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1. Background

» Geographical variables:
soil property landslide susceptibility  species habitat suitability
N r\«/u'\;zy 49 ‘
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« Geographical variable mapping (GVM) through building geographical variable-
environment relationship is widely used to obtain the spatial distribution
information (often as a grid) of those geographical variables which are hard to
acquire through direct observation (e.g., remote sensing).

Geographical variable = f (Covariates)

covariates
How to select
proper covariates?
- a critical step (and
hard for non-experts)

Geographical variable
mapping

Zhu A-X, Lu G, Liu J, Qin C-Z, Zhou C. Spatial prediction based on Third Law of Geography. Annals of GIS, 2018, 24(4): 225-240.



Background

« Large number of potential (terrain) covariates for geographical variable mapping
(Ziadat, 2005; Zhu et al., 2010, Liu et al., 2013; Wiesmeier et al., 2014; Lecours et al., 2017)
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« Many tools exist for calculating covariates

& ' WATIED O X
h Geospatial Analysis Tools

ArcGIS Grass SAGA LandSerf TauDEM Whitebox
However, lack clear guidance on which condition each potential covariate
should be used in specific application contexts (target variable, study area

characteristics, data availability, etc.) !




Existing methods of aiding users to select covariates for GVM

» By explicit, general rules (Lecours et al., 2017; Deng et al., 2007)
» The related knowledge in many application domains are hard to form such explicit rules.

« Statistical (or machine learning) methods of selecting covariates

 Filter: Pearson’s correlation analysis (Lagacherie et al., 2013), moment correlation analysis (de Carvalho Junior et al.,
2014), ...
» Wrapper: stepwise regression procedure (Zhu et al., 2015), recursive feature elimination (Shi et al., 2018)

« Embedding: decision trees (Greve et al., 2012), cubist (Adhikari et al., 2014), random forests (Vaysse and Lagacherie,
2015)

Statistical or ML method

Lot of field samples = - .
in a new application =~ — ==F A proper set of covariates
area cenes _ for the area
Potential covariates

When there exist few samples, statistical/ML methods often fail !
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How to automatically select covariates when there are few
samples ?

* Facts

* Lots of practical applications conducted
by domain experts have been published.
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» Expert knowledge on selecting covariates (under specific application contexts)
were implicitly contained in existing applications of geographic variable

mapping.



Research issue

? How to use these implicit knowledge on selecting
- proper (terrain) covariates, which are contained in
@

existing applications of geographical variable mapping?



2. Basic idea

Cases: a suitable way to formalize prior, non-systematic knowledge in the
artificial intelligence domain (Kaster et al., 2005)

 Problem component -- describe application context information (Qin et al., 2016)

« Solution component

Case-based reasoning: find the existing case(s) which is/are similar to a new
application, and then apply the solutions of the similar cases to the new application.
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Case formalization

« Problem component of cases
» Factors: describe the application context information
» Attributes: quantify the factors, which can be directly used in case-based reasoning

Problem component

mmmm=m--mmmm--------- | Attribute 1
Application formalize | Factors ||} Altribute 2
context 1) Application target Attribute n

. 2) Data condition

An existing ' 3) Study area
application | ' characteristics

—| case — Case u

— [

\ Solutions formalize Solution

(the used component
covariates)

Qin C-Z, Wu X-W, Jiang J-C, Zhu A-X. Case-based knowledge formalization and reasoning method for digital terrain analysis -
application to extracting drainage networks. Hydrology and Earth System Sciences, 2016, 20: 3379-3392.



3. Two case-based reasoning strategies for selecting proper

covariates

1) The covariate-level binary classification strategy (or, the classification strategy)
For each covariate included in the case base: A binary classification problem

' Random forest
Case base
“_A/_ Logistic regression
( |
Problem Solution
[ A : \ [ A ,, \
Formalized Covariate 1 Covariate 2 o Covariate n

(application context)

Training classifiers

Applying classifiers

New application with
formalized problem

Solution: \/
Liang P, Qin C-Z*, Zhu A-X, Hou Z-W, Fan N-Q, Wang Y-J. A case-based method of selecting covariateg for digital soil
mapping. Journal of Integrative Agriculture, 2020, 19(8): 2127-2136. 10



Two case-based reasoning strategies for selecting proper

covariates

2) The most-similar-case strategy Minimum operator
* k-Nearest Neighbors
(kNN)
/\
/
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Liang P, Qin C-Z*, Zhu A-X, Zhu T-X, Hou Z-W, Fan N-Q, Wang Y-J. Using the most similar case method to automatically select
environmental covariates for predictive mapping. Earth Science Informatics, 2020, 13(1): 39-53. 11



4. Experiments

m Classification strategy m Most-similar-case strategy
+ different classifiers VS. + different case similarity calculation
o Random forest (RF) method o Minimum operator (MO) method
o Logistic regression (LG) o k-Nearest Neighbors (KNN) method
method

« Experiments: Taking digital soil mapping (DSM) as example

 Terrain covariates have been predominantly used in DSM for building soil-
environment relationship (McBratney et al., 2003)

* When selecting terrain covariates, user needs to consider little beyond the study
area characteristics (e.g., data availability)
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1) Case formalization — e.g., digital soil mapping (DSM)

Case component

Case formalization

Factor group

Factor

Attribute

Mapping target

Problem

Mapping soil property

Soil property

Top (cm)

Mapping soil layer

Bottom (cm)

Mapping resolution

Resolution (m)

(application context)

Mapping area

characteristics

Mapping area size

Area size (km?)

Total relief (m)

Terrain condition

SD(elev.) (m)

Mean slope (°)

Solution

Terrain covariates used

Liang P, Qin C-Z, Zhu A-X, Hou Z-W, Fan N-Q, Wang Y-J. A case-based method of selecting covariates for digital soil mapping. Journal
of Integrative Agriculture, 2020, 19(8): 2127-2136.
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2) Case base preparation

 (Case formalization

Problem Solution

Mannina taraet descrintion Mannina area characteristics

Terrain

Soil property | Top | Bottom Resolution Area TOFaI SD(elev.) Mean covariates
size relief slope

o Extract values for each attribute of a case
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Case base

* 191 cases collected from 56 papers in DSM-related journals (Geoderma, European
Journal of Soil Science, Soil Science Society of America Journal, Catena, Geoderma Regional, Plant and Soil,
Science of the Total Environment, Ecological Indicators, Environmental Monitoring and Assessment,
GlScience & Remote Sensing, and PLOS ONE)

» Atotal of 38 terrain covariates used
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3) Cross-validation: a leave-one-out experiment

« Leave-one-out experiment:
« 190 cases as the training set, the remaining 1 case as the new coming application.
* Repeated 191 times

« Evaluation: How consistent between the covariates selected by each
method and those originally used in the cases?

TP .. TP 2 * (Precision * Recall)
Precision = —
TP+FN TP+FP

Recall =

F1_ =
score Precision + Recall

( TP: True Positives; FN: False Negatives; FP: False Positives)

» Recall index: the ratio of covariates correctly selected by from a method to all covariates used in
the original solution of the evaluation case.

» Precision index: the ratio of covariates correctly selected by a method to all covariates
recommended by the method.

» Fl-score index: The harmonic average of Precision and Recall

The larger of evaluation indices, the better performance of the proposed method

16



A reference method: "“Novice”

* Novice method: pick those most often-used covariates (without
considering the application context)

« Assumption: the more frequently a covariate is used in the case
base, the more popular that covariate is in the DSM domain.

* Preprocessing: Sort the covariates according to the using frequency
of each covariate used in the case base

« Usage: Select the most frequently used covariates in the case base,

according to the number of covariates used in the original solution of
the validation case.

Liang P, Qin C-Z*, Zhu A-X, Hou Z-W, Fan N-Q, Wang Y-J. A case-based method of selecting covariates for digital soil
mapping. Journal of Integrative Agriculture, 2020, 19(8): 2127-2136.
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4) Experimental results and discussion

Strategy Method Evaluation index Median Max Min Std.
Random Rece_lll_ 0.644 0.667 1 0 0.38
Covariate- forest Precision 0.704 1 1 0 0.391
level binary F1-score 0.624 0.667 1 0 0.362
classification Logistic ReC&.‘”. 0.414 0.333 1 0 0.350
regression Precision 0.546 0.6 1 0 0.407
F1-score 0.332 0.4 1 0 0.275
Minimum Recqll_ 0.587 0.6 1 0 0.396
o Operator Precision 0.589 0.6 1 0 0.396
Most-similar- F1-score 0.552 0.571 1 0 0.372
case Recall 0.568 0.6 1 0 0.4
kNN Precision 0.577 0.6 1 0 0.404
F1-score 0.532 0.545 1 0 0.376
Novice method Recall / Precision 4 474 0.5 1 0 0.321
| F1-score

« Compared with the novice method, the RF method and two most-similar-case
methods (MO and kNN) improved 24~35% consistency between the selected
covariates and the original solution in the evaluation cases.
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Discussion: performance of the classification strategy

- Random forest showed advantage, when current case base is highly imbalanced
(80% covariates used in less than 40 among 191 cases.
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Discussion: performance of the most-similar-case strategy

» Relationship between the evaluation indices and the case similarity from the MO method

Index intervals Eval. indicesl S&[0.8,1] $&[0.7,0.8) S&[0.6,0.7) S&[0.5,0.6) $&[0,0.5) Total count

Recall 40 14 12 7 4 77
[0.9,1] Precision 39 14 14 8 2 77
Fl-score 37 11 9 3 0 60
Recall 4 3 1 2 0 10
[0.7,0.9) Precision 4 4 1 1 1 11
Fl-score 4 6 1 1 0 12
Recall 6 1 0 2 2 11
[0.6,0.7) Precision 7 1 0 3 2 13
F1-score 10 1 3 6 2 22
Recall 9 3 3 4 5 24
[0.5,0.6) Precision 8 1 4 4 4 21
F1l-score 6 3 5 5 2 21
Recall 5 0 4 5 0 14
[0.3,0.5) Precision 5 2 1 4 4 16
Fl-score 8 1 1 2 8 20
Recall 9 2 7 11 26 55
[0,0.3) Precision 10 1 7 11 24 53
F1l-score 10 1 8 12 25 56

For most of the evaluation cases, the results from the method were good

(i.e., high evaluation index value; consistent results as the original solutions of the evaluation cases)
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Discussion: performance of the most-similar-case strategy
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Uncertainty = 1 — Similarity

* The minimum operator method performed reasonably

« The lower uncertainty (i.e., the higher the case similarity), the more consistent are
the predicted covariates with the original solution of the evaluation case.

« High uncertainty means there is no similar cases in the case base, which lowers the
performance of the method under test. -- Size of case base does matter!
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5) Practical DSM applications (with soil samples)

« Evaluate the mapping accuracy with the covariates selected by different methods

(1) Heshan farm:
* Low-relief
« 60 km?
 Soil organic matter (%)
in topsoil layer
» 83 soil samples

(2) Xuancheng county:
« Complex terrain conditions
* 5900 km?
« Sand content (%) in topsoil layer
» 295 soil samples

22




Practical DSM applications (with soil samples)

Case- P "g .
reasoning ¥
Soil samples DSM expert
A N— knowledge

P
—— {‘/7-7
- — T

Heshan farm Covariates  DSM method | Compare mapping accuracy | DSM method Covariates Heshan farm

 5-fold cross-validation (RMSE; MAE)

Compare mapping accuracy

Xuancheng Covariates ~ DSM method DSM method Covarlates Xuancheng
county I county
1— o ° o 0
Soil samples
+ Digital soil mapping method: « DSM expert knowledge:
+ individual predictive soil mapping (iPSM) * Heshan farm (Zhu et al., £EJSS, 2015);

(Zhu et al., 2015);
* Random forest mapping

» Xuancheng county (Yang et al., SSSAJ, 2016)
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Results: Heshan farm (SOM in topsoil layer)

« Covariates selected by different methods

Expert choice Most-similar-case strategy

Covariate-level binary

Covariate classification strategy
(Zhu etal., 2015) Minimum operator kNN RF Logistic regression
Aspect o
DEM ) ° )
LS-Factor o
Plan Curvature o °
Profile Curvature o o
Slope ° ° ° ° °
TWI ) ) ° ) )
Catchment Area o
Relative position index ( RPI ) °
Recall 0.67 0.5 0.5 0.33
Precision 0.57 1 1 1
F1-score 0.61 0.67 0.67 0.5

« Mapping accuracy with the covariates selected by different methods
« RMSE, MAE: about 3%~15% larger than those from expert choice.

DSM method Ev_aluation Expert choice qut-similar-case strategy Covariate-level classif_icgtion strat(_egy
index Minimum operator kNN RF Logistic regression
iPSM MAE 0.86 0.91 0.87 0.87 0.90
RMSE 1.23 1.28 1.24 1.24 1.27
Random forest MAE 0.91 0.939 0.969 0.969 0.997
mapping RMSE 1.250 1.278 1.399 1.399 1.469
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Results: Xuancheng county (Sand content in topsoll layer)

« Covariates selected by different methods

Covariate-level binary

. Expert choice Most-similar-case strategy .
Covariate (Yang et al., 2016) classification strategy
" Minimum operator kNN RF Logistic regression
Aspect o
Curvature o
DEM ) ) )
Landform o
LS-Factor o
MRRTF o
MRVBF o
Plan Curvature ° o
Profile Curvature ° o o
Slope [ ] ° ° ° °
Catchment Area o
TWI ° ) ) ) )
Aspect o
Recall 1 0.75 0.5 0.5
Precision 0.5 0.43 0.67 0.67
F1-score 0.67 0.55 0.57 0.57

« Mapping accuracy with the covariates selected by different methods
+  RMSE, MAE: about 0.%~3% difference with those from expert choice.

DSM method Evgluation Expert choice .M.ost-similar-case strategy Covariate-level classi_fic_ation stra’segy
index Minimum operator kNN RF Logistic regression
iPSM MAE 15.19 15.41 15.177 15.294 15.294
! RMSE 18.82 19.193 18.664 18.776 18.776
Random forest MAE 15.262 15.403 15.356 15.934 15.934
mapping RMSE 18.934 18.976 19.30 19.572 19.572

Mapping accuracies with the automatically-selected covariates were acceptable, while no one method

performed the best at all times. 25



5. Conclusion

Research issue: How to use those implicit knowledge contained in existing
applications to automatically select proper (terrain) covariates for building
geographical variable-environment relationship for geographical variable mapping?

Case-based reasoning: Two strategies
» The covariate-level binary classification strategy & the most-similar-case strategy

* Preliminary evaluation showed the reasonableness of case-based reasoning.

* The classification strategy is sensitive to the classification method and the imbalanced case base.
Random forest method performed the best, while the logistic regression method also adopting the
classification strategy performed the worst.

» Performance of methods with the most-similar-case strategy are comparatively stable.

Potential: Intelligent modeling

* use those implicit, non-systematic, empirical knowledge on geographic modeling to help users
(especially non-experts with few mapping knowledge) to automatically build application-context-specific
model (not only covariate-selecting).

Future work ...
» Size of case base does matter!
» Other domains of geographical variable mapping
* Integrate into modeling tools

26



!ﬁ State Key Laboratory of Resources And Environmental Information System

Thank You for Your Attention !

)
=
Z
o]
72
™
>
€
-
Cé
2!
Z
-
@)
=
w
()
m
7z
"~
m
w

Liang P, Qin C-Z*, Zhu A-X. Comparison on two case-based reasoning strategies of automatically
selecting terrain covariates for digital soil mapping. Transactions in GIS, 2021.
doi:10.1111/TGIS.12831.

Qin C-Z, Liang P, Zhu A-X. A case-based classification strategy of automatically selecting terrain
covariates for modeling geographic variable-environment relationship. In: M Alvioli, | Marchesini,
L Melelli, P Guth, eds., Proceedings of the Geomorphometry 2020 Conference, p. 33-36. (extended
abstract)

& 7K.& (QIN Cheng-Zhi)

Email: gincz@Ireis.ac.cn
Webpage: http://people.ucas.ac.cn/~gincz?language=en



mailto:qincz@lreis.ac.cn
http://people.ucas.ac.cn/~qincz?language=en

