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Prezentator
Notatki do prezentacji
The method that will be discussed, according to the classification of techniques for evaluating  the uncertainty of coordinate measurements given in ISO / TS 15530-1, belongs to the sensitivity analysis 
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Evaluation of measurement uncertainty (main stages)
Formulation

Propagation

Summarizing

Monte Carlo Method 

coverage interval, standard uncertainty, …

Probability distribution of Y

theoretical (e.g. trapezoidal)

Analytical GUM uncertainty framework

Gauss or t-distributiondiscrete representation (histogram)

- define output quantity Y
- determine input quantities Xi
- develop a model Y=f(X1, …, Xn) or h(Xi,y)=0
- assign distributions to input quantities (type A and B evaluation)

Prezentator
Notatki do prezentacji
Let me start with a brief introduction (perhaps I will repeat some of the points I have discussed before) 
Uncertainty estimation is always done in 3 main steps: formulation, propagation and summarizing. 
In the first stage we define output quantity Y, determine input quantities Xi, develop a model - most often in the explicit form Y = f (X1, ..., Xn), sometimes in the implicit form h (Xi, Y) = 0 - and assign distributions to all input quantities.
Distribution propagation is the determination of the distribution of the output quantity Y on the basis of the known distributions of the input quantities Xi and the knowledge of the measurement model. Propagation of distributions can be realized by three methods: analytical, Monte Carlo Method, GUM uncertainty framework (I am discussing the use of the latter for coordinate measurements but in a moment I will talk a little more about all three). As said, the result of propagation is the distribution of the output quantity Y, but depending on the method used, this distribution may have a different form: in the first case, the result is theoretical distribution, such as trapezoidal distribution, in the second, only a discrete representation, i.e. a large set of simulation results, which can be visualized using a histogram, and in the third there are only two possibilities: the most common Gauss distribution and exceptionally t-distribution.
The result of summarizing may be, depending on the need, obtaining several different information, the most important of which are e.g. coverage interval and obviously the standard uncertainty of measurement of a given characteristic.
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FORMULATION
define output quantity Y

assign distributions to input quantities (type A and B evaluation)

determine input quantities Xi

develop a model Y = f(X1, …, Xn) or h(Xi,y) = 0

ISO 15530-3
X1 – CMM + temp + …
X2 – calibrated workpiece
…

Y=X1+X2+X3+X4

VCMM
X1 – xpx
X2 – xty
…

Very complex model

…

…

Prezentator
Notatki do prezentacji
The first element of the formulation stage, i.e. define output quantity Y, is obvious. In coordinate measurements, output quantity is size, distance, angle, form deviations (Straightness, Flatness, Roundness, cylindricity), orientation deviation (parallelism, perpendicularity, angularity), location deviations (position, coaxiality, symmetry), run-out, as well as line profile and Surface profile (non-related and related to the datums)
Determining input quantities Xi is a very serious issue. Analysing the existing documents on the uncertainty of coordinate measurements, we know about many possibilities of defining input quantities. There are many inputs specified in the VCMM. These are individual geometric CMM errors (21 errors) and probing head errors as well as the coordinates of all sampling points. In the most commonly used document, i.e. ISO 15530-3, there are 4 input quantities. The most important includes the combined effect of all CMM and temperature errors. This impact is assessed according to type A evaluation. Another input quantity is e.g. the effect of the accuracy of the calibration of the calibrated artefact evaluated by type B evaluation.
The model usually has an explicit form, that is the form of the type Y = f (X1, ..., Xn). Formally, the model can be given in the implicit form h (Xi, Y) = 0, which, however, does not occur in coordinate measurements. ISO 15530-3 does not give a measurement model but it is a simple sum of 4 quantities.
In coordinate measurements, we can deal with two-stage models.
An important element of the formulation stage is assign distributions to all input quantities. This can be done in two ways called type A and type B evaluation. This means that type A will be used for some input quantities and type B evaluation for others. Type A evaluation is the design and carrying out of an experiment, type B allows the use of previously known information. According to ISO 15530-3 the most important impact is assessed with type A evaluation, two others with type B and the fourth with type A or B.
Sometimes (also as part of our project), the term "a posteriori" is used instead of type A evaluation, and the term "a priori" is used instead of type B - to emphasize the fact that the data for uncertainty estimation are obtained from the results of the experiment, or that they are known earlier ( from other sources)
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Propagation of distributions (3 possibilities):
- analytical
- Monte Carlo method
- GUM uncertainty framework

Prezentator
Notatki do prezentacji
Now a few words about the three methods of propagation. As mentioned, propagation is aimed at determining the probability distribution for the output quantity based on the knowledge of the probability distributions of the input quantities and the model, which is often illustrated as in the example on the slide. there are three input quantities, two of them (the first and third) have different normal distributions, and one has a triangular distribution. In the general case, the output quantity distribution can have different forms, which is emphasized on the slide by showing that this distribution is asymmetric.
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Propagation - analytical

Y=X1+X2

Y=X1+…+Xn
…

Prezentator
Notatki do prezentacji
Analytical propagation is only possible for simple models and simple distributions. The slide shows the 2 most common examples from the literature: 
The first is that the sum of 2 uniform distributions gives a trapezoidal distribution, and in the special case when both input distributions are the same – it can result in a triangular distribution. 
The second example shows the sum of the normal distributions resulting a normal distribution
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Propagation – Monte Carlo Method

set of yi, 
i=1, …, n

random
number
generator

random
number
generator

random
number
generator

Prezentator
Notatki do prezentacji
The Monte Carlo Method is a fully universal method of propagating distributions. A special feature of this method is that the resulting distribution has the form of a large set of yi realizations, which can be presented for illustrative purposes in the form of a discrete representation i.e. a histogram. Sometimes attempts are made to fit some theoretical distribution to the simulation results, but in general it is neither easy nor necessary
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Propagation - GUM uncertainty framework

u1=a1 x b1

u2=a2 x b2

u3=a3 x b3

un=an x bn

Y=X1+X2+X3+…+Xn

𝑢𝑢𝑐𝑐 = 𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32 + ⋯+ 𝑢𝑢𝑛𝑛2

Uncertainty propagation law

Prezentator
Notatki do prezentacji
In the case of the GUM uncertainty framework the central limit theorem of probability is used, which says that the sum of a significant number of random variables with virtually any distribution has a normal distribution and the parameters of this distribution can be calculated knowing the means and standard deviations of the input distributions. The appropriate formula for a combined measurement uncertainty that is equal to the geometric sum of the uncertainty components is called the law of uncertainty propagation.

As shown in the slide, the model here must be linear, which means that in the case of nonlinear models, it is necessary to expand the model into a Taylor series first.
It is also worth noting that the standard deviations of the input quantities are referred herein as standard uncertainties and that they can be experimentally determined, which is called type A evaluation, or they can be calculated from other information and then it’s called type B evaluation. Usually some standard uncertainties are obtained with one evaluation method and the other with the second.

In the case of type B evaluation, you usually have information about the range (-a, a) within which the input quantity changes and information about the type / nature of the distribution (for example, a uniform distribution or an arcsin distribution)

The slide shows 4 example distributions : triangular, uniform, and two antimodal distributions with different density functions: the first is V-shaped and the other is U-shaped.
Each type of distribution is assigned the b coefficient which allows the conversion of the value of “a” to the standard uncertainty u
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Propagation - GUM uncertainty framework

ui = a x b ui = 0,58 x MPEa = MPE
b = 0,58

ISO 14253-2 p. 8.4.5: „When a measuring equipment or measuring standard is known to conform to stated MPE values 
for each of the metrological characteristics, these MPE values can be used to derive the related uncertainty components: 
u = b x MPE 
where b is chosen according to the rules given in 8.3.2 and the distribution assumed. When calibration data exist for one 
measuring equipment or for a larger number of identical pieces of equipment, it is often possible to use these data to 
find the type of distribution or even in rare cases to evaluate the uncertainty component directly — as a Type A 
evaluation — by the equations shown in 8.2.2.”

…
b=0,33

Prezentator
Notatki do prezentacji
In the case of the uncertainty component coming from the measuring instrument, we can assume the MPE as the information about the range within which the input quantity changes, i.e. the value of “a”, and the distribution as uniform distribution and therefore u = MPE x 0.58 (in the case of a different distribution, this factor can be smaller or larger).
That possibility arises from the guidelines given in ISO 14253-2 in point 8.4.5: 
 
When a measuring equipment or measuring standard is known to conform to stated MPE values ​​for each of the metrological characteristics, these MPE values ​​can be used to derive the related uncertainty components: u = MPE x b where b is chosen according to the rules given in standard and the distribution assumed.

Further in the same point we read that instead of MPEE it is possible to use the results of the instrument calibration: 

When calibration data exist for one measuring equipment or for a larger number of identical pieces of equipment, it is often possible to use these data to find the type of distribution or even in rare cases to evaluate the uncertainty component directly - as a Type A evaluation.

Sometimes the instrument accuracy component is the predominant component and then other uncertainty components can be ignored. This is the case, for example, when instruments operating in the CNC mode are used in good environmental conditions
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Law of propagation of uncertainty (GUM formulae)

Prezentator
Notatki do prezentacji
In its simplest form, the uncertainty propagation law has the form shown in the slide - the uncertainty of the output quantity is the geometric sum of the products of the uncertainty components and the sensitivity coefficients calculated as partial derivatives. In the guide as well as in this slide, the formula for the square of the combined standard uncertainty is given
For the sake of formality, it should be added that in the case of a correlation between a pair of input quantities, additional terms are added to this formula
An attentive listener may have noticed that a moment ago, as the law of propagation of uncertainty, a formula without partial derivatives was given. Those did not appear on the previous slide because the model was linear and all derivatives were equal to one
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Arc radius measurement model
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Prezentator
Notatki do prezentacji
Let’s investigate the possibility of using the GUM uncertainty framework for coordinate measurements on a simple example of the application of the law of uncertainty propagation for indirect measurement of the arc radius with a classical measuring microscope.
As it was mentioned, the first stage of uncertainty evaluation formulation consists of: define output quantity, determine input quantities, develop a model and assign distributions to input quantities. 
Here we have the following situation: the output quantity is the radius of the arc R, the input quantities are the chord length “c” and the chord height “s”, the model is a formula derived using the Pythagorean theorem.
Standard uncertainties for the measurement of the chord length and chord height will be calculated from the formula for MPE of the microscope, assuming a uniform distribution
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Arc radius measurement – uncertainty propagation
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Prezentator
Notatki do prezentacji
Since there are only two input quantities in the model, the uncertainty propagation law here takes the form of a geometric sum of two components (the first formula on the slide).
The radius formula (i.e., model) is repeated below and the corresponding partial derivatives are calculated.
The standard uncertainties uc of the chord length and us of the chord height were calculated using the formula for the MPE of the microscope. The coefficients of 0.58 result from assuming a uniform distribution. For the example shown in the next slide, the formula for MPE is assumed to be 2 + L / 250
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Arc radius measurement – uncertainty budget

uc=MPE(c) x 0,58
us=MPE(s) x 0,58
MPE=2+L/250

Uncertainty budget for s = 8 mm

Uncertainty budget for s = 25 mm

Uncertainty budget for s = 50 mm

Prezentator
Notatki do prezentacji
the uncertainty budget here consists of 2 elements corresponding to two inputs: the length and the height of the arc’s chord.
The presented example is for an arc with a radius of 50 mm. The analysis was performed for three cases differing in the choice of the chord height. The assumed chord height is 8, 25, and 50 mm, respectively.
In the first case, the chord height is 8 mm, the length of the chord is approximately 54 mm. The partial derivative values ​​are around 5 and 1.7, respectively. Standard uncertainties calculated using MPE are 0.68 and 0.75 and the combined uncertainty is around 3.8 micrometers
In the second case: chord height 25 mm, chord length approximately 86 mm. There is a clear difference in the values ​​of partial derivatives: instead of 5.25 there is 1 and instead of 1.7 it is 0.87 (in both cases clearly less). The measurement uncertainty values ​​of the chord height and the chord length differ slightly. The combined uncertainty is 0.97 - it is clearly lower than before.
And the third case: the chord height is equal to the radius (50 mm), then the chord length is equal to diameter (about 100 mm). The partial derivative of the chord height is zero and the combined uncertainty is 0.4 micrometers
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Arc radius measurement – „coordinate approach”

A(xA, yA), 
B (xB, yB=yA)
C(xC=(xA+xB)/2, yC)

s=yA-yC
c=xB-xA

MPE(L)=2+L/250

R c
s

s
= +

2

8 2
A

C

B

The coordinate measurement model should express the measured 
characteristics as a function of coordinate differences

Prezentator
Notatki do prezentacji
Let's look at this measurement more "coordinate approach". Note that point A has the coordinates (xA, yA), point B - (xB, yB = yA) and point C - (xC = (xA + xB) / 2, yC) and the values of the chord height and chord length required for the measurement model are simply the coordinate differences of the respective measuring points. The formula for MPEE also relates to coordinate differences.
This is one of the key observations and at the same time the main assumption of the presented method of estimating the uncertainty of coordinate measurements - the coordinate measurement model should express the measured characteristics as a function of coordinate differences
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Flatness ISO 17450-1

Prezentator
Notatki do prezentacji
Now, in a similar way, let's try to analyse measurement of flatness with the minimum number of points. Two common situations are possible. Flatness deviation takes the form of concavity or convexity or twist.
In the first case, with only 4 points available, the reference plane can be determined by three points located on the perimeter of the feature and the most distant point in its centre. The deviation value is equal to the distance of point on the deformed surface from the plane defined by 3 points.
In the second case, we will sample the plane at 4 points at the corners of the plane and calculate the flatness deviation as the distance of two lines connecting opposite corner points.
The formula for the distance of a point from a plane given by a point and a normal vector can be found e.g. in ISO 17450-1. In the same document we find the formula for distance between two lines each described by a point and a vector.



Laboratory of Metrology lm@ath.eu

Measurement model for flatness 
(convex and concave case)
Distance l of point S from the plane p defined by points A, B, C

Characteristic points of the plane: 𝐴𝐴 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 ,  𝐵𝐵 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 , 𝐶𝐶 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 .
Plane definition point e.g. A 
Unit normal vector of the plane calculated from vectors e.g. AB(ab1, ab2, ab3) and AC(ac1, ac2, ac3).

𝑙𝑙 𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 �
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴Vector notation

𝑙𝑙 =
𝑎𝑎𝑠𝑠1𝐿𝐿1 + 𝑎𝑎𝑠𝑠2𝐿𝐿2 + 𝑎𝑎𝑠𝑠3𝐿𝐿3

𝑀𝑀

Scalar notation

𝐿𝐿1 = 𝑎𝑎𝑏𝑏2𝑎𝑎𝑐𝑐3 − 𝑎𝑎𝑏𝑏3𝑎𝑎𝑐𝑐2

𝐿𝐿2 = 𝑎𝑎𝑏𝑏3𝑎𝑎𝑐𝑐1 − 𝑎𝑎𝑏𝑏1𝑎𝑎𝑐𝑐3

𝐿𝐿3 = 𝑎𝑎𝑏𝑏1𝑎𝑎𝑐𝑐2 − 𝑎𝑎𝑏𝑏2𝑎𝑎𝑐𝑐1

𝑀𝑀 = 𝐿𝐿12 + 𝐿𝐿22 + 𝐿𝐿32

Prezentator
Notatki do prezentacji
In the model of measurement of flatness deviation for a concave or convex surface shown in the figure, the plane is defined by 3 points: A, B, C. As a point for the definition of the plane from the previous slide, we choose point A and the unit normal vector is determined from the definition of the vector product.
We remember that the vector product of two vectors is a vector perpendicular to the plane in which the vectors lie. So it is enough to calculate the vector product of vectors AB and AC to get a normal vector. To get a unit normal vector, we still need to divide it by the length of this vector. So, in terms of vector notation, the value of the distance of a point from the plane is a function of vectors AB, AC and AS
The distance l is also given here in scalar notation, which as you can see is much longer. As can be seen, the distance l is a function of nine input quantities - components of the vectors AS, AB and AC, that means: the respective differences in the coordinates of the points.
The points used to define individual characteristics are hereinafter referred to as characteristic points.
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Flatness – partial derivatives

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑠𝑠1

=
𝐿𝐿1
𝑀𝑀

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑠𝑠2

=
𝐿𝐿2
𝑀𝑀

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑠𝑠3

=
𝐿𝐿3
𝑀𝑀

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑏𝑏1

=
−𝑎𝑎𝑠𝑠1𝐿𝐿1 − 𝑎𝑎𝑠𝑠2𝐿𝐿2 − 𝑎𝑎𝑠𝑠3𝐿𝐿3 𝑎𝑎𝑐𝑐3𝐿𝐿2 + 𝑎𝑎𝑐𝑐2𝐿𝐿3

𝑀𝑀3 +
𝑎𝑎𝑠𝑠3𝑎𝑎𝑐𝑐2 − 𝑎𝑎𝑠𝑠2𝑎𝑎𝑐𝑐3

𝑀𝑀

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑏𝑏2

=
−𝑎𝑎𝑠𝑠1𝐿𝐿1 − 𝑎𝑎𝑠𝑠2𝐿𝐿2 − 𝑎𝑎𝑠𝑠3𝐿𝐿3 𝑎𝑎𝑐𝑐3𝐿𝐿1 − 𝑎𝑎𝑐𝑐1𝐿𝐿3

𝑀𝑀3 +
𝑎𝑎𝑠𝑠1𝑎𝑎𝑐𝑐3 − 𝑎𝑎𝑠𝑠3𝑎𝑎𝑐𝑐1

𝑀𝑀
𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑏𝑏3

=
−𝑎𝑎𝑠𝑠1𝐿𝐿1 − 𝑎𝑎𝑠𝑠2𝐿𝐿2 − 𝑎𝑎𝑠𝑠3𝐿𝐿3 𝑎𝑎𝑐𝑐1𝐿𝐿2 − 𝑎𝑎𝑐𝑐2𝐿𝐿1

𝑀𝑀3 +
𝑎𝑎𝑠𝑠2𝑎𝑎𝑐𝑐1 − 𝑎𝑎𝑠𝑠1𝑎𝑎𝑐𝑐2

𝑀𝑀

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑐𝑐1

=
−𝑎𝑎𝑠𝑠1𝐿𝐿1 − 𝑎𝑎𝑠𝑠2𝐿𝐿2 − 𝑎𝑎𝑠𝑠3𝐿𝐿3 𝑎𝑎𝑏𝑏3𝐿𝐿2 − 𝑎𝑎𝑏𝑏2𝐿𝐿3

𝑀𝑀3 +
𝑎𝑎𝑠𝑠2𝑎𝑎𝑏𝑏3 − 𝑎𝑎𝑠𝑠3𝑎𝑎𝑏𝑏2

𝑀𝑀

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑐𝑐2

=
−𝑎𝑎𝑠𝑠1𝐿𝐿1 − 𝑎𝑎𝑠𝑠2𝐿𝐿2 − 𝑎𝑎𝑠𝑠3𝐿𝐿3 𝑎𝑎𝑏𝑏1𝐿𝐿3 − 𝑎𝑎𝑏𝑏3𝐿𝐿1

𝑀𝑀3 +
𝑎𝑎𝑠𝑠3𝑎𝑎𝑏𝑏1 − 𝑎𝑎𝑠𝑠1𝑎𝑎𝑏𝑏3

𝑀𝑀

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑐𝑐3

=
−𝑎𝑎𝑠𝑠1𝐿𝐿1 − 𝑎𝑎𝑠𝑠2𝐿𝐿2 − 𝑎𝑎𝑠𝑠3𝐿𝐿3 𝑎𝑎𝑏𝑏2𝐿𝐿1 − 𝑎𝑎𝑏𝑏1𝐿𝐿2

𝑀𝑀3 +
𝑎𝑎𝑠𝑠1𝑎𝑎𝑏𝑏2 − 𝑎𝑎𝑠𝑠2𝑎𝑎𝑏𝑏1

𝑀𝑀

𝑢𝑢𝑐𝑐 = �
𝑖𝑖=1

9
𝜕𝜕𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢𝑖𝑖
2

𝑢𝑢𝑖𝑖 = 0,58 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥𝑖𝑖

e.g.
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥𝑖𝑖 = 2 + 4𝑥𝑥𝑖𝑖/1000

Prezentator
Notatki do prezentacji
Thus, in order to calculate the measurement uncertainty for flatness, it is necessary to calculate 9 partial derivatives. As you can see the formulas are quite complex, but keep in mind that some programs such as MAPLE, MathCAD, Matlab etc. are good at calculating derivatives and can calculate them from the formula given in the vector notation. Measurement uncertainties of individual coordinate differences appearing in the formula as ui are calculated (as said before) using the formula 0.58xMPEE(xi). For a typical, average accuracy CMM, the formula for MPEE could be 2 + 3L / 1000
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Example - flatness

MPE=2+4L/1000
u=MPE/3
A(50, 50, 10)
B(350, 50, 10)
C(200, 350, 10)
S(200, 150, 10,01)

xi, mm 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

uxi

µm
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

𝑢𝑢𝑥𝑥𝑥𝑥

as1 150 0,00 0,87 0,00
as2 0 0,00 0,67 0,00
as3 0,01 1,00 0,67 0,67
ab1 300 0,00 1,07 0,00
ab2 0 0,00 0,67 0,00
ab3 0 -0,50 0,67 0,33
ac1 150 0,00 0,87 0,00
ac2 300 0,00 1,07 0,00
ac3 0 0,00 0,67 0,00

u = 0,75

The largest component of the 
uncertainty (weight equal 1) relates 
to the distance between point S 
and plane ABC

When the workpiece is oriented 
parallel to the planes of the 
coordinate system, some partial 
derivatives are zero.

flatness = l

Prezentator
Notatki do prezentacji
This slide deals with the use of the discussed model to evaluate the measurement uncertainty of flatness deviation. An exemplary uncertainty budget for a specific position of point S in relation to points A, B and C is shown. Additionally, in the 3D plot, colours show that the calculated uncertainty is different for different positions of point S. Specific values ​​can be read on the sections of this graph. The cross-section of the graph for x = 200 (vertical plane through the centre) shows that the measurement uncertainty ranges from about 0.66 mm to about 0.74 mm. Since we do not know at which point the greatest convexity or concavity occurs, as an estimate of the standard uncertainty of the measurement of flatness deviation, we will take the largest value, i.e. 0.74 micrometers.
Let's look at the numbers in the uncertainty budget, remembering that the measured plane is parallel to the xy plane of the coordinate system (you can see it by the coordinates of the characteristic points - the z-coordinate is equal to 10). The most important observation is that only two sensitivity coefficients are different from 0: one is equal 1 and the other is 0.5. If the orientation of the plane is not parallel to the xy plane, there would be more non-zero weights, but the end result would be practically the same.
It is also interesting which uncertainty components are non-zero: they are as3 and ab3, ie the z-axis distances of AS and AB point pairs. With the plane parallel to the xy plane, the distances are practically zero (one is exactly zero, the other is the flatness deviation). It can be seen that the given value of the flatness deviation does not matter. It can be seen that the standard uncertainty of the measurement of distances close to zero depends only on the constant in the formula for MPE.
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Position of a point in regard to datum plane

Measurement model:
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2 𝑙𝑙 − 𝑇𝑇𝑇𝑇𝑇𝑇

Prezentator
Notatki do prezentacji
The same measurement model (point-plane distance) applies to the deviation of the point position relative to the plane. The theoretical position is defined by the theoretically exact dimension (here 30 mm). We remember that the definition of a position deviation is the shortest distance between a pair of planes parallel to the datum and symmetrical to a theoretically exact position. This means that from the measured distance of the S point from the ABC plane, the value of the theoretically exact dimension should be subtracted and the obtained result multiplied by 2. It is worth noting that the uncertainty of measuring the position deviation is 2 times greater than the uncertainty of measuring the distance of the point from the plane.
There are 4 characteristic points in the measurement model: 3 of them belong to the integral element (plane) and one to the derived element (centre of the sphere).
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Example - position of a point in regard to datum plane 

Data for the example:
MPE=2+4L/1000
u=0,33 MPE
A(50, 50, 10)
B(350, 50, 10)
C(200, 350, 10)
S(200, 50, 210)

xi, mm 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

uxi

µm
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

𝑢𝑢𝑥𝑥𝑥𝑥

as1 150 0 0,87 0
as2 0 0 0,67 0
as3 200 1 0,93 0,93
ab1 300 0 1,07 0
ab2 0 0 0,67 0
ab3 0 -0,5 0,67 0,33
ac1 150 0 0,87 0
ac2 300 0 1,07 0
ac3 0 0 0,67 0

u = 0,99

The largest uncertainty component 
(weight 1) relates to the distance of 
the point from the plane, which in 
the example was 200 mm.

position = 2(l-TED)

uc = 2u = 2*0,99

Prezentator
Notatki do prezentacji
The slide shows the uncertainty budget for the position measurement. The orientation of the workpiece is the same as for the flatness example. Similarly, only 2 partial derivatives are non-zero. The difference is that the component with weight 1 now applies to a distance of 200 mm hence the uncertainty component is 0.93 (in the case of flatness it was 0.67)
As mentioned before, the uncertainty of measuring the position deviation is 2 times greater than the uncertainty of measuring the distance l, i.e. the uncertainty calculated in the table, which means that this uncertainty is about 2 micrometers
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Straightness (of axis)

𝑙𝑙 𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴 = 𝑨𝑨𝑨𝑨 ×
𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨

Prezentator
Notatki do prezentacji
The slide shows the model for measurement of the straightness of axis. This deviation is equal to the distance of the point S from the line AB.
In this measurement model, there are 3 characteristic points and they are all points of the derived feature - the shaft axis. As it results from the given formula, the distance l is the length of the vector which is the result of the vector product of two vectors. Thus, the measurement model contains 6 components
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Example – straightness of axis

xi, mm 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

uxi

µm
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

𝑢𝑢𝑥𝑥𝑥𝑥

as1 50 0 0,73 0
as2 0 0 0,67 0
as3 0,01 1 0,67 0,67
ab1 100 0 0,80 0
ab2 0 0 0,67 0
ab3 0 -0,50 0,67 0,33

u = 0,75

E(L, MPE)=2+4L/1000
A(100, 100, 100)
B(200, 100, 100)
S(150, 100, 100,01)

It relates to also to:
- straightness of generatrix 
- straightness on the plane

The largest uncertainty component 
(weight 1) relates to the distance of 
the point from the line (straightness 
deviation). It was assumed that S lies 
„below" the axis and therefore the 
coordinate z (as3) is different from 0.

Prezentator
Notatki do prezentacji
The uncertainty budget for Straightness measurement is provided on the slide. It should be noted that one of the uncertainty components occurs with a weight of 1, and one with a weight of 0.5, and both relate to a small measured value. Components related to large measured values, i.e. related to the length of the measured object, appear in the budget with a weight equal to zero, which means that the length of the measured object does not affect the uncertainty of straightness measurement. The uncertainty value changes slightly depending on the location of the S point - the uncertainty has the greatest value if the greatest deflection occurs in the middle.
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Example - coaxiality

E(L, MPE)=2+4L/1000
A(100, 100, 100)
B(120, 100, 100)
S(210, 100, 100,01)

xi, mm 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

uxi , µm
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

𝑢𝑢𝑥𝑥𝑥𝑥, 
µm

bs1 90 0 0.79 0
bs2 0 0 0.67 0
bs3 0.01 1 0.67 0.67
ab1 20 0 0.69 0
ab2 0 0 0.67 0
ab3 0 -4.5 0.67 3

u = 3.07

Depending on where the point S is located, the calculated uncertainties are 
different; at a fixed datum width, uncertainty increases as the toleranced 
element moves away from the datum. Weight 4.5 for the highest uncertainty 
component results from the ratio of the distance from the datum (210-120 = 
90) to the datum’s width (120-100 = 20).
The weight component 1 refers to the distance of point S from the line ABcoaxiality = 2l

Prezentator
Notatki do prezentacji
The point-to-straight distance model is also suitable for assessing the uncertainty of coaxiality. In the drawing, the toleranced element is at a distance from the datum. The uncertainty budget is similar to the previous example because it is based on the same model, except that the weight that previously was 0.5 is now 4.5. This value is the quotient of the distance of toleranced feature from the datum to the datum length.
More importantly: the coaxiality deviation is equal to twice the distance of the point S from the AB line, which means that the standard uncertainty value calculated in the budget must be multiplied by 2, i.e. the measurement uncertainty of the coaxial deviation is about 6 micrometers.
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Summary

Prezentator
Notatki do prezentacji
There were 3 measurement models presented, based on the distance formulas: point-plane, straight line – straight line and point-straight line.
It turns out that the point-plane model can be used to determine the measurement uncertainty of Flatness, but also the position of a point, line or plane in relation to the plane (only the point position is shown here) and also out of plane parallelism of the axis. It is worth noting that in the case of parallelism of axis, point S lies outside the outline defined by points A, B, C
The point-straight line model can be used to determine the measurement uncertainty for even more characteristics: apart from several variants of straightness and concentricity, we also have the axes’ distance, the axis position in relation to the datum axis, as well as the total runout and runout
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Summary
Do 

𝑙𝑙 = 𝑨𝑨𝑨𝑨

𝑙𝑙 = 𝑲𝑲𝑲𝑲 ×
𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨

𝑙𝑙 = 𝑲𝑲𝑲𝑲 ×
𝑨𝑨𝑨𝑨 × 𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨 × 𝑨𝑨𝑨𝑨

Prezentator
Notatki do prezentacji
So far, more than 20 models were developed to determine the uncertainty of different characteristics. There are a few of them on the slide.
The simplest one is the distance between two points, which is simply the length of the AB vector. It is to be used for centre distance of spheres or circles
The second is distance between the point and the straight line defined by given point and parallel to the straight line defined by additional two points. It is to be used in case of axis parallelism deviation
Third is distance between the point and the straight line defined by the given point and perpendicular to the plane defined by three points. It is to be used when the axis is perpendicular to the plane.
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Summary
Do 

𝑙𝑙 𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐾𝐾𝐾𝐾 = 𝑲𝑲𝑲𝑲 �
𝑨𝑨𝑨𝑨 × 𝑨𝑨𝑨𝑨 × 𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨 × 𝑨𝑨𝑨𝑨 × 𝑨𝑨𝑨𝑨

Prezentator
Notatki do prezentacji
The more complex models include distance between the point and the plane defined by the given point and parallel to the straight line defined by two points and perpendicular to the plane defined by three points. This one applies to in-plane parallelism of axes
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• Coordinate measurement is an indirect measurement
• The input information about the dimensions and distribution of geometric features

appearing in the definition of a given characteristic are the coordinates of the minimum 
number of points needed to define this characteristic.

• The input information about the accuracy of the CMM is the formula for the maximum 
permissible error of indication of a CMM for size measurement (MPEE) and the results of 
the reverification test.

• Measurement models are formulas expressing the measured characteristics as a function 
of differences in the coordinates of the pairs of the points mentioned.

• The standard measurement uncertainty of the coordinate differences can be calculated 
from the MPEE formula and the calibration results

• The following formulas are used to build measurement models: point-to-point, point-
straight, point-plane, straight-line and various combinations

Assumptions of the presented methodology

Prezentator
Notatki do prezentacji
The presented technique of estimating the uncertainty of coordinate measurements is based on the following assumptions
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𝑙𝑙 𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 �
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴

𝑙𝑙 =
𝑎𝑎𝑠𝑠1𝐿𝐿1 + 𝑎𝑎𝑠𝑠2𝐿𝐿2 + 𝑎𝑎𝑠𝑠3𝐿𝐿3

𝑀𝑀

𝐿𝐿1 = 𝑎𝑎𝑏𝑏2𝑎𝑎𝑐𝑐3 − 𝑎𝑎𝑏𝑏3𝑎𝑎𝑐𝑐2

𝐿𝐿2 = 𝑎𝑎𝑏𝑏3𝑎𝑎𝑐𝑐1 − 𝑎𝑎𝑏𝑏1𝑎𝑎𝑐𝑐3

𝐿𝐿3 = 𝑎𝑎𝑏𝑏1𝑎𝑎𝑐𝑐2 − 𝑎𝑎𝑏𝑏2𝑎𝑎𝑐𝑐1

𝑀𝑀 = 𝐿𝐿12 + 𝐿𝐿22 + 𝐿𝐿32

𝑙𝑙 𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 �
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴

𝑙𝑙 𝐵𝐵𝐵𝐵,𝐵𝐵𝐶𝐶,𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 �
𝐵𝐵𝐴𝐴 × 𝐵𝐵𝐶𝐶
𝐵𝐵𝐴𝐴 × 𝐵𝐵𝐶𝐶

𝑙𝑙 𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 �
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴

𝑙𝑙 𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶,𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 �
𝐶𝐶𝐶𝐶 × 𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶 × 𝐶𝐶𝐶𝐶

Assumptions of the presented methodology
• strict mathematical dependencies 

• variants of models

min

Prezentator
Notatki do prezentacji
The presented method is based on strict mathematical dependencies and complies with the commonly known and most commonly used GUM uncertainty framework. Models in the vector notation are very simple - unfortunately not in the classical notation. This means that for effective use it is necessary to use vector-capable software, such as e.g. MAPLE.

Finally, something worth mentioning that I haven't talked about so far. In most cases, to find a solution, it is necessary to analyse several variants of the measurement model. The different variants must take into account all combinations of characteristic points. For example, the flatness deviation measurement model uses the vector product AB times AC and you really need to use BA and BC as well as CA and CB and choose the solution that gives the lowest uncertainty value
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