Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

EXPANDING THE POWER OF CSOUND WITH
INTEGRATED HTML AND JAVASCRIPT

Michael Gogins
michael.gogins @ gmail.com
https://michaelgogins.tumblr.com
http://michaelgogins.tumblr.com/

This paper presents recent developments integrating Csound [1] with HTML [2] and
JavaScript [3, 4]. For those new to Csound, it is a “MUSIC N” style, user-
programmable software sound synthesizer, one of the first yet still being extended,
written mostly in the C language. No synthesizer is more powerful.

Csound can now run in an interactive Web page, using all the capabilities of current
Web browsers: custom widgets, 2- and 3-dimensional animated and interactive graphics
canvases, video, data storage, WebSockets, Web Audio, mathematics typesetting, etc.
See the whole list at HTMLS5 TEST [5].

Above all, the JavaScript programming language can be used to control Csound, extend
its capabilities, generate scores, and more. JavaScript is the “glue” that binds together
the components and capabilities of HTMLS. JavaScript is a full-featured, dynamically
typed language that supports functional programming and prototype-based object-
oriented programming. In most browsers, the JavaScript virtual machine includes a just-
in-time compiler that runs about 4 times slower than compiled C, very fast for a
dynamic language. JavaScript has limitations. It is single-threaded, and in standard
browsers, is not permitted to access the local file system outside the browser's sandbox.
But most musical applications can use an embedded browser, which bypasses the
sandbox and accesses the local file system.

HTML Environments for Csound

There are two approaches to integrating Csound with HTML and JavaScript. Csound
runs the browser: The Csound front end embeds a Web browser, and the Csound
Structured Data (.csd) file contains HTMLS code in an <html> element of the .csd
file. The front end uses its embedded browser to display this <htm1> element as a Web
page. The browser runs Csound: A Web browser runs Csound, and the Csound
orchestra and score are embedded in the HTML of the Web page. The currently
available environments are:

ICSC 2015

-

Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

e (Csound for Android [6]. Csound runs an embedded Android WebView [7]
browser.

e (CsoundQt [8] (Windows). Csound runs an embedded Chromium Embedded
Framework (CEF) [9] browser.

e csound.node for NW js [10] (Windows, Linux). A CEF browser embedded in
NW.js runs Csound, and with the csound_editor application, Csound runs the
browser embedded in NW js.

e Csound for PNaCl 11, 12, 13] (Google's Chrome browser on Windows, Linux,
and OS X). The Chrome desktop browser compiles and runs Csound, using a
runtime embedded in Chrome.

e Csound for Emscripten [11, 14, 15] (all JavaScript-enabled Web browsers).
Any desktop browser runs Csound, which has been compiled to the efficient
ASM.js [16] subset of JavaScript.

The technical details of these environments vary, but there are common themes. First,
Web browsers enforce tight security, otherwise thieves and hackers will steal, spy, and
take over computers. So browsers run code in a sandbox with limited permissions, e.g.
no access to the local file system, no cross-domain scripting. Where there is a local file
system, it’s mounted inside the sandbox as a private file system. If the browser is
embedded in a program running on a local computer, that browser is granted access to
the local file system. So for complete control of Csound pieces enhanced with HTMLS5,
the best choice is csound.node or CsoundQt, where Csound can write soundfiles, read
samples, efc. on the local file system. A useful variation is Csound for PNaCl, created
by Victor Lazzarini, which has methods for copying soundfiles and such into and out of
the sandbox. Second, most browsers run JavaScript in a separate process that
communicates with the browser's user interface via asynchronous messages. Third, in
all environments, there is a csound proxy object in the JavaScript context of the Web
page, so code running on that page can call core functions of the Csound API [17] to
control Csound. Fourth, CsoundQt, csound.node, Csound for PNaCl, and Csound for
Emscripten can all pop up Chrome's “Developer Tools” to debug the JavaScript used by
any Csound piece.

The Csound developers are working to ensure that a core subset of the Csound API has
the same function names and argument types in all environments, so that a piece
written, e.g., for Csound on Android can also run without editing on, e.g., Csound for
Emscripten. But we are not there yet.

Demonstrations

In the remainder of this paper, I demonstrate some capabilities of Csound enhanced with
HTML using csound.node, Csound for Android, and CsoundQt. These demonstrations
are available on my blog [18].

A Piece in a Web Page

This is a minimal piece that embeds a simple drone-style piece in a Web page that runs
in csound.node. There is no user interface or score generation, the page just loads
Csound and plays the piece.

ICSC 2015

Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

Csound HTMLS Demonstration 01

Introduction

‘The purpose of this demonstrationis to show how to embed a Csound piece into a Web page
You can play the picce, stop it from playing, view and edit its Csound code, and see Csound's
diagnostic messages. This picce wil play on csound node. 4 thorough explanation of the steps
required to create this piece follows.

Dunes

By Michael Gogins

2015

Play || Stop

Csound Orchestra

duration, ikey,

ivelocity,

Filename: D:\Dropbox\2015-09-01 ISCS\htwl}ICSC_Demonstration 01.html Mode: HTL

tr Reverb uses 7 p-fields but is given 3
instr Bt 0.0000d -1.0000 k

tr MasterOutput:

st 0.0000 @ -1.0000 K

new alloc for instr Clear:
B ©.000 .. 30.000 T 66.667 TT 66,667 M:
52297.4
54085.6

WARNING:
instr 81

11 p-Ficlds but is given 7

instr
0.0000
B 30.000 .. 60.000 T133.333 TT133.333 H:
107065.1

53377.4

r instr Buzzer:
5t 1333333 d 153.3333 k
B 60.000 .. 50.000 T200.000 TT200.000 H:
100706.0

53875.5

number of samples out of range:

3

B a0

0.0000 v

tput uses 7 p-Fields but is given

Tt B6.6667 4 86.6667 K 42.6432 v

543315 v

41,5259 v

52.4086 v

B D:\Dropbox\2015-09-01 ISCS\htm\ICSC_Demonstratio... — = “] Csound HTML5 Demonstration 01 -0 @ Developer Tools - f'\le:///D‘/Dropbox/2015—09—01%2015...! =]
c o sound._ hm = C ' /Dy/Dropbox/2015-09-01%20ISCS/htmi/ICSC_Demonstration 01html = C Audits SR =
New | [Oper

v 60.0000 p

v 60.0000 p

0.0000 p

3

2.0000 v

60.0000 p

60.0000 p
60.0000 p

60.0000 p

B -5 2E ssam

8/19/2015

In the screenshot above, the left third is csound_editor running in csound.node
displaying the code for the page, the middle is the page itself, and the right is Developer
Tools, showing Csound messages as Csound runs.runs. All the code for embedding

Csound in csound.node and handling Play

and

Stop is

<input type="button" value="Play" onclick="start_onclick()"/>
<input type="button" value="Stop" onclick="stop_onclick()"/>

<script>

var csound = require('csound');

var start_onclick = function() {
csound.setOption('-odac"')
var orc = document.getElementById('orc') .value;
csound.compileOrc (orc) ;
var sco = document.getElementById('sco') .value;
csound.readScore(sco) ;
csound.perform() ;

}

var stop_onclick = function() {
csound.stop () ;

}

A Piece with Real-time Instrument Control

just:

Using low-level functions to bind JavaScript event handlers to HTML elements is
tedious, so almost all websites use some sort of GUI library to simplify coding. I could
write these demonstrations without such a library to show the basic principles, but I feel

it is more useful to show some common GUI libraries.

One confronts a bewildering the array of GUI libraries and application frameworks
arising from the widespread use of JavaScript to create websites. JavaScript frameworks
such as Angular]JS or Ember are suited to this task, and may seem very attractive to the
Csound user. However, they’re designed for applications where a Web browser
communicates via http with a Web server that manages data and logic for the

ICSC 2015

e

Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

application. For these cases, a Model-View-Controller (MVC) pattern (more or less) is
well suited.

But a Csound piece that uses HTMLS5 runs everything in the client, even if Csound itself
and/or the piece are sourced from a Web server. Csound itself is the only “Model”, and
the Web page that communicates with Csound via JavaScript is both “View” and
“Controller.”

For this reason, I prefer lower-level, “View” oriented libraries for Csound. For visual
music, fractal score generators, efc., graphics are more important than user controls, and
a minimalistic library (e.g. dat.gui [19]) is suitable. For highly interactive pieces, a
library that simplifies event binding (e.g. jQuery [20]) is better.

Using Sliders to Control Csound

This demonstration adds a user-controllable slider to every control channel of the piece
in the previous demonstration, as well as buttons for saving and restoring the values of
all controls between sessions; such persistence is essential for actually composing or
performing.

The HTML <input> element has a variety of types, and the range type creates a
slider. An HTML table lays out the sliders, labels, and output fields. All Csound
instruments are encapsulated in independent blocks of code, each of which can run
without any external dependencies. All real-time controls are global variables,
initialized just above their instr block. All function tables, too, are initialized above
their instr block. A consistent naming pattern is used to avoid name clashes, i.e.
"gk_" + instrument_name + "_" + control_name. Instruments do not
send sound directly to the output, but rather through audio channels to effects, which in
turn send the sound to the output. Then instruments can be arranged simply by cutting
and pasting, or using #include statements in the orchestra. Here is the block for one
instrument:

gi_Buzzer_overlap init 20

gk_Buzzer_harmonics init 2

gi_Buzzer_sine ftgen 0, 0, 65536, 10, 1

instr Buzzer

insno = pl

istart = p2

iduration = p3

ikey = p4

ivelocity = pb5

iphase = p6

ipan = p7

iamp = ampdb(ivelocity) * 4

iattack = gi_Buzzer_overlap

idecay = gi_Buzzer_overlap

isustain = p3 - gi_Buzzer_overlap

p3 = iattack + isustain + idecay

kenvelope transeg 0.0, iattack / 2.0, 1.5, iamp / 2.0, iattack / 2.0, -1.5,
iamp, isustain, 0.0, iamp, idecay / 2.0, 1.5, iamp / 2.0, idecay / 2.0, -1.5,
0

ihertz = cpsmidinn(ikey)

asignal buzz kenvelope, ihertz, gk_Buzzer_harmonics, gi_Buzzer_sine
asignal = asignal * 3

aleft, aright pan2 asignal, ipan

adamping linseg 0, 0.03, 1, p3 - 0.1, 1, 0.07, O

aleft = adamping * aleft

aright = adamping * aright

ICSC 2015

~

Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

chnmix aleft, "out_left"

chnmix aright, "out_right"

prints "instr %4d t %9.4f d %9.4f k %9.4f v %9.4f p %9.4f\n", pl, p2, p3, p4,
5, p7

endin

The "effects" instruments, as well as a global "Controls" instrument, are "always on"
and they are scheduled in the orchestra code, not in the score. This makes it easier to
generate scores programmatically.

scoreline_i "i \"Reverb\" 0 -1"
scoreline_i "i \"MasterOutput\" 0 -1"
scoreline_i "i \"Controls\" 0 -1"
scoreline_i "i \"Clear\" 0 -1"

The "Controls" instrument simply has a chnget opcode for each control channel’s
global variable. This is much more efficient than putting chnget into each instrument.

jQuery simplifies the code and gets slider values into Csound. "Event bubbling" sends
events from all sliders to one event handler. The HTML IDs of all sliders are the same
as the names of the corresponding Csound channels; a similar pattern links sliders to
their output fields. In jQuery, $ (element) loops over all instances of the element
type, and S ('#id"') selects just the element named id. Then we use JavaScript’s
functional programming to create an event handler for each channel. Here is all the
JavaScript for this piece:

<script>
var csound = require('csound');
</script>
<script
src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js">
</script>
<script>
$ (document) .ready (function() {
S('#play').on('click', function() {
csound.setOption('-odac"')
csound.compileOrc (document.getElementById ('orc') .value);
csound.readScore (document .getElementById('sco') .value);
S ('#restore') .trigger('click');
csound.perform() ;
}) i
S('#stop').on('click', function() {
csound.stop () ;
}) g
S('input').on('input', function(event) {
var slider_value = parseFloat (event.target.value);
csound.setControlChannel (event.target.id, slider_value);
var output_selector = '#' + event.target.id + '_output';
S (output_selector) .val(slider_value);
}) g
S('#save').on('click', function() {
$('.persistent-element').each(function() {
localStorage.setItem(this.id, this.value);
}) g
}) i
$('#restore').on('click', function() {
$('.persistent-element').each(function() {
this.value = localStorage.getItem(this.id);
csound.setControlChannel (this.id, this.value);
var output_selector = '#' + this.id + '_output';
$ (output_selector) .val(this.value);
}) i
}) g
$(window) .load (function () {

ICSC 2015

Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

$('#restore').trigger ('click');
}) i

1)
</script>

A Piece with a Customized Appearance

Cascading Style Sheets (CSS) are a well-thought-out protocol for customizing the visual
style of the elements on Web pages. This piece simply adds a CSS to the previous
demonstration. Much more could be done to improve the page, e.g. using jQuery Ul
[21] to simplify creating and styling the elements. The screenshot shows the style sheet
in the csound_editor on the left, and the effect of the styles on the piece on the right.

1D:\0r0pbor 2015-09-0LISCE\htmI\ICSC =Bl =lolx|
c bl = C C' filesf{/D:/Dropbox/2015-09-01%2015C5 htmlfICSC_Demonsration_03. bt ER <]

[[New || Open... |[Save as... || Save || Run || Stop

CSOUND HTML5 DEMONSTRATION 03

Introduction

The purpose of this demonstration is to show how to embed a Csound piece into a Web page. This demonstration builds on the previous one simply by
adding a rudimentary style sheet, which could be much improved, to improve the visual appearance of the page. You can play the piece, stop it from
playing, view and edit its Csound code, and see Csound's diagnostic messages. This pisce will play on csound node. A thorough explanation of the steps
required to create this piece follows.

Dunes
By Michael Gogins

2015

Filename: D:\Dropbox)2015-09-01 ISCS\html)ICSC_Demonstration 03.htwml Mode: HTHL "

[osen] © @ 5|0 ¢[00 & O B ® €639 ARARNEO v > al () szm m|

A Piece with a Score Generator

] D:\Dropbox\2015-09-01 ISCS\htmN\ICSC_Demonstration_04.csd -

o] node-webkit — oIl

€' filey///Di/Dropbox/2015-09-01%201SCS/html/ICSC_Demonstration_04.csclhtml =C

n
Q

C file//CU: il sound_¢ html

New |[Open.. || Save as... || Save |[Run |[Stop

i

B & W a) [* 82472015

ICSC 2015

9

Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

This piece runs in Csound for Android, or in csound_node's’s csound_editor. dat.gui
[19] creates the user controls. A Lindenmayer system from Silencio [22] generates
notes, chords to which notes are fitted, and the graphic display. All code for creating
controls is shown in the csound_editor. The ChordSpace.LSys class of Silencio
generates notes into a Silencio.Score, which then sends them to Csound.

Acknowledgements

Thanks to Edward Costello, John ffitch, Victor Lazzarini, Brian Redfern, and Steven Yi
for making the first integrations of HTML with Csound.

References

(1]
(2]
(3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]
[11]
[12]

[13]

[14]

Csound developers, Csound: A Sound and Music Computer System,
https://csound.github.io/, retrieved August 12, 2015.

World Wide Web Consortium, HTML 5.1: W3C Working Draft 09 July 2015,
http://www.w3.org/TR/html51/, retrieved August 12, 2015.

ECMA International, Standard ECMA-262, 5.1 Edition, ECMAScript Language
Specification, http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf,
June 2011.

Mozilla Developer Network, JavaScript, https://developer.mozilla.org/en-
US/docs/Web/JavaScript, retrieved August 12, 2015.

HTML 5 TEST: how well does your browser support HTMLS,
https://htmlStest.com/, retrieved August 12, 2015.

Steven Yi and Victor Lazzarini, “Csound for Android,” in Frank Neumann (ed.),
Proceedings of the Linux Audio Conference 2012, Center for Computer Research
in Music and Acoustics (CCRMA), Stanford University, California, April 2012,
pp- 29-34.

Android Developers, WebView,
http://developer.android.com/reference/android/webkit/WebView.html, retrieved
August 13, 2015.

Andres Cabrera, CsoundQt, http://qutecsound.sourceforge.net/, retrieved August
13, 2015.

Marshall Greenblatt et al., CEF: chromiumembedded,
https://bitbucket.org/chromiumembedded/cef, retrieved August 13, 2015.

Roger Wang et al., NW.js, http://nwjs.io/, retrieved August 13, 2015.

Victor Lazzarini, Edward Costello, Steven Yi and John ffitch, “Extending Csound
to the Web,” IRCAM and Mozilla, 1st Audio Conference, Paris, January 26-28,
http://wac.ircam.fr/pdf/wacl5 submission 14.pdf, retrieved August 13, 2015.
Victor Lazzarini, Csound for Portable Native Client, http://vlazzarini.github.io/,
retrieved August 13, 2015. Please note: This link will load and play Csound
pieces in Google’s Chrome browser on OS X, Windows, and Linux.

The Chromium Projects, Introduction to Portable Native Client,
https://www.chromium.org/nativeclient/pnacl/introduction-to-portable-native-
client, retrieved August 13, 2015.

Edward Costello, Csound Emscripten,
http://eddyc.github.io/CsoundEmscripten/#, retrieved August 13, 2015. Please
note: This link will load and play Csound pieces in Web browsers that run
JavaScript.

ICSC 2015

Michael Gogins. Expanding the Power of Csound with Intergrated HTML and JavaScript

[15]

[16]
[17]

[18]

[19]

[20]
[21]

[22]

Alon Zakai et al., Emscripten: An LLVM-to-JavaScript Compiler,
http://kripken.github.io/emscripten-

site/docs/introducing_emscripten/about emscripten.html, retrieved August 13,
2015.

asm.js, http://asmjs.org/, retrieved August 13, 2015.

Csound developers, Csound API Documentation,
http://csound.github.io/docs/api/index.html, retrieved August 13, 2015.

Michael Gogins, Examples of Csound with HTMLS5 for the ICSC,
http://michaelgogins.tumblr.com/post/127552774633/examples-of-csound-with-
html5-for-the-icsc.

Google Data Arts Team, dat.gui, https://github.com/dataarts/dat.gui, retrieved
August 19, 2015.

John Resig, et al., jquery, http://jquery.com/, retrieved August 19, 2015.

Paul Bakaus, et al., jquery-ui, https://github.com/jquery/jquery-ui, retrieved
August 23, 2015.

Michael Gogins, silencio, https://github.com/gogins/silencio, retrieved August 24,
2015.

ICSC 2015

