XALT Users Manual

version 0.5

Mark Fahey
Robert McLay

Kapil Agrawal

Using XALT

This section describes how XALT is used in practice.

We assume XALT is installed (following Design and Installation Manual guidelines.) We will
also assume that a modulefile for XALT exists and that the site is using the modulefile to get
the linker and job launcher wrappers into the users path. (There are other ways to accomplish
this discussed in the Design and Installation Manual.)

Decisions made previously

During the installation process, various choices had to be made. Here we quickly review the
options.

1. If a site has multiple machines, they have to decide if they want one database (one set
of common tables) to hold all the information for all machines or if they want to have
multiple database (typically one per machine).

a. One database: If you go with one database, then you may need a script per
machine [samples provided in the distribution] to get the data into the database
(depending on the method you choose),

b. Multiple databases: In this scenario, a site just has to set up multiple
databases (i.e., one server with multiple database like xalt-machine1 and
xalt-machine2) You will need a script per machine to get the data into the
database unless you are doing “direct to database.” Note that if you are willing
to edit the code directly, you could go with one database and multiple sets of
tables per machine - not supported.

We’'ll assume one database for the remainder, but it is an easy extension for multiple
database.

Regardless of the decision above, you will need the following if you have mulitple
machines:

a. if your machines have different software installations (module lists) AND want
the ReverseMap support, then you will need a [Lmod] ReverseMap per
machine which means having a build of Lmod per machine, and

b. psmisc-22.21 or greater, this is discussed below.

2. The next choice was deciding where a few files are to be located; these files being the
database xalt_db.conf file (mysql database access information) and the reverseMapD

directory and reverseMap file(s). We suggest for simplicity that that go in
XALT_DIR/etc, but this is up to the site to pick the location. It may be that the site
wants the xalt_db.conf file somewhere more hidden/secure. This can be chosen with
the configuration option --with-etcDir=ans or overridden at runtime with

XALT _ETC DIR. We'll refer to this as XALT _ETC_DIR for the remainder.

. Third, the site had decide on whether they want to support the reverseMap
functionality. The reverseMap is our code word for mapping paths to libraries or
executables back to the appropriate modulefile (if it exists). This ability requires the
creation of the module reverseMap, which is a result of running the “spider” utility from
the Lmod [9] module system. One does not have to replace the TCL module system
with Lmod to get this functionality, it just needs to be installed.

If you have multiple machines and one XALT installation, then you will need to have a
reversemap for each machine. That means as an example the etc directory will likely
need to have subdirectories for each machine and a reverseMapD in each of those
directories. And you will need to set XALT_ETC_DIR in the modulefile for each
machine to point to the appropriate place.

Furthermore, if a site has multiple code launchers or linkers, then the site has to
decide how they want to intercept them. There are a variety of ways this can be
accomplished, discussed below in the section on “Intercepting linkers and job
launchers.” One possible way to do this is with Lmod in conjunction with XALT, but
requires replacing TCL module system with Lmod.

We'll assume that Lmod has been installed if desired.

Data transmission

A very important note is that the transmission method can be set at configuration time (defaults to
file), but also can be set at any time later with an environment variable. So a site can first set it up to
use json files, but then can switch to syslog or direct to database at any time. This is done with the
XALT_TRANSMISSION_STYLE environment variable with options of: file, syslog, directdb. Note that if
there is a typo on the transmission style setting, it reverts to the file method.

File method
By default, XALT uses json files written to the user’s home directory in the ~/.xalt.d/ directory.

The script sbin/xalt_file_to_db.py reads the json files in ~/.xalt.d and loads them into the
database. It will delete files with --delete option.

Where ever you run this command, it needs to find the xalt_db.conf file.
XALT_USERS: colon separated list of users to find the json file. This can be used to to
target test users instead of all users. If not set, then all users (found from getent
command) directories will be searched and processed. In most circumstances, this
command will need to be run as root.

e This isn’t called automatically anywhere in XALT as we expect this to be called in a cron job by

a privileged user to put data into the database.
o The wrappers could be modified to call this function, but then the “direct to database”

option would be better.

The file transmission method has a big concern from the developers - what happens in the case of
someone running thousands upon thousands of small jobs concurrently on a large machine? This
could generate thousands and thousands of json files in the home directory of that user -- will there
be enough space? enough inodes? too much NFS traffic in general? If this is not a concern at your
site, then the file method should be sufficient

syslog method

The syslog method for transmission is very similar to the file method. First the data goes to syslog,
and then asynchronously (via a cron job) the data must be collected and put into the database.

We expect this method to be the best for production use. To use syslog (and in this context we mean
rsyslog since that is all we have tested), you will need to
e set up a configuration file for syslog and place in /etc/rsyslog.d/ that we called
xalt_syslog.conf
SMaxMessageSize 256k
if Sprogramname contains ‘XALT_LOGGING’ then /var/log/xalt.log
&~
This example shows that the log file is set up as /var/log/xalt.log. Note that /var is probably
local for the node where the linker or job launcher is run. This is fine, but you will have to run
the syslog parser on each node for this setup. Alternatively, it might be easier if you had say
one node/server where all the log files could be put by syslog and then you would only have
to run the parser on that node, but for each file.
Also note that 64k is the maximum message size as given. We have already hit a case where a
link line was larger than this and this results in the XALT log message being incomplete and as
a result the parser will have to skip those entries as incomplete. We previously used 64k
because all link lines (until this case) were much smaller and all our run examples were larger
but less than 256k.
e modify /etc/rsyslog.conf to use this new configuration
Include all config files in /etc/rsyslog.d/
SIncludeConfig /etc/rsyslog.d/*.conf
® restart rsyslog
e set up rotation on the /var/log/xalt.log log file with a logrotate configuration file like
/etc/logrotate.d> cat xalt

/var/log/xalt.log{
copytruncate
rotate 4
daily
create 0644 root root
missingok
}
The above sets a 4 day rotation on the files. We suggest nothing less than 2. The above
is also setting the log file to be readable by all. This is a site dependent setting - in this
case, a non-root account can be used to parse the data and put it in the database.
e use xalt_syslog_to_db.py to collect data from syslog
python xalt_syslog_to_db.py /var/log/xalt.log.1
We assume the installers know that all of these steps will have to be done on each of the nodes
where the linker and the job launcher (mpirun, aprun, etc) will be run.

direct to database method
The direct to database method is probably the simplest. It basically inserts the data into the database
as it is being collected. This is how the ALTD infrastructure worked for years.

This method has the security concerns of “users modify the database directly”. Yes they do, but only
through the wrappers and most if not all users have no idea that is happening. To ameliorate this
concern, it is important to use an “insert-only” account for these transactions. There are also
concerns about many database transactions going on all the time. Anecdotally, this has never been
reported as a problem on several large HPC installations with thousands of users, but it certainly could
be depending on how the database is set up.

To use this method, just set XALT_TRANSMISSION_STYLE to directdb. Really nothing else to do.

Mixing methods

It is possible to mix two methods, though clunky at best. First, the default method is set at
configuration time (and defaults to file.) You can then set XALT_TRANSMISSION_STYLE in the
modulefile or where ever appropriate to override configuration setting. Finally, you could also
hardcode the environment variable in the linker or job launcher script. For example, you could set the
env var to syslog in the modulefile, but set the env var to directdb in the job launcher script with the
result that linker information goes to syslog and job launch information goes directly to the database.

Env Var BlackList

There is an environment variable blacklist, list of variables discarded, in the
xalt_run_submission.py code. You can add or remove from this list, but note that as long as

this is part of the xalt_run_submission.py code, code updates will overwrite any changes a
site does.

Creating the Reverse Map

The reverse map has been mentioned several times before, but exactly how do you create it.
As described above, Lmod can be used as a module replacement. But even if you don’t want
to replace TCL modules, you can use Lmod to create what we refer to as the reverse map.
Basically, it maps libraries (with paths) back to modulefiles.

If you have your modulefiles set up with a one-to-one to mapping of modules to package
installations, then Lmod can probably create the reverse map without issue. But on some
machines, a module points (with appropriate if tests) can point to a variety of installations and
set environment variables depending on the currently loaded compilers and MPI. In this
scenario, the reverse map can be created, but it is a looser reverse map with many-to-one
relationships.

And further on some machines (like Crays), for spider to work, you have to run it multiple
times (one for each Programming Environment) to get multiple reverse maps, which then
have to be combined together for a master reverse map. Below you will see a sample script
for how to do this.

The reverse map needs to be created/updated per machine every time a new modulefile or
package is installed. So it either has to become part of the software installation process, or
run as a cron job every week for example.

And if you have multiple machines and one XALT installation, then you will need to have a
reversemap for each machine. That means as an example the etc directory will likely need to
have subdirectories for each machine and a reverseMapD in each of those directories. And
you will need to set XALT_ETC_DIR in the modulefile for each machine to point to the
appropriate place.

Examples

Simple command to create reverseMap
spider -0 jsonReverseMapT $LMOD_MODULEPATH > rmapD/jsonReverseMapT .json

Cray script to create reverseMap

Below is an example script, darter_build_rmapT.sh, for a Cray XC30 that uses Lmod (namely
the spider utility) to create the reverseMap. This is provided in the
contrib/build_reverseMapT _cray/ directory.

#!/bin/bash

#HH#H S R
To get this to work please do the following:
a) Modify the Site Specific Settings to match your site
b) Make sure that this script and the python script
"merge_json_files.py" are in the same directory.
c) Make sure the module command is defined by using $BASH_ENV
or define the module command here.
d) Make sure that LMOD_DIR is defined as well
(it is defined by $BASH ENV).

H OH H H ¥ H

HHHAHAHHHHHH AR
Site Specific Setting
HHHAHAHHHHHH AR

BASE_MODULE_PATH=/opt/modulefiles:/opt/cray/ari/modulefiles:/opt/cray/crayp
e/default/modulefiles:/sw/local/modulefiles:/sw/xc30/modulefiles:/sw/xc30/m
odulefiles:/sw/local/modulefiles:/opt/cray/craype/default/modulefiles:/opt/
cray/modulefiles:/opt/modulefiles:/cm/local/modulefiles:/cm/shared/modulefi
les

ADMIN_DIR=$HOME/XALT/use_xalt
RmapDir=$ADMIN_DIR/reverseMapD

nmon

PrgénvA=("PrgEnv-cray" "PrgEnv-gnu" "PrgEnv-intel")

moduleA=("PrgEnv-cray/5.2.25" "PrgEnv-gnu/5.2.25" "PrgEnv-intel/5.2.25")

B S R
must define the module command and $LMOD DIR:
B S R

if [-f "$BASH_ENV"]; then
source $BASH_ENV
fi

HHHHHAHHHHHH AR R
End Site Specific Setting
HHHHHAHHHHHH AR R

if [! -d $RmapDir]; then
mkdir -p $RmapDir
fi

SCRIPT _DIR=$(cd $(dirname $(readlink -f "$0")) && pwd)
PATH=$SCRIPT_DIR:$LMOD_DIR:$PATH

cd $RmapDir

module unload "${PrgEnvA[@]}" 2> /dev/null
pPeV:" n
for m in "${moduleA[@]}"; do

sn=$(dirname $m)

v=${m##*/}

module unload $prev 2> /dev/null
module load $m 2> /dev/null
prev=$m

echo -n '-'

spider --preload -o jsonReverseMapT $BASE_MODULE_PATH >
rmapT_${sn}_${v}.ISON
echo -n '*'

done
echo "*"

OLD=$RmapDir/jsonReverseMapT.old. json
NEW=$RmapDir/jsonReverseMapT.new.json
RESULT=$RmapDir/jsonReverseMapT.json

set -x
merge_json_files.py rmapT_*.JSON > $NEW
if ["$?" =0]; then

chmod 644 $NEW

if [-f $RESULT]; then

cp -p $RESULT $OLD

fi

mv $NEW $RESULT
fi

rm rmapT_*.JSON

SCRIPTS to put syslog or json file data into DB

put examples here....

Database Queries

There are several tables in the XALT database and many ways to get information from them.
In this section, we will provide many examples of queries that we think will be useful for many
sites.

Database tables

List of tables in the XALT database. We have two types: (1) tables that hold information
about a link, or a library, or a run and (2) tables that provide a “many-to-many” relationship
between the data tables.

Join tables Data tables

join_run_env xalt_env_name (env vars from a run)

join_run_object xalt_run (job launch details, exe, num cores, timestamp)
join_link_object xalt_link (link line details)

join_function_link xalt_object (library objects found in links and runs)
join_function_object xalt_function (functions that need to be resolved by ext libs)

These are listed here to provide the system administrators a quick list. The following
command will also provide the list of tables.
mysql> show tables;

If you want more information on the columns in any table, do the following:
mysql> show columns from <table>;

where <table> is one of the tables above.

Sample queries

For some of the reports below, you might need to change the maximum limit on GROUP_CONCAT
mysgl> SET SESSION group concat max len = 1000000;

Many of these queries will not have a date range specified. But clearly that might be desired. In most
of them, it is fairly easy to add a where clause like
where date >= '2014-10-01"' and date <= '2014-10-31"

In many of the queries that follow, you will see a core-hour calculation where most of the examples
use
ROUND (SUM (run_time*num cores) /3600)
as the method for computing it. This assumes that “num_cores” represents the total number of cores
the code used on the platform. On some machines that will be true (Cray), while other machines
(generic cluster) one will want to use
ROUND(SUM(run_time*num_cores*num_threads)/3600)
This is because on some machines, the total number of cores used by the job launcher can be
determined by the options given to the job launcher (like aprun on a Cray). But on a generic cluster,
the total number of cores used an executable will be determined by the -n option to mpirun times the
number of threads in OMP_NUM_THREADS.

Examples

This query will return a report first sorted in descending order the most used libraries (objects) for a
specified machine based on number of times it appears in a link.

mysgl> SELECT object path, module name, count(date) AS cnt from

xalt link, join link object, xalt object where build syshost='darter'
AND xalt link.link id = join link object.link id AND

join link object.obj id = xalt object.obj id GROUP BY object path
ORDER BY cnt DESC;

The previous query can easily be changed to be grouped by occurrences of the modulefile name.
mysgl> SELECT module name, count(date) AS cnt from xalt link,
join link object, xalt object where build syshost='darter' AND
xalt link.link id = join link object.link id AND

join link object.obj id = xalt object.obj id GROUP BY module name
ORDER BY cnt DESC;

And above again without NULL module_name entries included:

mysgl> SELECT module name, count(date) AS cnt from xalt link,
join link object, xalt object where build syshost='darter' AND
module name is not NULL AND xalt link.link id =

join link object.link id AND join link object.obj id =
xalt object.obj id GROUP BY module name ORDER BY cnt DESC;

The following query provides a report of modulefile usage based on shared library usage at run time
ordered by number of occurrences used. The corehour calculation might need to include
num_threads depending on what you are storing in num_cores and num_threads. If you mostly have
static-ly built executables, see the next query after this one.

mysgl> SELECT xalt object.module name, count (date) AS Jobs,

ROUND (SUM (run_time*num cores)/3600) as TotalSUs from xalt run,
join run object, xalt object where xalt run.syshost='mars' AND

xalt object.module name is NOT NULL AND xalt run.run id =

join run object.run id AND join run object.obj id =

xalt object.obj id AND date >= '2014-11-01' AND date <= '2014-11-09"'
GROUP BY xalt object.module name ORDER BY Jobs DESC;

e - e +
| module name | Jobs | TotalSUs |
e - e +
intel/2011 spl.11.339	4147	191118
openmpi/l.6.1-intel	1382	63706
torque/4.2.6	1356	41263
cuda/5.0	1259	29486
openmpi/l.6.1-gnu	51	10
intel/2011 spl.8.273	24	5
cuda/4.1	2	58
e - e +

As opposed to the previous query, this one counts module files based on static library usage at
runtime.

mysgl> SELECT xalt object.module name, count(xalt run.date) AS Jobs,
ROUND(SUM(run_time*num_cores)/3600) as TotalSUs from xalt run,

xalt link, join link object, xalt object where

xalt run.syshost='darter' AND xalt object.module name is NOT NULL AND
xalt run.uuid = xalt link.uuid AND xalt link.link id =

join link object.link id AND join link object.obj id =

xalt object.obj id AND xalt run.date >= '2014-11-01"' AND

xalt run.date <= '2014-11-09' GROUP BY xalt object.module name ORDER
BY Jobs DESC;

| alps/5.2.1-2.0502.8712.10.32.ari 26458 258684 |
| cray-mpich/7.0.3 26456 259040 |
| ugni/5.0-1.0502.9037.7.26.ari 13229 129342 |

wlm detect/1.0-1.0502.51217.1.1.ari	13229	129342
udreg/2.3.2-1.0502.8763.1.11.ari	13229	129342
xpmem/0.1-2.0502.51169.1.11.ari	13229	129342
pmi/5.0.5-1.0000.10300.134.8.ari	13227	129341
gcc/4.8.1	10868	59680
dmapp/7.0.1-1.0502.9080.9.32.ari	10852	59675
rca/1.0.0-2.0502.51491.3.92.ari	10852	59675
£fftw/3.3.4.0	3123	1482
cray-libsci/13.0.1	2357	69848
craype-intel-knc	1758	522
hdf4/4.2.9	1180	667
cray-netcdf/4.3.1	586	174
cray-hdf5/1.8.12	586	174
szip/2.1	295	167
fftw/3.3.0.4	274	78293
gcc/4.8.2	156	44739
cray-mpich/6.3.0	84	22373
cray-libsci/12.2.0	79	22370
cp2k/2.5.1	78	22369
gcc/4.9.1	12	155
cray-hdf5/1.8.13	5	236
pmi/5.0.3-1.0000.9981.128.2.ari	2	1
e et - f———— +

Quick look at what compilers are being used:

mysqgl> select link program, count(*) from xalt link group by
link program;

Add in the build_syshost field to separate out the results by machine (if multiple machines.)

Simple join of xalt_run and xalt_object tables to produce a report of each job, the executable, and the
libraries the code was run with

mysgl> SELECT job id, exec path, GROUP_CONCAT (object path) FROM

xalt run, xalt object WHERE user LIKE 'user' GROUP BY job id;

Simple join of xalt_link and xalt_object tables to produce a report of each executable and the libraries
the code was built with

mysgl> SELECT exec path, GROUP CONCAT (object path) FROM xalt link,
xalt object WHERE build user LIKE 'user' GROUP BY exec path;

By account (project), list executables [and syshost and dates run]:

mysgl> select account, exec path, syshost, group concat (date),
count (exec path) from xalt run group by exec path order by account;

Most used code by unique user (not sure this is right yet):

mysgl> SELECT U.account, U.exec path, U.cnt FROM (SELECT account,
exec path, user, COUNT(*) AS cnt FROM xalt run GROUP BY account,

exec path, user) AS U GROUP BY U.account, U.exec path ORDER BY U.cnt;

Identify users who linked in a certain library (fftw/3.3.0.2 for example which had a bug)

mysgl> select distinct build user from xalt link,xalt object where
xalt object.object path like '$£f£ftw/3.3.0.2/%' ;

And then see an executable ran that was linked with that library:

mysqgl> select distinct xalt run.run id, xalt run.job id,

Xalt run.date, xalt run.syshost, xalt run.user, xalt run.exec path
from xalt run, xalt object, join run object where

xalt object.object path like '$fftw/3.3.0.2/%' AND xalt object.obj id
= join run object.obj id AND join run object.run id =

xalt run.run id;

How did someone build their program some time ago (assume the user is userl and the code is
hyperslab):

mysgl> select xalt link.* from xalt link where build user like
'$userl%' AND exec path like 'Shyperslab%';

Assuming found, this will produce one or more results with a “link_id”. Use these link_id’s to do a
subsequent query which will produce a list of libraries/objects linked into the code for each link_id.
Below we use a link_id of 4.

mysql> select object path, timestamp from xalt object,

join_ link object where join_link object.link_id="4" AND

join link object.obj id=xalt object.obj id;

Multiple machines

When you have multiple machines, it is often the case that you will want your results sorted by
machine or you have to run a query for each machine making sure syshost matches the machine you
are interested in.

Below are a few examples when you want to do one query that separates the output by machine:

The following query will basically sort your codes into one of three categories: script, user built, or
center (system) built. [User code is determined by the absence of a modulefile name associated with
the executable. This could be done other ways as well - like searching for a certain path and if
anything is in that path, then it is a system executable for instance.] It then counts up how many runs

and also the associated cputime (in hours). NOTE: you may need to include num_threads in the
calculation for total CPU time (depends on your setup.)

mysqgl> SELECT syshost, exec type, IF(module name IS null, "user",
"system") AS codetype, ROUND (SUM(run_ time*num cores/3600)) AS cput,
count (exec type) AS jobs FROM xalt run WHERE date >= '2014-10-01'
GROUP BY syshost, exec type, codetype ORDER BY syshost, cput DESC;

——_— R f—— R fo—— +
| syshost | exec type | codetype | cput | jobs |
——_— R f—— R fo—— +
| darter | binary | user | 155885 | 9130 |
| darter | script | user | 9538 | 37 |
| darter | binary | system | 0 | 3
| mars | binary | user | 142897 | 2962 |
| mars | binary | system | 2 16 |
——_— R f—— R fo—— +

5 rows in set, 1 warning (0.02 sec)

For the same report as above, but one machine only (say ‘darter’) and a percentage breakdown for
cputime, we have

mysgl> SELECT exec type, IF(module name IS null, "user","system") AS
codetype, LPAD(FORMAT(SUM(run_time*num_cores/3600),2),11,‘ ')y AS
cput, LPAD(FORMAT (SUM(run_time*num cores)/t.total*100,2),8,' ') AS
percentage, COUNT (1) AS jobs FROM xalt run, (SELECT
SUM(run_time*num cores) AS total FROM xalt run WHERE date >=

'2014-10-01"' AND xalt_run.syshost = 'darter') AS t WHERE date >=
'2014-10-01' AND syshost = 'darter' GROUP BY exec type, codetype;
- f———— f—_ - +——— +
| exec type | codetype | cputime | percentage | jobs |
- f———— f—_ - +——— +
| binary | system | 0.27 | 0.00 | 3 |
| binary | user | 155,884.89 | 94.23 | 9130 |
| script | user | 9,537.76 | 5.77 | 37 |
- f———— - 0-——4-———-——— +——— +

3 rows in set, 1 warning (0.03 sec)

You can see that WHERE clause has to be specified twice. This is because they are basically two
separate queries and you have to specify the same WHERE clause to have the same set of data. If you
only have one machine’s data, then both syshost specifier statements can be removed. NOTE: you
may need to include num_threads in the calculation for total CPU time (depends on your setup.) And
if you have mulitple machines that calculate CPU time differently, then be careful doing a combined
report like this.

The following shows a “link_program” usage report. Be careful with this, as we cannot distinguish
when a code has multiple languages - we can only detect the compiler that invoked the linker.
mysgl> SELECT link program, syshost,
ROUND(SUM(run_time*num_cores/3600)) FROM xalt link, xalt run WHERE
xalt link.uuid = xalt run.uuid GROUP BY link program, syshost;

o ——— o ——— B et b +
| link program | syshost | round(sum(run_ time*num cores/3600)) |
o ——— o ——— B et b +
| driver.cc | darter | 0 |
| ftn driver | darter | 44231 |
| gt+ | darter | 1
| g++ | mars | 1026 |
| gcc | darter | 585 |
| gfortran | darter | 3]
icc	darter	1
icc	mars	0
icpc	darter	0
icpc	mars	1
ifort	darter	38325
ifort	mars	10531
pgfortran	mars	596
o ——— o ——— B et b +

15 rows in set (0.03 sec)
NOTE: you may need to include num_threads in the calculation for total CPU time (depends on your
setup.)

The following shows how to get a list of the link_program and the associated executables and the
amount of cpu hours they used, and if a modulefile corresponds to the executable (likely a center
provided executable.) Note that the “substring_index” is used to strip off the path to the executable
leaving just the executable name. This works by tie-ing the “uuid” during the link phase with the
“uuid” grabbed from the xalt section header placed in the code retrieved by the code launcher. if the
code was built with XALT loaded or if the code is run without use the code launcher, then there is no
way to tie them together in the report.

mysgl> SELECT link program,

SUBSTRING INDEX (xalt link.exec path,'/',-1) AS code,
ROUND(SUM(run_time*num_cores/3600)), module name FROM xalt link,
xalt run WHERE xalt link.uuid = xalt run.uuid GROUP BY link program,
code;

| link program | code
| ROUND (sum(run_time*num cores/3600)) | module name |

ftn driver
ftn driver
ftn driver

ftn driver

g++
g++
gcc

|

|

|

|

|

|

|

|

| ftn driver
|

|

|

|

|

|

|

| gcc
|

StationaryAccretionShockAnalysis Darter Cray
1 | NULL |
StationaryAccretionShockCutout Darter Cray
239 | NULL |

ctgmc.e
3344 | NULL |
dca.e
77 | NULL |
df.e
2585 | NULL |
eoc
1 | NULL |
hoomd
1026 | NULL |
driver
537 | NULL |
orted

47 | NULL |

NOTE: you may need to include num_threads in the calculation for total CPU time (depends on your

setup.)

