
Free Software Tools for Computational Linguistics: An Overview
Miloš D. Đurić

Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia
djuric@etf.bg.ac.rs

Abstract: In the past six decades or so, we witnessed
a rapid growth in the study of what is now known as
Computational Linguistics. During the last decade, free
software tools received increasing attention by the
computational linguistic research community, and
attracted the interest of computational linguists. This
paper looks into the implications of utilizing free
software tools in the domain of acoustic phonetics,
discourse analysis and computational text analysis. In
other words, the present paper is a descriptive exploration
of free software tools, which I utilized for my research
purposes. Therefore, this paper sets out to explore some
useful aspects of these tools in order to get a better
understanding of the roles they may have in
computational linguistics. The aim of the paper is to
provide a unitary descriptive account of Praat, KH Code
and NLTK and shed light on their benefits from the point
of view of their user. By way of demonstrating some of
their features, certain concrete proposals are given. It is
hoped that this investigation may spark interest for
further research on the subject.

Keywords: Computational Linguistics; Free Software
Tools; Praat; KH Coder; NLTK.

I. Introductory Remarks

Generally speaking, according to the pertinent
literature, since their first appearance, in the late 1940s,
computers have become increasingly familiar to the
general public [1]. However, at the time, computational
linguistics was seen mainly through mechanical
translation, which was considered as the best known and
most glamorous aspect of computational linguistics. With
the advent of the Internet, Computational Linguistics has
witnessed a revived interest precisely because it has
become part and parcel of the phenomena Computer
Science and Artificial Intelligence have set about to
explain. The terminological inconsistency is also spotted
in the pertinent literature, particularly since some
researchers equate the terms ‘computer speech and
language processing’ with ‘human language technology’,
‘natural language processing’, and ultimately, with
‘computational linguistics’ [2].

Broadly speaking, computational linguistics is said to
be interdisciplinary, since in its methods of analysis it
takes into account a variety of diverse perspectives. More
specifically, in linguistics this area has the implications
and applications in the domain of Second Language
Acquisition and Computer-Assisted Language Learning
[3], and, it can be also applied in the domain viewed from
information-processing perspective in works which treat
humans as limited-capacity processors. As regards the

theoretical framework, which was fused in an eclectic
way in order to analyse the corpus-based data, my
analysis has been informed by the following studies: [4]–
[26].

The paper aims to describe three free software tools in
terms of their usability for a linguist, and a computational
linguist, for that matter, and is, therefore, primarily
descriptive in its orientation. The practical part of the
study is devoted to bringing together linguistically and
computationally motivated analyses as a rationale behind
the inspection of free software tools for computational
linguistics.

II. Free Software Tools

 Before one proceeds, one is tempted to provide at
least one broad and tentative working definition of free
software. Broadly speaking, free and open-source
software (or, simply FOSS) might be defined as a piece
of software that can be classified as both free software
and open-source software. According to the pertinent
literature, the terms “free software” and “open source
software” might be said to refer to software products
distributed under terms, which allow users to use the
respective software, modify the software according to
one’s needs, and ultimately, redistribute the software [27].

Since my intention is not to clarify this delimitation in
depth, I shall adopt solely this working definition and
apply it to the tools that were utilised in the research, and
this survey, for that matter.

Equally, the term “tools” will be used very loosely,
since one encompasses an acoustic tool (Praat), a text
chunking tool (KH Coder), and a powerful library based
on the Python programming language (NLTK),
respectively.

A. Praat

Broadly speaking, Praat is a free software package
with open source code aimed at linguists intending to
analyse speech, i.e. spoken discourse. In addition to this,
according to the pertinent literature, Praat is generally
defined as computer software for phonetic analysis [28],
and more specifically, as a standard tool for transcription
of speech, and classification of speech events [29]. In
addition to these definitions, one comes across the
definition of Praat being described as a versatile, open-
source platform, which provides a whole lot of features.
Furthermore, the quoted reference [28] asserts that Praat
might be utilised in the context of the pronunciation
teaching process by allowing the learners to individually
analyse the generated visual patterns of their own speech
thereby making them aware of nuances and diverse

DOI: 10.5281/zenodo.4073970 57

mailto:djuric@etf.bg.ac.rs
https://doi.org/10.5281/zenodo.4073970

distinctions within the target language pronunciation. In
addition to this, the research has been undertaken in order
to explore the ways in which the learners of foreign
languages could improve their pronunciation by using
Praat.

Chronologically speaking, Praat is also defined as an
application developed for speech researchers. The
creators of Praat are Paul Boersma and David Weenik
(both from the University of Amsterdam). Even though
the main purpose of Praat was to apply it in the realm of
speech analysis and speech synthesis, its application has
been developed further in the direction of facilitating
manipulation and labelling processes whilst,
simultaneously, offering a powerful apparatus for
phoneme identification. Additionally, Praat researchers
enhanced format plotting, amongst other things, thereby
providing a sound foundation for teaching vowel and
diphthong production processes.

It goes without saying that the Praat program can be
downloaded free of charge [30]. The Internet source also
provides the description of the features pertaining to the
Praat software tool as well as useful guides.

However, Praat is not only used in the context of
Second Language Acquisition (i.e. SLA), but also in the
context of prosody conversion [31]. Praat seems to allow
for all sorts of articulatory and acoustic analyses. These
analyses comprise segmental and prosodic characteristics
of spoken discourse.

According to some researchers, Praat might tackle
dialect research and may even be used for forensic
purposes, since it already enables a detailed acoustic
analysis and annotation of speech data, both in phonetic
and phonological domains [32]. Voice analysis using
Praat tool has also been fruitful so far, particularly in the
domain of assessing a user’s emotional state [33].

The Praat research is anchored in different theories,
one of which is Optimality Theory (OT), particularly as a
way of understanding the Optimality-theoretic driven
stochastic grammars [34]. A particularly striking example
of the application of OT theory in the Praat analysis
environment lies in Boersma’s Gradual Learning
Algorithm enabled by the Praat program to help you rank
Optimality-Theoretic constraints in ordinal and stochastic
grammars.

In the domain of language teaching, Praat is
considered to have been designed to be used by serious
speech researchers, whilst complex computer readouts
related to formant plots demand a sophisticated level of
understanding [35]. In teaching English pronunciation
practice, the focus is primarily on segmental and
suprasegmental pronunciation [36]. Nevertheless, Praat is
also utilised in looking into its effectiveness in helping
students to acquire prosodic features of the English
language [37].

Before I embark on the concrete application, let us see
the plausible application, guaranteed by the creators of
Praat. Firstly, Praat can be used in speech analysis, which
is comprised of spectral analysis, pitch analysis, formant
analysis, intensity analysis, analysis of jitter, shimmer
and voice breaks, generating cochleagram and excitation

pattern. Secondly, it is used in the domain of speech
synthesis, which brings into the focus pitch, formant,
intensity, articulatory synthesis, as well as Klatt acoustic
synthesis. Praat also marks the borderline in the domain
of listening experiments and labelling and segmentation.
The former comprises identification and discrimination
tests, whilst the latter includes label intervals and time
points on multiple tiers, the use of phonetic alphabet, and
the use of sound files up to two gigabytes 2 GB, or in
terms of corpus length three hours of spoken data.

One ought to mention other functionalities of Praat
for the purpose of a more comprehensive picture. These
functionalities would include: 1. speech manipulation
(encompassing: change pitch, duration contours and
filtering), 2. learning algorithms (bringing about a
biologically-inspired feed forward neural networks,
followed by discrete and stochastic Optimality Theory),
3. statistics couched in multidimensional scaling,
principal component analysis and discriminant analysis,
4. graphics (high quality for scientific papers and theses,
production of encapsulated PostScript files, integrated
mathematical and phonetic symbols), 5. programmability
(easy programmable scripting language and well-
established communication with other programs), 6.
Portability (including well-organised machine-
independent binary files, and possibility of reading and
writing diverse sound and other file types, and finally, 7.
configurability [38]. It should be mentioned that Praat
abounds in plug-ins, which are resorted to in prosody
analysis [39], amongst other things.

Now let us see the screen capture of the Praat working
environment.

It can be spotted in Figure 1, that the Praat working
environment comprises two principal elements: the Praat
Objects, and the Praat Picture. According to the pertinent
literature, the Praat Objects window is the location for the
majority of workflows, and this menu is used to open,
create and save files, with further possibility of opening
various editors and queries one needs in order to work
with sound files [40]. One should select a sound and then
the option “View and Edit”. Afterwards, whilst
examining a sound file, the editor window shows the
sound’s waveform on the top and a spectrogram on the
bottom. Within this working environment, the cursor

Figure 1: My screen capture of the Praat working environment.

58

allows a researcher to carry out selections and perform
measurement. Generally speaking, Praat is particularly
useful in corpus-based analysis. A spoken corpus
typically consists of a set of sound files, each of which is
paired with an annotation file, and metadata information.
In the part that follows, I shall describe the application of
Praat in my research.

The observations I make in this investigation are
based on the data that have been collected from the oral
medium in the form of academic lectures. Namely,
academic discourse manifests a wealth in the number and
variety of compounds. Generally speaking, delimiting
binary/two-constituent/non-canonical compounds has not
always been fairly easy and not without problems. Since
stress is considered to be one of the reliable criteria (for
example, see [41]–[45]), it was interesting to look into
the role of stress in compounds by means of acoustic
analysis provided by Praat. However, generally speaking,
non-canonical i.e. multi-constituent compounds have
been out of the focus due to certain delimitation
problems, among other things. If they have been
discussed at all, this mainly occurred in connection with
standard language and written medium, as well as fairly
informal styles. It seems that multi-constituent constructs
in academic discourse have been left aside. As a
consequence of such tendencies, multi-constituent
constructs have been delimited as a separate, though not
syntactically clearly delimited category of lexical items.
Strictly speaking, this Praat-motivated investigation turns
attention to the issue of a more adequate delimitation of
multi-constituent constructs, particularly to the set of
linguistic units that display variation in stress, this being
illustrated by the corpus-based data.

The motivation lying behind the decision to select
compounds as an object of study could be found in the
claims from the pertinent literature, according to which,
the analysis of nominal compound constructions has
proven to be an unmanageable and recalcitrant problem,
which poses serious challenges for natural language
processing systems [46].

More precisely, in this Praat-motivated study, I focus
on stress of multi-constituent constructs. Since stress is
often used as the delimitation marker between phrases
and compounds in the English language (see, for
example: [47]–[49]), and yet, many examples taken from
the language contradict this general rule, I have decided
to analyse the authentic oral corpus, and to analyse how
multi-constituent constructs behave in this discourse type
with respect to this prosodic feature.

Our speech data come from a specific register of the
oral/spoken medium in the form of academic lectures. I
have chosen this type of spoken discourse because I have
assumed that there could be either consistency or
variability in the prosodic pattern of certain multi-
constituent constructs, which are used relatively
frequently in academic discourse. Furthermore, this
discourse type provides a relatively narrow domain of
knowledge in which such constructs are used. The
examples that I considered relevant for my hypothesis
showed that relevant factors for the occurrence of

compound stress consistency might be the processes of
domain-specific lexicalization of certain constructs.

In order to avoid the mentioned problems, I extended
the empirical scope.

The question that might be posed is: Why Computer
Science academic discourse? The first reason, according
to the pertinent literature would be that from the
perspective of the traditional lexicon designer working
within computational linguistics, complex nominals, i.e.
compounds are formed generatively and therefore do not
merit explicit listing except when clearly non-
compositional [50]. In this context, according to the
quoted reference, in this spectrum of compounds,
technical terminology holds the attention of a significant
location, being highly productive and encapsulating the
essential concepts of a particular technical domain.

The second reason for selecting five academic
lectures was that I wanted to avoid using fairly small data
sets. The third reason pertains to my wish to avoid using
my own intuition, the practice not uncommon in the
linguistic research of researchers operating within the
tradition of transformational-generative paradigm and
transformational grammarians who have long used their
own native speaker intuitions [51].

I have extended the empirical scope and studied the
prominence found in the actual speech (i.e. speech data
from more specialised genres and language registers),
and tried to analyse these linguistic items by means of
acoustic analysis. I have established five classes of
constructs: 1. Dictionary-attested constructs (DAC), 2.
Frequent and repeated constructs (FRC), 3. Discourse
community constructs (DCC), 4. Domain-specific
constructs (DSC) and 5. Multi-constituent constructs
(MCC).

Multi-constituent constructs (MCCs) were selected
for the analysis. My initial assumption is that there could
be either consistency or variability in the prosodic pattern
of MCCs in academic discourse. Corpus comprises high-
quality recordings of lectures (the duration of which
totals six hours and fourteen minutes in the MP3 format
which was subsequently converted into .wav format so as
to be able to undergo the Praat analysis. The Transcript of
Lectures (ToL) consists of 75 pages comprising 45187
words.

Figure 2: The Praat-generated token 1 of the MCC "random number
generator” from my corpus.

59

Set apart from mostly clear-cut cases of binary
compounds is a group of multi-constituent compounds
which may exhibit somewhat different acoustic
behaviour. Let us see the following example from our
corpus. Specifically, I there are three tokens of the MCC
“random number generator” in my corpus. All tokens
have been analysed by means of Praat, and the results of
the analysis are displayed in the following figures.

The maximum pitch for the first token equals 489.71
Hz (Figure 2), whilst for the second token this value
equals 488.74 Hz (Figure 3), and 258.47 Hz in the case of
the third token (Figure 4). The duration, displayed in
seconds, varies, so, on the one hand the duration of the
first token totals 2,81 s, whilst the second token lasts for
7,59 s and the third one 1,36 s. Linguists are feeling their
way on a slippery terrain in the cases, like this one, when
the intra-speaker variation has been spotted and then
acoustically-confirmed. So, in a nutshell, the Praat-
provided visualisation facilitates better understanding of
the subtle differences in intra-speaker variation,
otherwise perceived by introspection, but not confirmed
acoustically by proper measurement. Let us now see the
case of the MCC that has two tokens in total. The
example in question is the unit “hundred dollar bills”.

When juxtaposed, as in the case of this Praat-
generated visualisation (Figure 5 and Figure 6), one
cannot but notice that these two tokens of the MCC
“hundred dollar bills” exhibit the variation in the
maximum pitch. More specifically, the maximum pitch of
the first token equals 208.16 Hz, whilst the latter one
equals 493.80 Hz. Additionally, the variation in duration
has been spotted. Namely, the first token lasts for 1.04 s,
and the second token lasts for 0.86 s.

In my previous research, all the analysed examples
have shown that compoundhood of a MCC is well-
established in discourse unless for some discoursal reason
the significance of the construct is to be underlined, for
example, at the end of the sentence, or at the end of the
discoursal subtopic in generalised conclusive utterances.
This conclusion is enabled through the analysis by means
of Praat. In the next section, we shall see some plausible
advantages and disadvantages of using Praat.

In this part, I have tried to show how some central
acoustic parameters provided by Praat can be applied in
Computational Linguistics by focusing on a small group
of compounds (i.e. MCCs) that might mark the borderline
between binary i.e. canonical and multi-constituent i.e.
non-canonical compounds. I have argued that the Praat
visualisation and Praat-generated parameters could
change the fairly static picture provided by non-acoustic
approaches. Moreover, the non-acoustic analysis seems to
be inadequate to grapple with items that cannot be easily
captured in compoundhood-driven terms. In addition to
this, intuition-based analyses of MCCs have equally
brought about a host of problems, which can be resolved
by means of pretty straightforward visualisations, such as
those generated by means of Praat.

Perhaps the paramount feature of Praat might be
considered to be its all-embracing help function, which is
brought up-to-date regularly. It should be stressed that

Figure 3: The Praat-generated token 2 of the MCC “random number
generator” from my corpus.

Figure 4: The Praat-generated token 3 of the MCC “random number
generator” from my corpus.

Figure 5: The Praat-generated token 1 of the MCC “hundred dollar
bills” from my corpus.

Figure 6: The Praat-generated token 2 of the MCC “hundred dollar
bills” from my corpus.

60

this represents a circumstance which seems convenient
for both expert and non-expert users. Over and above,
another eye-catching and attractive Praat-feature refers to
its offering of its own scripting language, which is
another reason to utilise this tool in computational
linguistics.

However, this software tool is not without its
problems. More precisely, the felicitous handling and
usage depends on the user. Namely, computational
linguists might find this free software tool very useful
and handy, whilst perhaps some non-acoustically oriented
users with the lack of knowledge in the domain of
acoustic phonetics and computational linguistics, for that
matter, might find the utilisation of Praat as something
pretty complex and demanding thereby opting for the
more intuitive approach in spoken language data analysis.

To conclude, intuitive analyses based on sort of
introspection have tended to obfuscate rather than clarify
speech sound phenomena and suprasegmental properties
of sounds, MCCs and their stress not being an exception
to this problem set. The described free software tool
Praat, which is intended for acoustic analysis, seems to
offer both precise measurement and accurate description
of the given speech phenomena under investigation.

The successful utilisation of this free software tool
depends on the nature of the user. Namely, those users
who are not familiar with concepts within computational
linguistics will perhaps use Praat less successfully than
those who are computational linguists. However, they are
not without problems, particularly if we take into account
computer scientists, software developers and engineers
who can master this free software tool to overcome any
acoustic problem. Therefore, it can be said that Praat
depends on the nature of its user.

B. KH Coder

If one tries to define this software tool, one comes
across the definition of KH Coder provided by its author.
I have slightly modified the given definition by adding
the item “tool” in the description. Namely, KH Coder is
usually defined as a free software tool for quantitative
content analysis or text mining, and it is also utilised for
computational linguistics [52]. Furthermore, it is also
characterised as a software tool intended for computer-
assisted qualitative data analysis. KH Coder was
developed by Koichi Higuchi.

The survey of the literature shows that KH Coder is
successfully implemented in diverse text analyses, such
as the analysis of occupational accidents and their
prevention in Spanish digital press [53]. It is also used in
analysing students’ course evaluation through text
mining, which is predominantly based on co-occurrence
network analysis provided by KH Coder [54]. KH Coder
is also used in the context of SLA and EFL and ESL in
preparing specific teaching materials for advanced
reading comprehension based on specific text mining
[55]. Furthermore, this free software tool is highly
suitable for specific tasks, such as the analysis of specific

keywords with the help of co-word mapping comparison
between two types of newspapers [56].

Certain authors explore the big data realm as a
completely novel field for both scholars and practitioners
dealing with big data conceptualisation based on diverse
case studies [57]. The relevant features of KH Coder,
such as multi-dimensional scaling, cluster analysis and
co-occurrence network, are employed by researchers
whose aspirations are to be found in the domain of
specific language register. In this sense, the researchers
implement KH Coder in order to carry out multi-
dimensional scaling and co-occurrence network analysis
on the academic journal dataset [58].

The emerging field of quantitative text analysis also
represents a fruitful field of research particularly for the
authors utilising the given free software tool, which has
proven to be a satisfactory testing ground both for written
and oral data [59]. Similarly, KH Coder is used by
researchers exploring news articles databases and
comparing their local and international media reports
[60]. Finally, there are authors who employ text analytics
visualisation provided by the free software tool in
question in order to explore and visualise student
comment data in the discourse of science and technology
[61].

In the part that follows I shall briefly describe one
previous research of mine, in which I utilised KH Coder
for computational discourse analysis [62]. The research
was part of a wider interdisciplinary field of discourse
studies, more specifically, digital art museum discourse,
which explored various aspects of language expression
that is manifested in this discourse type. CAT was applied
to the text contained within the web pages of six digital
museums of digital art. I must emphasise that I have
utilised some parameters, or, more specifically, textual
dimensions elaborated in the pertinent literature (for
instance, see [63]). At this point, one should also add the
remark from the literature that text collections and
corpora in digital form (like my corpus) represent
important resources for empirical research [64].

Since KH Coder belongs to free software tools for
quantitative content analysis and text mining, it is,
consequently utilised for computational linguistics, and
as such offers a plethora of features that might analyse
the language material and facilitate CTA. By way of
illustration, we shall see the actual implementation of this
software tool.

The given visualisation (Figure 7), provided by KH
Coder, lends support to the assumption that individual
language items might be followed easily, even though a
lot of combinations would appear within these clusters.
Additionally, some overlapping clusters might have gone
further on the analysis path leaving the most distant ones
stranded. One can notice that the lexical unit
“programming” collocates with the units “software”,
“code” and “package” thereby generating the following
clusters: “programming software”, “programming code”
and “programming package”, to mention but a few.

61

Figure 7: The two-dimensional solution for non-
metric multidimensional scaling (2D Cruscal)

for the text excerpt from my DAM corpus.

Now, let us see the three-dimensional solution.

Figure 8: The three-dimensional solution for non-metric
multidimensional scaling (3D Cruscal) for the text

excerpt from my DAM corpus.

The first impression is that 3D cruscal (Figure 8)
seems not to be neatly organised as is the case with the
2D cruscal. Perhaps, this might be the case due to the
corpus size. However, 3D visualisation seems to offer
less satisfactory data when it comes to cluster analysis.
Nonetheless, a host of collocations can be traced and
spotted without looking into separate tables, for that
matter.

Now let us see the visualisation of the previously
sifted corpus data.

The lexical unit “VR” collocates with the items
“people”, “platform”, “time”, etc. And the adjective
“virtual” generates the clusters “virtual museum”,
“virtual exhibition” and “virtual experience” (Figure 9).

And now let us see another case of the given corpus-
based analysis.

This time (Figure 10), 3D cruscal fits neatly in the
representational-computational approach to the analysed
lexical items. The centrality is taken by the lexical item
“museum” which is located near items with which it
enters into the most frequently occurring collocation
patterns. Of course, this visualisation is not sufficient
enough on its own, but ought to be accompanied by
statistical tables and other numerical parameters that are
obtainable in KH Coder.

Sometimes automatically-driven part-of-speech
tagging might be problematic, as can be seen in the
previous illustrative example (Table 1). Namely, the
semantic unit “New” is treated as an instance of a proper
noun, even though we cannot see the context in which it
appears immediately and the sole indicator for this

Figure 9: 2D Cruscal for the text excerpt from my
DiMoDA corpus.

Figure 10: 3D Cruscal for the text excerpt from my
DiMoDA corpus.

62

Table 1: The KH Coder-generated illustrative table for the text excerpt
from my La TurboAvedon corpus.

Lexical items Part of Speech Frequency
AVEDON ProperNoun 21

space Noun 17
LATURBO ProperNoun 16

work Noun 16
virtual Adj 10
New ProperNoun 8
artist Noun 8
live Verb 8

avatar Noun 7
consider Verb 7

experience Noun 7
media Noun 7

paraspace Noun 7
production Noun 7
sculpture Noun 7
surface Noun 6
Sculpt ProperNoun 5

authorship Noun 5
identity Noun 5
object Noun 5

parasubject Noun 5
polygon Noun 5
social Adj 5
term Noun 5

decision seems to be the initial capital letter “N”, which
must have evoked the item “New” in the proper
noun“New York”. This is the reason why one should use
simultaneously statistical tables and visualisations
provided by KH Coder. Therefore, classical tables should
be interpreted jointly with graphs and 2D and 3D
visualisations. It is in this way that the computational
discourse analysis might be extended.

KH Coder enables analysing lexical clusters and
collocations that are not quite susceptible to classical text
analysis, or discourse analysis, for that matter. However,
this computational discourse analysis is in stark
opposition to non-computational accounts, precisely
because it provides better language data manipulation
through precisely adjusted measurement methods in
terms of statistical analysis.

As can be seen from the neat examples from my
corpus cited so far, sometimes certain clusters signal to
the analyser to drop certain definitional characteristics, as
was the case with letter capitalisation influencing the
specific part-of-speech tagging (see: Table 1). The
analysis restriction that seems problematic refers to the
situation when certain lexical units may remain
unspecified in terms of part-of-speech. This is why one
should not combine Chomskyan (i.e. computational)
manners of analysis with non-Chomskyan (i.e.
impressionistic) ways of analysis. It should be added that,
according to the literature, in the period before Chomsky,
linguistics tended to be a taxonomic enterprise, which
was dubbed verbal botany [65]. However, this is not to
say that KH Coder lacks the essential features of a free
software tool intended for computational discourse
analysis. On the contrary, this tool provides an upgrade of
a sort. Following the standard picture, the benefits of KH
Coder refer to the analyses it provides: 1. word frequency
list, 2. the context in which the lexical item is used, 3. co-
occurrence network of words, 4. correspondence analysis

of words, to name just a few. However, some challenges
remain unresolved, such as those referred to in the
literature concerning the pitfalls on the path to
formulating a unique query which could extract
information from aligned texts [66], among other things.

Furthermore, statistical analyses of automatically
extracted words are suitable for gaining a whole picture
of the data since traditional problems of how to represent
lexical items and their respective lexical clusters and
collocations in standard glossaries and general
dictionaries alike have become more apparent than real.
Unfortunately, various coding rules to count concepts, a
topic no less interesting in the computational discourse
analysis could not be taken up in my investigation, and
this paper, for that matter. In the part that follows, I
present another free software tool.

C. NLTK

The Natural Language Toolkit (NLTK) represents a
collection of libraries and programs for symbolic and
statistical NLP written in the Python programming
language. More precisely, according to the pertinent
literature, the NLTK is a suite of open source program
modules, tutorials and problem sets, providing ready-to-
use computational linguistics courseware [67].
Furthermore, NLTK is said to be a platform for building
Python programs to work with human language data.
Additionally, it is asserted in the literature that Python
Natural Language Processing Toolkit plays an important
role as a platform for building Python programs to work
with human language data [68].

NLTK arrives with a large collection of corpora,
followed by large-scale and extended documentation,
making NLTK unique in providing a comprehensive
framework for students to develop a computational
understanding of language [69]. The quoted reference
asserts that NLTK’s code base of 100,000 lines of Python
code includes support for corpus access, tokenising,
stemming, tagging, chunking, parsing, clustering,
classification, language modeling, semantic
interpretation, unification, among other things.

Furthermore, NLTK has many third-party extensions.
There are plenty of approaches to each NLP task in the
NLTK environment. Related to this are also fast sentence
tokenisation, and other relevant features for
computational linguistics. And now let us consider the
choice for selecting the Python programming language.

It should be mentioned that the creators of NLTK are
Steven Bird and Edward Loper (both from the
Department of Computer and Information Science at the
University of Pennsylvania). NLTK has been used
successfully as a teaching tool and, so far, many
researchers have chosen Python as their implementation
language for NLTK, mainly because Python’s syntax and
semantics are transparent with good string-handling
functionality. On the one hand, Python is an interpreted
language which makes it suitable for facilitating
interactive exploration. On the other hand, it is an object-
oriented language, which entails that Python allows data

63

and methods to be encapsulated and readily and easily re-
used.

Additionally, according to the literature, Python is
heavily used in the industrial context and scientific
research alike. Nevertheless, it also offers programming
possibilities in educational contexts around the world.
The same source claims that Python is said to be often
praised for the way it facilitates productivity, quality, and
maintainability of software [70].

Some of the features that might be useful to
computational linguists can be carried out by means of
the NLTK. For example, tokenising text into sentences,
tokenising sentences into words, tokenising sentences
using regular expressions, filtering stop words in a
tokenised sentence, stemming words, lemmatizing words,
creating custom corpora, part-of-speech tagging,
extracting chunks, text classification and parsing specific
data, to list just a small portion of features, functionalities
and possibilities from the representative literature [71]. In
the following section, I shall briefly describe the actual
use of NLTK in CTA.

The first obvious application of NLTK in CTA refers
to the main features pertaining to computing with
language. More specifically, NLTK enables the
following: categorising and tagging words, processing
raw text, accessing text corpora and lexical resources,
writing structured programs, learning how to classify a
text, extracting specific text information from text.
Moreover, one can also analyse the sentence structure by
NLTK. This tool can also analyse the meaning of the
language data in general, and the meaning of sentences,
in particular.

The already existing corpora may be sufficient for a
scholar interested in the basic computational linguistics.
Still, they seem to be representative enough in terms of
corpus representativeness. Let us see an example of
NLKT corpora.

These nine texts (Figure 11), or more precisely,
corpora are sufficiently equipped so as to serve as input
data for a computational linguistic analysis. A linguist is
provided with neatly modified ways of exploring the
given corpora. For example, let us search for
concordances of the lexical item “lucky” in the first
corpus (Figure 12).

Counting vocabulary is another convenience provided
in the NLTK environment. Let us see an example in
Figure 13.

As seen from my illustrative example (Figure 13), the
described free software tool seems to be very user-
friendly and convenient for a computational linguist who
wishes to find out the length of a corpus. Strictly
speaking, the number refers to the words and punctuation
symbols which occur. The term len is utilised to obtain
the length of something, in my case, a text, which has
been applied to the corpora at hand.

I was particularly interested in generating tokens and
tokenisation process within the NLTK context. Not
surprisingly, tokens have become one of the highly
explored language phenomena within the current
linguistic research both of cognitive and computational

provenance (see, for instance, [72] and [73]). In the vast
literature existing today, a token has been referred to as
an instance of a unit, as distinct from the unit that is
instanced [74].

More specifically, in linguistics, the term “token” is
simply defined as a particular example of a general type
[75]. According to some computationally-motivated
sources, however, the vocabulary of a text is just the set
of tokens that it uses, since in a set, all duplicates are
collapsed together [76]. Now, let us see a typical example
of tokenisation by means of NLTK.

The immediate problem that is noticed (Figure 14) is
the presence of the occurrence of orthographic symbols,

Figure 11: My screen capture of an illustrative example of the NLTK
corpus structure.

Figure 12: My screen capture of the NLTK-generated concordance of
the lexical item “lucky” from the first NLTK corpus.

Figure 13: My screen capture of an illustrative example of vocabulary
counting of NLTK corpora.

Figure 14: My screen capture of an illustrative specimen of tokens in
the NLTK corpus number 3.

64

which are redundant for a linguistic analysis, at least the
one that is lexeme-focused. According to the literature on
the subject, by wrapping sorted() around the Python
expression set(text3), a sorted list of vocabulary
items is obtained, and this list begins with various
punctuation symbols and continues with words starting
with “A”. It is essential that we should mention that all
upper-case words precede lower-case words.

However, whilst working within the NLTK
environment, one may also determine the location of a
lexical item in the given corpus. This positional
information can be displayed by means of a lexical

dispersion plot. Each stripe represents an instance of an
item, and each row represents the entire corpus. Let us
consider the following example.

My illustrative examples (Figure 15 and Figure 16)
capture the gist of the given lexical dispersion. However,
in the pertinent literature, there are examples which
perhaps illustrate the point in a more visually striking
way [70]. Let us now consider them in turn in Figure 18
and Figure 17, respectively.

Other useful features pertain to parsing and part-of-
speech tagging. In linguistics, one cannot avoid grappling
with the notion from the traditional grammar, which
treats parsing as the pedagogical exercise of labelling the
grammatical elements of single sentences [77]. It is
claimed that the criteria of analysis leading to the
identification of grammatical elements seem to be more
salient mainly owing to the ways in which speakers of a
natural language (i.e. English, in this case) use these
items to relate sentences in the language in its entirety.
When it comes to part of speech, one encounters the
fuzzy traditional notion, which refers to a grammatical
class of words [77]. Due to their inexplicitness when
defined, and the restricted nature of their definitions,
some linguists tend to prefer alternative terms (for
example, in the pertinent literature, the term 'parts of
speech' is equated with the terms: 'word classes' [78],
'class of words' [79], and 'lexical category' [80], to
mention but a few labels, among other things). However,
since the terminological inconsistency is not the object of
this study, I shall not broaden further that, no less
interesting, topic.

On the one hand, one may spot the linguistically-
oriented parsing task, which is mainly the task of
assigning words to parts of speech. However, on the other
hand, in the computationally-oriented analyses, this
parsing process refers more to the assignment of syntactic
structures to sentences, especially by parsing
programmes, or, more precisely, parsers [74]. From a
cognitively oriented perspective, however, parsing is
treated as one of the mental processes involved in
sentence comprehension, in which the listener determines
the syntactic categories of words, joins them up in a tree,
and ultimately, identifies the essential parts of that
particular sentence [81]. Now, let us consider the basic
use of tagger in computational linguistics.

A part-of-speech tagger, or POS-tagger, processes a
sequence of lexical items in a sentence from my corpus
(“Andrew Telfer is writing a note at his desk in one
corner of a big book-lined room.”), and attaches a part of
speech tag to each item (e.g. ‘Andrew’, ‘NNP’, ‘Telfer’,
‘NNP’, and so on). Briefly, my example (Figure 19)
illustrates how the implementation of the NLTK tool may

Figure 15: My screen capture of an illustrative example written in
Python in order to obtain the lexical dispersion plot for NLTK corpus 3

(i.e. The Book of Genesis).

Figure 16: My screen capture of the actual lexical dispersion plot for
the NLTK corpus 3 (i.e. The Book of Genesis) generated by the NLTK

tool.

Figure 17: My screen capture of the lexical dispersion plot for the
NLTK corpus 4 (i.e. Inaugural Address Corpus) generated by the NLTK

tool.
Figure 19: My screen capture of the POS-tagger processing an

illustrative utterance from my corpus (i.e. The Ninth Gate Corpus).

Figure 18: My screen capture of the command line written in Python in
order to obtain the lexical dispersion plot for the NLTK corpus 4 (i.e.

Inaugural Address Corpus).

65

be pretty convenient for a computational linguist wishing
either to practice automatic tagging or to import a larger
text portion in order to carry out a CTA. There are other,
perhaps more attractive, possibilities, apart from the ones
described, however, I feel this may suffice to illustrate the
point under consideration. In the section that follows, I
shall briefly mention certain potential benefits of utilising
this free software tool from the point of view of a
computational linguist.

Generally speaking, NLP with Python might be
regarded as a promising field. It is in this sense that free
software tools and libraries enabling such processing are
most welcome as precious ingredients of any
linguistically-motivated analysis. NLTK represents one
such undertaking, which offers a multitude of features for
linguists and computational linguists, alike. Corpus-based
studies cannot avoid grappling with lexical items present
in the naturally occurring language, such as English,
French, Serbian, Croatian, etc. Not surprisingly, parsing,
tokenisation and part-of-speech tagging have become
highly explored possibilities of a computationally-
oriented analysis within the current computational
linguistic research.

I have shown some illustrative examples performed in
the NLTK environment. One may notice potentially
useful features, but also the lack of some clear-cut
features for some language items, such as orthographic
symbols and signs. Even though the part-of-speech
tagging is sufficiently felicitous for the majority of
computationally-driven analyses, it seems that in some
cases, there are certain examples that cannot easily
undergo this process. However, these instances seem to
be rather rare. This issue poses some challenges, which
might be accounted for by the still deeply rooted
traditional parts of speech that are treated in terms of
necessary and sufficient conditions salient for a lexical
item to be included in a given class.

Next, the free software tool NLTK has shown that
rather simple programming techniques could be
combined so as to deal with large quantities of language
material in the form of representative corpora. The
features of NLTK abound in different parsing and tagging
possibilities and may facilitate the automatic extraction of
some key lexical items and/or phrases within a given
corpus. Tools and techniques that the Python
programming language provides for computational
linguistics are numerous, and therefore might represent
stimulating challenges posed by natural language
processing.

Computing with language, if by this we refer to
working with texts (i.e. spoken and written discourses)
and words, seems to have been made easier by NLTK and
its readily available corpora, followed by some additional
features permitting the all-comprising analysis of the
language material at hand. Furthermore, free software
tool NLTK treats texts as lists of lexical items which may
undergo analyses required by a computational linguist,
and therefore, may offer help to those computational
linguists that need a precise analysis.

III. The Comparison of the Selected Free
Software Tools

In the following lines I shall briefly compare three
free software tools. Let us briefly consider them in turn.
The first free software tool in this analysis is Praat, which
is highly functional from the point of view of acoustic
phonetics and computational linguistics. Although it has
certain limitations as to the duration of the spoken corpus
chunk, it certainly represents a reliable resource offering
diverse options for a plausible acoustic analysis. Praat has
all the advantages of a free software tool and can be
easily handled by computational linguists both beginners,
and advanced researchers.

The second free software tool in this analysis is KH
Coder, which can be used for treating text from a
computational point of view, providing all sorts of
statistical analyses, both qualitative and quantitative.
Even though there are some challenges that should be
responded to, such as spelling rules that influence the part
of speech tagging and certain lexeme delimitation, these
are forgivable weak points in such a multi-perspective
analysis provided by KH Coder. This free software tool
provides collocation patterns, multi-dimensional analyses
and various visualisations which can help and
complement the computational analysis of (mainly
written) discourse.

The third free software tool in this analysis is NLTK,
which is a Python-based natural language toolkit. It has a
powerful corpus with the possibility of adding the
language input data of one own and abounds in powerful
features.

The feature shared by Praat and KH Coder is that
there are some limitations with regard to input size.
However, sometimes this does not affect performance.
Also, one should add that there are some challenges in
the NLTK working environment. Namely, when certain
tasks are carried out, such as the tokenisation of a larger
corpus, the task performance may slow down, and the
data displayed after the executed command is not so clear
whilst the data manipulation is not straightforward for a
computational linguist who is not well-aware of all the
possibilities of the Python programming language.
However, this is not an insurmountable obstacle on the
way paved by NLTK, since it provides other more
appealing peculiarities.

Taking as a starting point the notion of performance,
the following rough comparison of performance relations
between Praat, KH Coder and NLTK might then be
posited: NLTK and KH Coder share some features and
functionalities (both tools have the possibility of
generating and displaying concordances, visualisations,
etc.), Praat has visualisation possibilities, but sometimes
not of high picture quality. KH Coder and NLTK are
mainly intended for the written medium (i.e. written
corpus), whilst Praat is devoted to oral media (i.e. spoken
corpus). All three software tools share one common
feature, and this refers to the possibility of integrating

66

their tables and graphs readily into scientific papers,
conference papers, books, and so on.

The strengths of Praat are to be found in the acoustic
analysis of individual sounds, in the annotation of these
sounds, and in browsing multiple sound and annotation
files across the corpus. The strengths of KH Coder are the
visualisations (particularly 3D) that can be further
analysed, while the strengths of NLTK lie in its simplicity
and elegance of data output display (however, this is in
less attractive format than in the case of KH Coder). Pre-
processing activities of the analysed software tools have
been left aside, although they might also be indicators of
certain advantages and disadvantages in raw data
processing.

All three software tools have satisfactory output, at
least for a user, who is a computational linguist, or a
general linguist. It should be added that I have not
considered the level of user-friendliness and
successfulness from the point of view of a computer
scientist, or an electrical engineer, for that matter, but
solely from a perspective of a computational linguist.
Limitations have been explored solely to a certain extent,
since the author of the paper has attempted to perform an
analysis by the described free software tools in fairly
straightforward corpus-related contexts. Despite the
described benefits, it has been noticed, however, that
whilst working with large corpora some tools slow down
(for instance, NLTK, and KH Coder, whilst processing
the data and providing the output of the required feature).
Yet, overall impression is that these analysed software
tools seem to be irreproachable since they are free of
charge and can be further modified and upgraded, which
is not the case for proprietary software tools offering the
ready-made templates and patterns that cannot be further
modified according to one’s needs. And this last remark
is not insignificant in terms of the last parameter of
performance.

The last parameter to be discussed is that pertaining
to the user. Namely, certain linguistic research directions
are still under the influence of the traditional non-
Chomskyan linguistics, and therefore, utilise somewhat
different terms and notations which may sometimes
indirectly influence some aspects of the linguistic
analysis. Praat and KH Coder do not require special
programming skills and advanced programming
knowledge, whilst NLTK requires sometimes even
advanced knowledge of Python. Therefore, a user, who is
most frequently a computational linguist, ought to know
the fundamentals of this programming language. As
regards the corpus-based analysis, it should be
highlighted that I used my own corpora for the analyses
carried out by means of Praat and KH Coder, whilst I
used the ready-made and available corpora in the NLTK
environment. Perhaps, this might be the reason for
omitting some aspects of analysis since I relied on the
previously prepared data. In the part that follows, some
concluding and final observations are provided.

IV. Concluding Remarks

In the past six decades or so, we witnessed a rapid
growth in the study of what is now well-known as
Computational Linguistics. Nevertheless, unitary
accounts have been scant. The aim of this investigation is
to fill the lacuna in the current scholarship on free
software tools in computational linguistics, at least from a
descriptive point of view.

The first part of the paper provides introductory
remarks and focuses on general observations concerning
computers and computational linguistics. Additionally,
certain theoretical underpinnings have been mentioned
(namely, generative, optimality-driven, relevance-
theoretic, and minimalist-motivated, among others). The
second part presents free software tools in general, and
then presents three free software tools in particular, which
served as input to my subsequent argumentation and
conclusions. This part is broken into subsections, each of
which briefly presents the software tool in question, its
performances and potential benefits. The third part is a
sketchy comparative analysis which summarises the
findings in connection with software tools performances
intended for a specific user, i.e. a computational linguist.
Some features and functionalities have been compared
and a concise overview has been provided.

Although this paper is largely descriptive in its
orientation, three case studies reflect the underlying
assumptions of the theoretical frameworks in which they
are to be found. Equally, this descriptive exploration was
aimed at contributing to a better understanding of free
software tools in the domain of computational linguistics.
Burdened with an ill-famed and notorious reputation of
having been persecuted by proprietary software tool
creators and distributors, free software tools have not
only resisted but are actually struggling for their own
place in the realm of computational linguistics. This was
illustrated by assessing and evaluating certain striking
properties of three free software tools: Praat, KH Coder
and NLTK. In the subsequent comparative analysis, these
tools were juxtaposed and compared. From the point of
view of the user, it has been claimed that expert users
tend to operate these tools more easily when compared
with linguists. Perhaps, the only exception might be a
computational linguist with certain knowledge of
programming languages. However, it has been assessed
that all analysed tools are user-friendly and can be easily
integrated into a linguistically-motivated study.

The analysed and described three software tools can
generate graphs and tables and other visualisations that
can support any undertaking concerned with linguistic
analysis. These visualisations can further refine the
analysis in terms of better understanding of relations
between the tokens of lexical items. The main area of
contention revolves around the questions of the speed of
performing certain tasks (e.g. tokenisation of larger
corpora, among other things). Another appealing
challenge would refer to the semantic component, which
sometimes might not be satisfactorily included in the
CTA and NLP, but is, according to the literature, an
important ingredient in automatic translation, particularly

67

in scientific fields [82]. Rather than posit these and
similar challenges, I have considered the performance of
three free software tools within a broader picture of its
overall functionality and usefulness in the investigation
carried out by a linguist. Therefore, some of my
performance measurement results might exclude certain
elements that are unimportant for the linguistic analysis.

In this rather brief and unpretentious study, I have
reexamined the role of free software tools for
computational linguistics from a comparative
perspective. To this purpose, I have implemented and
analysed three free software tools. My own corpora were
used for analysis carried out by Praat and KH Coder,
whereas I used the already available corpora and my own
examples in the NLTK analysis. Consequently, perhaps
this latter decision, to use the already existing language
data, might have influenced certain results of the
comparative analysis. My observations are not definitive,
but rather constitute a tentative descriptive account,
which can be further broadened by integrating diverse
appealing dimensions of computational text analysis.
Some future comparative investigation might
significantly contribute not only to our understanding of
the role of free software tools in computational linguistics
in general, but also of the role of performance-
measurement perceived similarities and differences.
Needless to say, my tentative assumptions merit further
elaboration.

Acknowledgements

I would like to express my gratitude to Professor
Predrag Pejović (Faculty of Electrical Engineering,
University of Belgrade) for his kindness, patience,
expertise and wisdom. I am grateful to Professor Pejović
for bringing the free software tools to my research
attention. My gratitude goes to Professor Nadica
Miljković (Faculty of Electrical Engineering, University
of Belgrade) for inviting me to participate in the PSSOH
Conference project whilst it was still in the making.
Professor Miljković has inspired many parts of my
research by generously sharing her experience and
knowledge. Both Professor Pejović and Professor
Miljković kindly smoothed the way of performing my
modest computational analyses. Needless to say, the
comments of the Anonymous Reviewer are highly
appreciated.

References

[1] M. F. Bott, "Computational Linguistics," New Horizons in
Linguistics, Harmondsworth, Penguin Books Ltd., 1971, pp. 215-
228.

[2] D. Jurafsky and J. H. Martin, Speech and Language Processing:
An Introduction to Natural Language Processing, Computational
Linguistics and Speech Recognition, New York: Prentice Hall,
2000.

[3] M. Levy, Computer-Assisted Language Learning: Context and
Conceptualization, Oxford: Clarendon Press, 1997.

[4] N. Smith, The Twitter Machine: Reflections on Language,
Oxford: Basil Blackwell, 1989.

[5] D. Sperber and D. Wilson, Relevance: Communication and
Cognition, Oxford: Blackwell, 1988.

[6] J. Lyons, New Horizons in Linguistics, Harmondsworth: Penguin
Books Ltd., 1971.

[7] N. Chomsky, Aspects of the Theory of Syntax, Cambridge,
Massachusetts: The MIT Press, 1965.

[8] J. Lieber, Noam Chomsky: A Philosophic Overview, New York:
St. Martin’s Press, 1975.

[9] B. L. Liles, An Introductory Transformational Grammar,
Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1971.

[10] R. Grishman, Computational Linguistics: An Introduction,
Cambridge: Cambridge University Press, 1986.

[11] D. Wilson, "Relevance and Relevance theory," MIT
Encyclopedia of the Cognitive Sciences, Cambridge,
Massachusetts , The MIT Press, 1999, pp. 719-722.

[12] R. Kager, Optimality Theory, Cambridge: Cambridge University
Press, 1999.

[13] D. Abercrombie, Studies in Phonetics and Linguistics, London:
Oxford University Press, 1965.

[14] A. M. Di Sciullo, "Decomposing Compounds," SKASE Journal
of Theoretical Linguistics, vol. 2-3, pp. 14-33, 2005.

[15] A. M. Di Sciullo, "Asymmetry and the Language Faculty,"
Revista Linguistica, vol. 13, no. 2, pp. 88-107, 2017.

[16] N. Smith and D. Wilson, Modern Linguistics: The Results of
Chomsky’s Revolution, Harmondsworth: Penguin Books Ltd.,
1979.

[17] J. Pustejovsky, The Generative Lexicon, Cambridge,
Massachusetts; London, England: The MIT Press, 1995.

[18] D. A. Reibel and S. A. Schane, Modern Studies in English:
Readings in Transformational Grammar, Englewood Cliffs, New
Jersey: Prentice-Hall Inc., 1969.

[19] R. A. Jacobs and P. S. Rosenbaum, Readings in English
Transformational Grammar, Waltham, Massachusetts: Ginn and
Company, A Xerox Company, 1970.

[20] N. Chomsky, The Minimalist Program, Cambridge,
Massachusetts; London, England: The MIT Press, 1995.

[21] A. M. Di Sciullo and E. Williams, On the Definition of Word,
Cambridge, Massachusetts: The MIT Press, 1987.

[22] D. Davidson, "Semantics for Natural Languages," On Noam
Chomsky: Critical Essays, G. Harman, Ed., New York, Anchor
Press, pp. 242-252, 1974.

[23] D. Burton, "Analysing Spoken Discourse," Studies in Discourse
Analysis, M. Coulthard and M. Montgomery, Eds., London,
Routledge and Kegan Paul Ltd., pp. 61-81, 1981.

[24] M. Coulthard, M. Montgomery and D. Brazil, "Developing a
Description of Spoken Discourse," Studies in Discourse Analysis,
M. Coulthard and M. Montgomery, Eds., London, Routledge and
Kegan Paul Ltd., pp. 1-50, 1981,.

[25] D. Sperber, F. Clément, C. Heintz, O. Mascaro, H. Mercier, G.
Origgi and D. Wilson, "Epistemic Vigilance," Mind and
Language, vol. 25, no. 4, pp. 359–393, 2010.

[26] D. Mazzarella, Inferential Pragmatics and Epistemic Vigilance,
London: University College London, 2015.

[27] J. Feller, B. Fitzgerald, S. Hissam and K. R. Lakhani,
"Introduction," Perspectives on Free and Open Source Software,
Cambridge, Massachusetts, The MIT Press, 2005, pp. xxvii-xxxi.

[28] H. T. Le and J. Brook, "Using Praat to Teach Intonation to ESL
Students," Hawaii Pacific University TESOL Working Paper
Series 9, vol. 9, no. 1-2, pp. 2-15, 2011.

[29] H. Buschmeier and M. Włodarczak, "TextGridTools: A TextGrid
Processing and Analysis Toolkit for Python," Proceedings der
27. Konferenz zur Elektronischen Sprachsignalverarbeitung,
Bielefeld, 2013.

[30] P. Boersma and D. Weenink, Praat: Doing Phonetics by
Computer, 6 June 2020. [Online]. Available:
https://www.fon.hum.uva.nl/praat/. [Accessed 6 July 2020].

[31] M. S. Suri, D. Setia and A. Jain, "PRAAT Implementation For
Prosody Conversion," Proceedings of the 4th National
Conference; INDIACom-2010; Computing For Nation
Development, New Delhi, 2010.

[32] D. Loakes, "From IPA to Praat and Beyond," The Oxford
Handbook of the History of Linguistics, Oxford, Oxford
University Press, pp. 123-140, 2013.

[33] M. Magdin, T. Sulka, J. Tomanová and M. Vozár, "Voice Analysis
Using PRAAT Software and Classification of User Emotional
State," International Journal of Interactive Multimedia &
Artificial Intelligence, vol. 5, no. 6, pp. 33-42, 2019.

68

[34] P. Boersma, "Optimality-Theoretic Learning in the Praat
Program," Institute of Phonetic Sciences Proceedings,
Amsterdam, 1999.

[35] J. Setter and J. Jenkins, "State-of-the-Art Review Article:
Pronunciation," Language Teaching, vol. 38, no. 01, pp. 1-17,
2005.

[36] I. Wilson, "Using Praat and Moodle for Teaching Segmental and
Suprasegmental Pronunciation," TESOL Quarterly, vol. 3, no. 1,
pp. 33-43, 2005.

[37] B. Gorjian, A. Hayati and P. Pourkhoni, "Using Praat Software In
Teaching Prosodic Features To EFL," Procedia - Social and
Behavioral Sciences, Izmir, 2013.

[38] P. Boersma and V. v. Heuven, "Speak and unSpeak with PRAAT,"
Glot International, vol. 5, no. 9-10, pp. 341-347, 2001.

[39] J.-P. Goldman and A. C. Simon, "ProsoBox: a Praat Plugin for
Analysing Prosody," Acts of the 10th Speech Prosody
Symposium, Tokyo, 2020.

[40] W. Styler, "Using Praat for Linguistic Research," 25 December
2017. [Online]. Available:
http://wstyler.ucsd.edu/praat/UsingPraatforLinguisticResearchLat
est.pdf. [Accessed 6 June 2020].

[41] N. Chomsky and M. Halle, The Sound Pattern of English. The
First MIT Press Paperback Edition. Third Printing, Cambridge,
Massachusetts: The MIT Press, 1995.

[42] L. Bauer, "When is a Sequence of Two Nouns a Compound in
English?," English Language and Linguistics, vol. 2, p. 65–86,
1998.

[43] L. Bauer, "Adjectives, Compounds and Words," Nordic Journal
of English Studies, vol. 3.1, Special Issue: Worlds of Words: A
Tribute to Arne Zettersten, p. 7–22, 2004.

[44] I. Plag, "The Variability of Compound Stress in English:
Structural, Semantic, and Analogical Factors," English Language
and Linguistics, vol. 10, no. 1, p. 143–172, 2006.

[45] L. Bauer, Compounds and Compounding, Cambridge: Cambridge
University Press, 2017.

[46] M. Johnston and F. Busa, "Qualia Structure and the
Compositional Interpretation of Compounds," Proceedings of the
ACL SIGLEX Workshop on Breadth and Depth of Semantic
Lexicons, Santa Cruz, California, 1996.

[47] I. Plag, G. Kunter and S. Lappe, "Testing Hypotheses about
Compound Stress Assignment in English: A Corpus-Based
Investigation," Corpus Linguistics and Linguistic Theory, vol. 3,
no. 2, pp. 199-232, 2007.

[48] I. Plag, "Compound Stress Assignment by Analogy: The
Constituent Family Bias," Zeitschrift für Sprachwissenschaft, vol.
29, no. 2, pp. 243-282, 2010.

[49] M. J. Bell and I. Plag, "Informativeness is a Determinant of
Compound Stress in English," Journal of Linguistics, vol. 48, no.
3, pp. 485-520, 2012.

[50] M. Johnston, B. Boguraev and J. Pustejovsky, "The Acquisition
and Interpretation of Complex Nominals," Working Notes of
AAAI Spring Symposium on the Representation and Acquisition
of Lexical Knowledge, Stanford, California, 1995.

[51] L. Polanyi, Telling the American Story: A Structural and Cultural
Analysis of Conversational Storytelling, Cambridge,
Massachusetts: The MIT Press, 1989.

[52] K. Higuchi, "Introduction to KH Coder," 6 June 2020. [Online].
Available: https://khcoder.net/en/. [Accessed 6 7 2020].

[53] S. A. García, N. O. Martínez, T. C. Carabel and I. F. Suárez,
"Occupational Accidents and Their Prevention in the Spanish
Digital Press," Revista Latina de Comunicación Social, vol. 72,
pp. 1608-1625, 2017.

[54] K. Takamatsu, Y. Kozaki, A. Kishida, K. Bannaka, K. Mitsunari
and Y. Nakata, "Analyzing Students’ Course Evaluations Using
Text Mining: Visualization of Open-Ended Responses in Co-
Occurrence Network," PEOPLE: International Journal of Social
Sciences, vol. 4, no. 3, pp. 142-153, 2018.

[55] N. Wang, "Potential for Teaching Materials for Advanced
Reading Comprehension with the Use of Text Mining: A Report
on the Practice of Using KH-Coder," Senshu University Institute
of Humanities Monthly Bulletin, vol. 304, no. 1, pp. 19-29, 2020.

[56] R. Shineha and M. Tanaka, "Deprivation of Media Attention by
Fukushima Daiichi Nuclear Accident: Comparison Between
National and Local Newspapers," Resilience: A New Paradigm
of Nuclear Safety - From Accident Mitigation to Resilient Society
Facing Extreme Situations, J. Ahn, F. Guarnieri and K. Furuta,

Eds., Cham, Springer International Publishing, pp. 111-125,
2017,.

[57] O. Ylijoki and J. Porras, "Conceptualizing Big Data: Analysis of
Case Studies," Intelligent Systems in Accounting, Finance and
Management, vol. 23, no. 4, pp. 295-310, 2016.

[58] P. Nattuthurai and A. Aryal, "Content Analysis of Dark Net
Academic Journals from 2010-2017 Using KH Coder," ACET
Journal of Computer Education and Research, vol. 12, no. 1, pp.
25-35, 2018.

[59] K. Benoit and A. Herzog, "Text Analysis: Estimating Policy
Preferences from Written and Spoken Words," Analytics, Policy
and Governance, J. Bachner, B. Ginsberg and K. Hill, Eds., New
Haven, Connecticut, Yale University Press, pp. 137-159, 2017.

[60] S. Hori, "An Exploratory Analysis Of The Text Mining Of News
Articles About “water And Society”," WIT Transactions on The
Built Environment, vol. 168, pp. 501-508, 2015.

[61] S. Palmer and M. Campbell, " Text Analytics Visualisation of
Course Experience Questionnaire Student Comment Data in
Science and Technology," AAEE 2015: Proceedings of the
Australasian Association for Engineering Education 2015
Annual Conference, Geelong, Victoria, 2015.

[62] M. D. Đurić, "Some Aspects of the Discourse Pertaining to
Digital Musems of Digital Art," MELISSA - Museums, Ethics,
Library and Information Science, Studies, Archives, vol. 16, no.
1, pp. 125-146, 2017.

[63] D. Biber, Variation across Speech and Writing, Cambdridge:
Cambridge University Press, 1995.

[64] C. Krstev, Processing of Serbian: Automata, Texts and Electronic
Dictionaries, Belgrade: Faculty of Philology, University of
Belgrade, 2008.

[65] R. Carston, "Language and Cognition," Linguistics: The
Cambridge Survey, 3: Language: Psychological and Biological
Aspects, Cambridge, Cambridge University Press, pp. 38-68,
1989.

[66] D. Vitas, S. Koeva, C. Krstev and I. Obradović, "Tour du monde
through the dictionaries," Actes du 27eme Colloque International
sur le Lexique et la Grammaire, L'Aquila, 2008.

[67] E. Loper and S. Bird, "NLTK: The Natural Language Toolkit,"
Proceedings of the ACL-02 Workshop onEffective tools and
methodologies for teaching natural language processing and
computational linguist, Philadelphia, Pennsylvania, 2002.

[68] S.Vijayarani and R.Janani, "Text Minijng: Open Source
Tokenization Tools - An Analysis," Advanced Computational
Intelligence: An International Journal (ACII), vol. 3, no. 1, pp.
37-47, 2016.

[69] S. Bird, E. Klein, E. Loper and J. Baldridge, "Multidisciplinary
Instruction with the Natural Language Toolkit," Proceedings of
the Third Workshop on Issues in Teaching Computational
Linguistics (TeachCL-08), Columbus, Ohio, 2008.

[70] S. Bird, E. Klein and E. Loper, Natural Language Processing
with Python, Sebastopol, California & Cambridge: O’Reilly
Media, Inc., 2009.

[71] J. Perkins, Python Text Processing with NLTK 2.0 Cookbook,
Birmingham: Packt Publishing Ltd., 2010.

[72] S. Bromberger, "Types and Tokens in Linguistics," Reflections
on Chomsky, A. George, Ed., Oxford, Basil Blackwell, pp. 58-89.
1990.

[73] S. Bromberger, On What We Know We Don't Know: Explanation,
Theory, Linguistics, and How Questions Shape Them, Chicago;
London; Stanford: The University of Chicago Press; Center for
Study of Language and Information, 1992.

[74] P. H. Matthews, The Concise Oxford Dictionary of Linguistics,
Oxford: Oxford University Press, 2005.

[75] H. G. Widdowson, Linguistics, Oxford: Oxford University Press,
1996.

[76] S. Bird, E. Klein and E. Loper, "Language Processing and
Python," 2009. [Online]. Available:
http://www.nltk.org/book_1ed/ch01.html. [Accessed 2 August
2020].

[77] D. Crystal, A First Dictionary of Linguistics and Phonetics,
Second Impression, London: Andre Deutsch, 1983.

[78] F. Palmer, Grammar. Second Edition, Harmondsworth: Penguin
Books Ltd.,1986.

[79] J. Aitchison, Cassell’s Dictionary of English Grammar, London:
Cassell & Co., 2001.

69

[80] R. L. Trask, The Penguin Dictionary of English Grammar,
Harmondsworth: Penguin Group Ltd., 2000.

[81] S. Pinker, The Language Instinct: How the Mind Creates
Language, New York: HarperPerennial, 1995.

[82] S. Thomas, Computers: Their History, Present Applications, and
Future, New York: Holt, Rinehart and Winston, Inc., 1965.

70

	Free Software Tools for Computational Linguistics: An Overview
	I. Introductory Remarks
	II. Free Software Tools
	III. The Comparison of the Selected Free Software Tools
	IV. Concluding Remarks
	References

