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From genome-scale experimental studies to imaging data, behavioral foot-

prints, and longitudinal healthcare records, the convergence of big data in

cancer research and the advances in Artificial Intelligence (AI) is paving

the way to develop a systems view of cancer. Nevertheless, this biomedical

area is largely characterized by the co-existence of big data and small data

resources, highlighting the need for a deeper investigation about the cross-

talk between different levels of data granularity, including varied sample

sizes, labels, data types, and other data descriptors. This review introduces

the current challenges, limitations, and solutions of AI in the heteroge-

neous landscape of data granularity in cancer research. Such a variety of

cancer molecular and clinical data calls for advancing the interoperability

among AI approaches, with particular emphasis on the synergy between

discriminative and generative models that we discuss in this work with sev-

eral examples of techniques and applications.

1. Introduction

Data granularity refers to the level of detail observable

in the data. The finer the granularity, the more detailed

are the observations. In cancer research, data granular-

ity reflects the amount of molecular and clinical infor-

mation that is collected about a patient or a group of

patients, not only in terms of dataset size but also in

terms of diversity of measurements, scales, and data

types. At present, the available data in cancer research

may not always provide the level of granularity required

for effective decision-making. For instance, healthcare

resources exhibit a shortage of information about speci-

fic cancer subtypes, minority groups, and rare cancers,

such as the case of pediatric oncology [1]; national can-

cer registries tend to collect mainly first-line treatments

and display reduced accessibility to actionable informa-

tion [2]; and exigent legal and ethical approvals hurdle

the timeliness of cancer data availability [3]. In this sce-

nario, several initiatives devoted to some of these facets

have been created, such as the Collaboration for Oncol-

ogy Data in Europe (CODE; www.code-cancer.com),

Rare Cancers Europe (RCE; www.rarecancerseurope.

org), and the Cancer Drug Development Forum

(CDDF) [4]. Nevertheless, the granularity of oncological

data is highly scattered worldwide, resulting in a contin-

uum of scale, quality, and completeness of the available

datasets, that we refer to as data continuum. This aspect

is particularly relevant in the context of the development

of Artificial Intelligence (AI) systems, which are largely

characterized by data-intensive computational modeling

approaches to assist clinical decision-making [5–7].
In this work, we examine how cancer data granular-

ity (from population studies to subgroups stratifica-

tion) relates to multiple AI approaches (from deep

learning to linear regression), and provide possible
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solutions to reconcile the interoperability between

these two components to ensure modeling strategies

within the data continuum (Fig. 1). This work brings

forward the specific need of developing AI techniques

able to transcend the current limitations in their appli-

cations to the heterogeneous levels of granularity typi-

cal of cancer datasets.

The article is structured in three parts. In the first

part, we analyze the ongoing process of confluence of

big data and AI in cancer research (‘Big data in cancer

research’ and ‘The role of AI in cancer research’), and

report on the main data types and areas of application

(‘Main areas of application and data types of AI in can-

cer research’). In the second part, we challenge the cur-

rent focus on big data by examining two large-scale

projects, namely the Cancer Genome Atlas (TCGA) and

the Cancer Epidemiology Descriptive Cohort Database

(CEDCD), under the lens of data granularity (‘Hetero-

geneous levels of data granularity in cancer research’),

and provide an overview on multiple AI approaches

that allow learning at different levels of data granularity

as well as discuss challenges and limitations (‘Sample

size and label availability: limitations and solutions’). In

the third part, we deliver the conclusions to the article

and a perspective view on the future of AI in cancer

research (‘Conclusions and Perspectives’).

2. Big data in cancer research

Cancer research has been witnessing unprecedented

innovations in recent years, including a major

paradigm shift from histological level to molecular

level characterization of cancers with a strong impact

on treatment and medical practice [8,9]. An illustrative

example of this change is the current, finer categoriza-

tion of blood cancers into multiple subtypes based on

the patient’s genetic information [10]. Moreover, new

technologies, such as CRISPR gene editing [11] and

CAR T-cell therapy [12], are pushing the frontiers of

clinical intervention and research. Additionally, single-

cell multi-omics and imaging of preclinical personal-

ized cancer models, such as organoids [13], are proving

extremely valuable in dissecting key aspects of tumor

evolution, as demonstrated by the research activities of

initiatives such as LifeTime [14].

Such variety of data, including structure and unstruc-

tured clinical and molecular information (e.g., genetic

tests, medical records, imaging data), outlines a horizon

of possibilities for advancing oncology. Efforts to fill

the gap between molecular and clinical information

have been proposed, such as the concept of the Patient

Dossier [15], which aims to facilitate the information

flow between complex genomic pipelines and basic

queries involving several aspects of the patient’s health.

Nevertheless, the progress in our understanding of can-

cer is not dependent on the sole availability of large

amounts of high-quality and diversified data. The ongo-

ing accumulation of records on a large number of

patients is reinforcing the pressing need of cancer

research and clinical care to embrace computational

solutions to effectively utilize all this information. The

effective utilization of cancer big data entails all the

Fig. 1. The interplay between data generated with different levels of granularity and the multiplicity of AI approaches in cancer research.
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steps from data processing and storage to data mining,

analysis, and final applications, such as the identifica-

tion of patient-specific oncogenic processes [16] and

biomarkers [17]. Moreover, the continuous improve-

ment of data quality through standardization proce-

dures that ensure responsible molecular and clinical

data sharing, interoperability, and security is a key

aspect for cancer research that is strongly catalyzed by

initiatives such as the Global Alliance for Genomics

and Health (GA4GH; https://www.ga4gh.org).

As traditional data management methods cannot

handle the scale and variety of cancer data acquired and

generated daily, advanced infrastructures for permanent

archiving and sharing are presently flourishing. An

example of an extensive repository of data resulting

from biomedical research projects is the European Gen-

ome-phenome Archive (EGA; https://ega-archive.org/).

EGA collects various data types, including public access

data (e.g., somatic mutation, gene expression, anon-

ymized clinical data, protein expression) and controlled

access data (e.g., germline genetic variants). EGA stores

data from cancer-centric data sources, including TCGA,

the International Cancer Genome Consortium (ICGC),

the Clinical Proteomic Tumor Analysis Consortium

(CPTAC), and the OncoArray Consortium.

3. The role of AI in cancer research

Although advanced solutions for big data management

are facilitating the handling of biomedical information,

the road to clinical success (e.g., better prevention and

diagnosis, improved treatment decisions, effective

patient-clinical trial matching) must involve ways to

leverage the data and to be able to gain actionable

insights from it [18,19]. Predictive analytics and machine

learning are thriving areas of research and application

in cancer research, characterized by interdisciplinarity

and diversity of approaches, which henceforth we collec-

tively refer to as AI. At present, 6 Food and Drug

Administration (FDA)-approved AI-based radiological

devices with applications in oncology are available for

mammography analyses and computer tomography

(CT)-based lesion detection [20], and 74 AI algorithms

for digital pathology have received FDA clearance [21].

Moreover, more than 300 AI-related clinical trials have

been registered at ClinicalTrial.gov [22] and seven ran-

domized trials assessing AI in medicine have been pub-

lished [23]. These examples are some of the many AI

systems that stem from research and development

advances in real-time decision-making for health care,

which are systematically surveyed and compared [24].

Biomedical big data coupled with the ability of

machines to learn and find solutions to problems have

ensured that AI is currently playing a major role in the

progress of biomedicine [25–27] and particularly cancer

research [28,29]. Indeed, big data and AI complement

each other, as AI feeds off of big data, from which it can

learn how to carry out tasks such as classifying groups of

patients, forecasting disease progression, and delivering

adaptive treatment recommendations. AI and big data

have the potential to fathom and overcome issues such as

the reliability of biomarkers and genetic information

[30,31], the potential disparities in patient populations

[32,33], and the limited understanding of side effects [34]

despite the growing promise of combination therapy

[35,36] and drug repurposing [37].

The convergence of AI and big data can help interlace

the threads of the complex landscape of oncological

medicine resources, which is currently pervaded by a

high level of heterogeneity and lack of standards [38]. In

this regard, international efforts, such as the European-

Canadian Cancer Network (EUCANCan; https://euca

ncan.com/) and individualizedPaediatricCure (https://

ipc-project.eu/), are advancing the potential of federated

data infrastructures to improve standardized data

reporting and the development of cancer-specific AI

solutions.

To facilitate this progress, automated strategies for

end-to-end AI processes operating on big data, from

data governance to deployment of AI applications, have

been developed. The intensive workloads of AI operating

on big data demand computational resources that must

be able to achieve extreme scale and high performance

while being cost-effective and environmentally sustain-

able [39]. High performance computing (HPC), or super-

computing, architectures are facilitating the deployment

of pioneering AI applications in biomedicine [40,41]. In

this view, HPC represents a critical capacity to gain com-

petitive advantages, including not only faster and more

complex computation schemes but also at lower costs

and higher impact. Innovative software and hardware

solutions, as well as model training implementations that

support fine-grained parallelism and restrain memory

costs, aim to accelerate the forthcoming convergence of

AI and HPC. For this reason, community-driven bench-

marking infrastructures for objective and quantitative

evaluation of bioinformatics methods and algorithms

[42,43] as well as domain-specific evaluation campaigns

[44] are acquiring an increasing importance within the

cancer research community.

4. Main areas of application and data
types of AI in cancer research

The variety of modalities of available data (i.e., molec-

ular profiles, images, texts) enables the full potential of
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AI in cancer research. For instance, imaging data has

been used to train AI models for skin cancer classifica-

tion [45] and lymph node metastasis detection [46],

while sequencing data has been used for variant func-

tional impact assessment [47] and patient survival pre-

diction [48]. These examples employ artificial neural

networks, specifically deep learning, which has marked

the biggest trend in AI over the last decade [49]. Deep

learning has largely been applied to cancer data inte-

gration and modeling, such as the classification of

medical images and digital health data, often in combi-

nation with processing of electronic health records

(EHRs), and included in systems supporting physi-

cian–computer interactions [50].

In an ideal scenario, a comprehensive collection of

cancer patient data should include both data derived

from the patient (e.g., demographic information, famil-

ial history, symptoms, comorbidities, histopathological

features, immunohistochemistry, nucleic acid sequenc-

ing, biochemical analyses, digital images, experience

measurements using digital devices) but also results

generated from the application of AI. In this regard,

the main AI implementations in cancer research

encompass (a) statistical and mathematical models of

the system under study and (b) simulations of such

models aiming to explore the system’s properties and

behavior in different conditions. The main data types

employed in such models and simulations comprise

multi-omics and immunogenomics data, longitudinal

data (e.g., EHRs), behavioral data (e.g., wearable

devices and social media), and imaging data [51].

Multi-omics data play a central role in cancer research.

Given the interplay between different biological phenom-

ena (e.g., gene expression, epigenetic modifications, pro-

tein–protein interactions), the development of

approaches to integrate multiple layers of data has

become a subject of profound interest in this area. Har-

monizing such heterogeneous sources of information

represents a challenge that, in recent years, has led to the

development of platforms that leverage data of large-

scale pan-cancer initiatives and offer analytical func-

tions, such as LinkedOmics [52] andDriverDBv3 [53].

Recent developments in AI for cancer research are

contributing significantly to the field of cancer

immunology, in particular neoantigen prediction.

Thanks to the predictive power of deep learning, large-

scale sequencing data of neoantigens and major histo-

compatibility complex (MHC) molecules can be used

to test possible binding of truncated proteins of a

tumor cell and the patient’s human leukocyte antigen

(HLA) system, enabling the discovery of treatment tar-

gets that would be both patient- and tumor-specific.

Following this concept, a recent study was able to

validate a personalized vaccine for melanoma using

candidate neoantigens obtained with a tool using deep

learning, NetMHCpan [54,55]. Other recently devel-

oped tools using deep learning are devoted to the pre-

diction of antigen presentation in the context of HLA-

class II, such as MARIA [56] and NetMHCIIpan [57].

Being promising targets for personalized immunothera-

pies, neoantigen prediction is a blooming area for

which expert recommendations have been recently set

out by the European Society for Medical Oncology

(ESMO) including optimal selection schemes for candi-

date prioritization, pipelines for binding affinity pre-

diction and mutated peptide annotation and

comparison [58].

Deep learning is widely employed in the processing

and analysis of medical imaging data which has resulted

in a wide variety of applications, achieving remarkable

results in prognosis prediction from routinely obtained

tissue slides [59], tumor detection and classification

[45,60] and, more recently, real-time tumor diagnosis

[61,62].

It is important to note that the collection of EHRs is

growing at levels comparable to those of genomic and

molecular data. In this regard, EHRs represent a type of

data whose processing has proven AI particularly chal-

lenging. Indeed, the high variety of clinical terminology,

highly specialized words, abbreviations and short notes,

makes EHRs content processing through general-pur-

pose Natural Language Processing (NLP) models extre-

mely arduous. Recent efforts focus on the generation of

unified semantic systems and the organization of com-

munity challenges [63] from which automatically anno-

tated corpora can be derived, which will facilitate the

progress in this area [64,65]. One of the main challenges

that all these advanced technologies, including modern

approaches to digital and systems medicine, are currently

facing is their integration and clinical exploitation in the

health systems [66]. Indeed, many complex aspects, such

as regulation, commercialization, and ethics, are playing

a central role in the operational transformation of mod-

ern cancer care. For instance, despite the astounding

advances in smartphones and Internet of Things (IoT)

technologies, which largely facilitate the collection of

patient-generated health data, regulatory priorities and

positions as well as limitations in device-based data ana-

lytics directly affect the slow uptake of such digital medi-

cine solutions in oncology [67].

5. Heterogeneous levels of data
granularity in cancer research

Despite the availability of cancer big data, a promi-

nent feature of the current data landscape in oncology
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is the imbalance between the amount of data per

patient and the cohort size. Indeed, while thousands to

millions observables per patient are routinely gener-

ated, a typical cohort size of specific groups of patients

is relatively small [68].

As an example, we examine the curated clinical data

of TCGA project [69] (Fig. 2A,B). The average num-

ber of unique patients per cancer type (N = 33) is

335.78 (on average, 182.93 male and 186.32 female

individuals). As expected, these numbers reduce when

Fig. 2. Demographic features of the individuals represented in TCGA and CEDCD projects. (A) Average number of individuals per cancer

type in TCGA disaggregated by sex; (B) average number of individuals per cancer type in TCGA disaggregated by race and sex; (C) average

number of individuals per cancer type in CEDCD cohort studies disaggregated by sex; and (D) average number of individuals per CEDCD

cohort studies disaggregated by race and sex.
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disaggregated by race (on average, 131.62 White, 13.43

Black or African American, 14.64 Asian male individ-

uals, and 139.12 White, 21.17 Black or African Ameri-

can, 10.96 Asian female individuals) and, even more,

by tumor stage, if this annotation is available. For

instance, the 87 patients with mesothelioma, a rare but

fatal cancer causally linked to asbestos exposure [70],

distribute unevenly in the six stages (stage I, IA, IB,

II, III, IV) by sex and race. White males are the most

represented patients (80.4%), mostly appearing in late

stages, reflecting both the gradual onset of the disease

[71] and its incidence in developing countries that have

consumed asbestos over past decades (83% in males

and 17% in females as of 2017 in the United King-

dom; source: https://www.cancerresearchuk.org/). This

observation highlights not only the overriding impor-

tance of early detection and better risk assessment

tools based on socio-economic factors but also the

need for effective AI-based approaches to learn from

the little data that might be available.

A similar trend can be observed in prospective

cohort studies, such as those reported in the CEDCD

(https://cedcd.nci.nih.gov/), which collects large obser-

vational population studies aimed to prospectively

investigate the environmental, lifestyle, clinical, and

genetic determinants of cancer incidence (Fig. 2C,D).

As of September 2020, the average number of partici-

pants diagnosed with cancer per cohort (N = 61) is

14624.65. However, when disaggregated by sex and

cancer type (N = 25), this number decreases to an

average of 328.50 women and 279.75 men per cancer

type in each cohort. Also, the cohort composition is

markedly skewed toward specific race categories, with

an average of 19 172.77 White, 1330.83 Black or Afri-

can American, 3420.39 Asian male participants, and

51 347.72 White, 5446.14 Black or African American,

6058.08 Asian female participants per cohort. These

observations highlight the need for devising better

strategies to improve the low enrollment rates in

cohort studies and overcome the obstacles to minority

populations engagement [72,73].

6. Sample size and label availability:
limitations and solutions

In the area of cancer research, a long-standing chal-

lenge is the insufficient availability of massive high-

quality labeled datasets coupling exhaustive molecular

profiles with matching detailed clinical annotations

[18]. In the current scattered scenario, there is a grow-

ing need to exploit the multiplicity of AI approaches

for the nonexclusive utilization of the available data

with different levels of granularity.

Most AI applications in cancer research are mainly

based on two types of learning algorithms: supervised

and unsupervised learning [74–76]. Supervised learning

involves models that map data instances to labels in

order to perform tasks such as classification and

regression. Unsupervised learning involves models that

extract information from data instances without labels

to perform tasks such as clustering and dimensionality

reduction. Additionally, many hybrid types of learning

(e.g., semi-supervised learning) as well as specific learn-

ing techniques (e.g., transfer learning) are largely

employed. All these approaches can be either discrimi-

native or generative, whether they estimate the condi-

tional probability of a label given an instance or the

conditional probability of an instance given a label,

respectively [77]. Thus, discriminative models can dis-

tinguish between different instances, while generative

models can produce new ones.

Label availability and the varied scales of cancer

data call for advancing the interoperability among AI

approaches, in particular the synergy of discriminative

and generative models. These models can be used, in

turn, for inference and data augmentation, feeding

back a finer characterization and accessibility of data

for further training (Fig. 3).

Label availability can guide the choice of an AI

approach or another for either discriminative or genera-

tive purposes. The dearth of ground-truth labels which

are necessary to perform supervised tasks represents

one of the main limitations to the use of AI in many

areas of cancer research. The collection, curation and

validation of labels by experts is an expensive and labo-

rious process resulting in datasets that are too small to

estimate complex models required to answer complex

questions [78]. Models with low statistical power may

lead to nonconvergence as well as biased and inadmissi-

ble outcomes, undermining reproducibility and reliabil-

ity. Beside limited label availability and sample size,

other limiting factors for AI can be identified, such as

number of features, depth of hyperparameter optimiza-

tion, and number of cross-validation folds [79].

When informative and defensible background infor-

mation is available (e.g., previous studies, meta-analy-

ses, expert knowledge), Bayesian statistics may

produce reasonable results with small sample sizes [80–
82]. Indeed, well-considered decisions are strongly

endorsed in the choice of ‘thoughtful’ priors as

opposed to na€ıvely using Bayesian estimation in small

sample contexts. Nevertheless, prior information about

the distribution of the parameters cannot be explicitly

available and often difficult to derive.

If only a very limited amount of labels is available,

AI approaches operating with minimal training data
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exist, including transfer learning and meta-learning

techniques for few-, one-, and zero-shot learning (sur-

veyed in [83,84]). As an example, re-using a model

trained on high-resource language pairs, such as

French-English, can improve translation on low-re-

source language pairs, such as Uzbek-English [85]. Due

to the ability of learning from minimal data, transfer

learning and meta-learning are increasingly gaining

momentum having the potential to mitigate many criti-

cisms over deep learning concerning the requisite exten-

sive computational resources and training data [86].

Transfer learning re-uses the weights of pretrained

models in a similar learning task [87]. For instance, it

has been recently applied to model anticancer drug

response in a small dataset transferring the informa-

tion learnt from large datasets [88]. This study illus-

trates the potential of transfer learning to improve

future drug response prediction performance on

patients by transferring information from patient-

derived models, such as xenografts and organoids.

Nevertheless, although transfer learning is designed to

transfer information from a support domain to a tar-

get domain, very limited target training data can ham-

per the efficient adaptation to a new task even with

shared features between the support and target data.

Meta-learning is based on the concept of ‘learning to

learn’ consisting of improving performance over multi-

ple learning episodes instead of multiple data instances.

Meta-learning learns from the meta-data of previously

experienced tasks, including model configurations (e.g.,

hyperparameter settings), evaluations (e.g., accuracies),

and other measurable properties, enabling the search of

an optimal model, or combinations of models, for a

new task [89]. Recently, meta-learning has been applied

to the prediction of cancer survival [90]. Despite the

high adaptability of meta-learning, this study shows

how the related tasks used for training should contain a

reasonable amount of transferable information to

achieve a significant improvement in performance com-

pared to other learning strategies. For instance, if the

samples of a specific cancer display very unique and dis-

tinct features, learning directly from them may represent

a more effective strategy than learning from other can-

cer samples.

If the training data are only partially labeled, semi-

supervised learning techniques, such as pseudolabeling

and entropy minimization, proved successful and, for

this reason, dedicated standard evaluation practices

have been recently devised [91]. Semi-supervised learn-

ing jointly uses unlabeled and a smaller set of labeled

data to improve the performances of one or both

unsupervised and supervised tasks using the informa-

tion learnt from the other or both [92]. Inherent limi-

tations of semi-supervised learning mainly include

strong assumptions about the feature space carrying

relevant information about the prediction task. In this

regard, the assumed dependency between labeled and

unlabeled sets is deemed to effectively reveal fitting

decision boundaries for predictive models. However, it

has been shown that causal tasks, such as semantic

segmentation in cancer imaging analysis, do not com-

ply with these assumptions [93] and high-quality super-

vised baselines are crucial to assess the added value of

unlabeled data in semi-supervised learning settings.

Fig. 3. Synergy of AI solutions for cancer research in the data continuum. Based on label availability of large and small datasets (e.g., over-

and under-represented cancer subgroups), several learning approaches (supervised, semi-supervised, unsupervised, transfer learning) can be

attained to create both generative and discriminative models. While discriminative models can be used to identify smaller subsets from the

totality of big data (represented as small dashed rectangle on the upper left corner), generative models can be used for data augmentation

by producing large volumes of synthetic instances (represented as a large dashed rectangle on the upper right corner).
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If enough labeled data are initially available for

training, data augmentation can be achieved using gen-

erative models based on neural networks, such as gen-

erative adversarial networks (GANs) [94], variational

autoencoders [95], and transformer models [96]. These

approaches display technical open challenges that need

further investigation, for instance the training instability

and low mode diversity of GANs [97]. Oversampling data-

sets can also be achieved by creating synthetic instances to

increase the training data and avoid class imbalance [98].

Moreover, similar to image data augmentation techniques

and synonym replacement in texts, other methods based on

datamanipulations and new instances interpolation, such as

the Synthetic Minority Oversampling Technique (SMOTE)

algorithm [99], have been proposed.

Synthetic data generation represents a promising

solution to the ethical and privacy barriers that may

prevent in-depth data analysis and modeling of

patients’ information. For instance, the generation of

synthetic data points has been exploited as a privacy-

preserving approach to overcome the limitations and

difficulties of data anonymization [100]. Indeed, instead

of partially de-identifying data or censoring and remov-

ing protected variables, synthetic patient records can be

fabricated from real-world data and used for model

development and healthcare applications testing. More-

over, synthetic data can also be generated to specifically

mirror the clinical features of a patient, thus creating a

so-called digital twin or avatar for computationally

evaluation of personalized drug treatments [101].

7. Conclusions and perspectives

Cancer is a disease that exhibits features of complex

systems (e.g., self-organization, emerging patterns,

adaptive and collective behavior, nonlinear dynamics).

Cancer complexity is exemplified by the definition of

the so-called hallmarks of cancer [102], which holds a

systems view of the disease to be investigated through

computational approaches. Computational cancer

research is a multidisciplinary area aimed to advance

the biomedical understanding of cancer by harnessing

the power of data analytics and AI to advance in both

basic and clinical settings [103,104]. With the rapid

development of precision medicine and big data appli-

cations in cancer research, AI is setting down excep-

tional opportunities and ambitious challenges in this

area [105,106], facilitating the progress toward individ-

ually tailored preventive and therapeutic interventions.

The acquisition of a deep understanding of such

interindividual differences relies on the development of

AI systems that enable the identification of biomedi-

cally relevant patterns from several data from multiple

modalities, spanning a varied range of data types, and

displaying heterogeneous levels of granularity. Among

the many details defining data granularity in cancer

research, such as scales, measurements, and data types,

sample size and label availability are the most evident

factors that have a direct impact on the application of

AI in cancer research. The range of AI modeling

approaches that allow learning from both large and

small datasets to discriminate or generate observations

show the extraordinary potential of operating within a

continuum of dataset sizes. This synergy among

multiple learning techniques, namely supervised,

semisupervised, transfer, and unsupervised learning,

encompasses the entire spectrum of data granularity,

including both the effective generalization from few

examples with applications to multidimensional data,

and the effective ability of models trained on big data

to uncover small subgroups and subtle details. These

AI approaches are not short of limitations and general

assumptions that need to be considered before na€ıvely

apply them. In this regard, it is particularly important

to develop robust systems for testing and benchmark-

ing AI applications, with adequate data resources and

cleaver strategies that can be converted into certifica-

tions for the use of AI in real-world medical scenarios,

as recently proposed for diagnostic imaging algorithms

[107]. We envisage a growing use of such a multiplicity

of AI approaches in cancer research that will enable

an interconnected integration of automatic learning

processes within the data continuum, from big data to

small data as well as from small data to big data.
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