
Making Canonical Workflow Building Blocks
interoperable across workflow languages
Stian Soiland-Reyes, Genís Bayarri, Pau Andrio, Robin Long, Douglas Lowe, Ania Niewielska, Adam Hospital, Paul Groth

Abstract
We introduce the concept of Canonical Workflow Building Blocks (CWBB), a methodology of describing

and wrapping computational tools, in order for them to be utilized in a reproducible manner from multiple
workflow languages and execution platforms. The concept is implemented and demonstrated with the BioExcel
Building Blocks library (BioBB), a collection of tool wrappers in the field of computational biomolecular
simulation. Interoperability across different workflow languages is showcased through a protein Molecular
Dynamics setup transversal workflow, built using this library and run with 5 different Workflow Manager
Systems (WfMS). We argue such practice is a necessary requirement for FAIR Computational Workflows and
an element of Canonical Workflow Frameworks for Research (CWFR) in order to improve widespread adoption
and reuse of computational methods across workflow language barriers.

1. Introduction
The need for reproducibility of research software usage is well established [Stodden 2016, Leipzig 2020, Katz

2021], and adaptation of workflow management systems (WfMS) together with software packaging and
containers [Möller 2017] have been proposed as key ingredients for making research software usage FAIR and
reproducible [Cohen-Boulakia 2017, Grüning 2018a, Lamprecht 2020]. Recently it is also argued that computational
workflows should also be treated as FAIR Digital Objects [De Smedt 2020] in their own right, with identifier,
metadata and interoperability requirements [Goble 2020].

BioExcel, a European Centre of Excellence for Computational Biomolecular Research, has a particular
focus on the boundary of molecular dynamics simulations and bioinformatics analytics using High Performance
Computing (HPC) to approach Exascale performance, while also improving usability. The BioExcel Building
Blocks (BioBB) [Hospital 2020] have been created as portable wrappers of open-source computational tools
identified as useful for BioExcel workflows, forming several families of documented and interoperable
operations that can be called from multiple workflow systems. This interoperability is shown with the BioBB
demonstrator workflows, along with multiple tutorials and notebooks.

We propose that these building blocks and their families can themselves be considered composite Digital
Objects: collections of software packages and their source code, guides and tutorials, as well as workflow
management system integrations and workflow examples. In addition, the building blocks, as wrappers of
upstream open source tools, benefit from and refer to the tools’ existing documentation, support forums,
academic publications and wider development context.

Given BioBB as a starting point, we define a generalized methodology of Canonical Workflow Building
Blocks through the definition of a set of requirements and recommendations for how to formalize and develop a
family of compatible computational tools as Digital Objects. These building blocks let researchers instantiate a
Canonical Workflow in multiple workflow management systems, while also benefiting from the FAIR aspects of
the CWBB Digital Objects.

1

https://orcid.org/0000-0001-9842-9718
https://orcid.org/0000-0003-0513-0288
https://orcid.org/0000-0003-2116-3880
https://orcid.org/0000-0003-2249-645X
https://orcid.org/0000-0002-1248-3594
https://orcid.org/0000-0003-0989-3389
https://orcid.org/0000-0002-8291-8071
https://orcid.org/0000-0003-0183-6910
https://doi.org/10.1126/science.aah6168
https://arxiv.org/abs/2006.08589
https://arxiv.org/abs/2101.10883
https://arxiv.org/abs/2101.10883
https://doi.org/10.1007/s41019-017-0050-4
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1016/j.cels.2018.03.014
https://doi.org/10.3233/ds-190026
https://doi.org/10.3390/publications8020021
https://doi.org/10.1162/dint_a_00033
https://bioexcel.eu/
https://doi.org/10.5281/zenodo.4540432


2. Methods
The BioExcel Building Blocks library [Andrio 2019], created and implemented within the BioExcel CoE, is

a collection of portable wrappers of common biomolecular simulation tools. The library is designed to i)
increase the interoperability between the tools wrapped; ii) ease the implementation of biomolecular simulation
workflows; and iii) increase the reusability and reproducibility of the generated workflows. To achieve these
main goals, the library was designed following the FAIR principles for research software development best
practices [Lamprecht 2020]. The result is a collection of building block modules, divided in sets of tool wrappers
focused on similar functionalities (e.g. Molecular Dynamics, Virtual Screening). Each of the modules is built
from a combination of (i) software packaging (Pip, BioConda, BioContainers), (ii) documentation
(ReadTheDocs), (iii) interactive tutorials (Jupyter Notebooks, myBinder), (iv) registry & findability (bio.tools,
BioSchemas, WorkflowHub), (v) WfMS integration stubs (CWL, Galaxy, PyCOMPSs), (vi) source Code
(GitHub) and (vii) REST APIs (OpenAPI, Swagger). Notably all building blocks follow the same pattern of
installation, configuration and interaction.

Since the publication of the library, several new building block modules (Chemistry, Machine Learning,
Amber, Virtual Screening, etc.) have been added, and the set of operations for the existing BioBB families have
been expanded. While we previously provided curated adapters (Figure 1) for running BioBB in workflow
systems using CWL and PyCOMPSs, along with Galaxy Toolshed bindings, we have now started
auto-generating these bindings, along with command line wrappers and REST web service APIs, using
annotations within BioBB’s Python docstrings as source. These annotations include sufficient information for a
WfMS to launch a particular building block: input and output parameters (including mandatory/optional flags),
compatible formats (including EDAM ontology formats), example files (essential for testing purposes), default
values and dependencies. This ensures human-readable documentation, FAIR metadata and programmatic
accessibility can be generated consistently and comparably.

Figure 1: Code snippets for the BioBB WfMS bindings: CWL, PyCOMPSs, Galaxy and KNIME

2

http://mmb.irbbarcelona.org/biobb/
https://doi.org/10.1038/s41597-019-0177-4
http://bioexcel.eu/
https://doi.org/10.3233/ds-190026
https://pypi.org/project/biobb/
https://bioconda.github.io/search.html?q=biobb
https://biobb.readthedocs.io/
http://mmb.irbbarcelona.org/biobb/workflows/tutorials/md_setup
https://bioexcel-binder.tsi.ebi.ac.uk/v2/gh/bioexcel/biobb_wf_md_setup/master?filepath=biobb_wf_md_setup%2Fnotebooks%2Fbiobb_MDsetup_tutorial.ipynb
https://bio.tools/biobb
https://bioschemas.org/profiles/ComputationalTool/0.5-DRAFT/
https://bioschemas.org/profiles/ComputationalTool/0.5-DRAFT/
https://workflowhub.eu/programmes/2
https://github.com/bioexcel/biobb_adapters/tree/v0.1.4/biobb_adapters/cwl
https://toolshed.g2.bx.psu.edu/repository?repository_id=e23296b413014cfc
https://github.com/bioexcel/biobb_adapters/tree/v0.1.4/biobb_adapters/pycompss
https://github.com/bioexcel/biobb
https://mmb.irbbarcelona.org/biobb-api/rest
https://mmb.irbbarcelona.org/biobb-api/rest/swagger.json
https://mmb.irbbarcelona.org/biobb/documentation/source


The library is showcased through a collection of demonstration workflows. Jupyter Notebook has been
highlighted as a valuable tool for reproducible scientific workflows [Beg 2021], which we recognize by primarily
exposing the workflows as Jupyter Notebooks. This offers a graphical interactive interface, including
documentation (integrated markdown) related to the workflow and the building blocks used, but also to the
biomolecular simulation methods used in the pipeline. Moreover, as we have demonstrated with Binder [Jupyter
2018], these workflows are reproducible across platforms, assisted by BioConda [Grüning 2018b] packaging of
the building blocks and their software dependencies. The assembly of available demonstration workflows have
been successfully used in the BioExcel CoE for dissemination and training events (e.g. BioExcel
Summer/Winter School).

We can observe that workflow building blocks such as BioBB are necessarily composed of a
comprehensive list of digital objects, encompassing source code, packaging, containerization, documentation,
attributions, citations, registry entries, WfMS integrations and REST APIs.

Considering building blocks as composite digital objects in their own right - which along with their
metadata, identifiers and operations can be called canonical workflow building blocks (CWBB) - allows for
them to be considered as fundamental elements of FAIR Digital Objects for Computational Workflows that use
the building blocks as operations, propagating information and resources that are essential for reproducibility,
reuse and understanding by anyone discovering the workflow.

2.1 Interoperability across different workflow languages

The concept of canonical workflow building blocks is showcased with the BioBB library using a
transversal workflow present in many different computational biomolecular projects: a Molecular Dynamics
(MD) protein setup. This workflow prepares a protein structure to be used as input for an MD simulation, going
through a series of steps where the protein is completed (adding hydrogen and missing atoms), optionally
introducing a residue mutation, then submerging the protein in a virtual box of water molecules with a particular
ionic concentration, and finally energetically equilibrating the system (so that solvent and ions are well
accommodated around the protein at the desired temperature).

This simulation process involves a non-negligible number of steps, using a variety of biomolecular tools.
The BioBB library was used to assemble this workflow, interconnecting building blocks using Python functions
(Jupyter Notebook, Command Line Interface), auto-generated bindings (Galaxy, CWL, PyCOMPSs) or
manually generated bindings (KNIME). Corresponding workflows for the different WfMS can be found in
WorkflowHub and graphical extracts can be seen in Fig. 2.

This example demonstrates how the same canonical building blocks can be used in different WfMS.
Wrappers and tools executed behind the workflows are exactly the same, but the workflows are built using
different WfMS, some of them in a graphical way (drag & drop, Galaxy, KNIME), some in a command line way
(Jupyter Notebook, PyCOMPSs, CWL); workflows can be focused on short/interactive executions (Jupyter
Notebook), or on High Throughput/High Performance Computing (HT-HPC) executions (PyCOMPSs); some of
them prepared for a particular WfMS installation (Galaxy), others completely system-agnostic (CWL).

The current number of available bindings include Jupyter Notebook, PyCOMPSs, CWL, Galaxy and
KNIME WfMS, apart from a recommended command line mechanism. Thanks to the extensive documentation
added in the source code as Python docstrings, new bindings for available WfMS can be generated. However, it
should be noted that this automatic generation of WfMS bindings is not always practically feasible. As an
example, KNIME nodes require a complete Java skeleton code, as well as a definition of new data types for all
inputs/outputs required, which makes their automatic generation a heavy and potentially error-prone task.
Bindings for workflow languages with a domain-specific language (DSL) for tool definitions (e.g. Galaxy,
CWL) can on the other hand be generated in a more straightforward fashion.

The transversal protein MD setup workflow was chosen as a real example that is readily understandable by
domain experts. More complex pipelines involving a broader set of wrapped biomolecular tools have been
developed using the BioBB library, primarily as Jupyter Notebooks. A selection of these will similarly be
assembled for different WfMS using the auto-generated bindings and uploaded to the WorkflowHub repository.

3

http://mmb.irbbarcelona.org/biobb/workflows
https://doi.org/10.1109/mcse.2021.3052101
https://hub-bioexcel-binder.tsi.ebi.ac.uk/
https://doi.org/10.25080/majora-4af1f417-011
https://doi.org/10.25080/majora-4af1f417-011
http://mmb.irbbarcelona.org/biobb/documentation/online-info
http://mmb.irbbarcelona.org/biobb/documentation/online-info
http://mmb.irbbarcelona.org/biobb/workflows/tutorials/md_setup
http://mmb.irbbarcelona.org/biobb/workflows/tutorials/md_setup
https://workflowhub.eu/collections/3
http://mmb.irbbarcelona.org/biobb/availability/tutorials/command-line
https://mmb.irbbarcelona.org/biobb/workflows
https://workflowhub.eu/projects/11


Figure 2: Protein MD Setup transversal workflow, assembled in with 5 different workflow managers using
BioBB canonical building blocks. From top-left: Galaxy [10.48546/workflowhub.workflow.194.1], KNIME

4

https://doi.org/10.48546/workflowhub.workflow.194.1


[10.48546/workflowhub.workflow.201.1], CWL [10.48546/workflowhub.workflow.29.3], Jupyter Notebook
[10.48546/workflowhub.workflow.120.2] and PyCOMPSs [10.48546/workflowhub.workflow.200.1].

3. Discussion
Early work on libraries of workflows fragments include Web Service-based approaches where tools are

wrapped and exposed using common, interoperable data types in BioMoby [Biomoby 2008] for bioinformatics
and similarly caBIG [Saltz 2006] for cancer genomics. While these efforts were interoperable across WfMSs they
required a large up-front investment in agreeing to and adapting native data to common RDF or XML
representations.

The notion of abstract workflows [Garijo 2011], structural workflow descriptions separated from their
concrete execution realizations and augmented with Linked Data annotations, have been emphasized as essential
for reuse and consistency across workflow systems. Identifying common motifs for workflow operations [Garijo
2014] (e.g. Data preparation, Format transformation, Filter, Combine) are important to simplify and understand
otherwise fine-grained workflow provenance traces.

Most other efforts to standardize a set of disparate analytical tools have been done within the scope of a
single WfMS, allowing customized user interaction, data visualization, configuration and findability, for
instance Taverna components had prototypical building blocks [Giovanni 2016] which were instantiated at
runtime by reference from a registry. KNIME components and metanodes, shared on the KNIME Hub are
frequently designed to be interoperable, but with a perhaps weaker notion of component families. The Galaxy
toolshed [Blankenberg 2014] is likewise populated with different sets of tool wrappers that are largely made to be
interoperable within a category.

The Common Workflow Language (CWL) [Crusoe 2021] has a strong emphasis on interoperable command
line tool descriptions, with support for containers and Conda packaging, as well as support for FAIR metadata
like contributors, license and EDAM ontology type annotations. With multiple leading workflow engines now
supporting CWL, and experimental Galaxy support, this seems perhaps the most promising candidate for both
making and describing canonical workflow building blocks, however we’ve identified a few stumbling blocks.

One obvious challenge is that the implementing WfMS needs to have CWL support, along with support for
either containers or Conda packaging to find the described executables. While it is possible to run a CWL tool
directly using a #!/usr/bin/env cwl-runner shebang on POSIX systems, this still requires pre-installation and
possibly configuration of a CWL engine like cwltool, which themselves have multiple dependencies and cannot
easily be used as a container, because to execute the tool it would need nested containers which are not
generally permitted for security reasons. Within the CWL community it was originally envisioned that a wider
set of workflow systems would adopt CWL for tool description/execution, with a subset implementing full
CWL workflow support. This would allow shared community effort for describing tools, say in the Common
Workflow Library, rather than each WfMS needing to duplicate this tool wrapping in separate repositories and
languages. However, with the exception of experimental tool support in Galaxy, in practice all CWL
implementers have gone for full workflow support.

Another challenge is that making a set of building blocks frequently requires the use of shims, for instance
file conversion, small search/replace operations or file renames. In a CWL approach these can either be
performed with an Expression using JavaScript snippets which only has limited access to file content, or as an
additional workflow step added before or after the main tool step. This could then be nested as a subworkflow,
similar to KNIME’s metanodes, and would also allow different containers or packages for any pre- or post-steps.
This however becomes harder to access from a non-CWL WfMS because of lack of control over
configuration/execution options for the now nested CWL tools, and in practice requires CWL-supporting WfMS
to implement full CWL Workflow support.

It is worth mentioning that it would be possible to generate WfMS-specific tool bindings from CWL (e.g.
as demonstrated with cwl2script for Bash, gxargparse for Galaxy, cwl2wdl for WDL), although this necessitates
constraining the tool and workflow definitions to a limited subset of CWL.

For the main BioBB building blocks we implemented demonstrator workflows that highlight how the tools
should be used in different workflow management systems; each having a primary exemplar using Jupyter
Notebook, which can be explored interactively using the BioExcel myBinder. If we consider the abstract

5

https://doi.org/10.48546/workflowhub.workflow.201.1
https://doi.org/10.48546/workflowhub.workflow.29.3
https://doi.org/10.48546/workflowhub.workflow.120.2
https://doi.org/10.48546/workflowhub.workflow.200.1
http://biomoby.open-bio.org/
https://en.wikipedia.org/wiki/CaBIG
https://doi.org/10.1145/2110497.2110504
https://doi.org/10.1016/j.future.2013.09.018
https://doi.org/10.1016/j.future.2013.09.018
http://www.taverna.org.uk/documentation/taverna-2-x/components/
https://doi.org/10.1111/ecog.01552
https://docs.knime.com/2020-07/analytics_platform_components_guide/index.html
https://hub.knime.com/
https://toolshed.g2.bx.psu.edu/
https://toolshed.g2.bx.psu.edu/
https://doi.org/10.1186/gb4161
https://arxiv.org/abs/2105.07028
https://www.commonwl.org/user_guide/07-containers/
https://www.commonwl.org/user_guide/17-metadata/
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://github.com/common-workflow-library/
https://github.com/common-workflow-library/
https://www.commonwl.org/v1.2/Workflow.html#Expressions_(Optional)
https://github.com/common-workflow-lab/cwl2script
https://github.com/common-workflow-lab/gxargparse
https://github.com/common-workflow-lab/cwl2wdl
http://mmb.irbbarcelona.org/biobb/workflows
https://hub-bioexcel-binder.tsi.ebi.ac.uk/h


demonstrator workflows as canonical workflows they are therefore very much active objects, but can also be
seen as workflow templates, as any real use case will need to specialize the workflow to tweak parameters, data
selection etc.

We therefore also now provide such workflow templates for multiple WfMS, including CWL, PyCOMPSs
and Galaxy, which are fairly disparate workflow languages, yet by the use of the same canonical workflow
building blocks (which again invoke the same software binaries), all effectively are instantiations of the same
canonical workflow.

One challenge found is how to publish such canonical workflows in registries like the WorkflowHub. The
hub supports the registration of Digital Objects in the form of RO-Crate [Soiland-Reyes 2021], with abstract CWL
for describing the canonical workflow template, along with direct references to the workflow’s GitHub
repository, however this results in one registration entry per workflow language, which are not otherwise related
and may not even share the same source code repository.  Thus we’ve identified the need for adding an overall
canonical workflow entry, which can bring in workflow documentation and references shared across WfMS
implementations, including a set of links to the more granular canonical workflow building blocks used by the
workflow, but also to the individual WfMS implementations as separate digital objects.

A similar question of granularity applies at the workflow tool level [Möller 2017], particularly for
Findability and Accessibility, as we can consider at lowest granularity the scientific method in general (e.g. any
algorithm for sequence alignment), followed by an application suite (bio.tools entry, homepage,
documentation), instantiated as a particular software installation (Debian package, Docker container) with its
dependencies at same level, which includes one or more software executables (a particular binary, a running
service service), providing at the highest granularity level the specific types of software functionality (a
particular mode of operation, choice of analysis) for instance using different command line flags.

For canonical workflow building blocks, with a focus on pluggable composability, this is mainly defined at
the lowest granularity level of software functionality, operations that can be added to a workflow. This is indeed
the level WfMS tool definitions are done, e.g. a CWL Command Line Tool specifies a particular way to run a
particular software binary. However to be a CWBB the building block needs to additionally rely on the lower
granularity levels, particularly to support multiple options for interoperable installation and execution, as well as
metadata at the most general level, such as documentation and scholarly citations.

While workflow management systems typically only operate at the highest granularity levels for execution
details, and are frequently unaware of (or not exposing metadata at) the more general levels, we argue that in
order for a Canonical Workflow [Wittenburg 2021] to follow and support FAIR principles for itself and its data,
the workflow management system need to propagate structured metadata about the tools used by the workflow.
We propose that in order to support the workflow’s applicability to multiple WfMS, the tools themselves must
also have a consistent packaging and formal description that enables consistent computational invocation.

At the most general level, a canonical workflow built using such CWBBs is even conceptually
reproducible because the FAIR documentation of the workflow, through its canonical workflow building blocks,
identifies how individual tools and software applications are composed, which in worst case can be rebuilt using
different installation methods in a different WfMS, or in best case inspected to detect and cross-link the same
canonical workflow appearing in different WfMS instantiations. This view of software as composition of other
software typically also applies at individual tool level, which themselves depend on programming language
runtimes, libraries, services and reference data.

4. Requirements for Canonical Workflow Building Blocks
Building on the experiences with BioBB, we here propose requirements and recommendations for

establishing Canonical Workflow Building Blocks (CWBB) as implementations of canonical steps introduced
for Canonical Workflow Frameworks for Research [Wittenburg 2021].

The core purpose of a CWBB is to wrap a command line tool or other software that can perform an
operation as part of a computational workflow. As such, the general advice for making software workflow-ready
applies [Brack 2021] (e.g. easy to install, documented, parallelisable, reproducible output), however a CWBB is

6

https://workflowhub.eu/
https://datasciencehub.net/paper/packaging-research-artefacts-ro-crate
https://doi.org/10.1007/s41019-017-0050-4
https://osf.io/3rekv/
https://osf.io/3rekv/


also permitted to make use of additional scripts or shims to further adapt a third-party tool for workflow use and
for data interoperability across blocks.

The way tools are installed or invoked varies slightly across WfMS and operating systems, therefore a
CWBB should provide multiple methods for distributing software; currently containers (Docker, Singularity)
and distribution-independent packaging (e.g. Conda, Homebrew) are promising by having reproducible install
recipes and a wide range of open source dependencies (e.g. Java, Python). Additionally building blocks should
allow overriding execution paths, e.g. for use with HPC module system and hardware-optimized binaries.

The CWBBs should have sufficient annotations to be able to generate bindings for different WfMSs and
REST APIs, e.g. parameter names and descriptions, types and default values; enumerators for options, file
formats for inputs/outputs.

Building blocks should be grouped into families that are interoperable through common data structures and
file formats, as well as having joint naming conventions for configuration options. A CWBB family should be
released as a single version following semantic versioning rules, which should have a corresponding persistent
identifier (PID).

Metadata for CWBBs should be captured following FAIR guidelines, and distributed as part of the block
family and resolvable from the PID as a FAIR Digital Object. Metadata should include references to the CWBB
software distributions (e.g. quay.io container URL) as well as attributions, citations and documentation for the
wrapped tool.

Example workflows showing CWBB usage should be included in a WfMS-neutral language such as
Jupyter Notebooks, which may have equivalent variants for each workflow binding. These workflows should be
registered in a workflow registry like WorkflowHub or Dockstore, and assigned their own PIDs.

5. Conclusions
The proposed concept of Canonical Workflow Building Blocks can bridge the gap between FAIR

Computational Workflows, interoperable reproducibility and for building canonical workflow descriptions to be
used and described FAIRly across WfMSs.

The realization of CWBBs can be achieved in many ways, not necessarily using the Python programming
language together with RO-Crate as explored here. In particular if the envisioned Canonical Workflow
Frameworks for Research become established in multiple WfMSs with the use of FAIR Digital Objects, the
different implementations will need to agree on object types, software packaging and metadata formats in order
to reuse tools and provide interoperable reproducibility for canonical workflows. The Common Workflow
Language shows promise as a way to gather execution details of tools together with their metadata and
references, but needs further work to formalize practices to make CWL available as FAIR Digital Objects on
their own or as part of an aggregate collection like RO-Crate.

Acknowledgements
This work has been done as part of the BioExcel CoE (https://www.bioexcel.eu/), a project funded by the European

Union contracts H2020-INFRAEDI-02-2018 823830, H2020-EINFRA-2015-1 675728. Additional work is funded through
EOSC-Life (https://www.eosc-life.eu/) contract H2020-INFRAEOSC-2018-2 824087, and ELIXIR-CONVERGE
(https://elixir-europe.org/) contract H2020-INFRADEV-2019-2 871075.

Author affiliations
Stian Soiland-Reyes https://orcid.org/0000-0001-9842-9718

Department of Computer Science, The University of Manchester, Manchester, UK;
Informatics Institute, University of Amsterdam, NL

7

https://semver.org/spec/v2.0.0.html
https://www.bioexcel.eu/
https://cordis.europa.eu/project/id/823830
https://cordis.europa.eu/project/id/675728
https://www.eosc-life.eu/
https://cordis.europa.eu/project/id/824087
https://elixir-europe.org/
https://cordis.europa.eu/project/id/871075
https://orcid.org/0000-0001-9842-9718


Genís Bayarri https://orcid.org/0000-0003-0513-0288
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST),
Barcelona, Spain

Pau Andrio https://orcid.org/0000-0003-2116-3880
Barcelona Supercomputing Center (BSC), Barcelona, Spain

Robin Long https://orcid.org/0000-0003-2249-645X
Research IT, The University of Manchester, Manchester, UK

Douglas Lowe https://orcid.org/0000-0002-1248-3594
Research IT, The University of Manchester, Manchester, UK

Ania Niewielska https://orcid.org/0000-0003-0989-3389
European Bioinformatics Institute (EMBL-EBI), Cambridge, UK

Adam Hospital https://orcid.org/0000-0002-8291-8071
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST),
Barcelona, Spain

Paul Groth https://orcid.org/0000-0003-0183-6910
Informatics Institute, University of Amsterdam, NL

References
[Andrio 2019] Pau Andrio, Adam Hospital, Javier Conejero, Luis Jordá, Marc Del Pino, Laia Codo, Stian Soiland-Reyes,

Carole Goble, Daniele Lezzi, Rosa M. Badia, Modesto Orozco, Josep Ll. Gelpi (2019): BioExcel Building Blocks, a
software library for interoperable biomolecular simulation workflows. Scientific Data 6:169
https://doi.org/10.1038/s41597-019-0177-4

[Beg 2021] Marijan Beg, Juliette Taka, Thomas Kluyver, Alexander Konovalov, Min Ragan-Kelley, Nicolas M. Thiery, Hans
Fangohr (2021): Using Jupyter for Reproducible Scientific Workflows. Computing in Science & Engineering 23(2),
pp 36–46. https://doi.org/10.1109/mcse.2021.3052101

[Biomoby 2008] The BioMoby Consortium (2008): Interoperability with Moby 1.0—It's better than sharing your
toothbrush! Briefings in Bioinformatics 9(3), pp 220–231. https://doi.org/10.1093/bib/bbn003

[Blankenberg 2014] Daniel Blankenberg, Gregory Von Kuster, Emil Bouvier, Dannon Baker, Enis Afgan, Nicholas Stoler,
James Taylor, Anton Nekrutenko, the Galaxy Team (2014): Dissemination of scientific software with Galaxy
ToolShed. Genome Biology 15:403 https://doi.org/10.1186/gb4161

[Brack 2021] Paul Brack, Peter Crowther, Stian Soiland-Reyes, Stuart Owen, Douglas Lowe, Alan R Williams, Quentin
Groom, Mathias Dillen, Frederik Coppens, Björn Grüning, Ignacio Eguinoa, Phil Ewels, Carole Goble (2021): 10
Simple Rules for making a software tool workflow-ready. (submitted)

[Crusoe 2021]  Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, Nebojša Tijanić, Hervé
Ménager, Stian Soiland-Reyes, Carole Goble, The CWL Community (2021): Methods Included: Standardizing
Computational Reuse and Portability with the Common Workflow Language. Communication of the ACM
(accepted). arXiv:2105.07028 https://doi.org/10.1145/3486897

[Cohen-Boulakia 2017] Sarah Cohen-Boulakia, Khalid Belhajjame, Olivier Collin, Jérôme Chopard, Christine Froidevaux,
Alban Gaignard, Konrad Hinsen, Pierre Larmande, Yvan Le Bras, Frédéric Lemoine, Fabien Mareuil, Hervé Ménager,
Christophe Pradal, Christophe Blanchet (2017): Scientific Workflows for Computational Reproducibility in the Life
Sciences: Status, Challenges and Opportunities. Future Generation Computer Systems 75, pp 284–298.
https://doi.org/10.1016/j.future.2017.01.012

[De Smedt 2020] Koenraad De Smedt, Dimitris Koureas, Peter Wittenburg (2020): FAIR Digital Objects for Science:
From Data Pieces to Actionable Knowledge Units. Publications 8(2):21 https://doi.org/10.3390/publications8020021

[Garijo 2011] Daniel Garijo, Yolanda Gil (2011): A New Approach for Publishing Workflows . Proceedings of the 6th
Workshop on Workflows in Support of Large-Scale Science - WORKS ’11. https://doi.org/10.1145/2110497.2110504

[Garijo 2014] Daniel Garijo, Pinar Alper, Khalid Belhajjame, Oscar Corcho, Yolanda Gil, Carole Goble (2014): Common
Motifs in Scientific Workflows: An Empirical Analysis . Future Generation Computer Systems 36 pp 338–51.
https://doi.org/10.1016/j.future.2013.09.018

[Giovanni 2016] Renato De Giovanni, Alan R. Williams, Vera Hernández Ernst, Robert Kulawik, Francisco Quevedo
Fernandez, Alex R. Hardisty (2016): ENM Components: a new set of web service‐based workflow components for
ecological niche modelling. Ecography 39, pp 376–383. https://doi.org/10.1111/ecog.01552

[Gray 2017] Alasdair Gray, Carole Goble, Rafael Jimenez, Bioschemas Community (2017): Bioschemas: From Potato
Salad to Protein Annotation. Poster, International Semantic Web Conference (ISWC), Vienna Austria, 2017-10-23.
https://iswc2017.semanticweb.org/paper-579/

8

https://orcid.org/0000-0003-0513-0288
https://orcid.org/0000-0003-2116-3880
https://orcid.org/0000-0003-2249-645X
https://orcid.org/0000-0002-1248-3594
https://orcid.org/0000-0003-0989-3389
https://orcid.org/0000-0002-8291-8071
https://orcid.org/0000-0003-0183-6910
https://doi.org/10.1038/s41597-019-0177-4
https://doi.org/10.1038/s41597-019-0177-4
https://doi.org/10.1109/mcse.2021.3052101
https://doi.org/10.1093/bib/bbn003
https://doi.org/10.1186/gb4161
https://doi.org/10.1145/3486897
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.3390/publications8020021
https://doi.org/10.1145/2110497.2110504
https://doi.org/10.1016/j.future.2013.09.018
https://doi.org/10.1111/ecog.01552
https://iswc2017.semanticweb.org/paper-579/


[Goble 2020] Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes, Daniel Garijo, Yolanda Gil, Michael R. Crusoe,
Kristian Peters, Daniel Schober (2020): FAIR Computational Workflows. Data Intelligence 2(1), pp 108–121.
https://doi.org/10.1162/dint_a_00033

[Grüning 2018a] Björn Grüning, John Chilton, Johannes Köster, Ryan Dale, Nicola Soranzo, Marius van den Beek, Jeremy
Goecks, Rolf Backofen, Anton Nekrutenko, James Taylor (2018): Practical Computational Reproducibility in the Life
Sciences. Cell Systems 6(6) pp 631–635. https://doi.org/10.1016/j.cels.2018.03.014

[Grüning 2018b] Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A. Chapman, Jillian Rowe, Christopher H.
Tomkins-Tinch, Renan Valieris, the Bioconda Team, Johannes Köster (2018): Bioconda: Sustainable and
Comprehensive Software Distribution for the Life Sciences. Nature Methods 15, pp 475–476.
https://doi.org/10.1038/s41592-018-0046-7.

[Hardisty 2021] Alex Hardisty, Paul Brack, Carole Goble, Laurence Livermore, Ben Scott, Quentin Groom, Stian
Soiland-Reyes (2021): The Specimen Data Refinery: A canonical workflow framework and FAIR Digital Object
approach to speeding up digital mobilisation of natural science collections. Submitted, Data Intelligence, this issue.

[Hospital 2020] Adam Hospital, Genís Bayarri, Stian Soiland-Reyes, Jose Lluis Gelpi, Pau Andrio, Daniele Lezzi, Sarah
Butcher, Ania Niewielska, Yvonne Westermaier, Rosa Maria Badia, Rodrigo  Vargas, Alexandre Bonvin (2020):
BioExcel-2 Deliverable 2.3 – First release of demonstration workflows. Project deliverable, Zenodo.
https://doi.org/10.5281/zenodo.4540432

[Ison 2021] Jon Ison, Hans Ienasescu, Emil Rydza, Piotr Chmura, Kristoffer Rapacki, Alban Gaignard, Veit Schwämmle,
Jacques van Helden, Matúš Kalaš, Hervé Ménager (2021): biotoolsSchema: a formalized schema for bioinformatics
software description. GigaScience, 10(1):giaa157 https://doi.org/10.1093/gigascience/giaa157

[Jupyter 2018] Jupyter Project, Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian Granger, Tim Head, Chris
Holdgraf, et al. (2018): Binder 2.0 - Reproducible, Interactive, Sharable Environments for Science at Scale.
Proceedings of the 17th Python in Science Conference. SciPy, 2018. https://doi.org/10.25080/majora-4af1f417-011

[Katz 2021] Daniel S. Katz, Morane Gruenpeter, Tom Honeyman, Lorraine Hwang, Mark D. Wilkinson, Vanessa Sochat,
Hartwig Anzt, Carole Goble, FAIR4RS Subgroup 1 (2021): A Fresh Look at FAIR for Research Software.
arXiv:2101.10883

[Lamprecht 2020] Anna-Lena Lamprecht, Leyla Garcia, Mateusz Kuzak, Carlos Martinez, Ricardo Arcila, Eva Martin Del
Pico, Victoria Dominguez Del Angel, et al. Towards FAIR Principles for Research Software. Data Science 3(1), pp
37–59. https://doi.org/10.3233/ds-190026

[Leipzig 2020] Jeremy Leipzig , Daniel Nüst , Charles Tapley Hoyt , Stian Soiland-Reyes , Karthik Ram , Jane Greenberg
(2020): The role of metadata in reproducible computational research. arXiv:2006.08589

[McMurry 2017] Julie A McMurry, Nick Juty, Niklas Blomberg, Tony Burdett, Tom Conlin, Nathalie Conte, Mélanie
Courtot, John Deck, Michel Dumontier, Donal K Fellows, Alejandra Gonzalez-Beltran, Philipp Gormanns, Jeffrey
Grethe, Janna Hastings, Jean-Karim Hériché, Henning Hermjakob, Jon C Ison, Rafael C Jimenez, Simon Jupp, John
Kunze, Camille Laibe, Nicolas Le Novère, James Malone, Maria Jesus Martin, Johanna R McEntyre, Chris Morris, Juha
Muilu, Wolfgang Müller, Philippe Rocca-Serra, Susanna-Assunta Sansone, Murat Sariyar, Jacky L Snoep, Stian
Soiland-Reyes, Natalie J Stanford, Neil Swainston, Nicole Washington, Alan R Williams, Sarala M Wimalaratne, Lilly
M Winfree, Katherine Wolstencroft, Carole Goble, Cristopher J Mungall, Melissa A Haendel, Helen Parkinson (2017):
Identifiers for the 21st century: How to design, provision, and reuse identifiers to maximize utility and impact of
life science data. PLOS Biology 15(6):e2001414 https://doi.org/10.1371/journal.pbio.2001414

[Möller 2017] Steffen Möller, Stuart W. Prescott, Lars Wirzenius, Petter Reinholdtsen, Brad Chapman, Pjotr Prins, Stian
Soiland-Reyes, Fabian Klötzl, Andrea Bagnacani, Matúš Kalaš, Andreas Tille, Michael R. Crusoe (2017): Robust
cross-platform workflows: How technical and scientific communities collaborate to develop, test and share best
practices for data analysis. Data Science and Engineering 2, pp 232–244. https://doi.org/10.1007/s41019-017-0050-4

[Saltz 2006] Joel Saltz, Scott Oster, Shannon Hastings, Stephen Langella, Tahsin Kurc, William Sanchez, Manav Kher,
Arumani Manisundaram, Krishnakant Shanbhag, Peter Covitz (2006): caGrid: design and implementation of the core
architecture of the cancer biomedical informatics grid. Bioinformatics 22(15), pp 1910–1916,
https://doi.org/10.1093/bioinformatics/btl272

[Soiland-Reyes 2021] Stian Soiland-Reyes, Peter Sefton, Mercè Crosas, Leyla Jael Castro, Frederik Coppens, José M.
Fernández, Daniel Garijo, Björn Grüning, Marco La Rosa, Simone Leo, Eoghan Ó Carragáin, Marc Portier, Ana
Trisovic, RO-Crate Community, Paul Groth, Carole Goble (2021): Packaging research artefacts with RO-Crate. Data
Science (accepted). arXiv:2108.06503v1

[Stodden 2016] Victoria Stodden, Marcia McNutt, David H. Bailey, Ewa Deelman, Yolanda Gil, Brooks Hanson, Michael A.
Heroux, John P.A. Ioannidis, Michela Taufer (2016): Enhancing reproducibility for computational methods. Science
354(6317), pp 1240–1241 https://doi.org/10.1126/science.aah6168

[Wittenburg 2021] Peter Wittenburg et al. (2021): CWFR Position Paper. OSF, January 6, 2021. https://osf.io/3rekv/

9

https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1016/j.cels.2018.03.014
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.5281/zenodo.4540432
https://doi.org/10.5281/zenodo.4540432
https://doi.org/10.1093/gigascience/giaa157
https://doi.org/10.25080/majora-4af1f417-011
https://arxiv.org/abs/2101.10883
https://doi.org/10.3233/ds-190026
https://arxiv.org/abs/2006.08589
https://doi.org/10.1371/journal.pbio.2001414
https://doi.org/10.1007/s41019-017-0050-4
https://doi.org/10.1093/bioinformatics/btl272
https://doi.org/10.1093/bioinformatics/btl272
https://arxiv.org/abs/arXiv:2108.06503v1
https://doi.org/10.1126/science.aah6168
https://osf.io/3rekv/

