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Effect of Lifetime Shape Parameter k on

Extinction Rate as a Function of Age

We want to prove that, given a gamma-distributed lifetime with shape parameter

k, the extinction rate µ(a) as a function of age a is decreasing if k < 1 and increasing if

k > 1 (recall that it is constant in the exponential case when k = 1). From Equation (2)

in the main text, we get that µ is the only solution to µ′(a) = µ(a)h(a) with terminal

value µ(∞) = 1/θ, where

h(a) :=
k − 1

a
− 1

θ
+ µ(a).

Note that µ′ and h always have the same sign. Assume k > 1. Then note that if µ is

decreasing with a, h is also decreasing with a. Further assume that there exists a0 > 0

such that µ′(a0) < 0, so that h(a0) < 0. An additional consequence is that µ(a0) < 1/θ,

since k > 1 and µ(a0) = h(a0)− k−1
a0

+ 1
θ
. Since µ(∞) = 1/θ, we cannot have µ′(a) < 0 for

all a > a0. As a consequence, a1 := inf{a > a0 : µ′(a) > 0} is finite, and by continuity, it

satisfies µ′(a1) = 0. Now since µ is decreasing on [a0, a1), h also is. This contradicts the

fact that h(a0) < 0 while h(a1) = 0, and shows that µ′ cannot take negative values when

k > 1. The same reasoning shows that µ′ cannot take positive values when k < 1.

Net Diversification Rate as a Function of

Speciation Rate λ and Lifetime Shape Parameter k

We prove the following two claims, given a gamma-distributed lifetime where k

and θ are assumed to vary in such a way that the mean lifetime ` = kθ remains

constant: (i) for given k, η increases(asymptotically linearly) with λ and (ii) for given λ,

η increases with k, approaching an asymptotic value corresponding to the case when all

lifetimes are fixed equal to `.

First recall that the net diversification rate η is zero if and only if λ` = 1, and is

otherwise the nonzero root of the Laplace exponent ψ defined as

ψ(y) := y − λ
∫ ∞
0

g(x)(1− exp(−yx))dx = y − λ

[
1−

(
1 +

y`

k

)−k]
for y ≥ 0.
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Let us show (i) in the case of a general density g. It is easy to see that for any fixed

density g, ψ decreases as λ increases. Since ψ is a convex function with two roots, of

which one is zero and the other is η, this ensures that η increases with λ. Let us show

that this increase is asymptotically linear. Writing

η

λ
=

∫ ∞
0

g(x)(1− exp(−ηx))dx, (S1)

we see that η cannot tend to a finite value as λ→∞, so that η →∞ as λ→∞. Now

by dominated convergence, the last displayed equation yields η/λ→
∫∞
0
g(x)dx = 1.

Let us now prove (ii). We assume that λ is fixed and we define the two-variable

function φ as

φ(k, y) := y − λ

[
1−

(
1 +

y`

k

)−k]
for y, k ≥ 0.

In particular, η(k) is defined implicitly by φ(k, η(k)) = 0. Since φ is continuously

differentiable, the implicit function theorem implies that η is also continuously

differentiable and

η′(k) = −∂φ
∂k

(k, η(k))/
∂φ

∂y
(k, η(k)).

Let us compute these two partial derivatives. Elementary calculations show that

∂φ

∂k
(k, y) = λ

(
1 +

y`

k

)−k
H

(
y`

k

)
,

where H(z) =
z

1 + z
− ln(1 + z), and

∂φ

∂y
(k, y) = 1− λ`

(
1 +

y`

k

)−k−1
.

Using the fact that φ(k, η(k)) = 0, we get

η′(k) = −H
(
`η(k)

k

)
(λ− η(k))(1 + `η(k)/k)

J(k)
,

where J(k) := 1− λ`+ `η(k)(k + 1)/k. Now because φ(k, η(k)) = 0, we have η(k) ≤ λ,

and it is easy to see that H(z) only takes negative values on z > 0, so that η′(k) is of the

sign of J(k).

Let us show that J cannot change sign. If J did change sign, there would be

some value of k for which η(k) = k(λ`−1)
`(k+1)

. Plugging this into φ(k, η(k)) = 0 would yield

G(λ`) = 0, with

G(y) :=

(
k + y

k + 1

)k+1

− y.
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Now

G′(y) =

(
k + y

k + 1

)k
− 1

is positive iff y > 1, and since G(1) = 0, G(y) = 0 iff y = 1. Thus unless λ` = 1 (in

which case η(k) = 0 for all k), we cannot have G(λ`) = 0. As a consequence, J cannot

change sign.

Now that we know that η(k) is monotonic, it makes sense to define Y := `η(∞).

Letting k →∞ in the equation φ(k, η(k)) = 0, we find that Y is a solution to

γY − 1 + e−Y = 0,

with γ := (λ`)−1. By an application of the implicit function theorem to the last equality,

where Y is thus seen as a function of γ, we get

Y ′(γ) =
1− γY (γ)− γ

Y (γ)
=
λ`− `η(∞)− 1

λ`2η(∞)
= − J(∞)

λ`2η(∞)
.

But Y is easily seen (e.g., graphically) to be a decreasing function of γ, so that

Y ′(γ) < 0 and J(∞) has the sign of η(∞).

Recalling that J(k) cannot change sign, and that η′(k) has the sign of J(k), we

have the following result: In the supercritical case where λ` > 1, η(k) > 0 increases with

k to the value η(∞), easily computable as `−1Y , where Y is the unique positive solution

to (λ`)−1Y − 1 + e−Y = 0. Similarly, in the subcritical case where λ` < 1, η(k) < 0

decreases with k, and in the critical case where λ` = 1, η(k) = 0 for all k.

Identifiability of the Gamma Model

It is known that the model of diversification with sampling at present and

constant speciation and extinction rates is not identifiable (Stadler 2009). Here, we

prove that when species lifetimes are no longer exponentially distributed, but gamma

distributed (i.e., extinction rate is not constant but age-dependent), the model becomes

identifiable. Let us state this in a more specific way.

Theorem 1 Consider two models of diversification with sampling probabilities of extant

species p1 and p2 respectively, constant speciation rates λ1 and λ2 respectively, and where
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species lifetimes are gamma-distributed, with parameters (k1, θ1) and (k2, θ2),

respectively. If these two models induce the same distribution on reconstructed trees and

if at least one of them is really age-dependent (k1 6= 1 or k2 6= 1), then

(p1, λ1, k1, θ1) = (p2, λ2, k2, θ2).

Put another way, a model with gamma distributed lifetimes is not identifiable if and only

if the lifetimes are actually exponentially distributed. We will now prove the theorem.

To this end, we will first consider a generic age-dependent model of

diversification with sampling probability p, speciation rate λ, and lifetime density g. We

will also denote by V a random variable with density g, and by ϕ the Laplace transform

of V , that is,

ϕ(y) := E
(
e−yV

)
=

∫ ∞
0

g(t) e−yt dt.

We will use later the well-known fact that if V has a finite variance, then ϕ is twice

differentiable and we have

ϕ′(0) = −E(V ) and ϕ′′(0) = E(V 2). (S2)

Recall from main text that the node depths of the reconstructed tree all have the same

distribution as some random variable H, satisfying

(Pr(H > t))−1 = 1− p+ pW (t),

where W is the unique nonnegative function with Laplace transform∫ ∞
0

W (t) e−yt dt =
1

y − λ+ λϕ(y)
.

From the last two equations, we get∫ ∞
0

Pr(H ≤ t)

Pr(H > t)
e−yt dt =

∫ ∞
0

p (W (t)− 1) e−yt dt =
p

y − λ+ λϕ(y)
− p

y
.

So if we set

φ(y) :=
p

y − λ+ λϕ(y)
− p

y
=

pλ(1− ϕ(y))

y(y − λ+ λϕ(y))
,

we get the following statement: If two models have the same reconstructed tree in

distribution (i.e., the same distribution of node depths), then the function φ is the same
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for both models. Now it is easy to see that limy→∞ y
2φ(y) = pλ. So these two models

have the same pλ, and consequently, they have the same function B, where

B(y) :=
pλ

yφ(y)
=

y

1− ϕ(y)
− λ.

Now thanks to (S2), assuming that V has a finite variance, elementary calculus shows

that B is continuously differentiable at 0, with

B(0+) =
1

E(V )
− λ and B′(0+) =

E(V 2)

2E(V )2
. (S3)

Now focus on the special case when V is a Gamma(k, θ) random variable. Recall that

E(V ) = kθ and that Var(V ) = kθ2, so that E(V 2) = θ2k(1 + k). Also,

ϕ(y) = (1 + θy)−k ∼ (θy)−k, as y →∞, so that

B(y)− y =
yϕ(y)

1− ϕ(y)
− λ (S4)

has three possible behaviors at +∞. If k < 1, then B(y)− y ∼ θ−ky1−k. If k = 1, then

B(y)− y ∼ θ−1 − λ. If k > 1, then B(y)− y ∼ −λ.

Now we apply these results to the two models with gamma-distributed lifetimes

of the theorem, assumed to have the same reconstructed tree in distribution. From what

precedes, they have the same pλ, i.e.,

p1λ1 = p2λ2. (S5)

Moreover, they have the same B, so recalling the expressions for the expectation and

variance of a gamma random variable, (S3) yields

1

k1θ1
− λ1 =

1

k2θ2
− λ2 and k1 = k2. (S6)

Now by assumption, one of the two models is really age-dependent (k1 6= 1 or k2 6= 1), so

k := k1 = k2 6= 1. Let us use the equivalent expressions for B(y)− y as y →∞,

according whether k < 1 or k > 1. If k < 1, then as y →∞,

B(y)− y ∼ θ−k1 y1−k ∼ θ−k2 y1−k, which forces θ1 = θ2. So by (S6), we get λ1 = λ2, and by

(S5), we get p1 = p2. If k > 1, then B(y)− y ∼ −λ1 ∼ −λ2, which forces λ1 = λ2. So by

(S6), we get θ1 = θ2, and by (S5), we get p1 = p2. In any of these two cases, we can

conclude that (p1, λ1, k1, θ1) = (p2, λ2, k2, θ2), which proves the theorem.
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Actually, we conjecture that the same theorem should hold without even

assuming that lifetimes are gamma distributed. More specifically, we suspect that if two

age-dependent models of diversification have the same B (this must be the case if they

have the same reconstructed trees), but not the same λ, then they must both be

exponential.

Choice of Grid Points for Numerical Evaluation

Computation of the likelihood value requires numerical evaluation of the scale

function W at discrete points, which we take as an evenly spaced grid on [0, T ], where T

is the stem or crown age of the tree. Increasing the number of grid points reduces

numerical error in the derivative of W , but requires more computational time and

memory. In a preliminary study, we determined an appropriate number of grid points to

use. Although we could instead have investigated the grid spacing, number of points

provides more consistency across trees of different ages, and is thus expected to be more

transferable across data sets.

For this trial we used η = 1 and k = 1, and performed maximum likelihood

inference on a fixed set of 100 simulated 1000-tip trees, using 125, 250, or 500 grid

points. The results yield two main insights. Firstly, the maximum likelihood estimates

of each parameter remains similar as number of grid points is varied. The distribution of

actual MLEs across the 100 trees is very similar, and in particular the median shows

little if any trend, as we increase the number of grid points (Supplementary Fig. S5a).

Calculating the differences in the MLEs for each individual tree as we increase the

number of grid points, i.e. the MLE evaluated at the higher number of points minus that

evaluated at the lower number, shows that not only the overall distribution, but also the

individual estimates for each tree, typically change very little as the number of grid

points increases (Supplementary Fig. S5b). There are some exceptions, which

importantly remain for particular trees when we go from 250 to 500 points, as well as

125 to 250 points. These are likely to correspond to trees which contain a relatively

weak signal and are thus difficult to infer consistently, making them sensitive for

instance to different initial points used for likelihood optimization.
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The second insight is that the numerical method appears to overestimate the

likelihood value, at least at its peak. This tendency can be seen directly for inference

under the exponential model, where we can compare the numerically evaluated

maximum log likelihood to that found using analytical computations (Supplementary

Fig. S6a). The numerical value approaches the analytical value as the number of grid

points increases, as expected; furthermore, it approaches from above. The tendency to

overestimate likelihood is also indirectly indicated under the gamma model: with more

grid points, expected to yield a more accurate evaluation, the maximum likelihood value

tends to be lower (Supplementary Fig. S6b).

We can explain this bias by considering the properties of the scale function.

W (x) is an increasing function of x (Lambert 2010) and asymptotically proportional to

eηx (Surya 2008). Ignoring errors in rounding branching points to the nearest grid point,

the second-order central difference approximation of the derivative yields an

overestimate of W ′(x) whenever W is concave up, which is the case at least for

sufficiently large x. This in turn yields an overestimate of the likelihood as calculated in

Equation (4) or (5) of the main text. Rounding branching points results in errors in

both W (x) and W ′(x), with a tendency to increase some terms of the likelihood and

decrease others. The overall effect is thus unclear from examining the likelihood

formulae, but based on the aforementioned numerical results, it would appear that the

overall effect is to increase the likelihood in the cases examined. Analytically, we expect

the magnitude of both kinds of errors to be reduced as the grid spacing is reduced.

To summarize the approach developed, since the use of more than 500 grid points

becomes computationally prohibitive, and since there appears to be little effect on the

MLEs with increasing numbers of grid points, we chose to use 500 grid points for all

further inference. At this point, there remains a tendency to slightly overestimate the

actual likelihood value at the peak. For this reason, we use the numerical evaluation for

inference under both the gamma and the exponential models, despite the availability of

an analytical likelihood formula in the exponential case, in order to give a fair basis of

comparison under the likelihood ratio test. The results of the simulation study suggest

that this approach is appropriate: when the lifetime distribution is indeed exponential,
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the proportion of simulated trees for which the exponential model is rejected is close to

the expected Type I error rate of 0.05 (Table 2 in the main text). The numerical

over-estimation of likelihood under our model could still potentially be problematic

when comparing to other models. However, with 500 grid points, we see that the median

error remaining in the likelihood value (by comparison to the analytical result for the

exponential model) is around 0.1 log likelihood units, which is small compared to the

likelihood differences relevant for model comparison.

Finally, we note that although we have for simplicity used an evenly spaced grid

of points, this is not a requirement: the scale function W can in fact be numerically

evaluated (i.e. the inverse Laplace transform computed) at arbitrary points. To evaluate

the likelihood, at each node depth x in the data we minimally require values of W at x

and at one neighbouring point x+ ∆x (for numerical approximation of the derivative).

Given an evenly spaced grid of points, we rounded each node depth to the nearest grid

point and took the nearest neighbouring points to evaluate the derivative. Purely in the

interests of accuracy, it would obviously be preferable not to round off, but rather to

evaluate W exactly at the node depths, {xi}, and at a near neighbour of each,

{xi + ∆x}. For a tree on n tips, we would then have 2(n− 1) points to evaluate

(assuming crown age conditioning). If n is small, this approach is more efficient than our

present method (500 evenly spaced grid points), as well as more accurate. But for larger

n, including the size of trees examined here, this approach becomes more

computationally intensive. Nonetheless, given a fixed number of points at which we wish

to evaluate W (say 500), it should be possible to distribute these points over [0, T ] to

achieve better accuracy than with an evenly spaced grid. For instance, since deep nodes

are sparse, one could evaluate W at the m deepest nodes plus m near neighbours, and

then create an evenly spaced grid of 500− 2m points covering the dense nodes closer to

the present. A full investigation of this approach is beyond the scope of this paper, but

could be considered for future computational implementations aiming to improve

accuracy and/or efficiency.

Initial Points for Likelihood Optimization
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Since the likelihood under our model does not have a simple closed-form

expression, but rather is computed through numerical inverse Laplace transforms, the

inference framework is complex and has potential for numerical problems. To avoid

spurious results, we suggest that likelihood optimization should always be run from

multiple initial points, reducing the chance of accepting a local but not global peak.

Furthermore, variation around the same peak in the final value found by multiple runs

gives an indication of the flatness of the likelihood surface and thus the size of

confidence intervals. A rather flat likelihood surface suggests that the tree contains an

inherently weak signal. However, if numerical error is suspected to be a problem, one

can adjust the grid size used for numerical evaluation (as explored above) and/or the

parameters of the inverse Laplace transform itself (Surya 2008).

For the simulation study, we selected six initial points for likelihood optimization

under the gamma lifetime model, as follows:

1. Use two points each with k = 0.5, 1, or 10 (representing an exponential or a

higher- or lower-variance distribution).

2. Draw γ := 1/(λkθ) (representing the reciprocal of the average number of

branching events in a lifetime), uniformly at random on [0.1, 0.9].

3. Draw the net diversification rate, η, uniformly at random on [ηmin, ηmax],

Considering η as a function of (λ, k, θ), we take ηmin = 0.05 and

ηmax = min(2, η(5, k, θ)). These upper limits are set to avoid numerical issues that

can arise when parameters are too far from the true values used for simulations.

4. Calculate λ and θ from the above values of k, γ, and η.

For inference under an exponentially-distributed lifetime, three initial points for

optimization were chosen in a similar fashion (with k now fixed to one). In practice, the

above algorithm can easily be modified or initial points can be chosen by trial and error

for data analysis. The goal is simply to obtain several initial points, not too close

together, to check that the final result is not an artifact of a single starting point.
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For the Aves trees, we used the following initial points for likelihood

optimization. Under the gamma model: (λ, k, θ) = (0.115, 1, 36.6), (0.115, 0.5, 100),

(0.115, 10, 1.8), (0.080, 1, 100), (0.150, 1, 15), (0.100, 10, 10). Under the exponential

model: (λ, θ) = (0.080, 100), (0.100, 50), (0.150, 15). The MLEs inferred for each tree are

largely consistent across runs from different initial points. Under the exponential model,

relative differences between the best MLE and the MLE obtained from any other initial

point for a given tree never exceeded O(10−4) for either λ or θ. Under the gamma

model, the median relative difference was O(10−5) for λ and O(10−2) for k and θ. A few

trees showed much larger relative differences, examined in detail in the ‘Hfull’ set. In

4/100 trees, a large relative difference arose from only one initial point where the

optimization appeared to fail (returning extreme parameter values with substantially

lower likelihood). In another 11/100 trees, the six initial points yielded variable MLEs

that nonetheless all had very similar likelihood, suggesting that the likelihood surface

was rather flat for these trees. The remaining 85/100 trees showed much smaller

deviations (< 0.001% in λ and a few percent in k and θ).

For the self-incompatible nightshades, we used the following initial points for

likelihood optimization. Under the gamma model: (λ, k, θ) = (3, 1, 0.35), (3, 0.5, 0.7),

(3, 10, 0.035), (1, 1, 1.1), (5, 1, 0.2), (5, 5, 0.05). All six runs returned similar results.

Under the exponential model: (λ, θ) = (3, 0.5), (1, 2), (5, 0.3). Two out of three runs

returned very similar results, while the third appeared to find a lower local peak.

For the self-compatible nightshades, under the gamma model we began with the

initial points (λ, k, θ) = (4, 1, 0.25), (4, 0.5, 0.5), (4, 5, 0.05), (2, 1, 0.5), (6, 1, 0.15),

(6, 5, 0.03). Under stem age inference, four out of these six initial points converged to

very similar optima, and under crown age inference, five out of six, with the remainder

appearing to find lower local peaks. Despite this consistency, further exploration

indicated that the likelihood actually continued to gradually increase in some direction,

as explained in the main text. Under the exponential model, we used the initial points

(λ, θ) = (4, 0.25), (2, 0.5), (6, 0.15); two out of three runs under stem age inference and

all three under crown age inference returned very similar optima, and there was no

indication that the likelihood could be further increased.
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Simulating Trees of Fixed Size

The simulation package TreeSimGM (Hagen and Stadler 2013) allows two

options for obtaining trees with a fixed number of tips: either (i) stop the process once

the tree attains n tips for the first time (setting the option ‘gsa=FALSE’) or (ii)

simulate until the tree reaches a size substantially larger than n, such that it is unlikely

to return to size n again, and then choose a time point uniformly at random among the

time periods when the tree had n coexisting lineages (setting the option ‘gsa=TRUE’).

Scenario (ii) is equivalent to assuming a uniform prior on (0,∞) for the stem age and

then conditioning on n coexisting lineages at present (Hartmann et al. 2010).

Trees simulated under (i) obviously tend to be shorter than those under (ii), and

it has previously been observed that resulting parameter estimates can be slightly

different, especially for small n and (in a constant-rates model) high extinction rate

(Hartmann et al. 2010). Note that the population, which is growing in expectation, will

spend less time fluctuating around n coexisting species when n is large; thus stopping

the first time it reaches the desired number becomes less problematic. We chose to use

method (i) for the simulation study presented in the main text, due to its faster

computational time.

Our simulation study also reveals a tree size-dependent bias in the parameter

estimates obtained under the gamma model. Among 1000-tip simulated trees

(Supplementary Tables S1-S2), λ and ε are slightly overestimated (i.e. median MLE

higher than the true value) in all but one parameter set, while k and ` are usually

slightly underestimated, with these tendencies especially apparent for smaller true k.

These biases are consistent, and much more striking, among 100-tip simulated trees

(Fig. 2 in the main text and Supplementary Tables S7-S8). We tested our hypothesis

that these biases arise from stopping trees the first time they reach n species, thus

biasing toward shorter trees, by simulating an additional set of 100-tip trees with

method (ii) described above (specifically, stopping the simulations at 150 tips and then

selecting a time when the tree had 100 lineages), using the same model parameters as in

the main simulation study (η = 0.5 and varying k). The results (Supplementary Tables
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S7-S8) confirmed that the bias in parameter estimates was reduced by using this

alternative simulation method. We thus conclude that the biases described above can be

attributed to biases in the simulated trees used for the study, rather than a problem

with the inference method itself.

Conditioning the Likelihood

Throughout this study, we base our inference on the likelihood formulae given in

Equations (4) and (5) of the main text, which condition on the tree age (i.e. stem or

crown age, respectively). Formulae conditioning on the observed number of tips in

addition to tree age can be derived (Lambert and Stadler 2013), but it has been

recommended not to condition on both observed characteristics for inference, because

this eliminates the information about the model parameters that is actually contained in

the number of tips obtained after a given time has passed (Stadler 2013). Parameter

combinations that are unlikely to give rise to the particular tree age and number of tips

become likely when conditioning on both these characteristics. One might instead use

likelihood formulae retaining conditioning on the observed number of tips while

supposing the tree age is drawn from some distribution, and integrate the likelihood

formula given both tree age and number of tips over the distribution of tree age. An

appropriate choice of distribution can in turn be debated. It has been found for the

constant-rate birth-death model that likelihood formulae conditioning on different

features of a given tree generally result in similar parameter estimates for sufficiently

large trees (Stadler 2013), and we expect this result would extend to other

birth-death-type models. For simplicity, we therefore chose to base our inference on the

likelihood conditioning on fixed tree age alone.

Correlation in Estimated Lifetime Distribution

Parameters

In the simulation study, the maximum likelihood estimates of the lifetime

distribution parameters, k̂ and θ̂, are observed to be negatively correlated, such that the
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estimated mean lifetime ˆ̀= k̂θ̂ is much more precise than either individual parameter.

An example of the estimated (k̂, θ̂) pairs across 100 trees simulated under identical

parameters is illustrated in Supplementary Fig. S7. We furthermore observe that with

true ` = kθ fixed, the higher the true k value, the stronger the correlation between k̂ and

θ̂. This observation can be explained analytically. The model parameters appear in the

Laplace exponent ψ (see “Mathematical Likelihood Formulae” in the main text), which

determines the scale function W and in turn the likelihood. Under the gamma lifetime

distribution model, ψ takes the form:

ψ(y) = y − λ
(
1− (1 + θλ)−k

)
Taking a Taylor series expansion, which converges when |θy| < 1, we have:

ψ(y) = y − λ
(
1− exp

(
−k(θy − (θy)2/2 + . . .)

))
Thus, for sufficiently small θ, ψ(y) ≈ y − λ (1− exp(−kθ)), such that k and θ become

almost indistinguishable in the likelihood expression. This statement is exact in the

limit as k →∞ and θ → 0 such that kθ ≡ ` is fixed (a Dirac delta distribution). On the

other hand, if θ is not small, the higher order terms of the Taylor expansion are

non-negligible, and k and θ make distinct contributions. Expressed more intuitively, the

gamma distribution has mean kθ, variance kθ2, etc. So k and θ do not generally play

symmetric roles, but the information to distinguish these two parameters disappears as

variance in the lifetime distribution decreases.
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