


Chapter 4 – The basal metabolic rate of black-faced sheathbills 
(Chionis minor) on Marion Island, sub-Antarctic

“At the rookery, these birds were living on all sorts of filth dropped by the penguins, and were the scavengers of the place” – H.N. Mosely, Marion Island, 1879 
[image: ]
A black-faced sheathbill (Chionis minor marionensis), surveys its 
territory at Archway Bay King Penguin Colony, Marion Island 


Introduction
Basal metabolic rate (BMR) is a fundamental characteristic of all endotherms. It accounts for upwards of 40-50% of the total daily energy budget in free-living animals (Bryant, 1997; Speakman, 2000) and underlies all processes contributing to a species’ ecology including behaviour, distribution, and life history (Brown et al., 2004; White, Cassey, et al., 2007; Biro and Stamps, 2010). In turn, BMR is influenced most significantly by body mass and temperature (Krogh, 1914; White, Blackburn, et al., 2007; Clarke et al., 2010; White and Kearney, 2012), but also shows substantial residual variation. This residual variation has phylogenetic (Hayssen and Lacy, 1985; Kozlowski and Konarzewski, 2004),  ecological (Lovegrove, 2000; McNab, 2003a, 2009) and geographic (McNab, 2002; Wikelski et al., 2003; White et al., 2011) components.

Understanding the scope of variation in any higher taxon is significant for comprehending its full implications in shaping ecological patterns and processes. For example, diversification rate in birds appears to be related to clade body size in birds, with smaller-bodied clades diversifying more rapidly. However, this effect is largely non-significant within the passerines (Phillimore et al., 2006), suggesting that size-related differences in diversification rate may have most to do with differences between passerines and non-passerines. In much the same way, missing taxa or the exclusion of them could obscure signal in the evolution of a wide variety of traits (Bininda-Edmonds and Gittleman, 2000; Bininda-Edmonds, 2004). For BMR, species or groups that are phylogenetically or ecologically distinct often have metabolic rates beyond the norm (McNab, 1995, 1996; Bozinovic et al., 2004). Indeed, McNab (1992) pointed out that the number of factors associated with BMR significantly increases as the number of species and the ecological diversity of the assemblage increases. For BMR in birds, many taxa have been investigated, and often comprehensively (McKechnie and Wolf, 2004; Jetz et al., 2008; McNab, 2009). However, several significant clades have not been investigated. Many of these are unusually placed on bird phylogeny, are restricted to islands, or have unusual life histories. In consequence, they might be expected to add substantial variation (McNab, 1992; White et al., 2012), and this idea should at least be tested.

A further factor that may complicate the investigation of the way BMR and other traits influence community patterns, an approach growing in significance in ecology (Weiher and Keddy, 1995; Kraft et al., 2007; Webb et al., 2010) is intraspecific variation in these traits (Jung et al., 2010). It is becoming increasingly recognized that mean species trait values are less than ideal when attempting to understand the processes by which local communities are assembled (Araújo et al., 2011; Bolnick et al., 2011; Violle et al., 2012) and that many broad-scale patterns and processes, from food web structure (Melian et al., 2011) to ecosystem functioning (Madritch and Hunter, 2002), are influenced at an individual level. Indeed, it has been widely recognized that such variation can affect the way assemblages are structured and several ways to deal with it have been proposed (Gotelli et al., 2009; Chown et al., 2010). Understanding the scope of this variation is therefore important both for a fundamental understating of BMR evolution (Wikelski et al., 2003; Broggi et al., 2005; Tieleman et al., 2009; Konarzewski and Książek, 2012) and for understanding the way assemblages are structured.

Here, both of these important sources of BMR variation are addressed by investigating the BMR of the black-faced sheathbill (Chionis minor Hartlaub) on sub-Antarctic Marion Island. The family Chionididae is phylogenetically distinct, serving as an intermediate form of the more typical Charadriiformes (Livezey, 2010). Occurring exclusively on several archipelagos in the southern Indian Ocean, sheathbills are members of the small ecological group of high latitude island endemic birds. Latitude (Weathers, 1979; Wiersma et al., 2007) and island endemism (McNab, 2002; McNab and Ellis, 2006) have both been identified as important forces in shaping a species’ energetics, yet to date measurements from this group have been limited to a small sample of captive birds (McNab and Salisbury, 1995; McNab, 2003b).

Marion Island sheathbills are also well suited for examining intraspecific variation. Though all sheathbills can be described as opportunistic omnivores, the population can be divided into two distinct and sympatric groups.  One group (hereafter referred to as KP sheathbills) forages year-round in continuously occupied king penguin (Aptenodytes patagonicus Miller) colonies where they consume mostly the stomach contents of penguins obtained through kleptoparasitism, penguin carcasses, and excreta (Burger, 1984). The second group (hereafter referred to as RH sheathbills) occupies eastern rockhopper penguin (Eudyptes chrysocome filholi Hutton) colonies during their breeding season and their diet is similar to that of KP sheathbills during this period (Burger 1981; Burger 1984). However, when rockhopper penguins leave the island after their five-month breeding season, RH sheathbills are forced to forage elsewhere for the remainder of the year. Many of these birds would traditionally forage for terrestrial invertebrates, but competition with invasive mice has lowered prey abundance to the point of dietary insignificance (Chapter 3, Huyser et al., 2000). The majority of RH sheathbills currently forage in the intertidal zone where they focus on polychaete worms.  Switching between the two foraging groups is rare and most birds employ only one strategy once they reach breeding age and establish a breeding territory. In addition, the two sheathbill groups differ in body size, clutch size, chick production, and behaviour (Chapter 3). Because many territory-holding adults rarely travel more than 200 m afield, some birds conceivably live beyond two decades within a few hundred meters of one another yet experience a disparate life history. Thus, sheathbills are well positioned to offer insight into the causes and consequences of intraspecific variation in BMR.
Thus, this study had three major aims. First, to document the BMR of black-faced sheathbills on Marion Island. Second, to determine whether the phylogenetic position and ecology of sheathbills equate to a unique BMR when allometrically compared to other birds. Third, to quantify the variability in sheathbill BMR and identify possible sources and implications of any variation found.   
Methods
Study site and animal capture
This study took place on sub-Antarctic Marion Island (46°54’S 37°45’E). The island is situated to the north of the Antarctic Polar Front and together with smaller Prince Edward Island, makes up the Prince Edward Island group. Marion has an area of 290 km2 and a total coastline of 72 km. The island’s climate is best described as oceanic, characterized by strong winds, high humidity, and rainfall (Smith, 2002). There is low daily temperature variation and mean monthly temperatures range between 3° (September) and 8.5° C (February; le Roux 2008).  A comprehensive overview of the biology, geology, and climate of the Prince Edward Islands is provided by Chown and Froneman (2008)

Measurements took place from April to May 2011, several weeks after the sheathbill breeding season and the start of winter foraging behaviour. Sheathbills were captured within a 5 km area east of the research station (Fig. 1). All individuals were selected from a long-term study population and only adults that had bred or attempted to breed during the preceding breeding season were measured. Birds were weighed using a 1000-g Pesola scale (Baar, Zug, Switzerland) and moult status was determined from plumage examination (de Beer et al., 2001). Birds were housed in individual shade cloth cages (0.15 m3) in a room kept at outdoor ambient air temperature (5.0°C ± 1.8 SD, measured by a standard mercury thermometer). Water was provided ad libitum, but food was withheld until after metabolic measurements to ensure post-absorptive conditions. All birds were released within 26 hours of capture. The work was done under ethics permit 11NP_CHO01 from Stellenbosch University and with the approval of the Prince Edward Islands Management Committee.

Gas exchange measurements
Metabolic rate was estimated from measurements of oxygen consumption (V̇̇̇O2) obtained using an open flow-through respirometry system as set out in Lighton (2008) and set up at the island’s research station. Birds were placed in a darkened 30L plastic chamber within a custom-built insulated environmental chamber. Air temperature within the environmental chamber was measured using two calibrated Thermocron iButton data loggers (Model DS1923, Dallas, Texas, USA). 
Air was drawn from an unoccupied room using an air pump (Microvood, Italy) and passed through Bev-A-Line tubing (Thermoplastic Processes Inc., Georgetown, Delaware, USA) to a silica gel⁄ soda lime⁄ silica gel column which removed carbon dioxide and water vapour. Air flow was divided into two lines each regulated by a mass flow controller (Model 840, Sierra Instruments, Netherlands and MFC2, Sable Systems, Henderson, Nevada, USA). One line supplied the respirometry chamber at 8000 ml min-1, ensuring adequate mixing in the chamber. The excurrent air from the chamber was subsampled with a subsampler mass flow meter unit (SS4; Sable Systems), passed through a soda lime⁄ silica gel column, and then to an Oxzilla II oxygen analyzer (Sable Systems) to measure fractional O2 concentration. The second air line flowed directly to the oxygen analyzer to establish a base line and account for any temperature drift that may have occurred. Output from the oxygen analyzer was digitized using a Universal Interface II (Sable Systems) and recorded on a personal computer using Expedata data acquisition software (Sable Systems), with a sampling interval of 1 s. Baseline O2 from the cuvette was obtained for 20 min before and after each measurement. 
The lowest 10 min mean V̇̇̇O2 over the test period was considered  resting values, following Liknes et al. (2002). Because carbon dioxide and water vapour were scrubbed before and after entering the oxygen analyzer, oxygen consumption was calculated following Lighton (2008; equation 9.12). All measurements were obtained during the rest phase of the bird’s circadian cycle.  Measurements began no sooner than 30 minutes after sunset and ended no later than 30 minutes prior to sunrise. Individual measurement periods lasted three to six hours. To ensure birds were awake and resting calmly during measurements they were monitored inside the chamber with an infrared webcam (Genius eface 1325r, Taiwan). Time elapsed since capture was ≥9 h and birds could reasonably be considered to be postabsorptive. The oxygen analyzer was tested for temperature drift every 30 min. 
The first five individuals were subjected to a ramped Ta profile during each test to determine the thermoneutral zone (TNZ). Each bird experienced three hours at temperatures between 1° C and 15° C during a single measurement session. Sheathbills alter their behaviour when experiencing exceptionally high temperatures (G.T.W. McClelland pers. obs.) and stressing the animals was a concern. We therefore chose 15° C as our maximum with the knowledge that it is almost double Marion Island’s highest mean monthly temperature (le Roux, 2008), and higher than the daily maximum ambient temperature recorded on all but 2 % of days in the year (South African Weather Service, unpublished). 
Statistical analyses
Oxygen consumption rate was corrected to ml O2 h–1 at standard temperature and pressure, dry. Sheathbills were assumed to have an RQ of 0.79 and each individual's rate of oxygen consumption was converted to watts using a conversion factor of 20.1 kJ l−1 O2 (Schmidt-Nielsen, 1997). Metabolic data were analyzed using analysis of covariance (ANCOVA) with body mass (Mb) as a covariate to control for the effect of body size on BMR (Watts).  Tukey’s HSD test was used in post-hoc comparisons. Least-squares linear regression models were fitted to metabolic rate and Ta data for estimates of TNZ. Analyses were performed in the statistical software R 2.15.0 (R Development Core Team, 2010) and Statistica v.10 (StatSoft Inc., Tulsa, OK, USA). 
Comparative analyses
To compare the BMR of sheathbills to those of other birds, phylogenetic signal in Mb and BMR was first tested for using randomization tests for the mean-squared error and by calculating the K-statistic (Blomberg et al., 2003, MatLab program PHYSIG_LL.m). Sheathbill  BMR was then compared with those of birds in general using wild-caught populations of 135 species from McKechnie et al. (2006) which employed a phylogeny based primarily on Sibley and Alquist (1990). The comparison was then narrowed to other avian island endemics using 31 species from the literature (Table 1). Considering the paucity of measurements on island birds, data were included irrespective of sample size or population origin (wild-caught or captive raised) despite possible influences on results (McKechnie and Wolf, 2004; McKechnie et al., 2006). We did not include birds restricted to the island of New Guinea considering its recent (< 17 000 yr) separation from Australia (Voris, 2000).  A phylogeny was constructed based on that of Hackett et al. (2008), with relationships within the Psittaciformes, Columbiformes, Gruiformes, Anseriformes, and Apterygiformes based on Wright et al. (2008), Gibb and Penny (2010), Livezey (1998), Donne-Gousse et al. (2002), and Baker et al. (1995), respectively. Since all the branch lengths in the phylogeny were not known, all branches in the model were set as equal. The phylogenetic variance–covariance matrix required for these analyses was obtained using the PDAP suite (Garland and Ives, 2000) within the program Mesquite (Maddison and Maddison, 2011) from the respective phylogenies. Since Mb (K = 0.698, P < 0.001) and BMR (K = 0.553, P < 0.001) both exhibited significant phylogenetic signals, phylogenetically independent prediction intervals based on the sheathbill’s position within the phylogeny were calculated (Garland and Ives, 2000).
Results
The lowest metabolic rates in the ramped Ta profile were recorded at 15°. This falls within the range of thermoneutral zones observed in other high latitude Charadriiformes (Kendeigh et al., 1977; Gabrielsen et al., 1988, 1991; Bryant and Furness, 1995) and we assume birds were in their TNZ.
Mean mass of the 22 sheathbills was 459.0 g (SD = 64, min = 360, max = 600). Mean whole-animal BMR was 2.370 W (SD = 0.464, min = 1.599, max = 3.165) and mass-specific BMR was 5.145 mW g-1 (SD = 0.715, min = 4.099, max = 6.513). 
The slopes of the phylogenetic generalized least squares (PGLS) regressions were logBMR = -1.434 + 0.656 logMb (GLM: F(1, 139) = 1063.4, p > 0.001, r2 = 0.887) for all wild-caught populations, and -1.366 logBMR + 0.619 logMb (GLM: F(1, 30) = 254.9, p > 0.001, r2 = 0.895) for island birds. The BMR datum for sheathbills fell within the 95% confidence and 95% prediction intervals when compared to both other wild-caught populations (Fig. 3), and birds restricted to islands (Fig. 4). 
[bookmark: OLE_LINK1]Body mass and basal metabolic rate differed significantly between the two sheathbill populations (Table 2, Fig. 5). Mean KP sheathbill body mass was 20.4 % greater than that of RH sheathbills (Student’s t-test: t = 4.22, d.f. = 20, p < 0.001). Mass-corrected BMR differed significantly by habitat type (GLM: F(2, 19) = 18.01, p < 0.001, r2 = 0.655), but not sex or moult score. Least-squares means revealed that BMR in KP sheathbills was 25.0 % higher than that of RH sheathbills (F(1, 19) = 9.835, p = 0.006). 
Discussion
Black-faced sheathbills are both phylogenetically and ecologically distinct from many other avian taxa given their position within the Charadriiformes and status as one of the few high latitude island endemics. In consequence, it was predicted that, as is the case for other ecologically distinct island endemics, metabolic rates in this species might be unusual by comparison with other birds.  By contrast, the present data suggest that the BMR of sheathbills is typical for a bird of its size. Sheathbills fell within the 95% prediction intervals of the PGLS regression for both wild-caught birds and island-restricted species. Though the prediction intervals in both analyses were relatively wide, partially a reflection of the distant relationship between sheathbills and other species in the respective phylogenies (Garland and Ives, 2000),  the relatively close proximity of sheathbills to the PGLS regression line suggests narrower intervals would do little to alter this conclusion.  However, one limitation of comparing wild-caught sheathbills to the other species in the island bird phylogeny is the predominance of captive-raised birds in the dataset, which scale to a different exponent of that of wild-caught birds (McKechnie et al., 2006; White, Blackburn, et al., 2007). Thus, the observation that sheathbills fail to differ from other island species should be tempered by the fact that it might be subject to change when data are available incorporating measurements from a greater number of wild-caught populations of other bird species. 
Mass-corrected BMR was found to vary by up to 37.1% between individual sheathbills and to differ significantly between the two groups.  A possible driver of this variation is habitat quality and its associated behaviours. Polychaete worms have lower energetic values than most benthic invertebrates (Griffiths, 1977) and provide considerably less energy than the food items consumed most frequently in penguin colonies (Table 3). In addition, the accessibility of the intertidal zone is contingent on tides and sea surface conditions, which interfere with foraging 25.6 % of days (McClelland and Chown unpublished data). During the winter months RH sheathbills therefore likely forage on a diet that is of less quality and predictability than KP sheathbills.  Thus, sheathbills occupying a superior habitat had higher mass-corrected metabolic rates in comparison to sheathbills occupying a lower quality habitat despite all individuals experiencing identical environmental (temperature, rainfall, humidity, solar radiation, and wind) conditions. 
Basal metabolic rate is often thought to be associated with habitat quality and several hypotheses have been proposed to account for the phenomenon including the food habits hypothesis (McNab, 1986), and the “bowtie effect” (Lovegrove, 2000). Both theories posit that species or populations that exploit a diet of high quality, availability, and/or predictability are likely to exhibit high mass-corrected BMRs while lower BMRs are more likely to occur when faced with a diet of low quality, availability and/or predictablity. Within-species investigations into the relationship between BMR and habitat quality are advantageous in that they avoid the potentially confounding effect of phylogeny found in interspecific analyses (Garland et al., 1999).  However, while intraspecific analyses may offer greater precision when investigating sources of variation, confounding factors may still lead to uncertainty. Comparisons are often made between geographically separated populations within a species, where each population is almost certainly under its own selection pressure from its environment on a local scale (Holt and Gaines, 1992; Hoffman and Blows, 1994). For example, populations are often energetically different along latitudinal and elevational gradients (Wikelski et al., 2003; Broggi et al., 2005; Dunbar and Brigham, 2010; Maggini and Bairlein, 2013), possibly in response to the increased cost of maintaining body temperature at colder ambient temperatures (Calder and King, 1974; Daan et al., 1990; Jankowski et al., 2013). Separating the effects of habitat quality from environment and local adaptation in these studies can therefore be difficult, inviting ambiguity into proximate causes.  The two sympatric yet distinct groups of sheathbills on Marion Island overcome this problem and represent a natural common-garden experiment, albeit a limited one as two population comparisons are inherently limited (Garland and Adolph, 1994). It should also be noted that other factors may be working to shape sheathbill BMR. For example, territorial behaviour differs between the two groups (Burger, 1982, 1984) and this may play a role. Nevertheless, the current data suggest that when free of the effects of environmental conditions, there is a clear positive correlation between habitat quality and BMR in free-living birds. 
Conclusion
Sheathbills are the only terrestrial endemic birds present on Marion Island and the only terrestrial bird species present on all four Southern Ocean archipelagos. The intraspecific variation in BMR recorded in this study may play an important role in the species’ ability to persist where others have not. Island birds often undergo a niche expansion, demonstrated by an increased range of morphologies and foraging behaviours when compared to their mainland progenitors (Van Valen, 1965; Blondel, 2000; Whittaker and Fernández-Palacios, 2007). Niche expansion reduces the number of conspecifics that a given individual will compete with (Roughgarden, 1972; Dayan and Simberloff, 2005; Svanbäck and Bolnick, 2007) and allows a species to maximize its population size  (Van Valen, 1965).  In turn, greater population size helps insure persistence against demographic and environmental stochasticity (Shaffer, 1981, 1987; Lande, 1993). This insular shift may not reflect a trend towards a population of generalists, but rather be the product of high intraspecific variation from individual specialists (Werner and Sherry, 1987; Scott et al., 2003; Myers et al., 2010).  There is no reason to assume that this broadening of traits does not extent to physiology. Indeed, the fitness consequences of a given metabolic rate have been demonstrated to be context-specific (Steyermark et al., 2005; Reid et al., 2012) and high variation may allow species to maximize fitness over the widest possible range of environmental gradients (Burton et al., 2011). Unfortunately at present too few studies have examined intraspecific variation within island species to address the hypothesis. For example, a search of the literature found only one other endemic bird species (Puerto Rican tody, Todus mexicanus Lesson; Merola-Zwartjes and Ligon, 2000) that has been studied to a degree that would allow meaningful intraspecific analysis (wild-caught, n > 10). The high variation observed in sheathbills suggests greater focus on the energetic of endemic birds may reveal additional adaptations to island living.
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Tables
Table 1: Avian species restricted to islands in which mass-specific basal metabolic rate have been investigated. For each species body mass (Mb), BMR (W/S), climate (Te = temperate, Tr = tropical), island size (L = > 100 000 km2, I = >1 000 km2, S = < 1 000 km2), a volant (Y) or flightless (N) condition, origin (C = captive-raised, W = wild caught), and sample sizes are provided. 
	Species
	Mb(g)
	W/S
	Climate
	Island Size
	Flight
	Origin
	n
	Reference

	Palila  (Loxioides bailleui)
	34.8
	0.447
	Tr
	I
	Y
	C
	4
	1

	‘Apapane (Himatione sanguinea)
	13.5
	0.300
	Tr
	I
	Y
	W/C
	4/4
	2

	Tui  (Prosthemadera novaeseelandiae)
	144.2
	1.106
	Te
	L
	Y
	C
	Unknown
	3

	Kea (Nestor notabilis)
	836.9
	4.439
	Te
	L
	Y
	C
	2
	4

	Kākā (Nestor meridionalis)
	369.3
	2.142
	Te
	L
	Y
	C
	2
	4

	Greater Vasa Parrot (Coracopsis vasa)
	454.0
	4.372
	Tr
	L
	Y
	C
	8
	5

	Yellow-crowned Parakeet (Cyanoramphus auriceps)
	52.9
	0.492
	Te
	L
	Y
	C
	7
	4

	Red-crowned Parakeet  (Cyanoramphus novaezelandiae)
	56.1
	0.622
	Te
	L
	Y
	C
	8
	4

	Antipodes Parakeet (Cyanoramphus unicolor)
	129.4
	1.081
	Te
	S
	Y
	C
	2
	4

	Puerto Rican Tody (Todus mexicanus)
	6.3
	0.114
	Tr
	I
	Y
	W
	26
	6

	Black-faced Sheathbill (Chionis minor)
	457.0
	2.534
	Te
	S
	Y
	W
	22
	7

	Takahē (Porphyrio hochstetteri)
	2758.3
	6.886
	Te
	L
	N
	C
	2
	8

	Inaccessible Island Rail (Atlantisia rogersi)
	39.4
	0.225
	Te
	S
	N
	W
	6
	9

	Weka (Gallirallus australis)
	813.5
	1.828
	Te
	L
	N
	C
	1
	8

	Guam Rail (Gallirallus owstoni)
	198.8
	0.917
	Tr
	S
	N
	C
	2
	8

	Metallic Pigeon (Columba vitiensis )
	467.9
	1.444
	Tr
	I
	Y
	C
	2
	10

	White-crowned Pigeon (Patagioenas leucocephala)
	251.9
	1.344
	Tr
	I
	Y
	C
	Unknown
	10

	Nicobar Pigeon (Caloenas nicobarica)
	613.0
	1.814
	Tr
	S
	Y
	C
	3
	10

	Western Crowned Pigeon (Goura cristata)
	2313.4
	4.267
	Tr
	L
	Y
	C
	6
	10

	Pacific Imperial Pigeon (Ducula pacifica)
	333.4
	0.794
	Tr
	S
	Y
	C
	4
	10

	Island Imperial Pigeon (Ducula pistrinaria)
	394.2
	1.072
	Tr
	I
	Y
	C
	3
	10

	New Zealand Pigeon (Hemiphaga novaeseelandiae)
	435.6
	1.883
	Te
	L
	Y
	C
	3
	10

	Cloven-feathered Dove  (Drepanoptila holosericea)
	198.0
	0.825
	Tr
	I
	Y
	C
	2
	11

	Blue duck (Hymenolaimus malacorhynchos)
	717.1
	3.142
	Te
	L
	Y
	C
	3
	12

	Paradise Shelduck (Tadorna variegata)
	1193.6
	3.344
	Te
	L
	Y
	C
	2
	12

	Black teal (Aythya novaeseelandiae)
	488.4
	2.333
	Te
	L
	Y
	C
	2
	12

	Auckland Teal (Anas aucklandica)
	373.1
	1.875
	Te
	S
	N
	C
	2
	12

	Brown Teal (Anas chlorotis)
	528.8
	2.319
	Te
	L
	Y
	C
	2
	12

	Campbell Island Teal (Anas nesiotis)
	371.1
	1.650
	Te
	S
	N
	C
	2
	12

	Southern Brown Kiwi (Apteryx australis)
	3137.0
	4.611
	Te
	L
	N
	C
	3
	13

	Great Spotted Kiwi (Apteryx haastii)
	2529.0
	5.283
	Te
	L
	N
	C
	2
	13

	Little Spotted Kiwi (Apteryx owenii)
	1377.0
	3.947
	Te
	L
	N
	C
	2
	13


 References: 1. Weathers and Riper III (1982), 2. Weathers et al. (1983), 3. McNab (2009), 4. McNab and Salisbury (1995), 5. Lovegrove et al. (2011), 6. Merola-Zwartjes and Ligon (2000), 7. This study, 8. McNab and Ellis (2006), 9. Ryan et al. (1989), 10. McNab (2000), 11. Schleucher and Withers (2002), 12. McNab (2003), 13.  McNab (1996).


Table 2: Differences in mean body mass (g, ± SD), whole-animal basal metabolic rate (WA BMR), and mass-specific basal metabolic rate (MS BMR) in black-faced sheathbills breeding in rockhopper (RH) and king penguin (KP) colonies on Marion Island.
	Population
	
	Body Mass (g)
	
	WA BMR (W)
	
	MS BMR (W)
	
	n

	RH Sheathbills
	
	421.3
	± 44.2
	
	2.047
	± 0.303
	
	4.879
	± 0.690
	
	10

	KP Sheathbills
	
	507.5
	± 51.7
	
	2.758
	± 0.291
	
	5.464
	± 0.635
	
	12




Table 3: Energy value of the main food items consumed by black-faced sheathbills foraging in king penguin colonies and the intertidal zone on Marion Island. 
	Habitat
	Food Item
	kJ g-1 wet mass

	King penguin colonies 
	Kleptoparasitism1
	4.5 – 6.8

	
	Penguin carcasses1
	4.9 – 11.6

	
	Penguin excreta1
	2.1

	Intertidal zone
	Polychaete worms2
	2.68 – 4.58


1Burger 1984
2Steimle and Terranova 1985 and references therein. Published mean values of species within Class Polychaeta.



Figure Legends
Figure 1: Sheathbill study area depicting the territory locations of measured KP (K) and RH (R) sheathbills, and the island research station (blocked “M”).
Figure 2: Phylogeny of 32 avian species occurring on islands in which mass-specific basal metabolic rate have been investigated. 
Figure 3: The PGLS allometry of the BMR of 137 wild-caught avian species with a least squares regression through the origin (black line). The grey dashed and dotted lines represent the 95% confidence and prediction intervals, respectively. The body mass and basal metabolic rate values for the black-faced sheathbill are highlighted in red. The regression equation was logBMR = -1.437 + 0.656 logMb. 
Figure 4: The PGLS allometry of the BMR of 32 avian species restricted to islands with a least squares regression through the origin (black line). The grey dashed and dotted lines represent the 95% confidence and prediction intervals, respectively. The black-faced sheathbill is highlighted in red. The regression equation was -1.369 logBMR + 0.617 logMb. 
Figure 5: Mean ± SD log-transformed BMR in sheathbills foraging in king (blue) and rockhopper penguin (red) colonies on Marion Island. 
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