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Abstract: 

Low-Intensity Focused Ultrasound (LIFU) can modulate region-specific brain activity in vivo in a reversible and non-

invasive manner, suggesting that it could be used to treat neurological disorders such as epilepsy and Parkinson's 

disease. Although in vivo studies demonstrate that LIFU has bioeffects on neuronal activity, they only hint at possible 

mechanisms and do not fully explain how this technology accomplishes these effects. According to one theory, LIFU 

may cause local membrane depolarization by mechanically disrupting the neuronal cell membrane or activating 

channels or other membrane proteins. Proteins that detect membrane mechanical perturbations, such as those 

regulated by membrane tension, are prime candidates for activation in response to LIFU, resulting in the observed 
neurological responses. We examine how LIFU affects the activation of the purified and reconstituted in liposomes 

bacterial mechanosensitive channel MscL. 

Additionally, two bacterial voltage-gated channels, KvAP and NaK2K F92A were investigated. Surprisingly, the 

findings indicate that ultrasound modulation and membrane perturbation do not result in channels but rather in pores 

at the membrane protein-lipid interface. However, apparent reductions in pore formation have been observed in 

vesicles containing high MscL mechanosensitive channel concentrations, implying that this membrane-tension-

sensitive protein may increase membrane elasticity, presumably through channel expansion of the plane of the 

membrane independent of channel gating. 
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INTRODUCTION: 

Currently, treatment options for neurological and 

psychiatric diseases such as Alzheimer's, Parkinson's, 

and epilepsy, as well as neuropathic pain, are limited 

to pharmacological or invasive surgical interventions. 
While pharmacologic treatments can be tailored to 

target neurotransmitters, they lack the regional 

selectivity offered by specific device interventions. 

Additionally, pharmacotherapy is frequently 

associated with adverse effects and concerns about 

drug metabolism and clearance in individuals with 

impaired hepatic and renal function. On the other 

hand, neurosurgical interventions such as resections 

and Deep Brain Stimulation (DBS), which are now 

established clinical procedures and are being 

investigated in clinical trials for various neurological 

conditions, can target specific brain regions that are 
invasive and associated with morbidity. While novel 

transcranial magnetic stimulation is entirely non-

invasive and capable of targeting deep brain 

structures, it has a limited spatial resolution. As a 

result, a low-cost, non-invasive neuromodulation 

procedure capable of precisely targeting deep brain 

structures in vivo is urgently needed. Researchers are 

increasingly interested in focused ultrasound (FUS) as 

a non-invasive neuromodulation strategy capable of 

targeting specific brain regions to circumvent these 

limitations. 
 

Ultrasound was not investigated as a reversible neural 

suppressor and activator until the 1950s. In vitro 

research, FUS can effectively stimulate both neurons 

in culture and induce a short-latency excitatory 

response in a rodent brain-slice assay. In various small 

and large ex vivo animal models, rodents, nonhuman 

primates, and humans were used to test these findings. 

These studies appear to demonstrate compelling in 

vivo evidence of FUS's neuromodulatory capabilities, 

leading investigators to believe that, despite a 

somewhat variable success rate, FUS may be a 
candidate for transcranial neuromodulation for 

conditions such as Parkinson's disease and epilepsy. 

The lack of knowledge regarding (1) the mechanism 

underlying neuromodulation and (2) effective system 

parameters capable of successfully stimulating or 

suppressing nervous activity may account for the 

observed variability between studies and the limited 

success. 

 

FUS's neuromodulatory capacity is currently 

explained as follows: pressure applied to the tissue 
causes conformational changes in the lipid membrane 

due to its elastic properties, modulating protein 

channels and mechanoreceptors embedded within the 

membrane. Protein channel modulation affects 

cellular excitability, action potential variation, and 

neurotransmitter release or uptake. As a result, several 

studies investigated the effect of ultrasound on ionic 

flux using ion-specific dyes. As a result of the 

observed ion permeation, channels have become 
candidates for conduits for the observed ion fluxes. 

According to one of these studies, the mechanical 

forces induced by the US in the membrane modulate 

channel activity. Numerous mechanosensitive (MS) 

channels are electro physiologically gated directly by 

membrane tension, and membrane forces modulate 

several channels that are typically gated by voltage or 

ligands. MS channels directly triggered by membrane 

tension should be susceptible to FUS if this theory is 

correct. 

 

Numerous studies have used E. coli mechanosensitive 
channels to investigate the protein-lipid interaction 

and the effect of tension in lipid bilayers on protein 

conformational changes. One of these proteins is the 

Mechanosensitive Channel of Large Conductance or 

MscL. Rather than detecting membrane curvature or 

pressure across the membrane, it has been 

demonstrated that this channel detects membrane 

tension directly. MscL also contains the world's largest 

gated pore, estimated to be greater than 30 nm in 

diameter, which allows for the passage of relatively 

large molecules. As a result, physiological and 
biophysical approaches to studying the effects of 

membrane tension on protein conformation have 

become more accessible. MscL is an excellent model 

for studying the mechanical effects of low-intensity, 

low-frequency ultrasound on cells and the structural 

changes that occur at the molecular level due to these 

characteristics. 

 

This study investigated the effects of low intensity 

focused ultrasound (LIFU) stimulation and varying 

parameters on MscL using a simplified in vitro 

proteoliposome model. Due to our setup, we can study 
the effects on a pure system composed entirely of 

protein and lipid, without regard for the cellular 

cytoskeleton or other structures. Our liposomes 

contain either the mechanosensor MscL or one of two 

non-mechanosensitive channels, NaK2K F92A or 

KvAP. We examined various acoustic intensities that 

are potentially most clinically relevant for in vivo 

animal and human applications, namely those that 

have been successful in previous in vivo ultrasound 

modulation experiments and are within the FDA 

regulatory limits for clinical ultrasound images. 
According to our findings, LIFU can modulate cell 

membranes and allow efflux through pores created at 

the protein-membrane interface, rather than gating the 

channels themselves. Additionally, when reconstituted 
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at high concentrations, the MscL mechanosensitive 

channel inhibits pore formation, presumably acting as 

an elastic, absorbing membrane force without 

undergoing complete channel gating. 

 

REVIEW AND DISCUSSION: 

Numerous in vivo studies have demonstrated that 

ultrasound can effectively stimulate nervous tissue, 

resulting in quantifiable ion fluxes and action 

potentials. A recent study reported that overexpression 

of MscL in neuronal cells was activated by acoustic 

force, strongly implying that when the cytoskeleton 

and extracellular matrix are present, ultrasound can 

induce membrane tension. Despite these recent 

advances, there remains a knowledge gap regarding 

the mechanisms underlying in vivo stimulation and the 

optimal ultrasound spatial, the temporal parameter for 
eliciting such stimulation. Different acoustic 

parameter sets can have various biological effects 

depending on the cell type and tissue structure. As a 

first step toward filling in these gaps in our knowledge, 

we investigated the mechanism of LIFU sonication by 

restricting our studies to a specific LIFU parameter set 

and a simplified in vitro proteoliposome system. We 

avoided the influence of other living-cell components 

such as the cytoskeleton by using only defined lipids 

and the MscL channel, both of which have well-

characterized protein-lipid interactions. We also 
examined non-MS channels, which were initially 

thought to be controlled, and compared the results to 

those for MscL channels to determine whether efflux 

occurs via the MscL channel pore in this simplified 

system. 

 

The LIFU parameters used in these studies were 

chosen by previous successful in vivo ultrasound 

modulation studies and FDA safety regulations for 

diagnostic imaging (Ispta = 720 mW/cm2) (AIUM 

Clinical Standards Committee 2004). Low ultrasound 

frequency was more beneficial in transcranial 
ultrasound stimulation due to lower acoustic beam 

attenuation and aberration through the skull bone. We 

chose the 0.5 MHz frequency for our studies based on 

these findings and the success of previous studies 

using this frequency in small animal and human 

models. The intensities used in this study are 

considered to be within the range of those found to be 

effective in previous in vivo transcranial ultrasound 

neuromodulation studies. According to our 

understanding, the use of continuous-wave and 

submersion of the hydrophone in this study may have 
resulted in reverberation within the small well volume. 

However, the intensities measured at the focal point 

within the well plate are considered safe for acoustic 

neuromodulation because they fall within the low-

intensity range. 

 

Previous in vivo LIFU modulation studies used pulsed 

stimulations, demonstrating that pulsed modulation is 
more effective than continuous stimulation. However, 

in vivo studies have revealed that LIFU stimulation is 

more effective as a function of both acoustic intensity 

and duration. Our findings that longer stimulation 

durations and continuous rather than pulsating 

stimulation significantly affect protein-membrane 

perturbation are consistent with previous findings. 

 

Based on the proteoliposome modulation results 

obtained using our LIFU system, we observed an 

increase in calcein efflux from liposomes reconstituted 

with MscL. We initially assumed that the increased 
efflux was due to LIFU-induced activation of MS 

channels, but we discovered that non-mechanically 

stimulated channels exposed to ultrasound had similar 

efflux values. Channel gating was ruled out because 

the calcein dye cannot pass through the NaK2K F92A 

and KvAP channel pores due to their size restrictions 

and ion selectivity. Increased efflux behaviour upon 

reconstitution of any of the three channels into our in 

vitro system could be explained by pore formation 

through the membrane, as Krasovitski predicted, or by 

protein-lipid interface disruption mechanisms. 
Krasovitski's proteoliposome simulation model, 

dubbed "bilayer ionophore," or BLS, explains the 

cellular membrane's ability to absorb LIFU 

mechanical energy and convert it to expansions and 

contractions of the intramembrane space. The BLS 

simulation model revealed that the severity of bio-

effects on the cell membrane is dependent on the 

ultrasound parameters used and the strain-absorbing 

capacity of the leaflets' maximum area. According to 

this theory, the bio-effects could range from a mild and 

reversible excitation of the cell membrane to the 

formation of pores and even damage to membrane 
proteins and cytoskeletal fibres. The proteins inserted 

into the membrane will resist this expansion because 

the bilayer leaflets will separate – – helixes cannot 

quickly expand in this manner. In theory, insertion of 

more rigid membrane proteins, such as the channels 

studied here, could add strain to the leaflets, increasing 

the likelihood of lipid pore formation at or near the 

protein-lipid interface; however, it is unknown 

whether this occurs in some in vivo systems. 

 

This property of proteoliposomes may be exploited: 
transmembrane peptides may be designed to enhance 

pore formation for targeted drug delivery. Liposomes, 

such as those we created, are prone to becoming stuck 

in cancerous and inflamed tissues and releasing their 
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contents is difficult. Additionally, LIFU can be 

directed to the problematic or diseased area to enhance 

drug release from liposomes containing the 

transmembrane peptide. This method could 

theoretically be used to design a targeted and triggered 
drug release device. 

 

Although all three channels increased vesicle efflux, 

MscL channels appeared to respond differently to 

LIFU stimulation than other protein channels. 

Compared to liposomes containing lower protein 

concentrations, vesicles containing the highest MscL 

concentration demonstrated decreased calcein efflux 

rather than an increase. According to previous 

research, the MscL channel may expand in the 

membrane's plane before pore opening, resulting in the 

molecule being in a closed-expanded state. Due to the 
large opening pore (approximately 30 in diameter), 

this protein expansion may be more pronounced than 

in other channels. According to one interpretation of 

our findings, the MscL protein acts as a tension spring 

by achieving the closed-expanded state, relieving 

some strains within the membrane. True, such an idea 

has been attempted previously. Boucher and 

colleagues previously investigated how MS protein 

channels with stretching capabilities, colloquially 

referred to as membrane "spandex," can maintain 

bilayer tension within a specified range via a technique 
called closed-closed expansion. This two-state 

(expanded/contracted) simulated model was inspired 

and designed using the characteristics and expression 

levels of bacterial MscL channels. The model 

examined closed-closed expansion en route to opening 

or pre-open expansion states during the activation 

pathway, as well as overexpression in bacteria that act 

as stretch-tension buffers to prevent MscL channels 

from opening prematurely. MscL is predicted to 

expand up to 80% of its open area before gating, acting 

as tension-dampening spandex components. Under the 

right conditions, mechanosensitive channels could 
theoretically dampen the acoustic energy 

transformation onto the intramembrane spacing via 

conformational expansion, resulting in slow 

membrane tension relief. As a result, our findings 

appear to provide the first experimental evidence for 

Boucher's "spandex" model, assuming that LIFU 

induces membrane tensions, as a recent study with 

MscL suggested. 

 

CONCLUSION: 

Our findings establish a new paradigm for 
comprehending the underlying mechanisms of 

ultrasound stimulation. We observe an increase in 

calcein efflux through any of three membrane protein 

channels when they are reconstituted as 

proteoliposomes. Our findings do not support the 

hypothesis that channel opening increases efflux. 

Rather than that, they propose that "stiff" membrane 

proteins stifle the dynamics of LIFU-stimulated 

membranes, increasing the likelihood of pores forming 
at or near the protein-lipid interface. At its highest 

concentration, MscL partially inhibits additional 

calcein release; this is likely due to the channel's 

ability to expand within the plane of the membrane, 

relieving some of the tension. As a result of these 

unexpected findings, the mechanisms underlying 

LIFU stimulation of biological neuronal tissue gain a 

new dimension. 
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