Functional Correctness of C implementations
of Dijkstra’s, Kruskal’s, and Prim’s Algorithms

Abstract. We develop machine-checked verifications of the full func-
tional correctness of C implementations of the eponymous graph algo-
rithms of Dijkstra, Kruskal, and Prim. We extend Wang et al.’s Certi-
Graph platform [59] to reason about labels on edges, undirected graphs,
and common spatial representations of edge-labeled graphs such as adja-
cency matrices and edge lists. We certify binary heaps, including Floyd’s
bottom-up heap construction, heapsort, and increase/decrease priority.
Our verifications uncover subtle overflows implicit in standard text-
book code, including a nontrivial bound on edge weights necessary to
execute Dijkstra’s algorithm; we show that the intuitive guess fails and
provide a workable refinement. We observe that the common notion that
Prim’s algorithm requires a connected graph is wrong: we verify that
a standard textbook implementation of Prim’s algorithm can compute
minimum spanning forests without finding components first. Our verifi-
cation of Kruskal’s algorithm reasons about two graphs simultaneously:
the undirected graph undergoing MST construction, and the directed
graph representing the forest inside union-find. Our binary heap verifi-
cation exposes precise bounds for the heap to operate correctly, avoids a
subtle overflow error, and shows how to recycle keys to avoid overflow.

Keywords: separation logic - graph algorithms - Coq - VST

1 Introduction

Dijkstra’s eponymous shortest-path algorithm [22] finds the cost-minimal paths
from a distinguished source vertex source to all reachable vertices in a directed
graph. Prim’s [50] and Kruskal’s [36] algorithms return minimal spanning trees
for undirected graphs. Binary heaps are the first priority queue one typically
encounters. These algorithms/structures are classic and ubiquitous, appearing
widely in textbooks [18,56,28,55,31,54] and in real routing protocol libraries.

In addition to decades of use and textbook analysis, recent efforts have ver-
ified one or more of these algorithms in proof assistants and formally proved
claims about their behavior [13,46,12,39,25]. A reasonable person might think
that all that can be said, has been. However, we have found that textbook code
glosses over a cornucopia of issues that routinely crop up in real-world settings:
under/overflows, integration with performant data structures, manual memory
(de-)allocation, error handling, casts, memory alignment, etc. Further, previous
verification efforts with formal checkers often operate within idealized formal
environments, which likewise leads them to ignore the same kinds of issues.

In our work, we provide C implementations of each of these algorithms/data
structures, and prove in Coq [17] the full functional correctness of the same
with respect to the formal semantics of CompCert C [43]. Although our C code
is developed from standard textbooks, we uncover a number of subtleties that
appear to be absent from the algorithmic and formal methods literature:

§3.2 an overflow in Dijkstra’s algorithm whose avoidance requires a nontrivial
refinement to the algorithm’s precondition to bound edge weights;

§4.2 that the specification of Prim’s algorithm can be improved to apply to dis-
connected graphs without any change to textbook (pseudo-)code;

§4.2 the presence of a wholly unneeded line of (pseduo-)code in Prim’s algorithm,
and an associated unneeded function argument;

§5 several potential overflows in binary heaps equipped with Floyd’s linear-time

build-heap function and an edit-priority operation.

We wish to develop general and reusable techniques for verifying graph-
manipulating programs written in real programming languages. This is a sig-
nificant challenge, and so we choose to leverage and/or extend three large ex-
isting proof developments to state and prove the full functional correctness of
our code in Coq: CompCert, the Verified Software Toolchain [4] (VST) separa-
tion logic [48] deductive verifier, and the CertiGraph project [59]. Our primary
extensions are to the latter, and include:

§2.1 pure/abstract reasoning for graphs with edge labels, (e.g. a distinguished
edge-label value for “infinity” that indicates invalid /absent edges);

§2.2 spatial representations and associated reasoning for edge-labeled graphs (sev-
eral flavors of adjacency matrices as well as edge lists);

§2.3 pure reasoning for undirected graphs (e.g., notions of connectedness).

We prove that our pure machinery and our spatial machinery are well-isolated
from each other by verifying several implementations (of each of Dijkstra and
Prim) that represent graphs differently in memory but reuse the entire pure
portion of the proof. Likewise, we show that our spatial reasoning is generic
by reusing graph representations across Dijkstra and Prim. Our verification of
Kruskal proves that we can reason about two graphs simultaneously: a directed
graph with vertex labels for union-find and an undirected graph with edge labels
for which we are building a spanning forest. In addition to our verification of
Dijkstra, Prim, and Kruskal, we develop increased lemma support for the preex-
isting CertiGraph union-find example [59]. Our extension to “base VST” (e.g.,
verifications without graphs) primarily consists of our verified binary heap.
The remainder of this paper is organized as follows:

§2 We explain our extensions to CertiGraph: edge-labeled graphs, spatial rep-
resentations of such graphs, and undirected graphs.

§3 We explain our verification of Dijkstra’s algorithm in some detail, discuss a
potential overflow, and refine the precondition to avoid it.

§4 We overview our verifications of the Minimum Spanning Tree/Forest al-
gorithms of Prim and Kruskal, focusing on high-level points such as our
improved novel specification of Prim’s.

§5 We overview our verification of binary heaps, including a discussion of Floyd’s
bottom-up heap construction and the edit_priority operation.

§6 We briefly discuss engineering, e.g. statistics for our formal development.

§7 We discuss related work, outline future research directions, and conclude.

Our results are completely machine-checked in Coq and available to reviewers [3].

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 3

2 Extensions to CertiGraph

We begin with the briefest of introductions to CertiGraph’s core structure and
then detail our extensions we make to various levels of CertiGraph in service of
our Dijkstra, Prim, and Kruskal verifications. Ignoring modularity and eliding
elements not used in our work, a mathematical graph in CertiGraph is a tuple:
(V, €, vvalid, evalid, src, dst, vlabel, elabel, sound). V/E are the carrier
types of vertices/edges, vvalid/evalid place restrictions specifying whether a
vertex/edge is valid!, and src/dst : & — V map edges to their source/des-
tination. Labels are allowed on vertices and edges, and a soundness condition
allows custom application-specific restrictions [59]. Mathematical graphs connect
to graphs in computer memory via spatial predicates in separation logic.

2.1 Pure reasoning for adjacency matrix-represented graphs

Two of our algorithms operate over graphs represented as adjacency matrices.
Not every legal graph can be represented as an adjacency matrix, so we develop
a unified, reusable, and extendable soundness condition SoundAdjMat that a
graph must satisfy in order for it to be represented as an adjacency matrix.
SoundAdjMat is parameterized by the graph’s size and a distinguished num-
ber inf. We restrict most fields in the tuple: (V = Z, £ = Z x Z, vvalid =
M. 0 < v < size,evalid =..., src = fst,dst = snd, vlabel, elabel, sound =
...). We also restrict the carrier type of vertex labels to unit and edge labels
to Z. We require the parameters size and inf be strictly positive and repre-
sentable on the machine. Most critical, however, is the semantics of evalid: a
valid edge must have a machine-representable label and that label cannot have
value inf; an invalid edge must have label inf. Last, the graph must be finite.
The restriction on edge labels is necessary because we are working with la-
beled adjacency matrices on a real system: we need to set aside a distinguished
number inf such that edgeweight inf indicates the absence of an edge. We can-
not prescribe some inf because client needs can vary widely. For instance, our
verifications of Dijkstra’s and Prim’s algorithms require subtly different infs.
SoundAdjMat guarantees spatial representability as an adjacency matrix,
but it can be extended with further algorithm-specific restrictions before be-
ing plugged in for sound. Dijkstra’s algorithm requires positive edge weights,
and—as we will discuss in §3.2—mnontrivial restrictions on size and inf.

2.2 New spatial representations for edge-labeled graphs

We give predicates for adjacency matrices and edge lists for edge-labeled graphs.

! Validity denotes presence in the graph: e.g., if we are using Z as the carrier type V,
and have only 7 vertices, then vvalid(z) is probably the proposition 0 < x < 7).

Adjacency matrices. Adjacency matrices enable efficient label access for edge-
labeled graphs. We support three common adjacency matrix representations: a
stack-allocated 2D array int graphl[size] [size], a stack-allocated 1D array
int graph[sizexsize], and a heap-allocated 2D array int **graph. To the
casual observer, these are essentially interchangeable, but that is a mistake when
thinking spatially. Apart from the arithmetic that the second flavor uses to access
cells, there is a more subtle point: the first and second enjoy a contiguous block
of memory, but the third does not: it is an allocated “spine” with pointers to
separately-allocated rows. For a taste, the spatial representation of the first is:

arr__addr(ptr, i,size) = ptr + (i X size)

array(ptr, list) 2 %k (ptr + i) — list[i])
1€(0,|list|)

A

) =

arr__rep(v, ¢, ptr let row := graph2mat(vy)[¢] in

array(arr__addr(ptr, i, |row|), row)
A

Xarr_rep(v,v,g_addr)
vEY

graph_rep(vy, g_addr,)

We use the separation logic * in its iterated form to say that the arrays are
separate in memory. We elide details relating to object sizes, pointer alignment,
and so forth, although our formal proofs handle such matters. Of particular
note are graph2mat, which performs two projections to drag out the graph’s
nested edge labels into a 2D matrix, and arr__addr, which in this instance simply
computes the address of any legal row 4 from the base address of the graph.
Notice that this graph__rep predicate ignores its third argument. To represent a
heap-allocated 2D array we can still use graph2mat but can no longer use address
arithmetic; the third parameter is then a list of pointers to the row sub-arrays.
While ironing out these spatial wrinkles, we develop utilities that easily un-
fold and refold our adjacency matrices, thus smoothing user experience when
reading and writing arrays and cells. Of course these utilities themselves vary by
flavor of representation, but the net effect is that users of our adjacency matrices
really can be agnostic to the style of representation they are using (see §3.1).

Edge lists. Edge lists are the representation of choice for sparse graphs. Our C
implementation defines an edge as a struct containing src, dst, and weight,
and defines a graph as a struct containing the graph’s size, edge count, and an
array of edges. Our spatial representation follows this pattern:

graph_rep(v, g__addr,e__addr) 2

(g9_addr — (|v.V|,|v.E|, e_addr)) = array(e_addr,~.E)

2.3 Undirectedness in a directed world

The CertiGraph library presented in [59] supports only directed graphs, and, as
we have seen, bakes direction-reliant idioms such as src and dst deep into its
development. Our challenge is to add support for undirected graphs atop of this.

N o U A W N e

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 5

Our approach is to observe that every directed graph can be treated as an
undirected graph by ignoring edge direction. We develop a lightweight layer of
“undirected flavored” definitions atop of the existing “directed flavored” defini-
tions, state and prove connections between these, and then build the undirected
infrastructure we need. The result is that we retain full access to CertiGraph’s
graph theory formalizations modulo some mathematical bridging.

Our basic “undirected flavored” definitions are standard [18]. Vertices « and
v are adjacent if there is an edge between them in either direction; vertices
are self-adjacent. An valid upath (undirected path) is list of valid vertices that
form a pairwise-adjacent chain. Two vertices are connected when a valid upath
features them as head and foot (essentially the transitive closure of adjacenct).

The definitions above sync up with preexisting “directed flavored” definitions.
Intuitively, undirectedness is more lax than directedness, and so it is unsurprising
that these connections are straightforward weakenings of directed properties. We
next give standard definitions [18] that culminate in minimum_spanning_forest,
which is exactly our postcondition of both Prim’s and Kruskal’s algorithms.?

An undirected cycle (ucycle) is a valid non-empty upath whose first and last
vertices are equal. A connected_graph means that any two valid vertices are
connected. is_partial_graph f g means everything in f is in g. We proceed:

Definition uforest g :=

(V e, evalid g e -> strong_evalid g e) A

(Vv p 1, —ucycle g p 1).
Definition spanning g g' :=

V u v, connected g u v <-> connected g' u v.
Definition spanning_uforest f g :=

is_partial_graph f g A uforest f A spanning f g.
The strong_evalid predicate means that the src and dst of the edge are also
valid, so e.g. a valid edge cannot point to a deleted/absent vertex. The second
conjunct of uforest is critical: a forest has no undirected cycles. The other
definitions are straightforward from there, and minimum_spanning_forest f g
means that no other spanning forest has lower total edge cost than f.

Our undirected work is also compatible with our new developments in §2.1
and §2.2. An adjacency matrix-representable undirected graph has all the pure
properties we covered in SoundAdjMat, and also has symmetry across the left di-
agonal. We extend SoundAdjMat into SoundUAd jMat by adding the condition that
all valid edges have src < dst. This effectively “turns off” the matrix on one half
of the diagonal and avoids double-counting. Prim’s algorithm uses SoundUAdjMat
and places no further restrictions. Further, spatial representations and fold /un-
fold utilities are shared across directed and undirected adjacency matrices.

3 Shortest Path

We verify a standard C implementation of Dijkstra’s algorithm. We first sketch
our proof in some detail with an emphasis on our loop invariants, then uncover
and remedy a subtle overflow bug, and finish with a discussion of related work.

2 That Prim’s postcondition has a forest may raise an eyebrow. See §4.2.

© W N W N

10

21

void dijkstra (int **g, int src, int *dist,

int *prev, int size, int inf {
// {AdjMat(g, v) * array(dist, _) array(prev,)}
Item* temp = (Item*) mallocN(sizeof (Item));
int* keys = mallocN (size * sizeof (int));
PQ* pq = pq_make(size); int i, j, u, cost;
for (i = 0; i < size; i++)

{ dist[i] = inf; prev[i] = inf; keys[i] = pq_push(pq,inf,i); }
dist[src]l= 0; prev[srcl= src; pq_edit_priority(pq,keys([src]l,0);
while (pq_size(pq) > 0) {
Jdist, prev, popped, heap. AdjMat(g, v) * PQ(pq, heap) * Item(temp, _) x*
array(dist, dist) * array(prev, prev) * array(keys, keys) A

// linked_correctly (v, heap, keys, dist, popped) N

digk _correct(, src, popped, prev, dist)

pq_pop(pq, temp); u = temp->data;

for (i = 0; i < size; i++) {
dist’, prev’, heap’. AdjMat(g,) * PQ(pq, heap’)
array(dist, dist’) * array(prev, prev’) * array(keys, keys) *

// Item (temp, (keys[ul,dist[ul,u)) A min(dist[ul, heap’) A
linked_correctly (v, heap’, keys, dist’, popped W {u}) A
dijk_correct_weak (v, src, popped W {u}, prev’, dist’, i,u)

cost = getCell(g, u, i);
if (cost < inf) {
if (dist[i] > dist[u]l + cost) {
dist[i] = dist[u]l + cost; prev[i] = u;
pq_edit_priority(pq, keys[il, dist[il);
3dist”’, prev”’. AdjMat(g,v) * PQ(pq,) * ltem(temp, _) *
¥ // array(dist, dist’’) * array(prev, prev’’) * array(keys, keys) A
Vdst. 0 < dst < size — inv_popped (v, src,y.V, prev’’, dist”’, dst)
freeN (temp); pq_free (pq); freeN (keys); return; }

Fig.1: C code and proof sketch for Dijkstra’s Algorithm.

3.1 Verified Dijkstra’s algorithm in C

Figure 1 shows the code and proof sketch of Dijkstra’s algorithm. Red text
in an annotation indicates changes compared to the annotation immediately
prior. Our code is implemented exactly as suggested by CLRS [18], so we refer
readers there for a general discussion of the algorithm. The adjacency-matrix-
represented graph v of size vertices is passed as the parameter g along with the
source vertex src and two allocated arrays dist and prev. The spatial predicate
array(x,v), which connects an array pointer x with its contents v, is standard
and unexciting. PQ(pq, heap) is the spatial representation of our priority queue
(PQ) and ltem(i, (key, pri, data)) lays out a struct that we use to interact with
the PQ; we leave the management of the PQ to the operations described in §5.
Of greater interest is AdjMat(g,), which links the concrete memory values of g
to an abstract mathematical graph -, which in turn exposes an interface in
the language of graph theory (vertices, edges, labels, etc.). We develop three
variations of adjacency-matrix representation (see §2.2) and we verify Dijkstra
using each of them. Thanks to some careful engineering, the C code and the Coq
verification are both almost completely agnostic to the form of representation.
The only variation between implementations is when reading a cell (line 15), so
we refactor this out into a straightforward helper method and verify it separately;
accordingly, the proof bases for the three variants differ by less than 1%.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 7

Dijkstra’s algorithm uses a PQ to greedily choose the cheapest unoptimized
vertex on line 12. The best-known distances to vertices are expected to improve
as various edges are relaxed, and such improvements need to be logged in the PQ:
Dijkstra’s algorithm implicitly assumes that its PQ supports the additional op-
eration decrease_priority. Our “advanced” PQ (§5.3) supports this operation
in logarithmic time with the pq_edit_priority function?.

The first nine lines are standard setup. The keys array, assigned on line 8,
is thereafter a mathematical constant. The pure predicate linked__correctly con-
tains the plumbing connecting the various mathematical arrays. The verifica-
tion turns on the loop invariants on lines 11 and 14. The pure while invariant
digk__correct(vy, sre, popped, prev, dist) essentially unfolds into:

Vdst. 0 < dst < size — inv_ popped(y, src, popped, prev, dist, dst) N
inv__unpopped(y, src, popped, prev, dist, dst) A
inv__unseen(vy, sre, popped, prev, dist, dst)

That is, a destination vertex dst falls into one of three categories:

1. inv__popped: dst has been popped from the PQ and fully processed. Ei-
ther dst is unreachable, meaning that there exists no finite-cost path from
src to dst, or dst is reachable, meaning that a globally optimal path from
sre to dst exists, the cost of this path is logged in dist, all vertices visited by
the path are also popped, and the links of the path are logged in prev.

2. inv__unpopped: dst is reachable in one step from a popped vertex mom. This
route is locally optimal: we cannot improve the cost via an alternate popped
vertex. prev logs mom as the best-known way to reach dst, and dist logs the
path cost via mom as the best-known cost.

3. inv__unseen: no finite-cost path exists from any popped vertex to dst.

After line 12, the above invariant is no longer true: a minimum-cost item u has
been popped from the PQ, and so the dist and prev arrays need to be updated to
account for this pop. The for loop does exactly this repair work. Its pure invari-
ant dijk__correct__weak(7y, src, popped, prev, dist, u, i) essentially unfolds into:

Vdst. 0 < dst < size — inv__popped(v, sre, popped, prev, dist, dst) A
Vdst. 0 < dst < i — inv__unpopped (v, sre, popped, prev, dist, dst) A
inv__unseen(y, src, popped, prev, dist, dst) A
Vdst. i < dst < size — inv__unpopped_ weak (v, src, popped, prev, dist, dst, u) A
inv__unseen__ weak (7, sre, popped, prev, dist, dst, u)

We now have five cases, many of which are familiar from dijk_ correct:

1. inv__popped: dst has been fully processed and popped from the PQ. For
all “previously-popped vertices” (i.e., except for w), this is trivial from
dijk__correct. For u itself, we reach the heart of Dijkstra’s correctness: the
locally-optimal path to the cheapest unpopped vertex is globally optimal.

3 Because decrease_priority is relatively complex to implement, several popular
workarounds (e.g. [12]) use simpler PQs at the cost of decreased performance.

Y

—0—
6
Fig.2: A graph that will result in overflow on a 4-bit machine.

2. inv__unpopped (less than 7): dst is reachable in one hop from a popped vertex
mom. Initially this is trivial since ¢ = 0, and we restore it as 4 increments
by updating costs when they can be improved, as on lines 18 and 19.

3. inv__unseen (less than 7): no finite-cost path exists from any popped vertex
to dst. As above, this is restored as i increments.

4. inv__unpopped__weak (between i and size): dst is reachable in one hop from
a previously-popped vertex mom, with further improvements possible via .
This fact is key: as i increments, we strengthen it into inv_ unpopped after
considering whether routing via uw improves the best-known cost to dst.

5. inv__unseen__weak (between i and size): no finite-cost path exists from any
previously-popped vertex to dst, but there may be one from u. As i incre-
ments, we consider whether routing via u reveals a finite-cost path to dst.
This is strengthened into inv__unpopped if so, and into inv__unseen if not.

At the end of the for loop the fourth and fifth cases fall away (i = size), and
the PQ and the dist and prev arrays finish “catching up” to the pop on line 12.
This allows us to infer the while invariant dijk_ correct, and thus continue the
while loop. The while loop itself breaks when all vertices have been popped and
processed. The second and third clauses of the while loop invariant dijk_ correct
then fall away, as seen on line 20: all vertices satisfy inv__popped, and are either
optimally reachable or altogether unreachable. We are done.

3.2 Overflow in Dijkstra’s algorithm

Dijkstra’s algorithm clearly cannot work when a path cost is more than INT_MAX.

INT_MAX
size—1

A reasonable-looking restriction is to bound edge costs by L J, since the

longest optimal path has size — 1 links and so the most expensive possible path
costs no more than INT_MAX. However, this has two flaws. First, since we are
writing real code in C, rather than pseudocode in an idealized setting, we must
reserve some concrete int value inf for “infinity”, with the semantics that if
the best-known distance to a vertex z is inf, then z is as-yet unreachable. A
consequence of this is that reachable destination vertices cannot have a path
cost of inf: if they did, this would be logged in the dist array and create an
ambiguity. Second, even though the best-known distances start at inf (see line 8)
and only ever decrease from there, the code can overflow on lines 17 and 18.
Consider applying Dijkstra’s algorithm on a hypothetical 4-bit unsigned ma-
chine to the graph in figure 2. The size of the graph is 3 nodes, and so the naive

edge-weight upper bound is L%J = {%J =7, for example as in the graph
pictured in figure 2. Indeed, a glance at the figure is enough to tell that the true
distance from the source A to vertices B and C are 5 and 10 respectively. Both 5

and 10 are representable with 4 bits, and so naively all seems well. Indeed, after

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 9

processing vertices A and B, 5 and 10 are the costs reflected in the dist array
for B and C respectively—but unfortunately vertex C'is still in the priority queue.
After vertex C is popped on line 12, we fetch its neighbors in the for loop; the
cost from C to B (6) is fetched on line 15. On line 17 the currently optimal
cost to B (5) is compared with the sum of the optimal cost to C (10) plus the
just-retrieved cost of the edge from C to B (6). Since 10 + 6 overflows in 4-bit
arithmetic, the comparison is not between 5 and 16 but in fact between 5 and 0!
Thus the code decides that a new cheaper path from A to B exists (in particular,
A~+B~~C~~B) and then trashes the dist and prev arrays on line 18.

Our code uses signed int rather than unsigned int so we have undefined
behavior rather than defined-but-wrong behavior, but the essence of the overflow
is identical. Our solution is twofold. First, we restrict the maximum edge cost
to L%J — 1, which in the 4-bit setting just described forces an edge cost of
no more than 4. Consider modifying figure 2 to have edge weights of 4 rather
than 5s and 6s. After processing vertices A and B, the distances to B and C are
no more than 4 and 8 respectively. When we process vertex C, the comparison
on line 17 is thus between the previous best cost to B (4) and the candidate best
cost to B via C (12); there is no overflow and the code behaves as advertised.

The second part of our solution is that we require in the function precondition
that | MM) 71 < inf < INT_MAX — [P 41 As long as size > 1, this

size size

is perfectly realizable by setting inf to INT_MAX — L%J + 1, i.e. in the 4-bit
machine we set inf to 11. It may be surprising that infinity has a nontrivial
upper bound. The reason is that line 17 implicitly assumes that co 4 cost = oo,
which certainly is not true for machine integers! Lastly, when size = 1, the range
bound on infinity collapses and inf becomes unrealizable. Our verification is thus
not applicable to single-vertex graphs, a special case for which the shortest-path
problem is rather uninteresting. We place these new restrictions into Dijktra’s

soundness condition, in addition to the standard SoundAdjMat from §2.1.

3.3 Related work on Dijkstra in algorithms and formal methods

We were not able to find a reference that gives a robust, precise, and full de-
scription of the overflow issue we describe above. Dijkstra’s original paper ignores
the issue [22], as does the landmark algorithms textbook CLRS [18]. Sedgewick’s
book on graph algorithms in C [54] sidesteps the overflow in line 17 by requir-
ing weights be in double, which does have a well-defined positive infinity value.
However, Sedgewick’s sidestep entails enduring the inevitable round-off intrinsic
to floating-point arithmetic, and so his algorithm computes approximate optimal
costs rather than exact ones. Sedgewick does not specify any bounds on input
edge weights, and accordingly does not (and cannot) provide any bound on this
accumulated error. Sedgewick is silent on how to handle an int-weighted input
graph. Skiena’s Algorithm Design Manual [56] contains exactly the bug we iden-
tify: he sets inf to INT_MAX, so his code will overflow on line 17 when adding
inf + cost. To its credit, Heineman et al.’s Algorithms in a Nutshell [28] takes
int edge weights as inputs and mentions overflow as a possibility. To avoid this
overflow, Heineman et al. performs the arithmetic in line 17 in long to avoid

o e I N R

= e
= o ©

12

10

MST-PRIM(G,w,r): MST-NOROOT-PRIM(G,w) :
for each u in G.V for each u in G.V
u.key = INF u.key = INF
u.parent = NIL u.parent = NIL
r.key = 0
Q =G.V Q =G.V
while Q # 0 while Q # 0
u = EXTRACT-MIN(Q) u = EXTRACT-MIN(Q)
for each v in G.Adj[ul for each v in G.Adj[ul

if v € Q and w(u,v) < v.key if v € Q and w(u,v) < v.key
v.parent = u v.parent = u
v.key = w(u,v) v.key = w(u,v)

Fig. 3: Left: Prim’s algorithm from CLRS [18]. Right: the same omitting line 5.

this overflow. However, Heineman does not give any bounds on edge weights,
and when the cumulative edge weights are too high then his code fails silently.
Chen verified Dijkstra in Mizar [13], Gordon et al. formalized the reachability
property in HOL [24], Moore and Zhang verified it in ACL2 [46], Mange and
Kuhn verified it in Jahob [45], and Klasen verified it in KeY [32]. Liu et al.
took an alternative SMT-based approach to verify a Java implementation of
Dijkstra [44]. The most recent effort (2019) is by Lammich et al., working within
Isabelle/HOL, although they simply return the weight of the shortest path rather
than the path itself [39]. In general the existing mechanized proofs on Dijkstra
verify code defined within idealized formal environments, e.g. with unbounded
integers rather than machine ints and a distinguished non-integer value for
infinity. None of the previous formal work mentions the overflow we uncover.

4 Minimum Spanning Trees

Here we discuss our verifications of the classic MST algorithms Prim and Kruskal.
Although our machine-checked proofs are about real C code, in this section we
take a higher-level approach than we did in §3, focusing on our key algorithmic
findings and overall experience. Accordingly, we only provide pseudocode for
Prim’s algorithm rather than a decorated program and do not show any code
for Kruskal’s. Our development contains our C code and formal proofs [3].

4.1 Prim’s Algorithm

We put the pseudocode for Prim’s algorithm in figure 3; the code on the
left-hand side is directly from CLRS, whereas the code on the right omits line
5 and will be discussed in §4.2. Note that line 12 contains an implicit call to
the PQ’s edit_priority. Since the pseudocode only compares keys (i.e., edge
weights) rather than doing arithmetic on them d la Dijkstra, there are no po-
tential overflows and it is reasonable to set INF to INT_MAX in C.

Indeed, our initial verifications of C code were largely “turning the crank”
once we had the definitions and associated lemma support for pure/abstract
undirected graphs, forests, etc. discussed in §2.3. Accordingly, our initial con-
tribution was a demonstration that this new graph machinery was sufficient to

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 11

verify real code. We also proved that our extensions to CertiGraph from §2
were generic rather than verification-specific by reusing much pure and spatial
reasoning that had been originally developed for our verification of Dijkstra.

4.2 Prim’s Algorithm handles multiple components out of the box

Textbook discussions of Prim’s algorithm are usually limited to single-component
input graphs (a.k.a. connected graphs), producing a minimum spanning tree. It
is widely believed that Prim’s is not directly applicable to graphs with multiple
components, which should produce a minimum spanning forest. For example,
both Rozen [55] and Sedgewick [54] leave the extension to multiple components
as an formal exercise for the reader, whereas Kepner and Gilbert suggest that
multiple-component graphs should be handled by first finding the components
and then running Prim on each component [31]. This appears to be the standard
solution, appearing in numerous lectures and implementations?.

After we completed our initial verification, a close examination of our formal
invariants showed us that the algorithm exactly as given by standard textbooks
will properly handle multi-component graphs in a single run. The confusion
starts because, in a fully connected graph, any vertex u removed from the PQ
on line 8 must have u.key < INF, i.e. must be immediately reachable from
the spanning tree that is in the process of being built. However, nothing in the
code relies upon this connectedness fact! All we need is that u is the “closest
vertex” to the “current component.” If u.key = INF and u is a minimum of the
PQ, then it simply means that the “previous component” is done, and we have
started spanning tree construction on a new unconnected component “rooted”
at u, yielding a forest. The node u’s parent will remain NIL, at it was after the
setup loop on line 4, indicating that it is the root of a spanning tree. Its key will
be INF rather than 0, but the keys are internal to Prim’s algorithm: clients only
get back the spanning forest as encoded in the parent pointers®.

Having made this discovery, we updated our proofs to support the new weaker
precondition, which is what we currently formally verify in Coq [17]. A little fur-
ther thought led to the realization that since Prim can handle arbitrary numbers
of components, the initialization of the root’s key in line 5 is in fact unneces-
sary. Accordingly, if we remove this line and the associated function argument
T from MST-PRIM (i.e. the code on the right half of figure 3), the algorithm still
works correctly. Moreover, the program invariants become simpler because we
no longer need to treat a specified vertex (r) in a distinguished manner. Our
formal development verifies this version of the algorithm as well [3].

4.3 Related work on Prim in algorithms and formal methods

Prim’s algorithm was in fact first developed by the Czech mathematician Vo-
jtéch Jarnik in 1930 [30] before being rediscovered by Robert Prim in 1957 [50]

4 Another standard solution is to use Kruskal’s algorithm instead.

® The keys simply record the edge-weight connecting a vertex to its candidate parent;
recall that line 12 is really a call to the PQ’s edit_priority. If a client wishes to
know this edge weight, it can simply look up the edge in the graph.

12

and a third time by Edsger W. Dijkstra in 1959 [21]. Both Prim’s and Dijkstra’s
treatment explicitly assumes a connected graph; although we cannot read Czech,
some time with Google translate suggests that Jarnik’s treatment probably does
the same. Most modern textbook treatment (e.g. [31,54,55,56,18]) seems to de-
rive from either Prim’s or Dijkstra’s treatment. More casual references such
as Wikipedia [2] and innumerable lecture slides are presumably derived from
the textbooks cited. We have not found any references that state that Prim’s
algorithm without modification applies to multi-component graphs, even when
executable code is provided: e.g., Heineman et al. provide C++ code that aligns
closely with our C code [28], but do not mention that their code works equally
well on multi-component graphs. Indeed, many sources promulgate the false
proposition that modifications to the algorithm are necessary to handle multi-
component graphs (e.g., [31,54,55,2]). Likewise, we have found no reference that
removes the initialization step (line 5) in figure 3) from the standard algorithm.

Prim’s algorithm has been the focus of a few previous formalization efforts.
Guttman formalised and proved the correctness of Prim’s algorithm using Stone-
Kleene relation algebras in Isabelle/HOL [25]. He works in an idealized formal
environment that does not require the development of explicit data structures;
his code does not appear to be executable. Lammich et al. provided a verification
of Prim’s algorithm [39]. Lammich et al. also work within the idealized formal en-
vironment of Isabelle/HOL, but in contrast to Guttman develop efficient purely
functional data structures and extract them to executable code. Both Guttman
and Lammich explicitly require that the input graph be connected.

4.4 Kruskal’s Algorithm

Although Kruskal’s algorithm is sometimes presented as taking connected graphs
and producing spanning trees, the literature also discusses the more general
case of multi-component input graphs and spanning forests. However, Kruskal
has only recently been the focus of formal verification efforts, partly because it
relies on the notoriously difficult-to-verify union-find algorithm; fortunately, the
CertiGraph project has an existing fully-verified union-find implementation that
we can leverage [59]. Kruskal also requires a sorting function; we implemented
heapsort as explained in §5.2. Kruskal is optimized for compact representations
of sparse graphs, so the O(1) space cost of heapsort is a reasonable fit.

The primary interest of our verification of Kruskal is in our proof engineering.
Kruskal inputs graphs as edge lists rather than adjacency matrices. In addition
to requiring an addition to our spatial graph predicate menu, this means that
Kruskal’s input graphs can have multiple edges between a given pair of vertices
(i.e. a “multigraph”). Pleasingly, we can reuse most of the undirected graph
definitions (§2.3), demonstrating that they are generic and reusable.

Another challenge is integrating the pre-existing CertiGraph verification of
union-find. We are pleased to say that no change was required for CertiGraph’s
existing union-find definitions, lemmas, specifications and verification. Kruskal
actually manipulates two graphs simultaneously: a directed graph with vertex
labels (to store parent pointers and ranks) within union-find, and an undirected

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 13

multigraph with edge labels (for which the algorithm is constructing a spanning
forest). Beyond showing that CertiGraph was capable of this kind of systems-
integration challenge, we had to develop additional lemma support to bridge the
directed notion of “reachability,” used within the directed union-find graph to
the undirected notion of “connectedness,” used in the MSF graph (§2.3).

4.5 Related work on Kruskal in algorithms and formal methods

Joseph Kruskal published his algorithm in 1956 [36] and it has appeared in nu-
merous textbooks since (e.g., [18,56,54]). Kruskal’s algorithm is usually preferred
over Prim’s for sparse graphs, and is sometimes presented as “the right choice”
when confronted with multi-component graphs under the mistaken assumption
that Prim’s first requires a component-finding initial step.

Guttman generalised minimum spanning tree algorithms using Stone rela-
tion algebras [26], and provided a verified proof of Kruskal’s algorithm for-
matted in said algebras. Like his work on Prim’s [25], Guttmann works within
Isabelle/HOL and does not include concrete data structures such as priority-
queues and union-find, instead capturing their action as equivalence relations
in the underlying algebras. In Guttmann’s Kruskal paper, he mentions that his
Prim paper axiomatizes the fact that “every finite graph has a minimum span-
ning forest,” which he is then able to prove using his Kruskal algorithm. Inter-
estingly, our Prim verification needs the same fact, but we prove it directly.

In a similar vein, Haslbeck et al. verified Kruskal’s algorithm [27] by building
on Lammich et al.’s earlier work on Prim [39]. Like Lammich et al., Haslbeck et
al. work within Isabelle/HOL with a focus on purely functional data structures.

5 Verified binary heaps in C

Binary heaps are a classic data structure for imperative programs [18,54]. Briefly,
binary heaps embed a heap-ordered tree in an array and use arithmetic on indices
to navigate between a parent and its left and right children. In addition to pro-
viding the standard insert and remove-min/remove-max operations (depending
on whether it is a min- or max-ordered heap) in logarithmic time, binary heaps
can by upgraded to support two nontrivial operations. First, Floyd’s heapify
function builds a binary heap from an unordered array in linear time, and as
a related upgrade, heapsort performs a worst-case linearithmic-time sort using
only constant additional space. Second, binary heaps can be upgraded to sup-
port logarithmic-time decrease- and increase-priority operations, which we
generalize straightforwardly into edit_priority.

Binary heaps are a good fit for our graph algorithms because Dijkstra’s
and Prim’s algorithms need to edit priorities, and a constant-space heapsort
is appropriate for the sparse edge-list-represented graphs typically targeted by
Kruskal’s. The C language has poor support for polymorphic higher-order func-
tions, and a binary heap that supports edit_priority is half as fast as a binary

14

heap that does not. Accordingly, we implement binary heaps in C three times:

Name Heap order edit_priority heapify Payload

basic min no yes void*

advanced min yes no int

Kruskal max no yes int, int (i.e., unboxed)

Priorities are of type int. The Kruskal-specific implementation is stripped down
to the bare minimum required to implement heapsort (e.g. it does not support
insert). We next overview these verifications in three parts: basic heap opera-
tions, heapify and heapsort operations, and the edit_priority operation.

5.1 The basic heap operations of insertion and min/max-removal

Because we are juggling three implementations, we take some care to factor
our verification to maximize reuse. First, each C implementation has its own
exchange and comparison functions that handle the nitty-gritty of the payload
and choose between a min or max heap. The following lines are from the “basic”
implementation, in which the “payload” (data field) is of type voidx:
void exch(unsigned int j, unsigned int k, Item arr[]) {

int priority = arr[jl.priority; voidx data = arr[jl.data;

arr[j].priority = arr[k].priority; arr([jl.data = arr[k].data;
arr[k] .priority = priority; arr([k].data = data; }

int less(unsigned int j, unsigned int k, Item arr[]) {
10 return (arr[j].priority <= arr[k].priority); }

© ® N o u

These C functions are specified as refinements of Gallina functions that exchange
polymorphic data in lists and compare objects in an abstract preordered set; we
verify them in VST after a little irksome engineering. The payoff is that the key
heap operations, which, following Sedgewick [54], we call swim and sink, can
use identical C code (up to alpha renaming) in all three implementations:

11 void swim(unsigned int k, Item arr[]) {

12 while (k > ROOT_IDX && less (k, PARENT(k), arr)) {

13 exch(k, PARENT(k), arr); k = PARENT(k); Y

14 void sink (unsigned int k, Item arr[], unsigned int available) {

15 while (LEFT_CHILD(k) < available) {

16 unsigned j = LEFT_CHILD(k);

17 if (j+1 < available && less(j+1, j, arr)) j++;
18 if (less(k, j, arr)) break; exch(k, j, arr); k = j; }r

These functions involve a number of complexities, both at the algorithms level
and at the semantics-of-C level. At the C level, there is the potential for a rather
subtle bug in the macros ROOT_IDX, PARENT, etc. Abstractly, these are simple: the
root is in index 0; the children of = at roughly 2z and the parent at roughly 7,
with +1 as necessary. The danger is thinking that because the variables are
unsigned int, all arithmetic will occur in this domain; in fact we must force
the associated constants into unsigned int as well:

1 #define ROOT_IDX Ou 3| #define LEFT_CHILD(x) (2uxx)+1lu
2 #define PARENT(x) (x-1u)/2u 4| #define RIGHT_CHILD(x) 2u*(x+1u)

w0 N o o

10
11
12
13

AW N o=

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 15

A second C-semantics issue is the potential for overflow within LEFT_CHILD and
RIGHT_CHILD (as well as the increments on line 17), and underflow within the
PARENT macro (if x should ever be 0). To avoid this overflow, the precondi-
tion of sink requires that when k is in bounds (i.e., k < available), then
2-(available —1) < max_unsigned. An edge case occurs when deleting the last
element from a heap (k = available); we then require 2 - k < max_unsigned.

At the algorithmic level, both the swim and sink functions involve nontrivial
loop invariants; sink is complicated by the further need to support Floyd’s
heapify, during which a large portion of the array is unordered. Accordingly,
we build Gallina models of both functions and show that they restore heap order
given a mostly-ordered input heap. There are two different versions of “mostly-
ordered”. Specifically, swim uses a “bottom-up” version:

Definition weak_heapOrdered2 (L : 1list A) (j : nat) : Prop :=
(forall i b, i <> j -> nth_error L i = Some b ->
forall a, nth_error L (parent i) = Some a -> a <<= b) /\
(grandsOk L j root_idx).

whereas sink uses a “top-down” version:

Definition weak_heapOrdered_bounded (L:1list A) (k:nat) (j:nat) :=
(forall i a, i > k => i <> j -> nth_error L i = Some a ->
(forall b, nth_error L (left_child i) = Some b -> a <<= b) /\
(forall c, nth_error L (right_child i) = Some c -> a <<= ¢)) /\
(grandsOk L j k).

The parameter j indicates a “hole”; at which the heap may not be heap-ordered;
grandsOk bridges this hole by ordering the parent and the children of j:

Definition grandsOk (L : list A) (j : nat) (k : nat) : Prop :=
j <> root_idx -> parent j >= k ->
forall gs bb, parent gs = j -> nth_error L gs = Some bb ->
forall a, nth_error L (parent j) = Some a -> a <<= bb.

The parameter k is used to support Floyd’s heapify: it bounds the portion of
the list in which elements are heap-ordered (with the exception of j). The proofs
that the Gallina swim and sink can restore (bounded) heap-orderedness involve a
number of edge cases, but given the above definitions go through. The invariants
of the C versions of swim and sink are stated via the associated Gallina versions,
thereby delegating all heap-ordering proofs to the Gallina versions.

The insertion and remove functions we verify are in fact “non-checking” ver-
sions (insert_nc and remove_nc): their preconditions assume there is room in
the heap to add or an item in the heap to remove. In the context of Dijkstra and
Prim, these preconditions can be proven to hold. The associated verifications
involve a little separation logic hackery (specifically, to FRAME away the “junk”
part of the heap-array from the “live” part), but are straightforward using VST.
We avoid the overflow issue in sink by bounding the maximum capacity of the
heap: 4 < 12 capacity < max_unsigned; the magic number 12 comes from the
size of the underlying data structure in C. We require users to prove this bound
on heap creation, and thereafter handle it under the hood.

19
20
21
22
23
24
25

26

16

5.2 Bottom-up heapify and heapsort

Floyd’s bottom-up procedure for constructing a binary heap in linear time, and
using a binary heap to sort, are classics of the literature [18,54]. Happily, while
the asymptotic bound on heap construction is nontrivial, the implementations
of both are basically repeated calls to sink (and exchanges to remove the root):
void build_heap(Item arr[], unsigned int size) {

unsigned int start = PARENT(size);

while(1) { sink(start, arr, size);

if (start == 0) break; start--; } }
void heapsort_rev(Item* arr, unsigned int size) {
build_heap (arr,size);

while (size > 1) { size--;
exch (ROOT_IDX, size, arr); sink(ROOT_IDX, arr, size); } }

Given that in §5.1 we already generalized the specification for sink to han-
dle a portion of the array being unordered, the verification of these functions
is straightforward. There is, however, the possibility of a subtle underflow on
line 20, in the case when building an empty heap (i.e., size = 0). In turn, this
means that heapsort_rev as given above cannot sort empty lists; in our “ba-
sic” implementation we strengthen the precondition accordingly, whereas in our
“Kruskal” implementation we add a line before 24 that returns when size = 0.
We use a max-heap for Kruskal because heapsort yields a reverse sorted list.

5.3 Modifying an element’s priority

In contrast to heapify and heapsort, standard algorithms textbooks are vague
on the implementation of edit_priority [18,54]. The idea is that, during insert,
each item is associated not only with its usual int priority but also a unique
unsigned int “key”. This key is generated during insert and returned to the
client. Internally, the binary heap maintains a secondary array key_table that
maps each key to the current location of the associated item within the primary
heap array. The client calls edit_priority by supplying the key associated
with the item it wishes to modify, and the binary heap looks up the key in the
key_table to locate the item in the heap array before calling sink or swim. To
keep everything linked together, the key_table is modified during exchange.

One detail entirely missing from standard textbooks is how to generate the
keys on insert. The initial idea is to have a global counter starting at 0, which
is then increased on each insert. Unfortunately, this is unsound: during (very)
long runs involving both insert and remove-min, this key counter will over-
flow. Although overflow is defined in C for unsigned int, this overflow is fatal
algorithmically: multiple items could be assigned the same key.

A better method is to store a key field within each heap-item in the main
array. These keys are initialized to 0..(capacity — 1), and thereafter are never
modified other than when two cells are swapped during exchange. An invariant
can then be maintained that the keys from the “live” and “junk” parts have no
duplicates. On insertion, we “recycle” the key of the first “junk” item, which is
by the invariant known to be appropriately fresh.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 17

6 Engineering considerations

Verifying real code is meaningfully harder than verifying toy implementations.
On top of such challenges, verifying graph algorithms requires a significant
amount of mathematical machinery: there are many plausible ways to define
basic notions such as reachability, but not all of them can handle the challenges
of verifying real code [58]. Moreover, we would like our mathematical, spatial,
and verification machinery to be generic and reusable.

All of the above suggests that it is important to work within existing for-
mal proof developments due a strong desire to not reinvent very large wheels
(the existing proof bases we work with contain hundreds of thousands of lines
of formal proof). We chose to work with the CompCert certified compiler [43];
the Verified Software Toolchain [4], which provides significant tactic support for
separation logic-based deductive verification of CompCert C programs; and the
CertiGraph framework [59], which provides much pure and spatial reasoning
support for verifying graph-manipulating programs within VST. We did so be-
cause these frameworks can handle the challenges of real code and because the
CertiGraph included several fully verified implementations of union-find that we
wished to reuse in our verification of Kruskal’s algorithm.

Modular formal proof development involves major software engineering chal-
lenges [53]. Accordingly, we took care factoring our extensions to CertiGraph
into generic and reusable pieces. This factoring allows us to reuse machinery
between verifications, including in the mathematical, spatial, and verification
levels, so e.g. we share significant pure and spatial machinery between Dijkstra,
Prim, and Kruskal. Moreover, we maintain good separation between pure and
spatial reasoning, so e.g. both our Dijkstra and Prim verifications can handle
multiple spatial variants of adjacency matrices without significant change.

On the other hand, working within existing developments involves some chal-
lenges, primarily in that some design decisions have been already made and are
hard to change. Moreover, our verifications tickled numerous bugs within VST,
including: overly-aggressive automatic entailment simplifying, poor error mes-
sages, improper handling of C structs, and performance issues. We have been
fortunate that the VST team has been willing to work with us to fix such bugs,
although some work still remains. Performance remains one area of focus: for
example, checking our verification of Kruskal with a 3.7GHz processor and 32gb
of memory takes more than 22 minutes even after all of the generic pure and spa-
tial reasoning has been checked, i.e. approximately 7 seconds per line of C code
(including whitespace and comments). This performance is unviable for verifying
an industrial-sized application of equivalent difficulty: e.g., it would take 13 years
for Coq to check the proof for 1,000,000 lines of C. Before some optimizations
to our proof structure, the time was significantly longer still.

Our contributions to CertiGraph include pieces that are reused repeatedly
and pieces that are more bespoke. Below, we give a sense of both the size of our
development (lines of formal Coq proof) and the mileage we get out of our own
work via reuse. Items “added with +” are very similar (within 1%) of each other;
Prim #4 is the version that does not set the root, i.e. on the right in figure 3.

18

Name Used LoC Name LoC
MathAdjMat 6x 165 DijkSpecl+2+3 301
Undirected 4x 2,139 VerifDijk1+2+3 3,554
MathUAdjMat 3x 1,024 PrimSpecl+2+3+4 508
SpaceAdjMat1+42+3 6x 499 VerifPrim1+2+3+4 7,455
EdgeListGraph 1x 911 KruskalSpec 302
MathDijkGraph 3x 165 VerifKruskal 1,606
DijkPureProof 3x 2,124 VerifHeapSort 568
UndirectedUF 1x 183 VerifBasicBinaryHeap it
BinaryHeapModel 1x 1,870 VerifAdvBinaryHeap 2,253
Total (pure/spatial) 9,080 Total (verifications) 17,234

In total we have 26,314 novel lines of Coq proof to verify 1,155 lines of C code
divided among 12 files, including 3 variants of Dijkstra, 4 variants of Prim, 1 of
Kruskal (which includes its heapsort), and 2 binary heaps.

7 Concluding thoughts: Related and Future Work
7.1 Related work

We have already discussed work directly related to Dijkstra’s (§3.3), Prim’s
(§4.3), and Kruskal’s (§4.5) algorithms in detail, including work from both the
algorithms and formal methods literature. Summarizing briefly to the point of
unreasonableness, our observations about Dijkstra’s overflow and Prim’s spec-
ification are novel, and existing formal proofs focus on code working within
idealized environments rather than handling the real-world considerations that
we do. We have also already discussed the three formal developments we build
upon and extend: CompCert, VST, and CertiGraph (§6). Our goal now is to
discuss mechanized graph reasoning and verification more broadly.

Reasoning about mathematical graphs. There is a 304 year history of mech-
anizing graph theory, beginning at least with Wong [60] and Chou [16] and
continuing to the present day; Wang discusses many such efforts [58, §3.3]. The
two abstract frameworks that seem closest to ours are those by Noschinski [47];
and by Lammich and Nipkow [39]. The latter is particularly related to our work,
because they too start with a directed graph library and must extend it to handle
undirected graphs so that they can verify Prim’s algorithm.

More-automated verification. Broadly speaking, mechanized verification of soft-
ware falls in a spectrum between more-automated-but-less-precise verifications
and less-automated-but-more-precise verifications. Although VST contains some
automation, we fall within the latter camp. In the former camp, landmark
initial separation logic [52] tools such as Smallfoot [7] have grown into Face-
book’s industrial-strength Infer [11]. Other notable relatively-automated separa-
tion logic-based tools include HIP/SLEEK [14], Bedrock [15], and VerCors [9)].

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 19

More-automated solutions that use techniques other than separation logic in-
clude Boogie [6], BLAST [8], Dafny [42], and KeY [1]. In §3.3 we discuss how
some of these more-automated approaches have been applied to verify Dijkstra’s
algorithm. Petrank and Hawblitzel’s Boogie-based verification of a garbage col-
lector [49] gives another more-automated verification of a graph algorithm.

We are not confident that more-automated tools would be able to repli-
cate our work easily. We prove full functional correctness, whereas many more-
automated tools prove only more limited properties. Moreover, our full functional
correctness results rely upon a meaningful amount of domain-specific knowledge
about graphs, which automated tools usually lack. Even if we restrict ourselves to
more limited domains such as overflows, several more automated efforts did not
uncover the overflow that we described in §3.3. The proof that certain bounds on
edge weights and inf suffice depends on an intimate understanding of Dijkstra’s
algorithm (in particular, that it explores one edge beyond the optimum paths);
overall the problem seems challenging in highly-automated settings. The more
powerful specification we discover for Prim’s algorithm in §4.2 is likewise not
something a tool is likely to discover: human insight appears necessary, at least
given the current state of machine learning techniques.

In contrast, several of the potential overflows in our binary heap might
be uncovered by more-automated approaches, especially those related to the
PARENT and LEFT_CHILD macros from §5.1. Although the arithmetic involves
both addition/subtraction and multiplication/division, we suspect a tool such
as Z3 [20] could handle it. Moreover, a sufficiently-precise tool would probably
spot the necessity of forcing the internal constants into unsigned int. The is-
sue of sound key generation described in §5.3 might be a bit trickier. On the
one hand, unsigned int overflow is defined in C, so real code sometimes relies
upon it. Accordingly, merely observing that the counter could overflow does not
guarantee that the code is necessarily buggy. On the other hand, some tools
might flag it anyway out of caution (i.e. right answer, wrong reason).

Less-automated verification. Although as discussed above some more-automated
tools have been applied to verify graph algorithms, the problem domain is suffi-
ciently complex that many of the verifications discussed in §3.3, §4.3, and §4.5
use less-automated techniques. Two basic approaches are popular. The “shallow
embedding” approach is to write the algorithm in the native language of a proof
assistant. The “deep embedding” approach is to write the algorithm in another
language whose semantics has been precisely defined semantics in the proof assis-
tant. VST uses a deep embedding, and so we do too; one of VST’s more popular
competitors in the deep embedding style is “Iris Proof Mode” [33]. In contrast,
Lammich et al. have produced a series of results verifying a variety of graph
algorithms using a shallow embedding (e.g., [37,39,27,41,40]). From a bird’s-eye
view Lammich et al.’s work is the most related to our results in this paper: they
verify all three algorithms we do and are able to extract fully-executable code,
even if sometimes their focus is a bit different, e.g. on novel purely-functional
data structures such as a priority queue with edit_priority.

20

Although not related to the main thrust of this paper, Lammich has verified
Introsort [38], which includes a heapsort much like the one we present in §5.2.
He generates LLVM code, i.e. uses a deep embedding.

Pen-and-paper verification of graph algorithms. We use separation logic [52] as
our base framework. Initial work on graph algorithms in separation logic was
minimal; Bornat et al. is an early example [10]. Hobor and Villard developed
the technique of ramification to verify graph algorithms [29], using a particular
“star /wand” pattern to express heap update. Wang et al. later integrated rami-
fication into VST as the CertiGraph project we use [59]. Krishna et al. [34] have
developed a flow algebraic framework to reason about local and global proper-
ties of flow graphs in the program heap; their flow algebra is mainly used to
tackle local reasoning of global graphs in program heaps. Flow algebras should
be compatible with existing separation logics; implementation and integration
with the Iris project appears to be work in progress [35].

Krishna et al. are interested in concurrency [34]; Raad et al. provide another
example of pen-and-paper reasoning about concurrent graph algorithms [51].

7.2 Future work

We see several opportunities for decreasing the effort and/or increasing the au-
tomation in our approach. At the level of Hoare tuples, we see opportunities
for improved VST tactics to handle common cases we encounter in graph algo-
rithms. At the level of spatial predicates, we can continue to expand our library
of graph constructions, for example for adjacency lists. We also believe there are
opportunities to increase modularity and automation at the interface between
the spatial and the mathematical levels, e.g. we sometimes compare C pointers
to heap-represented graph nodes for equality, and due to the nature of our repre-
sentations this equality check will be well-defined in C when the associated nodes
are present in the mathematical graph, so this check should pass automatically.

We believe that more automation is possible at the level of mathematical
graphs: for example reachability techniques based on regular expressions over
matrices and related semirings [5,57,23]. We are also intrigued by the recent
development of various specialized graph logics such as by Costa et al. [19] and
hope that these kinds of techniques will allow us to simplify our reasoning. The
key advantage of having end-to-end machine-checked examples such as the ones
we presented above is that they guide the automation efforts by providing precise
goals that are known to be strong enough to verify real code.

7.3 Conclusion

We extend the CertiGraph library to handle undirected graphs and several
flavours of graphs with edge labels, both at the pure and at the spatial lev-
els. We have verified the full functional correctness of the three classic graph
algorithms of Dijkstra, Prim, and Kruskal. We find nontrivial bounds on edge
costs and infinity for Dijkstra and provide a novel specification for Prim. We
have verified a binary heap with Floyd’s heapify and edit_priority. All of
our code is in CompCert C and all of our proofs are machine-checked in Coq.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 21
References

1. AHRENDT, W., BECKERT, B., BUBEL, R., HAHNLE, R., ScumITT, P. H., AND
ULBRICH, M., Eds. Deductive Software Verification - The KeY Book - From Theory
to Practice, vol. 10001 of Lecture Notes in Computer Science. Springer, 2016.

2. ANONYMOUS. Prim’s algorithm. https://en.wikipedia.org/wiki/Prim%27s_algorithm.

3. ANoNYMOUS. Codebase, 2021. https://github.com/anon-cav/CertiDPK.

4. ApPEL, A. W., DOCKINS, R., HOBOR, A., BERINGER, L., DODDS, J., STEWART,
G., BLazy, S., AND LEROY, X. Program Logics for Certified Compilers. Cambridge
University Press, New York, NY, USA, 2014.

5. BACKHOUSE, R., AND CARRE, B. Regular Algebra Applied to Path-Finding Prob-
lems. J.Inst.Maths. Applics (1975) 15 (1975), 161-186.

6. BARNETT, M., CHANG, B.-Y. E., DELINE, R., JACOBS, B., AND LEINO, K. R. M.
Boogie: A modular reusable verifier for object-oriented programs. In International
Symposium on Formal Methods for Components and Objects (2005), Springer,
pp. 364-387.

7. BERDINE, J., CALCAGNO, C., AND O’HEARN, P. W. Smallfoot: Modular automatic
assertion checking with separation logic. In FMCO (2005), pp. 115-137.

8. BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. The software
model checker BLAST. Int. J. Softw. Tools Technol. Transf. 9, 5-6 (2007), 505-525.

9. BrLowm, S., AND HuisMAN, M. The vercors tool for verification of concurrent pro-
grams. In FM 2014: Formal Methods - 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings (2014), C. B. Jones, P. Pihlajasaari, and J. Sun,
Eds., vol. 8442 of Lecture Notes in Computer Science, Springer, pp. 127-131.

10. BorNAT, R., CAaLcAGNO, C., AND O’HEARN, P. Local reasoning, separation and
aliasing. In SPACE (2004), vol. 4.

11. CALCAGNO, C., DISTEFANO, D., DUBREIL, J., GABI, D., HOOIMEIJER, P., LUCA,
M., O’HEARN, P., PAPAKONSTANTINOU, I., PURBRICK, J., AND RODRIGUEZ, D.
Moving fast with software verification. In NASA Formal Methods Symposium
(2015), Springer, pp. 3-11.

12. CHARGUERAUD, A. Characteristic formulae for the verification of imperative pro-
grams. In Proceeding of the 16th ACM SIGPLAN international conference on
Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011 (2011),
M. M. T. Chakravarty, Z. Hu, and O. Danvy, Eds., ACM, pp. 418-430.

13. CHEN, J.-C. Dijkstra’s shortest path algorithm. Journal of Formalized Mathemat-
ics 15,9 (2003), 237-247.

14. CHIN, W. N., Davip, C., NGUYEN, H. H., AND QIN, S. Automated verification
of shape, size and bag properties via user-defined predicates in separation logic.
Science of Computer Programming 77(9) (2010), 1,006-1,036.

15. CHLIPALA, A. Mostly-automated verification of low-level programs in computa-
tional separation logic. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June /-8, 2011 (2011), pp. 234-245.

16. Cuou, C.-T. A Formal Theory of Undirected Graphs in Higher-Order Logic. In
Higher Order Logic Theorem Proving and Its Applications. Springer, 1994, pp. 144—
157.

17. CoQ DEVELOPMENT TEAM. The Coq proof assistant.

18. CorMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. S. Introduction
to algorithms, 3rd edition. MIT Press and McGraw-Hill, 2009.

22

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

CosTA, D., BROTHERSTON, J., AND PyM, D. Graph decomposition and local
reasoning. under submission.

DE MOURA, L. M., AND BJ@RNER, N. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings (2008), pp. 337-340.

DIKSTRA, E. Numerische mathematik, volume 1, chapter a note on two problems
in connexion with graphs.

DuksTRA, E. W. A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959), 269-271.

DoLAN, S. Fun with semirings: a functional pearl on the abuse of linear algebra.
In Proceedings of the 18th ACM SIGPLAN international conference on Functional
programming (2013), pp. 101-110.

GORDON, M., HURD, J., AND SLIND, K. Executing the formal semantics of the
accellera property specification language by mechanised theorem proving. In Ad-
vanced Research Working Conference on Correct Hardware Design and Verification
Methods (2003), Springer, pp. 200-215.

GUTTMANN, W. Relation-algebraic verification of prim’s minimum spanning tree
algorithm. In Theoretical Aspects of Computing - ICTAC 2016 - 13th Interna-
tional Colloquium, Taipei, Taiwan, ROC, October 24-31, 2016, Proceedings (2016),
A. Sampaio and F. Wang, Eds., vol. 9965 of Lecture Notes in Computer Science,
pp. 51-68.

GUTTMANN, W. Verifying minimum spanning tree algorithms with stone relation
algebras. J. Log. Algebraic Methods Program. 101 (2018), 132-150.

HASLBECK, M. P. L., AND LAMMICH, P. Refinement with time - refining the run-
time of algorithms in isabelle/hol. In 10th International Conference on Interactive
Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA (2019),
J. Harrison, J. O’Leary, and A. Tolmach, Eds., vol. 141 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, pp. 20:1-20:18.

HEINEMAN, G., POLLICE, G., AND SELKOW, S. Algorithms in a Nutshell (In a
Nutshell (O’Reilly)). O’Reilly Media: Springfield, MO, USA, 2008.

HoBOR, A., AND VILLARD, J. The ramifications of sharing in data structures. In
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’13) (2013), pp. 523-536.

JARNIK, V. O jistém problému miniméalnim.(z dopisu panu o. Borivkovi).
KEPNER, JEREMY; GILBERT, J. Graph Algorithms in the Language of Linear
Algebra. Society for Industrial and Applied Mathematics, 2011.

KLASEN, V. Verifying Dijkstra’s Algorithm with KeY. Diploma Thesis (2010).
KREBBERS, R., TIMANY, A., AND BIRKEDAL, L. Interactive proofs in higher-order
concurrent separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18-
20, 2017 (2017), G. Castagna and A. D. Gordon, Eds., ACM, pp. 205-217.
KRISHNA, S., SHASHA, D., AND WIES, T. Go with the flow: compositional ab-
stractions for concurrent data structures. Proceedings of the ACM on Programming
Languages 2, POPL (2017), 1-31.

KRISHNA, S., SUMMERS, A. J., AND WIES, T. Local reasoning for global graph
properties. In Programming Languages and Systems - 29th European Symposium
on Programming, ESOP 2020, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 23

2020, Proceedings (2020), P. Miiller, Ed., vol. 12075 of Lecture Notes in Computer
Science, Springer, pp. 308-335.

KruskaL, J. B. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Amer. Math. Soc. 7 (1956), 48-50.

LAMMICH, P. Verified efficient implementation of gabow’s strongly connected com-
ponent algorithm. In Interactive Theorem Proving - 5th International Conference,
ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 14-17, 2014. Proceedings (2014), G. Klein and R. Gamboa, Eds., vol. 8558
of Lecture Notes in Computer Science, Springer, pp. 325-340.

LammicH, P. Efficient verified implementation of introsort and pdgsort. In Au-
tomated Reasoming - 10th International Joint Conference, IJCAR 2020, Paris,
France, July 1-4, 2020, Proceedings, Part II (2020), N. Peltier and V. Sofronie-
Stokkermans, Eds., vol. 12167 of Lecture Notes in Computer Science, Springer,
pp. 307-323.

LaAamwMmIcH, P., AND N1iPKOW, T. Proof pearl: Purely functional, simple and efficient
priority search trees and applications to prim and dijkstra. 23:1-23:18.

LAaMMICH, P., AND SEFIDGAR, S. R. Formalizing the edmonds-karp algorithm.
In Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy,
France, August 22-25, 2016, Proceedings (2016), J. C. Blanchette and S. Merz,
Eds., vol. 9807 of Lecture Notes in Computer Science, Springer, pp. 219-234.
LAMMICH, P., AND SEFIDGAR, S. R. Formalizing network flow algorithms: A
refinement approach in isabelle/hol. J. Autom. Reason. 62, 2 (2019), 261-280.
LeEmo, K. R. M. Dafny: An automatic program verifier for functional correct-
ness. In Logic for Programming, Artificial Intelligence, and Reasoning - 16th In-
ternational Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers (2010), pp. 348-370.

LERrROY, X. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In Proceedings of the 83rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2006, Charleston, South
Carolina, USA, January 11-13, 2006 (2006), pp. 42-54.

Liu, T., NAGEL, M., AND TAGHDIRI, M. Bounded Program Verification Using
an SMT Solver: A Case Study. In 2012 IEEFE Fifth International Conference on
Software Testing, Verification and Validation (April 2012), pp. 101-110.

MANGE, R., aAND KunN, J. Verifying Dijkstra’s Algorithm in Jahob. Student
project.

MOORE, J. S., AND ZHANG, Q. Proof Pearl: Dijkstra’s Shortest Path Algorithm
Verified with ACL2. In Theorem Proving in Higher Order Logics (Berlin, Heidel-
berg, 2005), J. Hurd and T. Melham, Eds., Springer Berlin Heidelberg, pp. 373-384.
NoscHINSKI, L. A Graph Library for Isabelle. Mathematics in Computer Science
9, 1 (2015), 23-39.

O’HEARN, P., REYNOLDS, J., AND YANG, H. Local Reasoning about Programs
that Alter Data Structures. In Computer Science Logic (Berlin, Heidelberg, 2001),
L. Fribourg, Ed., Springer Berlin Heidelberg, pp. 1-19.

PETRANK, E., AND HAWBLITZEL, C. Automated verification of practical garbage
collectors. Logical Methods in Computer Science 6 (2010).

Prim, R. C. Shortest connection networks and some generalizations. The Bell
System Technical Journal 36, 6 (1957), 1389-1401.

RaAaD, A., HOBOR, A., VILLARD, J., AND GARDNER, P. Verifying concurrent
graph algorithms. In Programming Languages and Systems - 14th Asian Sympo-
stum, APLAS 2016, Hanoi, Vietnam, November 21-23, 2016, Proceedings (2016),
A. Tgarashi, Ed., vol. 10017 of Lecture Notes in Computer Science, pp. 314-334.

24

52.

53.

54.

55.

56.
57.

58.

59.

60.

REYNOLDS, J. C. Separation Logic: A Logic for Shared Mutable Data Structures.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(Washington, DC, USA, 2002), LICS ’02, IEEE Computer Society, pp. 55-74.
RINGER, T., PALMSKOG, K., SERGEY, I., GLIGORIC, M., AND TATLOCK, Z.
QED at large: A survey of engineering of formally verified software. CoRR
abs/2003.06458 (2020).

ROBERT, S. Algorithms in C, part 5: Graph algorithms, 2002.

RoseEN, K. H. Discrete Mathematics and Its Applications, 7th Edition. McGraw-
Hill, 2012.

SKIENA, S. The Algorithm Design Manual, Second Edition. Springer, 2008.
TARJAN, R. E. A unified approach to path problems. J. ACM 28, 3 (1981),
577-593.

WANG, S. Mechanized Verification of Graph-Manipulating Programs. PhD thesis,
National University of Singapore, 2019.

WANG, S., Cao, Q., MOHAN, A., AND HOBOR, A. Certifying graph-manipulating
C programs via localizations within data structures. PACMPL 3, OOPSLA (2019),
171:1-171:30.

WonNaG, W. A Simple Graph Theory and Its Application in Railway Signaling. In
HOL Theorem Proving System and Its Applications, 1991., International Workshop
on the (Aug 1991), pp. 395-409.

