases
As shown in the “Data model” section, Wikidata items are linked to their equivalents in other semantic databases using statements where the property provides details about a given resource and the object is the external identifier of the item in the aligned database. Similarly to Wikidata items, these database alignment properties are defined by labels, descriptions and aliases in various languages and by statements describing logical conditions for their usage including formatting constraints and allowed values of subject classes [53]. 
The alignment of Wikidata entities to other entries on different databases is a collaborative process which, as with everything in Wikidata, is done via combination of manual and automatic curation. As an example of automation, items concerning scholarly entries (i.e. articles and reports) were often aligned to other databases using DOIs (Digital Object Identifiers) as unique keys. As Wikidata is an open database, the precision of the alignments is largely based on trust in the community, and misalignments are promptly corrected once identified. At the scale of curation happening on Wikidata, quality issues in aligned databases regularly surface, e.g. invalid DOIs stated in PubMed and PMC Europe[footnoteRef:32]. While most of these databases have some feedback channels, no mechanisms exist for informing them systematically about issues with their data that have been identified at the scale of Wikidata-based curation.  [32:  https://github.com/br2s/bug-reports-to-science/issues/8 ] 

As of September 1, 2020, 5302[footnoteRef:33] out of 7877[footnoteRef:34] Wikidata properties are used to state external identifiers of the Wikidata items. These properties facilitate interoperability between Wikidata and other databases and consequently the regular enrichment of Wikidata with detailed information from online ontologies and knowledge graphs updated on a daily basis [17, 20, 70]. The output using such Wikidata properties can be adapted as an open license framework for the automatic evaluation and learning of knowledge graph alignment approaches [20, 71] and for the integration of scholarly knowledge [72]. [33:  For the updated count of the properties defining external identifiers, refer to https://w.wiki/ayn.]  [34:  For the updated count of all the properties, refer to https://w.wiki/ayo.] 

In the circumstances of the COVID-19 outbreak, a SPARQL query[footnoteRef:35] has been formulated to analyze the integration of external identifiers in Wikidata. This query succeeded in returning the main aligned external resources to the set of scholarly articles and clinical trials, of diseases, of symptoms, of drugs, of humans, of sovereign states, of genes, of proteins, and of other items related to the ongoing COVID-19 pandemic in Wikidata. This confirms the centrality of Wikidata within the linked open data cloud (cf. Fig. 3 and [50]) and consequently the usefulness of Wikidata to address the COVID-19 data challenges and dynamically integrate various types of semantic data in the context of the disease outbreak.  [35:  https://w.wiki/auR] 

Scholarly articles and clinical trials have been linked to numerous external identifiers, particularly the Digital Object Identifier (DOI), the PubMed ID, the Dimensions Publication ID, the PubMed Central ID (PMCID) and the ClinicalTrials.gov Identifier (Table S5). Most of these identifiers are added thanks to WikiProject WikiCite aiming to add support of bibliographic information on Wikidata [43-45]. The current representation of external identifiers for the scientific literature in Wikidata seems to be similar to the general one for the bibliographic data in the knowledge graph. As of September 3, 2020, 36208373 scholarly articles[footnoteRef:36] are currently represented in Wikidata. 31425586 of which have PubMed IDs and 25896956, 6016452, and 346114 scientific publications respectively have DOIs, PubMed Central IDs and ArXiv IDs.  [36:  https://scholia.toolforge.org/] 

However, this Wikidata coverage of the availability of COVID-19-related publications in external research databases does not seem to fully represent full records of COVID-19 literature in aligned resources. By way of comparison, we performed a simple search for “COVID-19” in a set of literature databases, and there were 103796 COVID-19-related records available on PubMed[footnoteRef:37], 110323 COVID-19 full texts accessible on PubMed Central[footnoteRef:38], 296450 COVID-19 publications on Dimensions[footnoteRef:39], 211000 records on Semantic Scholar[footnoteRef:40], 4778 records at ClinicalTrials.gov[footnoteRef:41], 3295 records on arXiv ID[footnoteRef:42], and 183 records on NIOSHTIC-2[footnoteRef:43] as of February 17, 2021.  [37:  https://pubmed.ncbi.nlm.nih.gov/?term=COVID-19]  [38:  https://www.ncbi.nlm.nih.gov/pmc/?term=COVID-19]  [39:  https://tinyurl.com/y6kwrdth]  [40:  https://www.semanticscholar.org/search?q=COVID-19&sort=relevance]  [41:  https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=&cntry=&state=&city=&dist=]  [42:  https://arxiv.org/search/?query=COVID-19&searchtype=all&source=header]  [43:  https://www2a.cdc.gov/nioshtic-2/Buildqyr.asp?S1=COVID-19&Submit=Search] 

Wikidata’s relatively incomplete coverage of the literature is mainly explained by Wikidata’s development of scientific metadata being based on latent crowdsourcing of information from multiple sources through bots and human efforts and not on the real-time screening of the external scholarly resources [45, 46]. In addition to such sampling biases, there are also differences in annotation workflows, e.g. in terms of the multilinguality of or the hierarchical relationships between topic tags in Wikidata versus comparable systems like Medical Subject Headings.
As for the diseases and symptoms related to COVID-19, Wikidata maps to multiple external identifiers in the main biomedical semantic databases such as MeSH, ICD-10[footnoteRef:44], and UMLS[footnoteRef:45] as well as in open lexical databases like OBO Foundry ontologies (e.g. Human Phenotype Ontology) and Freebase (Table S6). This is mainly due to the use of machine learning algorithms to align these major online biomedical resources to Wikipedia articles and consequently to Wikidata items [73]. The representation of open license resources is particularly explained by the use of these databases to form the core of the biomedical knowledge in Wikidata through mass uploads and timely updates [74]. Items about diseases and symptoms are also aligned to several online encyclopedias (e.g. eMedicine, Encyclopedia Britannica, and MedlinePlus) and to non-medical databases such as scholarly repositories (e.g. JSTOR[footnoteRef:46]) and bibliographic databases (e.g. Microsoft Academic[footnoteRef:47]) using external identifiers’ statements. This can be explained by the efforts of WikiProject Source Metadata[footnoteRef:48] and the WikiCite initiative to align topic pages in research databases to Wikidata items, so that active members of this project can easily extract topics of research publications from source databases and assign them to the corresponding Wikidata items using main subject [P921] relations [43]. The linking from Wikidata items about between diseases and symptoms to online first-class encyclopedias is not restricted to the context of the COVID-19 pandemic [74] and is a rather established practice to provide Wikidata users with pointers to further specialized information pertaining to a given Wikidata item [75] and to allow comparison of medical data quality between Wikipedia and other encyclopedias [66]. [44:  International Classification of Diseases, Tenth Revision (https://www.who.int/classifications/icd/en/)]  [45:  Unified Medical Language System (https://www.nlm.nih.gov/research/umls/index.html)]  [46:  https://www.jstor.org/]  [47:  https://academic.microsoft.com/]  [48:  https://www.wikidata.org/wiki/WD:WikiProject_Source ] 

Since Wikidata is multidisciplinary, it has extensive matching to humans and sovereign states (Table S7) as well as films, computer applications and disease outbreaks (Table S8). The alignment to various metadata databases like VIAF[footnoteRef:49], WorldCat[footnoteRef:50], Library of Congress and IMDb[footnoteRef:51] is motivated by the mass import of authority control data for the interoperability between library metadata and for the prevention of the duplication of items including book authors, actors and films [75, 76]. Wikidata items about sovereign states and humans are aligned to corresponding topic pages and user pages in social networking services (Twitter) and question answering forums (Quora and Reddit). This enables tracking the effect of the information provided by Wikimedia projects, particularly Wikipedia, on online communities [77]. Information about items in social media can also be retrieved to support the topic modelling of the coverage of the pandemic in social networks [78]. Taken together, these database alignments are useful to integrate new non-clinical information to Wikidata, to allow correlations between epidemiological data and non-medical information about countries, individuals, masterpieces and disease outbreaks such as geopolitical, software programming and economic data, and to provide further readings about the concerned items [72]. [49:  Virtual International Authority File (http://viaf.org/)]  [50:  https://www.worldcat.org/]  [51:  Internet Movie Database (https://www.imdb.com/)] 

Concerning drugs, proteins, genes and taxons, Wikidata items are mainly assigned external identifiers in the major knowledge graphs for pharmacology (e.g. MassBank[footnoteRef:52]), for biodiversity (e.g. IRMNG[footnoteRef:53]), for genomics (e.g. Entrez Gene) and for proteomics (e.g. PDB[footnoteRef:54]) and are rarely linked to non-medical databases or to encyclopedias, as shown in Table 8. The lack of alignment between these biomedical Wikidata items and their equivalents in social web services is explained by the higher interest of social media users in the health policies and epidemiology of COVID-19 rather than the therapeutic options and molecular aspects related to the disease [79]. The most important interest in matching these concepts in Wikidata to graph databases (e.g. Massbank, PDB, and KEGG[footnoteRef:55]) and semi-structured databases (e.g. Guide to Pharmacology[footnoteRef:56]) for bioinformatics rather than online encyclopedias is due to the better availability of genomic and proteomic information in these specialized semantic resources [74, 80]. The alignment of taxon items in Wikidata to biodiversity knowledge graphs (e.g. NCBI[footnoteRef:57] taxonomy and IRMNG) is to permit the discussion of the pathogenesis of coronavirus and mainly COVID-19 through the analysis of the physiological features of infected taxons [81]. The sum of these biomedical alignments is developed using human edits and computer tools thanks to large initiatives to develop open ontological databases for curating advanced molecular biology data such as WikiGenomes [65] and Gene Wiki [47] and is enhanced in the context of the current pandemic through the contributions of WikiProject COVID-19 [15]. [52:  https://massbank.eu/MassBank/]  [53:  Interim Register of Marine and Nonmarine Genera (https://www.irmng.org/)]  [54:  Protein Data Bank (https://www.rcsb.org/)]  [55:  Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/)]  [56:  IUPHAR/BPS Guide to Pharmacology (https://www.guidetopharmacology.org/)]  [57:  National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/)] 

Despite the volume and variety of database alignment in Wikidata, particularly related to COVID-19, the Wikidata statements providing external identifiers do not provide the extent of matching between the subject and its equivalent in the aligned database. By contrast, DBpedia assigns different properties for database matching according to the level of correspondence between the aligned entities (e.g. rdfs:seeAlso, skos:broader, or owl:sameAs) [82]. As a solution to this matter, a new Wikidata property entitled "mapping relation type" (P4390) has been created. This property is assigned as the predicate to the qualifier of a statement providing an external identifier of an item. The object of this qualifier has to be one of the SKOS generic mapping relation types:  "close match" (Q39893184), "exact match" (Q39893449), "narrow match" (Q39893967), "broad match" (Q39894595) or "related match" (Q39894604). When the object is an “exact match”, the two aligned items are equivalent. However, when the object is a “broad match”, this means that the external entity is a hypernym to the corresponding Wikidata items (i.e. skos:broader), etc.
3. [bookmark: _heading=h.1fob9te]Visualizing facets of COVID-19 via SPARQL
One of Wikidata’s key strengths is that each item can be understood by both machines and humans. It represents data in the form of items and statements, which are navigable in a web interface and shared as semantic triples [20]. However, where a computer can easily hold the entire knowledge base in its memory at once, the same is obviously not true for a human. 
Since we still rely on human interpretation to extract meaning out of complex data, it is necessary to pass that data from machine to human in an intuitive manner [83]. The main way of doing this is by visualising some subset of the data, since the human eye acts as the input interface with the greatest bandwidth. Because Wikidata is available in the RDF format, it can be efficiently queried using SPARQL[footnoteRef:58], a semantic query language dynamically extracting triple information from large-scale knowledge graphs.  [58:  The recursive acronym for "SPARQL Protocol and RDF Query Language", the current version of which is SPARQL 1.1. A full description of this language is available at https://www.w3.org/TR/sparql11-query/.] 

Given the breadth of Wikidata’s COVID-19-related information (examples in Supplementary Figure S1), extracting specific subsets of that information using SPARQL[footnoteRef:59] can illustrate different aspects of the COVID-19 disease, its causative virus, and the resulting pandemic (Supplementary Table S1). Several Wikidata-based COVID-19 dashboards take advantage of the variety of visualizations that can be generated using the Wikidata Query Service (Supplementary Table S2) from both a quantitative perspective (amount of statistical data that can be generated through the integration of COVID-19 information with non-COVID-19 data) and a qualitative one (visualization types and topics). This section will present examples across different aspects of COVID-19, adapted from five main sources to which we have contributed substantially[footnoteRef:60],[footnoteRef:61],[footnoteRef:62],[footnoteRef:63],[footnoteRef:64]. Several similar query collections exist, e.g. for COVID-19 in India[footnoteRef:65] and Indonesia [85]. [59:  Technical documentation about SPARQL can be found at https://en.wikibooks.org/wiki/SPARQL.]  [60:  WikiProject COVID-19 (WPCOVID) queries: extracts from the query collection of Wikidata’s WikiProject COVID-19; https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Queries]  [61:  SARS-CoV-2-Queries: extracts from the book “Wikidata Queries around the SARS-CoV-2 virus and pandemic” [84]; https://egonw.github.io/SARS-CoV-2-Queries/]  [62:  SPEED queries: extracts from the Wikidata-based epidemiological surveillance dashboard for COVID-19 pandemic in Tunisia (https://speed.ieee.tn). It was partially built upon COVID-19 Wikidata dashboard (https://sites.google.com/view/covid19-dashboard).]  [63:  Scholia queries: queries underlying COVID-19-related visualizations from the Wikidata-based scholarly profiling tool Scholia [35]; https://scholia.toolforge.org/]  [64:  Covid-19 Summary queries: queries visualizing COVID-19 information in Wikidata linked to the epidemiological information of the outbreak and to the characteristics of the infected famous people; https://public.paws.wmcloud.org/User:99of9/Covid-19.ipynb]  [65:  https://w.wiki/LsK ] 

3.1. [bookmark: _heading=h.dxo9nquyy12v]Biological and clinical aspects
A simple demonstration of Wikidata’s encoding of SARS-CoV-2’s basic biology is in its genetics (Fig. 6) and resulting symptoms (Fig. 7). The viral genome contains 11 genes that encode 30 proteins (and variants), which are currently known to interact with over 170 different human proteins. Although there are two genome browsers based on Wikidata [65, 86], neither yet display the SARS-CoV-2 genome. SPARQL visualizations provide a broader way to explore biomedical knowledge about the studied virus and the related infectious disease. As the knowledge graph grows, this is allowing linking together complex knowledge on biochemistry (e.g. genes and proteins), biology (e.g. host taxa), clinical medicine (e.g. interventions) [74]. Such queries can be expanded by considering the qualifiers that modulate biomedical statements. These qualifiers allow the assignment of weights to assumptions according to their importance and certainty. For instance, some treatments are indicated as hypothetical, or symptoms are listed as rare, as defined by their nature of statement [P5102] or sourcing circumstances [P1480] qualifiers, with references to back these up (live data: https://w.wiki/bmJ).
3.2. [bookmark: _heading=h.dt069l470vxa]Epidemiology
Wikidata also contains the necessary information to calculate common epidemiology data for different countries, such as mortality per day per capita, and case number to mortality rate correlation. In some cases this is stored as aggregate data, such as the case mortality rate [P3457] statements for regional epidemics stored as numeric data (Fig. 8A), whereas other common visualisations can be calculated from granular data such as the individual date of birth [P569] and date of death [P570] of notable individuals deceased from COVID-19 (Figure 8B). Although this reflects the age distribution of COVID mortality, it is also influenced by the demographics of persons sufficiently notable to have Wikidata items.  
[image: ]
Fig. 6. SARS-CoV-2 interactions with the human proteome as of September 14, 2020 (available at: https://w.wiki/c3D, license: CC BY 4.0). Proteins encoded by SARS-CoV-2 genes (note that some genes encode multiple proteins) and the currently known human protein interaction partners (live data: https://w.wiki/beR).




[image: ]
Fig. 7. Symptoms of COVID-19 and similar conditions as of September 10, 2020 (available at: https://w.wiki/byX, license: CC BY 4.0). A) Currently listed symptoms of COVID-19, with qualifiers indicating their frequency. (live data: https://w.wiki/N8f). B) Other medical conditions sorted by the number of shared symptoms with COVID-19. (live data: https://w.wiki/bqV; adapted from https://scholia.toolforge.org/disease/Q84263196)

[image: ]
Fig. 8. Summary epidemiological data on the COVID-19 pandemic as of September 10, 2020 (available at: https://w.wiki/byW, license: CC BY 4.0). A) Correlation between the current number of cases and mortality rates in every country, calculated from numeric summary data for each region. Countries coloured randomly (live data: https://w.wiki/bf$). B) Age distribution of notable persons who have died of COVID-19 (blue), compared to the death age distribution for notable persons who were born after 1901 (green), calculated from individual dates of birth and death (live data: https://w.wiki/be7 and https://w.wiki/but). 
In some cases, summary data is also time-resolved, allowing inquiry of its change over time (Supplementary Figure S2), capturing features not depicted in several statistical predictions of the epidemiological evolution of COVID-19 outbreaks [87] and clearly seen in other data sources, such that mortality peaks at the beginning of a disease outbreak [88]. Wikidata’s granularity (i.e. the representation of COVID-19 information at the scale of individual cases, days and incidents) and collaborative editing have also made it highly up to date on queries such as the most recent death of notable persons due to COVID-19. This result is difficult to achieve with other datasets (Supplementary Figure S3), and mirrors Wikipedia’s well-known rapid response to updating information on deaths [42, 89].
3.3. [bookmark: _heading=h.2et92p0]Research outputs
A large portion of Wikidata is dedicated to publication metadata and citation links. There are several ways to investigate the relevant topics in publications regarding COVID-19. Firstly, topic keywords can be extracted directly from the titles of articles with COVID-19 as a main topic (Fig. 9A). This is a useful and rapid first approximation of topics covered by those publications, extracted as plain text. These can be expanded upon by querying for the main subject [P921] of a set of publications in Wikidata. This property acts analogously to the narrower but more granular Medical Subject Headings (MeSH) descriptors [90]. Such statements allow broader querying of the literature as a network via co-occurrence of topics as the main subject of articles (Fig. 9B)[footnoteRef:66]. This enables rapid traversal and faceting of the literature on topics in addition to the traditional links made by tracing citations [91], such as extracting common pharmacological and non-pharmacological interventions (live data: https://w.wiki/N8i). The ‘WikiCite’ project is working on importing the citation network into Wikidata to make a fully open citation network (Fig. S4) [92]. [66:  https://ts404.shinyapps.io/topicnetwork ] 

Because Wikidata is agnostic to the exact type of research output, its structure is equally suited to representing information on research publications, preprints (Fig. S5), clinical trials (Fig. S6) or computer applications (Fig. S7). However, preprints are not yet thoroughly covered in Wikidata, a limitation for this context as preprints have become particularly important during the rapid pace of COVID-19 research [92, 93]. Further, Wikidata’s rich biographical and institutional data makes extracting information on authors, institutions or others straightforward (Fig. S8), and eventually for other contributors too [94].
[image: ]
Fig. 9. COVID-19 publication topics as of September 10, 2020 (available at: https://w.wiki/byV, license: CC BY 4.0). A) Common words and word combinations (ngrams) in the titles of publications (live data: https://w.wiki/cFu). B) Co-occurrence of topics in publications with one of the COVID-related items as a topic, with ribbon widths proportional to the number of publications sharing those topics (log scale). Topics coloured by group as determined by Louvain clustering, topics shared in fewer than 5 publications omitted (interactive version: https://csisc.github.io/WikidataCOVID19SPARQL/Fig8B.html; live data: https://w.wiki/bww).
3.4. [bookmark: _heading=h.tyjcwt]Societal aspects 
Further emphasising the multidisciplinary nature of Wikidata, there are also significant social aspects of the pandemic contained in the knowledge base. This includes simple collation of information, such as regional official COVID websites, and unofficial but common hashtags (Fig. S9), or relevant images under Creative Commons licenses (Fig. S10). It also includes more cross-disciplinary information, such as companies that have reported bankruptcy, with the pandemic recorded as the main cause (Fig. 10), or the locations of those working on COVID (Fig. S8B). [image: ]
Fig. 10. Bankruptcies of publicly listed businesses due to the COVID-19 pandemic as of September 13, 2020 (available at: https://w.wiki/byY, license: CC BY 4.0). A) Tabular output of SPARQL query B) Bankruptcies per month C) ratios of different industries associated with bankrupt companies. (live data: https://w.wiki/cG6).
However, this also exemplifies how misleading missing data can be: Wikidata currently has highly inconsistent coverage of companies that are not publicly listed, which heavily biases the results. For example, the current lack of yearly updated socio-economic information such as unemployment rates [P1198] and nominal GDP [P2131] for countries in Wikidata limits the use of the knowledge graph for the study of the effect of the pandemic on global economies, although this is theoretically possible. Likewise, Wikidata is very incomplete with respect to COVID-19-related regulations like stay-at-home orders, school closures or policies regarding face masks. Standardised methods to audit and validate Wikidata’s content on various topics are still under investigation and development [53].
4. [bookmark: _heading=h.edt8zou2siwd]Discussion
Many knowledge graphs have been rapidly developed to represent various types of COVID-19-related information, including government responses [5], epidemiology [8], clinical data [4], scholarly outputs and outcomes [9], economic impacts [10], physiopathology [2], social networking [11] among other features related to the COVID-19 pandemic. These semantic databases are mainly built using a combination of human efforts and crowdsourcing techniques [5]. Such resources can also be developed through the automatic extraction - using natural language processing techniques - of information from scholarly publications about the outbreak, as is the case with the COVID-19 Open Research Dataset [7]. 
Despite the importance of such resources, they tend to cover a narrow range of aspects of the disease, and despite the challenges (cf.  Section 1.1), more integrated approaches are necessary to support advanced decision-making related to the outbreak. In response, integrated semantic databases have been launched to combine more divergent information, such as CIDO (combining clinical data with genomics) [3] and COVID-19 data hub (combining epidemiological data with social interactions) [12]. 
While clearly a valuable part of the data ecosystem, these projects rely on small groups of data curators, a model that has struggled to keep pace when data and scholarly literature grow sharply, as is the case with topics like COVID-19 [14]. This observation fits with the considerably limited volume of knowledge graphs exclusively enriched and verified by a dedicated expert group - such as OpenCyc - when compared to the volume of open and collaborative knowledge graphs, particularly Wikidata, YAGO, DBpedia and Freebase [17].
Whereas most knowledge graphs tend to be specialized and developed by a limited team, Wikidata deliberately takes a multidisciplinary, multilingual position anchored in the linked open data ecosystem. It is this breadth, combined with its interoperability, that makes it unique among even other user-generated collaborative projects. Indeed, it becomes uniquely suited to highly dynamic topics such as the COVID-19 pandemic [15, 74]. 
In comparison to other resources like DBpedia, Wikidata is not just edited by machines and built from data automatically extracted from textual resources like Wikipedia [51]. Wikidata complements automated edits from trusted sources with enrichments and adjustments by a community of over 25000 active human users on a daily basis[footnoteRef:67] and is released under the CC0 license allowing the free and unconditional reuse and interoperability of its information in other systems and datasets and consequently the growth of interest of many people in using, enriching and adjusting it [53]. By being highly multilingual, its human-readability extends well beyond English to support international contributions and reuse [25, 53]. Also, its flexible editing policy and RDF structure permit the easy creation of new classes, properties and data models to rapidly support emerging data topics [25, 53]. One of the features of Wikidata is also providing hundreds of exemplary SPARQL queries[footnoteRef:68], which even beginner users can immediately explore and easily modify, assisted with features like default prefixes, autosuggestions, autocomplete and straightforward conversion between Wikidata identifiers and natural language [49]. As a result, Wikidata users do not have to be SPARQL experts to arrive at results that are useful to them.  [67:  https://www.wikidata.org/wiki/Special:Statistics]  [68:  https://w.wiki/pGw] 

These factors have facilitated Wikidata’s rapid growth since its creation in 2012 into an interdisciplinary network of >90 million items, richly interconnected by more than a billion statements [25, 53]. In the context of the COVID-19 outbreak, Wikidata has proven its efficiency in representing multiple facets of the pandemic ranging from biomedical information to social impacts. This stands in marked contrast to other integrated semantic graphs that only combine two to three distinct features of the pandemic (e.g. CIDO [3], COVID-19 data hub [12], COVID-19 Living Data[footnoteRef:69] [95] and Knowledge4COVID-19[footnoteRef:70] [96]) as shown in the “data model” and “Visualizing facets of COVID-19 via SPARQL” sections. This large-scale information is supported in multiple languages as explained in the “language representation” section and is matched to its equivalents in other semantic databases as revealed by the “database alignment” section. Moreover, the semantic nature of the SPARQL query language has enabled in-depth analysis of the multifaceted, multidisciplinary COVID-19 information in Wikidata. This confirms previous findings about the importance of querying COVID-19 semantic resources such as CIDO [3] to compare clinical information with other types of COVID-19 information and consequently to generate new insights into or new perspectives on characteristics of the disease or the pandemic [97]. The primary advantage of applying SPARQL to extract and visualize COVID-19 information from a generalized knowledge graph such as Wikidata when compared to domain-specific knowledge graphs developed for the pandemic like CIDO [3] is the possibility of integration of outbreak data with non-COVID-19 information such as economic, industrial, climatic and social facts that can be used to generate summary information to explain the reasons behind the dynamics of the studied pandemic. [69:  https://covid-nma.com/]  [70:  https://devpost.com/software/covid-19-kg] 

Despite the advantages of collaborative editing and free reuse of open knowledge graphs like Wikidata to support and enrich COVID-19 information, these two features have several drawbacks related to data quality and legal concerns. It is true that the use of fully open licenses (CC0 or Public domain) in centralized knowledge graphs removes all legal barriers to their reuse in other knowledge graphs or to drive knowledge-based systems and encourages the development of intelligent support for tasks related to COVID-19. However, application of CC0 on these databases causes them not to integrate information for semantic resources and datasets with only partially open licenses (e.g. CC BY and MIT), as these licenses require either the attribution of the source work to authors or the use of the same license to process the data [98, 99]. This situation is analogous to the status of regular group O red blood cells as a universal donor but restricted recipient [100]. 
It is worth noting that crowd-sourced collaborative editing is often prone to the law of diminishing returns: the quality of human curation reaches a certain point, beyond which it is difficult to achieve additional major improvements. For instance, the quality of Wikidata relies partly on, e.g. automatically extracted infoboxes, which will only be verified and checked by editors some time in the future. However, research shows that the Wikidata community is already quite responsive to the needs of the database for all practical purposes. It is also worth remembering that machine-based systems are not immune to that effect neither [101]. Although collaborative editing contributed to the development of large-scale information about all aspects of the disease, there are currently still significant gaps and biases in the dataset that can lead to imprecise results if not interpreted with caution. For example, the COVID-19 outbreaks on cruise[footnoteRef:71] and naval[footnoteRef:72] ships are better covered in Wikipedia than in Wikidata (or most other online resources). Similarly, scholarly citations are not yet evenly covered, since systematic curation will require more scalable workflows. Although many of these gaps are rapidly being addressed and closed over time, errors of omission and bias are inevitable to some extent. Such deficiencies can only be detected and solved by applying algorithms that assess data completeness of items included in a given class within open knowledge graphs. Solutions involve cross-checking knowledge bases or subsets of the same knowledgebase [102, 103], systematically exposing the content of Wikidata to many eyes through its reuse in Wikipedia and SPARQL-based tools such as Scholia and COVID dashboards [15, 43], and using knowledge graph learning techniques to update items directly from textual databases like scholarly publications [104] and electronic health records [105]. Moreover, collaborative editing can cause several inaccuracies in the declaration of statements in open knowledge graphs disregarding the metadata standards of the knowledge bases [106]. These inconsistencies can persist particularly when the database and the largely growing scholarly literature about COVID-19 is managed by a limited number of administrators[footnoteRef:73] and can consequently cause matters about the trustworthiness of the reuse of data [106]. However, critical problems related to structural deficiencies in defining statements or to the inclusion of mistaken data in open knowledge graphs seem to happen less frequently in Wikidata [17]. Greater consistency of structure and accuracy is partly due to the involvement of more contributors in Wikidata than in other open knowledge graphs [17]. But it also stems from importing data from other rapidly-updated and curated databases (mainly from the linked open data cloud [25]) and from verification by overlapping methods (e.g. ShEx schemas[footnoteRef:74], SPARQL-based logical constraints and bot edits [53, 107]). The data validation infrastructure of Wikidata seems to be in accordance with the latest updates in knowledge graph evaluation and refinement techniques [108, 109] and explains in part the reasons behind the robustness of the data model of COVID-19 information in this open knowledge graph. [71:  https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships]  [72:  https://en.wikipedia.org/wiki/COVID-19_pandemic_on_naval_ships]  [73:  As of February 18, 2021, there are only 62 Wikidata administrators, as shown at https://www.wikidata.org/wiki/Special:Statistics.]  [74:  The validation schemas for COVID-19 information in Wikidata are currently available at https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Data_models.] 

5. [bookmark: _heading=h.1t3h5sf]Conclusion
In this research paper, we demonstrate the ability of open and collaborative knowledge graphs such as Wikidata to represent and integrate multidisciplinary COVID-19 information and the use of SPARQL to generate summary visualizations about the infectious disease, the underlying pathogen, the resulting pandemic and related topics. We have shown how the community-driven approach to editing without centralized coordination has contributed to the success of Wikidata in tackling emerging and rapidly changing phenomena, such as the pandemic. We have also discussed the disadvantages of collaborative editing for systematic knowledge representation, mainly the difficulty of ensuring sustainability for COVID-19 information in open knowledge graphs, the tricky validation of conflicting semantic data, the lack of coverage of several aspects of the analyzed pandemic, and the significant underrepresentation of advanced semantics for several types of Wikidata statements. Then, we described how the Wikimedia Community is currently trying to solve them through a series of advanced technical and organizational solutions. As an open semantic resource in the RDF format, Wikidata has become a hub for COVID-19 knowledge due to its alignment with major external resources and to its broad multidisciplinarity. The insertion of information in the Linked Open Data format provides the flexibility to integrate data from many facets of COVID-19 data with non-COVID-19 data. By its multilingual structure, these inputs are contributed to (and reused by) people all over the world, with different backgrounds. Effectively, the WikiProject COVID-19 has made COVID-19 knowledge more FAIR: Findable, Accessible, Interoperable and Reusable [74]. 
An important aspect of Wikidata’s FAIRness is the Wikidata SPARQL query service (https://query.wikidata.org) [74]. More than an endpoint, the query service provides a visual interface to create queries, and makes it easier for beginners to customize queries. Additionally,  community-contributed data visualization tools like Scholia provide human-friendly interfaces to surf the data [43]. As shown here, SPARQL visualizations are an entry point for deeper insights into COVID-19, including the integration of data from various fields and resources, and acquiring valuable implicit knowledge, both regarding the biomedical facets of this still new disease, as well as into the societal details of the pandemic. 
As Wikidata is community-oriented and broadly themed, virtually any researcher can take advantage of its knowledge, and contribute to it. SPARQL queries can complement and enrich research publications, providing both an overview of domain-specific knowledge for original research, as well as serving as the base for systematic reviews or scientometric studies. Of note,  SPARQL queries can be inserted into living publications, which can keep up to date with the advancements both in human knowledge and its coverage on Wikidata.
Another part of FAIRness is user-friendly  programmatic data access. Wikidata database dumps are available for download and local processing in RDF, JSON and XML formats (https://www.wikidata.org/wiki/Wikidata:Database_download).  Beyond dumps,  the Wikibase API makes data retrievable via HTTP requests, which facilitates integration into analysis and reuse workflows. API wrappers are also available for popular programming languages like R (https://cran.r-project.org/web/packages/WikidataR/) and Python (https://pypi.org/project/Wikidata/), further boosting interoperability.
Even though Wikidata is rich in COVID-19 knowledge, there is always room for improvement. As a collaborative endeavour, Wikidata and the WikiProject COVID-19 are likely to become further enriched over time. By the collective efforts of contributors, we hope that the database will grow in quality and coverage, supporting other types of information - such as the outcomes of the ongoing COVID-19-related research efforts - and contributing to higher pandemic preparedness globally. 
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Table S1. List of the tasks fulfilled by the SPARQL queries for the visualization of the COVID-19 information in Wikidata
	Task
	Description

	Genomic data and clinical knowledge

	Z1
	Symptoms of COVID-19 (SPEED, SARS-CoV-2-Queries)

	Z2
	Potential treatments of COVID-19 (SPEED)

	Z3
	Linnean Taxonomy of SARS-CoV-2 (SPEED)

	Z4
	All SARSr viruses (SARS-CoV-2-Queries)

	Z5
	Coronaviruses that infect humans (SARS-CoV-2-Queries)

	Z6
	All betacoronaviruses (SARS-CoV-2-Queries, WPCOVID)

	Z7
	All coronaviruses (SARS-CoV-2-Queries)
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Table S2. List of sample queries on COVID-19. The information contained therein is similar to visualizations in many stand-alone COVID-19 dashboards, covering an overview of COVID-19, international situation, international daily epidemiological evolution, Tunisian daily epidemiological evolution, Tunisian governorate-level situation, Tunisian correlations, and worldwide correlations. Each of the sheets has a Title column with a brief summary for each query and a URL column with a link to the live record on Wikidata.
	Table available as Query/COVID-19.xlsx in 
http://doi.org/10.5281/zenodo.4022591.



Table S3. Raw data and correlation statistics for datasets summarised in tables 3 and 4, including Pearson’s, Spearman’s, and Cohen’s coefficients for the raw data and Spearman’s coefficients and principal component analysis of the log-10 transformed data.

	Table available as docs/Fig5Corr/T3+4.xlsx in 
http://doi.org/10.5281/zenodo.4022591.



Table S4. Spearman's rho on raw data (pairwise) of untransformed variables from tables 3 and 4 against max development index for countries speaking each language as an official language, and number of native speakers. Final column indicates Cohen's q value (calculated as the difference between the Fisher-transformed Spearman's rho values i.e., q = z’(r(development,Wikidata med labels))– z’(r(number of speakers, Wikidata med labels))), comparing these two for the stronger correlate for variables from tables 3 and 4. Positive values indicate max development index as the stronger correlate, while negative values would indicate number of native speakers as the stronger correlate. Differences of >.5 are considered “large” and unusual for the social sciences, .3 “medium” and .1 “small”. 

	
	Spearman’s rho
	Spearman’s rho
	Cohen’s q

	
	Max development
	Number speakers
	development - speakers

	Medical Wikipedia articles
	.71
	.48
	.36

	Medical Wikidata labels
	.76
	.38
	.59

	Wikipedia and Wikidata Users
	.62
	.21
	.51

	COVID19 pandemic Wikipedia pageviews
	.53
	.53
	.00

	COVID Wikipedia pages
	.71
	.52
	.31

	COVID Wikidata content
	.69
	.53
	.26

	COVID Wikipedia edits
	.63
	.55
	.12





Table S5. Main Wikidata properties used to represent the external identifiers of scholarly articles and clinical trials related to the COVID-19 pandemic (as of August 31, 2020).
	Wikidata ID
	Wikidata Property
	Count

	P356
	DOI
	45101

	P698
	PubMed ID
	42294

	P6179
	Dimensions Publication ID
	16944

	P932
	PMCID
	12590

	P8150
	COVIDWHO ID
	11718

	P8299
	Semantic Scholar corpus ID
	4612

	P3098
	ClinicalTrials.gov Identifier
	246

	P818
	arXiv ID
	47

	P2880
	NIOSHTIC-2 ID
	23



Table S6. Main Wikidata properties used to represent the external identifiers of diseases and symptoms related to the COVID-19 pandemic (as of August 31, 2020).

	Wikidata ID
	Wikidata Property
	Diseases count
	Symptoms count

	P672
	MeSH tree code
	40
	12

	P2892
	UMLS CUI
	38
	11

	P494
	ICD-10
	32
	8

	P4229
	ICD-10-CM[footnoteRef:76] [76:  International Classification of Diseases, Tenth Revision, Clinical Modification] 

	32
	1

	P3827
	JSTOR topic ID
	32
	10

	P6366
	Microsoft Academic ID
	29
	11

	P493
	ICD-9[footnoteRef:77] [77:  International Classification of Diseases, Ninth Revision] 

	26
	5

	P673
	eMedicine ID
	24
	2

	P1417
	Encyclopedia Britannica Online ID
	23
	7

	P486
	MeSH descriptor ID
	23
	9

	P646
	Freebase ID
	21
	10

	P3841
	Human Phenotype Ontology ID
	18
	9

	P604
	MedlinePlus ID
	19
	9

	P508
	BNCF[footnoteRef:78] Thesaurus ID [78:  Biblioteca Nazionale Centrale di Firenze (Central National Library of Florence, Italy)] 

	17
	7

	P1296
	Gran Enciclopedia Catalana ID
	10
	7

	P8408
	KBpedia[footnoteRef:79] ID [79:  https://kbpedia.org/] 

	16
	7




Table S7. Main Wikidata properties used to represent the external identifiers of humans and sovereign states related to the COVID-19 pandemic (as of August 31, 2020).
	Wikidata ID
	Wikidata Property
	Sovereign states
	Humans

	P214
	VIAF ID
	159
	654

	P7859
	WorldCat Identities ID
	146
	548

	P244
	Library of Congress authority ID
	125
	458

	P213
	ISNI[footnoteRef:80] [80:  https://isni.org/] 

	100
	443

	P646
	Freebase ID
	124
	379

	P2002
	Twitter username
	16
	353

	P227
	GND[footnoteRef:81] ID [81:  Gemeinsame Normdatei (German National Library, Germany), https://www.dnb.de/DE/Professionell/Standardisierung/GND/gnd_node.html] 

	125
	308

	P345
	IMDb ID
	
	274

	P268
	Bibliothèque nationale de France ID
	177
	269

	P269
	IdRef[footnoteRef:82] ID [82:  Identifiants et Référentiels pour l’enseignement supérieur et la recherche (Identifiers and credentials for higher education and research in France)] 

	84
	265

	P998
	DMOZ[footnoteRef:83] ID [83:  Directory Mozilla (https://dmoz-odp.org/)] 

	158
	

	P3417
	Quora topic ID
	141
	73

	P1417
	Encyclopedia Britannica Online ID
	138
	53

	P5400
	GeoNLP ID
	128
	

	P349
	National Diet Library ID
	127
	54

	P4801
	LoC MARC[footnoteRef:84] vocabularies ID [84:  https://www.loc.gov/marc/] 

	126
	




Table S8. Main Wikidata properties used to represent the external identifiers for other Wikidata classes related to the COVID-19 pandemic (as of August 31, 2020).
	Wikidata Class
	Wikidata ID
	Wikidata Property
	Count

	drug [Q11173]
	P6689
	MassBank accession ID
	44

	drug [Q11173]
	P4964
	SPLASH[footnoteRef:85] [85:  Spectral Hash Identifier (https://splash.fiehnlab.ucdavis.edu/)] 

	31

	protein [Q8054]
	P638
	PDB structure ID
	31

	film [Q11424]
	P345
	IMDb ID
	25

	film [Q11424]
	P2603
	Kinopoisk film ID
	23

	film [Q11424]
	P7177
	Cinestaan film ID
	22

	disease outbreak [Q3241045]
	P3984
	subreddit
	22

	protein [Q8054]
	P637
	RefSeq[footnoteRef:86] protein ID [86:  NCBI Reference Sequence Database (https://www.ncbi.nlm.nih.gov/refseq/)] 

	18

	committee group motion [Q97695005]
	P8433
	Swedish Riksdag document ID
	18

	film [Q11424]
	P2529
	ČSFD[footnoteRef:87] film ID [87:  Česko-Slovenská filmová databáze (Czech-Slovak Film Database, https://www.csfd.cz/)] 

	17

	drug [Q11173]
	P267
	ATC[footnoteRef:88] code [88:  Anatomical Therapeutic Chemical (ATC) Classification System (https://www.whocc.no/atc_ddd_index/)] 

	17

	protein [Q8054]
	P352
	UniProt protein ID
	16

	protein [Q8054]
	P5458
	Guide to Pharmacology Target ID
	15

	COVID-19 app [Q89288125]
	P7771
	PersonalData.IO ID
	14

	gene [Q7187]
	P351
	Entrez Gene ID
	12

	COVID-19 app [Q89288125]
	P3418
	Google Play Store app ID
	12

	gene [Q7187]
	P2393
	NCBI locus tag
	11

	macromolecular complex [Q22325163]
	P7718
	Complex Portal accession ID
	11

	protein fragment [Q78782478]
	P638
	PDB structure ID
	11

	drug [Q11173]
	P231
	CAS Registry[footnoteRef:89] Number [89:  https://www.cas.org/support/documentation/chemical-substances ] 

	9

	drug [Q11173]
	P715
	DrugBank ID
	9

	drug [Q11173]
	P665
	KEGG ID
	9

	drug [Q11173]
	P638
	PDB structure ID
	9

	drug [Q11173]
	P652
	UNII[footnoteRef:90] [90:  Unique Ingredient Identifier (https://fdasis.nlm.nih.gov/srs/)] 

	9

	protein [Q8054]
	P705
	Ensembl protein ID
	8

	COVID-19 app [Q89288125]
	P3861
	App Store app ID (global)
	8

	drug [Q11173]
	P595
	Guide to Pharmacology Ligand ID
	8

	drug [Q11173]
	P6366
	Microsoft Academic ID
	8

	disease outbreak [Q3241045]
	P3479
	Omni topic ID
	7

	taxon [Q16521]
	P5055
	IRMNG ID
	6

	taxon [Q16521]
	P685
	NCBI taxonomy ID
	6


[bookmark: _heading=h.8dk3v7sta061]Supplementary Figures
This section of the supplementary data includes an additional array of visualizations that were not able to fit in the main text but that exemplify the diversity of additional valuable information that can be extracted out of the Wikidata knowledge base.
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Fig. S1. Snapshot of the extended graph of the three main COVID items and the statements for which they are the subject. Linked items demonstrate the variety of topics for which the three main COVID items (indicated in red) are the subject and present a small subset of the classes indicated in Fig. 2. (Available at: https://w.wiki/cPa, live data: https://w.wiki/xYE, Access Date: August 19, 2020)
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Fig. S2. Epidemiological data for Tunisia as of August 16, 2020 as used by the https://speed.ieee.tn dashboard website (Available at: https://w.wiki/cQC). A) Daily mortality rate from COVID-19 in Tunisia (live data: https://w.wiki/N2p). B) Tunisian governorate-level cases (live data: https://w.wiki/N9Y). C) Daily change in clinical tests by laboratory in Tunisia (live data: https://w.wiki/NEb).
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Figure S3. People listed in Wikidata deceased due to COVID-19 as of August 16, 2020 (Available at: https://w.wiki/cQK). A) As tabular output, ranked by date of death (live data: https://w.wiki/Mgv). B) Portrait images available under a CC BY-compatible license, ranked by how well-described the depicted individuals are in Wikidata (number of identifiers + statements + sitelinks) (live data: https://w.wiki/bzJ). C) as bubble diagram of professions (live data: https://w.wiki/bTz).
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Figure S4. Partial citation network within Wikidata as of August 16, 2020 (Available at: https://w.wiki/cQV). The citation network around COVID-19 is currently rather incomplete but part of the larger, ongoing WikiCite project to represent all citation data within Wikidata as a fully open citation network. A) publications cited from C3 papers (live data: https://w.wiki/b$h) B) authors most frequently cited by C3 papers (live data: https://w.wiki/b$i).
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Figure S5. Most common publication venues for C3-themed papers (published and preprint) as of August 16, 2020. Even with Wikidata’s currently incomplete coverage of articles hosted on preprint servers, they are clearly a significant location for COVID-related publications (Available at: https://w.wiki/cQX, live data: https://w.wiki/bd$).
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Fig. S6. Information regarding clinical trials on interventions to treat COVID-19 as of August 16, 2020 (Available at https://w.wiki/cQb, live data: https://w.wiki/bav)
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Fig. S7. Computer applications and their types as of August 16, 2020 (Available at: https://w.wiki/cQg, live data: https://w.wiki/NVp)
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Fig. S8. Information on authors of articles on COVID-related topics as of August 16, 2020 (Available at: https://w.wiki/cQh). A) Awards most frequently received by authors of C3 papers (live data: https://w.wiki/ban), B) Map of organizations associated with works about C3 with institutions that have published a single paper on the topic in green, those that have published 1-10 in orange, and those having published >10 in blue (live data: https://w.wiki/cG4).
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Fig. S9. Online resource locations for information on COVID-19 regional outbreaks as of August 16, 2020 (Available at: https://w.wiki/cQo). A) Official websites (live data: https://w.wiki/bdt). B) Main hashtags (live data: https://w.wiki/bds)
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Fig. S10. COVID-related images based on structured data as of August 16, 2020 (Available at: https://w.wiki/cQt). Images in wikimedia commons used to be organised solely by a hierarchical category structure. Since 2019, structured data can be associated with images via Wikidata statements. A) Images from Wikimedia Commons about COVID-19 pandemic and SARS-CoV-2 with a CC-BY-compatible license (live data: https://w.wiki/Zsn). B) Images of face masks used during COVID-19 pandemic with a CC-BY-compatible license (live data: https://w.wiki/bzG).
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