REMORA v1.6.0

REsource MOnitoring for Remote Applications
Document Revision 1.0
March 11, 2016



Antonio Gomez-Iglesias, Carlos Rosales Fernandez
agomez@tacc.utexas.edu, carlos@tacc.utexas.edu

High Performance Computing
Texas Advanced Computing Center
The University of Texas at Austin

Copyright 2016 The University of Texas at Austin.



Abstract

REMORA is a modular tool to monitor runtime resource utilization in HPC environments. As
of version 1.6.0 the suite contains code designed to test:

e Memory utilization in CPUs, Xeon Phi co-processors, and NVIDIA GPUs

CPU utilization

IO utilization for the Lustre and DVS file systems

NUMA properties

Network topology

Throughout the text we have used text boxes to highlight important information. These boxes
look like this:

These gray boxes contain highlighted material for each section and chapter.

Our intention is to create a simple runtime resource monitoring tool that provides both simple to
understand high level information to the user, as well as detailed statistics for in-depth analysis.
We welcome all feedback. Feedback that includes suggestions for improvement in the usability,
reliability, and accuracy of this tool is particularly welcome.

Version 1.6.0 is a new release that adds a new monitoring execution mode for remora. This new
mode is enabled by setting REMORA_MODE=MONITOR, and continuously processes the data collected
so that REMORA can be used as a real time monitoring system.

Remora is an open-source project. Funding to keep researchers working on Remora depends on
the value of this tool to the scientific community. We would appreciate if you could include the
following citation in your scientific articles:

C. Rosales, A. Gémez-Iglesias, A. Predoehl. “REMORA: a Resource Monitoring Tool for Ev-
eryone”. HUST2015 November 15-20, 2015, Austin, TX, USA. DOI: 10.1145/2834996.2834999

[1]



C. Rosales, A. Gémez REMORA User Guide

Contents

1 Installation 2

2 Using Remora 3
2.1 Collecting Data . . . . . . . . . 3
2.2 Execution Customization . . . . . .. ... ... ... 4
2.3 Post-Processing . . . . . . . . .. 5

3 Design and Implementation 6
3.1 Statistics Collected . . . . . . . . . . . . 6
3.2 Modular Design . . . . . . . ... 8
3.3 Code Structure . . . . . . .. 10

4 Expanding Remora’s Functionality 11
4.1 Structure of Modules . . . . . . . .. 11
4.2 Creating a New Module . . . . . . .. ... ... . ... ... .. ... ..., 12
References . . . . . . . . . L e 12

REMORA User Guide 1



C. Rosales, A. Gémez REMORA User Guide

1 Installation

Remora is simple to install. In order to use all of its features you will need GNU Make and a C
compiler. If testing the Xeon Phi you will also need a compiler with support for compilation of
native code for the Xeon Phi - currently limited to Intel 13+ compilers.

First of all obtain the latest version tarball, currently remora-1.6.0.tar.gz !, and expand it in a
convenient location in your system:

tar xzvf ./remora-1.6.0.tar.gz
Alternatively clone the git repository with the latest development version (not recommended):
git clone https://github.com/TACC/remora

This will create a top level directory called remora, with subdirectories /scripts, /docs and
extra. Change directory to the top level of remora and edit install.sh to reflect your choice
of installation directory, build type, and modules configuration. The variables to modify are:

Variable Description Default
REMORA _DIR | Absolute path to installation directory .
PHI_BUILD Enable (1) or disable (0) Xeon Phi build | 0

The modules are configured in the src\config\modules file. Simply remove any modules that
you don’t want to be available in your system. Also, you can create your own modules and
add them into this file (see Section 4 for more information about how to expand Remora’s
functionality).

Once these variables are set the tool can be installed by using:

./install.sh

The executable tests will be placed in the remora/bin directory unless the REMORA_DIR=/install/dir/location/
has been modified at the top of the installation script. An installation path can also be specified
on the command line:

REMORA_INSTALL_PREFIX=</install/dir/location> ./install.sh

Thttps://github.com/TACC/remora/archive/v1.6.0.tar.gz

REMORA User Guide 2


https://github.com/TACC/remora/archive/v1.6.0.tar.gz

C. Rosales, A. Gémez REMORA User Guide

2 Using Remora

2.1 Collecting Data

After installing remora please make sure the remora bin directory is in your PATH and the
remora lib directory is in your LD_LIBRARY_PATH. You should also define the environmental
variable REMORA_BIN tot eh remora bin directory. If you are using a system wide installation
this has probably been done by your system administrator. If you are doing it yourself the set
of commands you need for an installation under /home/carlos/remora is the following:

export REMORA_BIN=/home/carlos/remora/bin

export PATH=$PATH:$REMORA_BIN

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/carlos/remora/lib
export PYTHONPATH=$PYTHONPATH:/home/carlos/remora/python

You may want to add these to your startup files to ensure REMORA is available every time you
login. Once this setup has been done running remora is extremely simple.

For a serial job:
remora ./myexe [myexe_arguments]

For a parallel job (assuming mpirun is your parallel launcher, change for mpiexec.hydra, ibrun
or other as needed):

remora mpirun [mpirun_options] ./myexe [myexe_arguments]

The code will run as normal, and at the end a directory called remora_<jobid> where jobid is
the job number assigned by the scheduler. Currently SGE and SLURM are supported.

At the end of your job execution the output directory will contain a set of subdirectories with
information about different resources used by your code — See table 2.1 — as well as a summary

Directory Contents

CPU CPU utilization
INFO Runtime environment and hostlist
10 File system utilization

MEMORY Memory utilization

MONITOR | Continuous monitoring data (MONITOR mode only)
NETWORK | IB utilization data

NUMA Non-Uniform Memory Access data

Table 2.1: Contents of output directory

REMORA User Guide 3



C. Rosales, A. Gémez REMORA User Guide

REMORA SUMMARY

Max Memory Used Per Node : 5.43 GB

Total Elapsed Time : 0d Oh Om 43s 289ms

Max I0 Load / homel : 68 I0PS 42 RD(MB/S) 0 WR(MB/S)

Max IO Load / scratch : 70 IOPS 1 RD(MB/S) 0 WR(MB/S)

Max I0 Load / work : 1 IOPS 0 RD(MB/S) 0 WR(MB/S)
Sampling Period : 2 seconds

Complete Report Data : /scratch/01157/carlos/lbm_bench/bin/remora_6707930

Figure 2.1: Summary output for typical job execution using REMORA

output in your terminal screen or stdout file. An example of the summary output is shown in
Figure 2.1.

The summary shown in Figure 2.1 indicates that the maximum memroy used per node in this
particualr execution was 5.43 GB and that the code run for just over 43 seconds. From the
output we can also see that the job was run out of the scratch file system, and that very small
amounts or 10 occurred both throughout the execution. As indicated by the Sampling Period
entry data was collected using a REMORA_PERIOD of 2 seconds, and the complete collectad data
set can be found in the remora_6707930 directory. At this point one may be satisfied with the
summary report - which will have also been saved to a text file in the remora_6707930/INFO
directory.

2.2 Execution Customization

REMORA is configurable in terms of the amount and type of data collected, but sensible defaults
are provided to simplify its use. By default the statistics are collected every ten seconds.

REMORA provides two different running modes and it also allows the users to specify how
frequently the data is collected. A verbose mode is provided mostly for troubleshooting and
should not be used by default. The behavior of the application is controlled via four environment
variables:

REMORA User Guide 4



C. Rosales, A. Gémez REMORA User Guide

e REMORA MODE: this variable accepts three possible values (BASIC, FULL, and MON-
ITOR). The FULL mode runs all the tests that the tool allows. The BASIC mode
only reports memory and cpu usage. MONITOR mode is equivalent to FULL, with
the added advantage that data is post-processed inline and a summary file is gen-
erated in real time for application monitoring. BASIC is the recommended mode
when the users now that the application of interest does not create problems in the
distributed file system. The default is FULL.

e REMORA PERIOD: Time in seconds between consecutive data records. This is the time
from the end of a collection event until the start of the next collection event. De-
pending on the platform where the tool is running, the overhead introduced by the
application can make the duration of the collection event to vary, in which case there
will be less data points in the collected results than expected. However, in the sys-
tems that we have tested the overhead of the application is small enough that the
total number of collection points (CP) is almost equal to CP = ET/RP where ET
is the execution time (in seconds) and RP is the period (in seconds).

e REMORA MONITOR_PERIOD: Similar to REMORA_PERIOD. It corresponds to the number
of seconds between updates to the monitor file which contains the real time sum-
mary of resource utilization. This is provided in case regular monitoring data is
required at a different rate than the full data collection. It must always be larger
than REMORA_PERIOD.

e REMORA TMPDIR: Full path for intermediate file storage. It is recommended that this
is a local disk. Default value is the location of the REMORA output directory
(which must be on a shared file system). When specified by the user REMORA will
collect data in this location, and only copy the files to the output directory once
data collection is complete. Using a local file system for the temporary files reduces
overhead.

e REMORA_VERBOSE: Enable (1) or disable (0) verbose mode. Default is disabled.

e REMORA WARNING: Verbosity level for REMORA issued warnings. Acceptable values
are 0, 1, 2 in increasing level of verbosity. Critical errors will always be reported
independently of the chosen value.

In addition to these variables a list of file systems that should be ignored during data collection
can be provided to REMORA in the file config/fs_blacklist. This is a simple text file with
a names of mounts hat should be ignored during runtime.

2.3 Post-Processing

All the data is collected in a set of files with the statistics organized in columns. Users can
take those files and run any postprocessing tool that they develop. However, for simplicity,
REMORA already provides a plotting script called remora_post that takes all the statistics
generated during collection and generates a number of plots. These plots show the most relevant
information previously collected and represent a visual alternative while analyzing the results.
This is a Python script that requires Numpy, matplotlib and blockdiag. The script can be called
from the batch script or from the login nodes after the job has finished. In this second scenario,
the script requires the id of the job to be analyzed as argument.

REMORA User Guide 5)



C. Rosales, A. Gémez REMORA User Guide

3 Design and Implementation

Remora is designed with ease of use in mind. Our goal is to create a usage model that users
can take advantage of with minimal effort. While there are models where the tool could run
transparently, just by loading a module that would change the environment to collect all the
information at runtime, we decided to opt for a model where the user loads the module, and then
changes the submission script to invoke our tool by prepending its name to the actual command
that has to be analyzed. This has the advantage of preventing unnecessary overhead when the
module is loaded and runs that do not require instrumentation are submitted. It also simplifies
the data collection for serial jobs and scripts, which do not use an MPI launcher that can be
easily hijacked or modified. For example, if the original command is mpirun ./myparallelapp,
the new command will be remora mpirun ./myparallelapp. A more complicated scenario is when
the user wants to run a set of different scripts in the same job. In that case, the user will have to
put all the commands regarding the execution in a shell script (i.e. a shell script called myjob).
Then, all the user has to do is to call the script as follows remora ./myjob. The tool can be used
in a batch script or interactively in the command prompt.

Although we mention modules in the previous paragraph, modules are only used as a way to
make easier for users to use Remora. It is not required to install Remora as a module.

In its current implementation the tool generates a flat ssh tree with a single connection from the
master node in the execution to all other nodes. This connection initiates a background process
that collects the statistics for each node with a frequency specified by the user. The remote
background tasks execute a loop over all processes owned by the user, and aggregate the data
before committing it to file.

For runs involving a Xeon Phi co-processor the background task is pinned to the last core
(assumed to own hardware threads 0, 241, 242 and 243) since in most execution modes this will
avoid interference with the application during runtime and minimize impact on the execution
time. The source file mic_affinity.c can be modified in order to change this setting.

As previously stated, REMORA allows users to monitor the statistics as they are being gener-
ated. All the collected data is written to files accessible why the users in real time.

3.1 Statistics Collected

REMORA collects a set of statistics that are useful in many different scenarios when profiling
an application. The data collected by REMORA consists of:

e Detailed timing of the application.
e CPU utilization.
e Memory utilization.

NUMA information.

I/O information (file system load and Lustre traffic).

Network information (topology and InfiniBand traffic).

REMORA User Guide 6



C. Rosales, A. Gémez REMORA User Guide

Dynamic information is collected every REMORA_PERIOD seconds. The following describes the
data collected in more detail.

CPU The application reports the average CPU usage of the last second (independently of the
value specified for REMORA_PERIOD). This information is very important for applications that use
OpenMP, where it is possible to easily analyze how the cores are being used. It also allows to
check for a correct pinning of threads to the cores: not pinning processes could lead to threads
floating between cores, which will be show up in this report. MPI applications can also benefit
from this information.

Memory One of the most recurring questions for HPC users is "how can I know how much
memory my job is using?”. Trying to answer that question, REMORA collects the most relevant
statistics regarding memory usage every REMORA PERIOD seconds (more information in Section
2.2):

e Virtual Memory (and Max Virtual Memory): this is a very important value as the OOM
(out of memory) killer will use it to kill the application if needed.

e Resident Memory (and Max Resident Memory): physical memory used by the application.

e Shared memory: applications have access to shared memory by means of /dev/shm. Any
file that is put there counts towards the memory used by the application, so the application
reports this usage.

e Total free memory: this will take into account the memory not being used by the applica-
tion, the libraries needed by the application, and the OS.

Data is collected from /proc/<pid>/status for all of these except shared memory, which can be
obtained from /dev/shm. Memory usage for all user processes is aggregated and written to a
single file per node involved in the execution. At the end of the run the maximum values for
memory utilization (and minimum value of total free memory) are aggregated into a single file.

When Xeon Phi co-processors are used as part of a symmetric execution model, each Xeon Phi
is treated as a separate node and the same memory information is collected from Phi and from
host CPU. Individual files are maintained for each node and Phi and the per node aggregated
summary is provided individually for nodes and Xeon Phi devices, since their available memory
tends to be different.

NUMA As it is well known, NUMA (Non-Uniform Memory Access) can have a large impact
on the overall performance of an application. Sometimes small changes in the code can lead
to large improvements once it has been discovered that NUMA was imposing a penalty over
the application. Our tool reports how memory is being used in each socket and it also collects
the number of NUMA hits and misses. The information is extracted from the numastat tool:
numastat is called only once on each collecting period; the output of numastat is then analyzed
and several different fields are used for the statistics:

e Number of hits: total number of memory access hits.
e Number of misses: total number of memory access misses.

e Number of hits in the current node: if the data that the application was looking for is in
the same of node where the core requesting that data is located, it produces a hit in the
current NUMA node.

REMORA User Guide 7



C. Rosales, A. Gémez REMORA User Guide

e Number of hits in the other node: when the data required is in cache, but in the other
NUMA node.

e Total memory free/used on each node.

Lustre A new Lustre module was included in Remora 1.4.0. This module looks at the content
of the files located in /proc/fs/lustre/{mdc,osc}/*/ . In particular, it looks for the content
of the stats file. In order to generate a more user-friendly data, and it extracts the name of the
filesystems and the different lustre mounts from the df command.

DVS A new Data Virtualization Service (DVS) module was added in Remora 1.5.0. This mod-
ule captures information in the /proc/fs/dvs/mounts/*/ files to provide the number of requests
per second for every DVS served file system that is not in the blacklist under /config/fs\_blacklist.

LNET Stats Our tool collects information regarding the data transferred by Lustre on each
node used by the job while running. Normally, these statistics do not provide much information
to the users. However, they are very useful if there was a problem in the file system while the job
was being analyzed, as the number of messages dropped will significantly increase. The following
Lustre information is collected:

e Number of currently active Lustre messages. It also includes a highwater mark of this
value.

e Messages sent/received: total number of Lustre messages sent/received by the current
node.

e Messages dropped: number of Lustre messages that failed to be delivered to the destination.

e Bytes sent/received: total number of bytes sent/received on Lustre messages.

InfiniBand Packets Number of packets transmitted using InfiniBand. This data can be used
to get extra information regarding how the communication in parallel applications takes place.
In particular, the time series can be used to correlate high network activity levels with sections
of the code, and those sections can be revised for possible optimization.

3.2 Modular Design

REMORA presents a modular design that makes it easy to modify and extend the functionality
provided by the tool. For example, currently REMORA supports the Lustre file system, but
there are HPC systems that use other types of file systems. Data collection for those file systems
can be incorporated into REMORA in a straightforward manner due to its modular design.

This design allows the automatic discovery of new functionality by means of a configuration file
that is read during REMORA startup. This configuration file contains a list of module names
to activate. Typically, each of these modules collects a different type of statistic. The tool
will read each line and will load a script file with the same name specified in the configuration
file. The script file needs to implement at least four functions: initialization, data collection,
post-processing, and finalization.

Developers of new modules may define other functions, but they will have to be called from one
of the four required functions. The initialization, post-processing and finalization functions are

REMORA User Guide 8



C. Rosales, A. Gémez REMORA User Guide

called only once during the execution of the tool, while the data collection method will be called
by REMORA on each time step.

If the default configuration file includes, for example, a line with the text cpu. This line indicates
there will be a script with the file name cpu. This script is responsible for collecting the data
regarding CPU utilization on each one of the nodes used by the application. The script defines
the following functions:

e init_module_cpu
e collect_data_cpu

e process_data_cpu

monitor_data_cpu

finalize_module_cpu

Each of these functions takes exactly three arguments:

e Name of the node where the function is running ($REMORA_NODE)
e Full path where the output will be stored ($REMORA_OUTDIR)

e Full path to an optional temporary storage location ($REMORA_TMPDIR)

$REMORA_NODE $REMORA_OUTDIR $REMORA_TMPDIR

Developing a new module following this model is a task that can be performed without under-
standing the infrastructure that calls the different modules. This makes it simple to extend
REMORAS'’s functionality to support additional data collection and processing. If a new mod-
ule is being developed with name new_module, a file named new_module will need to be created
with at least the following functions:

e init_module_new_module

e collect_data_new_module

process_data_new_module

monitor_data_new_module

finalize_module_new_module

In order to activate new_module, the configuration file will need to include a line with the text
new_module. Functions may be left empty. Typically, the majority of a module’s functionality
will be implemented in the data collection module.

This design also makes it straightforward to deactivate existing modules. Simply by not including
a module name in the configuration file will de-activate the module at runtime

REMORA User Guide 9



C. Rosales, A. Gémez REMORA User Guide

3.3 Code Structure

( remora )

it

Ul

REMORA User Guide 10



C. Rosales, A. Gémez REMORA User Guide

4 Expanding Remora’s Functionality

Since version 1.6.0, Remora allows system administrators to easily change the functionality
provided by Remora and extend its capabilities. The configuration file src\config\modules
defines the modules used by Remora. Each module provides a specific capability in terms of
data collection. By default, these are the modules available in Remora:

e cpu
e memory
e numa

e lustre

e Inet

e dvs

e ib

® gpu

e network

These modules are currently specified in the configuration file. At runtime, Remora will read
this file and execute all the modules listed on it.

We are trying to provide modules that required no elevated privileges in the system. If you are
willing to run remora as root, or using a setuid binary then you can easily extend it to support
GPFS data collection.

If you are installing Remora system-wide, you can modify the configuration file before
installing it. If you have Remora installed in your user account, you can modify this file
at any time.

4.1 Structure of Modules

All the modules are located in the src/modules/ folder. They are all bash scripts that have to
implement, at least, the following functions:

e init module modulename(): this function is called only once to initialize the environment
or files that are required by each specific module.

e collect_data modulename(): main function of the module. This is the function called
each REMORA_PERIOD seconds. Depending on the module, different statistics will be col-
lected in this function. This function can include some postprocessing.

e process_data modulename(): currently unused.

REMORA User Guide 11



C. Rosales, A. Gémez REMORA User Guide

e monitor_data modulename (): real time post-processing of captured data

e finalize module modulename (): this function is also called only once, when the applica-
tion of interest has finished. Any heavy postprocessing method can go in this function.

All these functions take two, and only two, arguments:

e Name of the compute node where the function is going to run.

e Full path to the output folder.

The modulename is exactly the same name specified in the configuration file and also the filename
of the bash script. This means that, if we have a module called cpu in the configuration file,
there will be a file named cpu in the modules folder. And, inside that file, the required functions
will be called:

init_module_cpu()

collect_data_cpu()

process_data_cpu()

monitor_data_cpu()

e finalize module_cpu()

4.2 Creating a New Module

Remora has been designed so that expanding its functionality is very simple. If you want to
create a new module, let’s call it newmodule, you will need to follow these steps:

1. Add a new line to the configuration line with the string newmodule.
2. Create a new file in the src/modules folder called newmodule.
3. Inside this new file, define the following functions:

e init_module_newmodule ()

e collect_data newmodule()
e process_data newmodule ()
e monitor_data newmodule ()

e finalize module_newmodule ()

4. Implement the functionality that newmodule requires in those functions.

At runtime, Remora will find the new module specified in the configuration file and call the
different functions at runtime.

It is very important to make sure that all the functions contain exactly the same name of
the module included in the configuration file and used as filename for the module.

REMORA User Guide 12



C. Rosales, A. Gémez REMORA User Guide

Bibliography

[1] C. Rosales, A. Godmez-Iglesias, A. Predoehl. “REMORA: a Resource Monitoring
Tool for Everyone”. HUST2015 November 15-20, 2015, Austin, TX, USA. DOLI:
10.1145/2834996.2834999

REMORA User Guide 13


http://dx.doi.org/10.1145/2834996.2834999

	Installation
	Using Remora
	Collecting Data
	Execution Customization
	Post-Processing

	Design and Implementation
	Statistics Collected
	Modular Design
	Code Structure

	Expanding Remora's Functionality
	Structure of Modules
	Creating a New Module
	References


