
Control Lab
ATC1

Gain-Scheduled Control of a
Gyroscope

26th January, 2021

Room: Online | N-1.077 Winter Semester 2020/21

Contents
1 PLANT 3

1.1 Linearization and LPV Modeling . 4
1.2 Initial Scaling . 8

2 CONTROLLER DESIGN—STATE FEEDBACK 9
2.1 S/KS Design . 10
2.2 Synthesis . 12
2.3 Augmented Controller . 13
2.4 Design Task . 14

3 SYNTHESIS MACHINERY—A CLOSER LOOK 15
3.1 Lifting Assumptions on the Generalized Plant 15
3.2 Suboptimal Synthesis . 19

4 CONTROLLER DESIGN—OUTPUT FEEDBACK 20
4.1 Four-Block Design with Velocity Feedback 20
4.2 Synthesis . 23
4.3 Controller Post-Processing . 24
4.4 Design Task . 24

5 LINEAR EVALUATION OVER THE GRID 25
5.1 Frequency Response Analysis . 25
5.2 Time Domain Analysis . 26
5.3 Robustness . 26

6 NONLINEAR SIMULATION AND IMPLEMENTATION 27
6.1 Simulation Environment . 27
6.2 Lookup Table Implementation . 28

7 EXPERIMENT 29

About this Document
This document is intended to help you with the design task ATC1—Gain-Scheduled
Control of a Gyroscope of the Control Lab practical course. It is written mainly in
the style of a tutorial and should provide you with all the necessary tools and Matlab
commands to solve the task. There are several Matlab files that you need to modify and

1

execute in order to develop your own design. You are also encouraged to write your own
code!

atc1_design.m This file deals with control design and linear evaluation. It is meant to
provide a structure very similar to the tutorial given in this document.

! You need to complete the code on your own and submit the file.

atc1_GyroSimulation.slx This file contains the nonlinear simulation model.

! You may need to modify the block diagram to suite your own design.

atc1_simulation.m This file deals with evaluation in nonlinear simulation.

! You need to submit a published version of this file no later than one week
before the scheduled date for the experiment.

There are also several other auxiliary files provided. The code is guaranteed to work
with Matlab 2016b 64bit, other versions might not be supported. You can get the latest
Matlab version from http://www.tuhh.de/rzt/usc/matlab/index.html or use the pool
computers.

In addition to these files, we will provide you with the synthesis tools that you will
need in order to design your gain scheduled controller.

In this document, you will encounter blocks that indicate Matlab code:

1 [MATLAB COMMANDS]=USEFUL(TOOLS)

These are meant to get you started. You can (and should) use the help command within
Matlab to find out more about a particular command.

Another thing that you will encounter are preparation tasks:

Preparation: Think about the benefits of gain-scheduling when compared to a single
robust controller.

These are meant to prepare you for the question session that will take place prior to
conducting the experiment.

Task

Design an LPV controller for the control moment gyroscope and evaluate it in nonlinear
simulation. Attach all necessary Matlab and Simulink files that were provided to you

2

no later than one week before the experiment via email to the responsible Tutor and
Supervisor. You will get an email when your preparation is not sufficient to pass the Lab
and will get time to revise your design.

Checklist

� I read this whole document carefully.

� I did all preparation tasks and can explain them.

� I completed`atc1_design.m'.

� I completed `atc1_simulation.m'.

� I submitted all Matlab files.

1 PLANT
A control moment gyroscope is a spinning rotor (flywheel) suspended in two motorized
gimbal mountings and modeled as a four-degrees-of-freedom multibody system. The
motorized mountings can tilt the flywheel’s angular momentum, which causes a gyroscopic
torque. A kinematic model is shown in Figure 1. Each body is linked to the previous
body by a rotational joint perpendicular to the last joint axis.

q4

q3

q2

q1

Figure 1: Kinematics of the control moment gyroscope

3

The nonlinear equation of motion which can be derived from mechanic principals, e. g.,
by using the Newton-Euler or Lagrange formalism, is

M(q) q̈ + k(q, q̇) = f(q̇) +
I

0

 T1

T2

 ,

with the generalized coordinates q = [q1 q2 q3 q4]T , the generalized inertia M , the vector
of generalized non-dissipative forces k and the vector of generalized dissipative forces
f . The inputs T1 and T2 of the system represent torques, which are applied by electric
motors at axis 1 and axis 2. The controlled outputs are the unactuated angles q3 and q4.

If we consider the actual physical plant, we notice that the torques are generated by
motors, which themselves take voltages as inputs. In order to simplify the design, we
neglect any dynamics of the motor and assume that it is just a constant gain. We can
then add an inverse model of the motor in order to recover torques as control variables.
Figure 2 illustrates the concept, where M denotes the motor model and U is the inverse
model, i. e., M U ≈ I.

Motor Plant
Voltage Torque

(a) Actual physical plant with actuator

M G
Torque Voltage Torque

U

(b) Plant with actuator and inverse actuator model

Figure 2: Actuator model

Prep. 1.1: Is this a valid assumption? What exactly are we assuming by neglecting
actuator dynamics?

1.1 Linearization and LPV Modeling

The system is nonlinear, but it can be approximated by a Jacobian linearization about an
operation point given by a fixed flywheel rotation speed q̇1,0 and fixed angular positions

4

q2,0 and q3,0. This yields a collection of linear time invariant (LTI) state space model

ẋ = A(q̇1,0, q2,0, q3,0) x + B(q̇1,0, q2,0, q3,0) u , (1)

y = C(q̇1,0, q2,0, q3,0) x ,

with state vector x = [q3 q4 q̇2 q̇3 q̇4]T , input u = [T1 T2]T and output y = [q3 q4]T . We
can collect the continuum of all admissible operating points into the scheduling vector
ρ = [q̇1,0 q2,0 q3,0]T . This is not an equivalent representation of the nonlinear system,
because we are neglecting first and second order derivatives of q̇1,0, q2,0, and q3,0 that
would result from a true “linearization about a time-varying operating point”. What we
have here is rather a continuous parameterization of a family of Jacobi linearizations,
i. e., for a given value of ρ, the LPV model coincides with the LTI model obtained from
linearization at that operating point. Since we use states of the system to define this
operating point, we are generating a quasi-LPV model.

Prep. 1.2: Make sure you understand why this is not an equivalent representation of the
nonlinear plant and hence why we have no a priori guarantees that the controller
works on the nonlinear plant. Compare the approach to what is discussed in
Expl. 1.1 of the Advanced Topics in Control lecture notes.

We will use the plant, scheduled by ρ = [q̇1 q2 q3]T , as shown in Figure 3 with

y =
q3

q4

 , u =
T1

T2

 , and further r =
q3,ref

q4,ref

 as a reference signal.

for design purposes.

Plant
u1 y1

u2 y2

ρ

Figure 3: Inputs and outputs of the model

The effects of the control inputs on the controlled outputs depend strongly on the
angle q2 and thus the current operating point. For q2 = 0 the system is decoupled, which
means that the input T1 has an exclusive effect on q3 and T2 has an exclusive effect on q4.

5

−25◦ 0◦ 25◦−1

−0.5

0

0.5

1

Gimbal inclination q2 (◦)

N
or

m
al

iz
ed

re
sp

on
se

(a) Normalized input response gain for different
values of q2 T1 → q3 and T1 → q4; T2 → q3 and
T2 → q4

−25
0

25

−50
−25

025
50
30

45

60

Angle q2
Angle q3

Fl
yw

he
el

Sp
ee

d
q̇ 1

(b) Grid representation of the admissible para-
meter space

This consideration is quite hypothetical, since applying a torque T2 also changes q2. Thus,
in practice q2 6= 0 and the inputs have a combined effect on the outputs. This is termed
cross coupling. The effect of cross coupling dependent on the angle q2 is illustrated in
Figure 4(a), where it can be seen that not only the magnitude but also the directions of
cross couplings depend on the sign of q2.

Prep. 1.3: What do you expect in terms of cross-couplings when we design a controller
for a single operating point and apply it to the real plant?

In order to use the synthesis techniques for gain-scheduled controllers that were
discussed in class, we first need to define a grid representation of the parameter-space (P)
and the rate bounds (V). In order to do this, we can use the following Matlab commands:

1 q1dot = pgrid('q1dot',30:15:60,[-10 10]);
2 q2 = pgrid('q2',[-25*pi/180, 0, 25*pi/180], [-2 2]);
3 q3 = pgrid('q3',[-50*pi/180:25*pi/180:50*pi/180], [-2 2]);
4 dom = rgrid(q1dot,q2,q3);

To load the linearized model into the Matlab workspace you can use the provided function

1 Gl = linearize_gyro(q1dot.griddata ,q2.griddata ,q3.griddata);

which contains a parameterization of the linearization at different operating points. We
can then form a parameter-dependent state space object by calling

6

1 Gp = pss(Gl,dom)

This object can be used very similar to the ss objects that you are familiar with. We
can for example use

1 bodemag(Gp)
2 sigma(Gp)

to bring up a bode magnitude plot and a sigma plot of the plant as shown in Figure 4.

10−1 100 101 102 103
−100
−50

0
50

100

Frequency (rad/s)
10−1 100 101 102 103

−100
−50

0
50

100

Frequency (rad/s)

To
:

q4
(d

B
)

10−1 100 101 102 103
−100
−50

0
50

100
From: T2

10−1 100 101 102 103
−100
−50

0
50

100

To
:

q3
(d

B
)

From: T1

(c) Bode magnitude plot of the Plant

10−1 100 101 102 103

−100

0

100

Frequency (rad/s)

Si
ng

ul
ar

Va
lu

es
(d

B
)

(d) Sigma plot of the Plant

Figure 4: Frequency response of the plant

Prep. 1.4: From Figure 4, are the parameter variations large? What appear to be the
most dominant effects?

7

Note that we can access a variety of different properties of pss objects, i. e.,

1 properties(Gp) % shows available properties
2 Gp.Data % returns underlying array of ss objects
3 Gp.Parameter % returns scheduling parameters of the model

Prep. 1.5: Which representation of the frequency response, Bode plot or sigma plot, is
more useful for design purposes? Why?

1.2 Initial Scaling

Scalings are of dire importance when working with frequency domain synthesis techniques.
The following (very simple) scaling just normalizes the input and output values of the
plant, such that the magnitude one corresponds both to the maximum expected change
in the reference signal Dr,max and the maximum actuator capacity Du,max, i. e.

u = D−1
u,max ureal (2)

y = D−1
r,max yreal (3)

Just think of a rescaled input vector Bs = B umax and a rescaled output vector Cs = 1
rmax

C

for the SISO case and keep in mind that since we are dealing with MIMO systems, we
need to use diagonal matrices Du,max and Dr,max instead. The usefulness of this scaling
becomes apparent when we realize that a unit step reference now corresponds to the
maximum input that we expect and that the available control signal is now also 1. Thus,
if a unit step results in a control signal less than 1, the actuators are likely not to saturate.
In terms of frequency domain indicators, this means that we can look at the transfer
function K S and try to achieve ‖K S‖∞ < 1. Once a controller for the synthesis model
is designed, the scalings have to be reversed when the controller is applied to the original
model:

u = K y (4)

ureal = Du,max K D−1
r,max︸ ︷︷ ︸

Kreal

yreal (5)

Figure 5 illustrates the procedure.

8

Du,max Greal D−1
r,max

K

−

r

yu

G

(a) Scaling the actual plant to obtain a synthesis
model

Greal

Du,max K D−1
r,max

ureal yreal

−

rreal

Kreal

(b) Scaling the controller for implementation on the
actual plant

Figure 5: Scaling for controller design based on frequency responses

For the Gyroscope, reasonable assumptions on the largest allowed input signals are

T1,max = 0.666 Nm, T2,max = 2.44 Nm

due to the different gearing mechanisms of the two motors. The outputs can be scaled
for instance with

q3,max = 45 π

180 , q4,max = 90 π

180 .

2 CONTROLLER DESIGN—STATE FEEDBACK
We will consider two different control design tasks in this lab: an augmented state-
feedback controller and an output feedback controller, both self-scheduled within the

9

LPV framework. We will make use of the mixed sensitivity design framework and express
design specifications in terms of a generalized plant. If you feel you need to review
fundamentals about mixed sensitivity design, see chapter 17 and 18 of the Optimal and
Robust Control lecture notes and the Control Lab—ORC2 documentation.

2.1 S/KS Design

We decide to us an S/KS weighting scheme for state feedback design. The sensitivity S

defines our nominal performance while shaping KS provides some basic robustness and
limits control effort. The transfer functions S and KS are weighted by shaping filters
WS and WK , which act as an upper bound on the induced L2-norm. These filters are
part of the generalized plant.

An important question in LPV control is whether we want to use parameter-dependent
or constant weighting filters. The former allow us to specify different performance for
different operating points, while the latter seek to generate a closed-loop system that
behaves similarly irrespective of the operating condition. The choice strongly depends on
the specific application. For controllers with humans in the loop, homogeneous behavior
is usually desired to facilitate handling. Maximum achievable performance at every
operating condition, on the other hand, usually requires to explicitly take into account
variations.

Prep. 2.1: Make sure you understand the different philosophy behind constant and
parameter-varying weights in LPV control.

In order to specify weights, we could use the parameterization from the ORC lecture
(possibly with pgrid objects for parameter-dependent weights) to define weighting filters
manually. A built-in command of the Robust Control Toolbox that we can use instead is

1 W_1 = makeweight(dcgain1, bandwidth1 , feedthroughgain1)
2 W_2 = makeweight(dcgain2, bandwidth2 , feedthroughgain2);
3 W = mdiag(W_1,W_2);

where dcgain specifies the low frequency gain, bandwidth specifies the frequency at
which the gain is one and feedthroughgain specifies the high frequency gain.

10

We need a generalized plant of the form


ẋ

z1

z2

 =


A(p) Bw(p) Bu(p)
C1(p) 0 0
C2(p) 0 I




x

w

u

 (6)

with external input w, controller output u and performance output z. Hereby, we assume
that all states of the generalized plant are available for feedback, so we do not explicitly
need to add an output for the controller.

For our synthesis tools to work, we need to first assemble the generalized plant that
includes the desired performance inputs and outputs. The generalized plant for the S/KS

formulation is depicted in Figure 6. In order to assemble it, use the sysic command.

G WS

WK

u

w

z1

z2

Figure 6: Open-loop generalized Plant P for the S/KS mixed sensitivity design

You should look up the help in Matlab, but to get you started, consider the following
code

1 systemnames = 'sys1 sys2 sys3';
2 inputvar = '[w{2}; u{2}]';
3 outputvar = '[sys1; sys2; sys3+w]';
4 input_to_sys1 = '[u]';
5 input_to_sys2 = '[sys3+w]';
6 input_to_sys3 = '[u]';
7 P = sysic

11

2.2 Synthesis

Stability and the induced L2-norm constraints can be expressed as linear matrix inequal-
ities (LMIs), see Theorem 3.1 of the Advanced Topics in Control lecture notes. We
already defined the gridded parameter space and the rate bounds, so all that is left,
is to define basis functions that represent the functional dependence of the candidate
Lyapunov matrix P on the scheduling parameters, i. e.,

P (ρ) =
∑

fi(ρ) Pi . (7)

Prep. 2.2: Why do we need to assign basis functions? What are the decision variables
when solving the optimization problem?

We can do this in Matlab by using

1 Pbasis = [];
2 Pbasis(1) = basis(1,0);

The first argument of basis is the function and the second argument is the partial
derivative. Thus, the example above defines a parameter-independent Lyapunov matrix
P = P1 and the partial derivative of this constant is zero. If we want to add parameter-
dependent terms, the pgrid objects can be used:

1 Pbasis(2) = basis(q2,1);

This adds a second term that is linear in q2 (with a partial derivative of one with respect
to this one parameter). The Lyapunov matrix is thus P = P1 + P2 q2. Of course, we can
add arbitrary complex expressions such as

1 Pbasis(3) = basis((q2-4)^2/3*sin(q1dot),'q2',...
2 (sin(q1dot)*(2*q2 - 8))/3,'q1dot',(cos(q1dot)*(q2 - 4)^2)/3));

With this, the Lyapunov matrix becomes P = P1 + P2 q2 + P3
(q2−4)2

3 sin(q̇1) Obviously,
we need to pay close attention to defining the partial derivatives correctly. How to chose
a “good” set of basis functions is to a large extend still not clear, see also exercise 3.2 in
the Advanced Topics in Control lecture notes.

Having defined both the generalized plant and the basis functions, we can solve for a
state feedback gain:

1 [F,gam,INFO] = lpvsfsyn(P,ncont,Pbasis);

12

Prep. 2.3: Experiment with different choices of basis functions. How do they affect
synthesis complexity and achievable performance?

2.3 Augmented Controller

By employing state feedback synthesis, we assume that all states of the generalized
plant are available for feedback. So in addition to all states of the plant, the controller
also requires access to the weighting filters’ states. Thus, if we seek to implement the
controller, these filters have to be implemented as part of the controller.

This step is very similar to the integral augmentation for state feedback control that
was introduced in Control Systems Theory and Design, see chapter 4 and 5 of the CSTD
lecture notes. The similarity becomes even more obvious if WS is selected as a 1

s
and WK

is selected to be static. In this case, all we do is adding the integrated error. Figure 7
shows the resulting controller.

WS

F

WK

y − e

r

xWK

ux xWS

Figure 7: Augmented state feedback controller

Prep. 2.4: Make sure you understand the dynamic augmentation and why it is necessary
to obtain a “good” controller”.

Prep. 2.5: Can we simply implement the filters WS and WK? Does the controller depend
on a specific state space realization of these filters?

Prep. 2.6: S/KS problems are known to lead to pole-zero cancellations for output
feedback problems (see, e. g., Control Lab ORC2). Why is this not a problem in
the present case?

13

2.4 Design Task

Design a gain-scheduled state feedback controller to achieve the following design specific-
ations:

• a 5% settling time of less than 4 seconds on both channels at every grid point

• a steady state error of less than 1% on both channels at every grid point

• that the control input magnitude never exceeds 1 at any time

• a controller with a fastest pole < 2000 rad/s when evulated at a grid point

• that disturbances are compensated after 5 seconds on both channels at every grid
point

• that disturbances lead to outputs of less than 3 in magnitude at every grid point

Note that we consider a larger operating range than in the ORC2 lab and that hence
the specifications appear to be reduced. For example, we asked for a settling time of 2
seconds in that experiment, but considered reference steps of 45◦, where here, we ask for
90◦ in 4 seconds. Thus, in fact we have the same speed-of-response specification for the
nonlinear plant.

Prep. 2.7: Why do we have to adjust the specifications for (quasi-) linear design?

Also design LTI controllers with the same methodology and compare them to their
gain-scheduled counterparts. In order to use the same framework, you can simply extract
a single operating point from the plant, i. e.

1 Glti = lpvsplit(G,'q1dot',45,'q2',0,'q3',0);

and use this pss object with the exact same tools as before.
You will most likely need to decrease your desired bandwidth considerably in order to

achieve a similar level of performance since, naturally, the specifications are much easier
to achieve for a single operating point than for the whole parameter space (compare
also the Control Lab—ORC2 documentation and exercise 3.2 of the Advanced Topics
in Control lecture notes). Therefore, splitting the generalized plant is not advised. You
should rather construct a new generalized plant Plti. Simply omit the basis function
argument to use a parameter-independent Lyapunov matrix for synthesis:

1 [Flti,gam,INFO] = lpvsfsyn(Plti,ncont);

14

3 SYNTHESIS MACHINERY—A CLOSER LOOK
The state feedback problem is solved with the elimination approach introduced by Wu, see
Theorem 3.1 of the Advanced Topics in Control lecture notes. The main reasons why we
use this approach is that the synthesis complexity of the elimination approach is smaller
compared to, let’s say, a linearizing change of variables. With synthesis complexity
actually still being a limiting factor in the control design, this reduced complexity can be
very beneficial.

The elimination, however, requires the generalized plant to be in a specific form. When
setting up a problem, the generalized plant will usually not look like the one given in the
Advanced Topics in Control lecture notes. Nevertheless, as this chapter shows, we can
usually transform the problem such that it suits the special form required for elimination.

Note that the tools that we use perform these steps by themselves, so this chapter
is really just meant to provide you with some additional insight into how the synthesis
machinery works and is not essential for performing the design task.

3.1 Lifting Assumptions on the Generalized Plant

Given the generalized plant


ẋ

z1

z2

 =


A(p) Bw(p) Bu(p)
C1(p) 0 0
C2(p) 0 I




x

w

u

 (8)

we can obtain a state feedback controller by finding P (ρ) such that ∀(ρ) ∈ P , ρ̇ ∈ V

P > 0 (9a)
P (A − Bu C2)T + (A − Bu C2) P − Bu BT

u −∑nρ

i=1
∂P
∂pi

ρ̇ P CT
1

1
γ

Bw

C1 P −I 0
1
γ

BT
w 0 −I

 < 0 (9b)

where the state feedback gain is given by the explicit formula

F = −BT
u P −1 − C2 (9c)

15

Here, two assumptions were made on the generalized plant

 ẋ

z

 =
 A(p) Bw(p) Bu(p)

C(p) Dzw(p) Dzu(p)




x

w

u

 .

These are: Dzw = 0 and Dzu = [0
I]. While it is shown in the lecture notes that this can

be easily achieved for the S/KS design, it is still rewarding from a practical point of
view to take a closer look at how these restrictions can be lifted. For example, Dzw 6= 0
allows us to specify the shape of our sensitivity function with a bi-proper weight, which
either gives more control over the peaks or allows to use a lower-order filter. We will see
that assumption A2 in the lecture notes, i. e. Dzu has full column rank ∀p, is all it takes
(in addition of course to controllability of the pair (A, Bu)).

Let’s first take a look at how to bring Dzu into the required form and to that end still
assume that we have no feedthrough from w to z. The generalized plant is thus


ẋ

z1

z2

 =


A(p) Bw(p) Bu(p)
C1(p) 0 Dz1u(p)
C2(p) 0 Dz2u(p)




x

w

u

 (10)

With
[

Dz1u
Dz2u

]
by assumption having full column rank, we can define

Ru =


Dz1u

Dz2u

T Dz1u

Dz2u




1/2

. (11)

The exponent 1/2 here denotes the matrix square root which can be defined to describe
the decomposition of a matrix M into two factors S such that M = S ST .

We can now define

Q1 =
Dz1u

Dz2u

 R−1
u (12)

since Ru is invertible. We further note that Q1 is an orthogonal matrix since Q1 QT
1 = I.

Second, we can find an orthogonal basis Q2 for the Nullspace of QT
1 by performing a

16

(complete) QR-Decomposition of Q1:

[
Q̃2 Q2

] R̃

0

 = Q1 (13)

With this, we can then apply an input/output transformation to the generalized plant

Pnorm =
QT

2

QT
1

 P

I 0
0 R−1

u

 (14)

which in terms of the state space representation corresponds to


ẋ

z1

z2

 =


A Bw Bu R−1

u

QT
2

[
C1
C2

]
0 QT

2 Dz1u R−1
u

QT
1

[
C1
C2

]
0 QT

1 Dz2u R−1
u




x

w

u

 (15)

From this representation, we can infer two things: First, the norm of the performance
outputs remains unchanged since Q1 and Q2 are orthogonal, i, e.∥∥∥∥∥∥

z1

z2

∥∥∥∥∥∥ =

∥∥∥∥∥∥
z1

z2

 QT
2

QT
1

∥∥∥∥∥∥ (16)

which means that we do not change the induced norm from w to z by this transformation
and hence still solve the same control design problem. Second, from the definition of Ru

in Equation (12), it follows
QT

2 Dz1u R−1
u

QT
1 Dz2u R−1

u

 =
QT

2

QT
1

 Q1 =
0
I

 (17)

which is exactly the normalization that we require in the theorem. We thus see that it is
indeed possible to guarantee the special structure of the Dzu matrix.

Prep. 3.1: Make sure you understand the normalization procedure. It might be a good
idea to code a small example for yourself, to see that it actually works.

Next, we will present the synthesis problem for the case Dzw 6= 0, i. e. for the generalized

17

plant


ẋ

z1

z2

 =


A Bw Bu

C1 Dz1w 0
C2 Dz2w I




x

w

u

 . (18)

The elimination-based synthesis problem can then be stated as the task to find P (ρ)
such that ∀(ρ) ∈ P , ρ̇ ∈ V

P > 0

σ̄

Dz1w

Dz2w

 < γ


P (A − Bu C2)T + (A − Bu C2) P − Bu BT

u −∑nρ

i=1
∂P
∂pi

vi P CT
1

1
γ

B̂w

C1 P −I 1
γ
D̂z1w

1
γ

B̂T
w

1
γ
D̂T

z1w −I

 < 0

where we can note a few subtle changes compared to the original formulation (9). First,
there is a new condition σ̄

([
Dz1w
Dz2w

])
< γ, resulting from the projection V⊥ R V < 0 (see

the Advanced Topics in Control lecture notes). This condition is intuitively clear, since the
largest singular value of

[
Dz1w
Dz2w

]
determines the largest singular value of the performance

channel at infinite frequency and hence is a lower bound on the achievable performance.
We can further note that a term involving Dz1w appears in the off-diagonal entries of the
bounded real lemma condition and finally that Bw is replaced with B̂w = Bw − Bu Dz2w.
Also, the formula for the feedback gain looks now a little more complicated:

F = −

BT
2 + 1

γ2 Dz2w B̂T
2 − Dz2w DT

z1w

(
1
γ2 Dz1w DT

z1w − I

)−1 (
C1 P + Dz1w B̂w

)P −1−C2

We are not proving this result. You are welcome to prove it yourself by simply following
the proof given in the lecture notes while keeping track of a non-zero Dzw. The purpose
of showing you this result, however, is to show you that we can also handle generalized
plants with arbitrary Dzw-matrices since this is what is implemented in the tools that
we use for control design.

Prep. 3.2: Verify that for the case Dzw = 0, this version of the theorem still yields the
familiar results.

18

3.2 Suboptimal Synthesis

Just as with regular H∞ control, it is usually desirable to use a suboptimal, rather than a
truly optimal synthesis (compare the Control Lab—ORC2 Manual). Since LPV synthesis
is even more prone to numerical issues than the H∞ synthesis, this is a very important
step. One possibility for such a suboptimal synthesis is given by the following three step
procedure.

1. Semidefinite Program—optimal synthesis

• min γ such that Bounded Real Lemma (BRL) condition holds

• Relax γ by a factor of
√

1.1 and fix it

2. Semidefinite Program—upper bound on spectral radius

• min λ̄ such that P < λ̄ I and BRL condition holds

• Relax γ again by a factor of
√

1.1 and fix it

• Relax λ̄ by a factor of 1.1 and fix it

3. Semidefinite Program—lower bound on spectral radius

• max λ such that λ I < P < λ̄ I and BRL condition holds

The current Beta Version of the LPVTools has no suboptimal state feedback synthesis
implemented. The modified synthesis routine

1 [F,gam,INFO] = lpvsfsynth(P, ncont, Pbasis);

does implement the three step procedure described above.
Other common possibilities are the inclusion of something similar to pole region

constraints or the use of penalty terms in the minimization object, for example the trace
of the Lyapunov matrices (which again is an upper bound for the spectral radius…).

Prep. 3.3: Compare the results that you get from the optimal synthesis using lpvsfsyn
and the suboptimal synthesis using lpvsfsynth. Depending on the problem, the
difference might actually be small. It is however possible, that the optimal synthesis
leads to very large entries in the state feedback matrix. Why is this a consequence
of a nearly singular Lyapunov matrix P?

19

4 CONTROLLER DESIGN—OUTPUT FEEDBACK
Often, not all states of a system are available for feedback. Even if they can be estimated,
as in the present case, it might not be desirable to use state feedback control. State
feedback assumes perfect knowledge of all states, that is, the effects of measurement
noise, uncertainty, etc. are inherently ignored. Still, as you can see for yourself in this
lab, such state feedback controllers can perform very well in practice. The “correct”
way of addressing feedback problems is nevertheless to consider output feedback with
possibly imperfect measurements. In this chapter, we thus design a gain-scheduled output
feedback controller.

Prep. 4.1: What is the main difference between state and output feedback? Think of
observer-based state feedback and the effect that the observer has on the overall
dynamic controller.

4.1 Four-Block Design with Velocity Feedback

In what is called a four-block design, we seek to minimize the weighted norms of the
transfer functions S, KS, SG and Ti, see Exercise 17.2 in the Optimal and Robust Control
lecture notes and the Control Lab—ORC2 documentation. In the Control Lab—ORC2
experiment, it becomes apparent that while disturbance rejection and robustness are
generally good with this design approach, simultaneously achieving satisfactory tracking
performance requires the use of what is called a two-degrees-of-freedom controller. Such
a controller receives the available measurements and the reference as two independent
signals (instead of a single error signal) and consequently decouples the tracking problem
from other requirements such as disturbance rejection. We consider the same modification
of the four-block problem that was used in the Control Lab—ORC2.

The generalized plant for an output feedback problem is of the form


ẋ

z

v

 =


A(p) Bw(p) Bu(p)
Cz(p) Dzw(p) Dzu(p)
Cv(p) Dvw(p) Dvu(p)




x

w

u

 (20)

where v now denotes the information provided to the controller.
The generalized plant that we are using is depicted in Figure 8 and has three different

performance inputs: r is the reference signal for y, di is an input disturbance acting on

20

the plant and do can be thought of as measurement noise or disturbances on all available
feedback signals. The performance outputs z1 and z2 reflect the design objectives and
the available outputs are v1 and v2. The signal v1 is used for feedback while v2 is actually
the reference signal and hence used in a feedforward fashion.

Wdo

Wdi

G W1

W2

u

−

do

di

z1

z2

r

v2

v1

Figure 8: Open-loop generalized Plant P for the four block mixed sensitivity design with two
degrees of freedom

Selecting the weights for this problem is not trivial and it is important to understand
what we actually want to achieve. From the synthesis, we get a two-degrees-of-freedom
controller, i. e. a controller with two independent inputs:

u =
[
Ky Kr

] v1

v2

 =
[
Ky Kr

] do − y

r

 . (21)

We can separate these two independent controllers and draw the resulting closed-loop
system as in Figure 9. The transfer functions that appear in our design problem can

21

Kr G

Ky

r

−
z̃1

d̃od̃i

z̃2

Figure 9: Closed-loop with two-degrees-of-freedom controller

thus seen to be

z̃1

z̃2

 =
S G S I − S G Kr

Ti Ky S Si Kr




d̃i

d̃o

r

 (22)

The transfer functions from the first two inputs, i. e. di and do form the classical four
block design problem. We can verify, that the transfer function from r to y is S G Kr and
hence the term I − S G Kr in Equation (22) represents the tracking error (r − y). What
we are mainly interested in are disturbance rejection (S G) and tracking (I − S G Kr)
for low frequencies and a roll-off in the controller (Ky S and Si Kr) for high frequencies.
Thus, the standard choice of W1 as a low pass and W2 as a high pass make also sense
with this setup. The trade-off between tracking, disturbance rejection and control effort
is handled via the input weights Wdi and Wdo

Prep. 4.2: Understand the weighting structure and how to use it for tuning.

Prep. 4.3: Why is two-degree-of-freedom control helpful for tracking?

In addition to the measured angles given by y, we will also consider the angular
velocities q̇2, q̇3 and q̇4 (i. e., ẏ) as available feedback signals. In practice, we still need
to estimate these by implementing differentiation filters, which causes phase loss and
amplifies measurement noise. We neglect the phase loss that is introduced by these filters
in our model and rely on the robustness of the controller to deal with it. Note that
contrary to the state feedback case, this decision is theoretically backed up, as we assume
the measurements to be imperfect (with do acting as some disturbance). Experiments

22

show that with these extra measurements, the controller is able to increase damping
much better than with just the angles. It is hard to rigorously justify this by theory,
but in practice this “velocity feedback” is quite common. Make sure you understand
that although we add additional outputs to the plant, our tracking objective is still just
concerned with y, not ẏ. Thus, r is a vector with 2 entries while y is a vector with 5
entries. The error y − r thus is not well defined unless we are more precise and write (in
Matlab notation) r − y(1 : 2). We can add the additional outputs to the plant using

1 Gv = pss(G.a,G.b,[G.c;zeros(3,2) eye(3)],[G.d;zeros(3,2)]);

4.2 Synthesis

The LMI conditions for output feedback are given by Theorem 3.2 of the Advanced
Topics in Control lecture notes. Besides stabilizability of (A, Bu) and detectability of
(A, Cv), we require that Dzu has full column rank and that Dvw has full row rank. If
these conditions hold, techniques similar to those described in the previous section can
be used to transform the generalized plant into


ẋ

z1

z2

 =


A(p) Bw(p) Bu(p)
Cz(p) Dzw(p) [0

I]
Cv(p) [0 I] 0




x

w

u

 (23)

These transformations, as well as balancing and scaling to reduce sensitivity to numerical
issues are automatically performed within the LPVTools’ lpvsyn command. Further, a
suboptimal synthesis is invoked, basically using the first and third step of the procedure
described in the previous section. The default suboptimality factor is 1.2, i. e., 20%.

Again we need to define basis functions, this time for the two candidate Lyapunov
matrices X and Y . The controller is then obtained by the command

1 [K,gam,INFO] = lpvsyn(P,nmeas,ncont,Xbasis,Ybasis);

Depending on the dynamic order of the system, the number of basis functions for the
Lyapunov matrices and especially the number of grid points, this synthesis may take
very long (45 grid points with affine Lyapunov matrix take around 20 minutes for the
gyroscope). Tuning the controller can thus become a really time-consuming task, and as

23

we all know: time is money. Thus, it is usually a better idea to use either parameter-
independent Lyapunov matrices while trying to find weights or to simply perform a
number of LTI synthesis steps with a common weighting structure. The main conceptual
difference is the following: The first approach gives an upper bound during tuning,
since the use of a common constant Lyapunov matrix is conservative. Our responses
will usually look better when using the actual parameter-dependent synthesis once a
satisfactory tuning was found. The second approach, on the other hand, gives a lower
bound. We cannot exceed the performance of an LTI controller at a single grid point,
even if we used infinitely many basis functions for the Lyapunov matrices. Our results
will thus usually look worse with the LPV controller and we can add basis functions in
order to try to make the deterioration small.

4.3 Controller Post-Processing

If a parameter-dependent Lyapunov matrix X is used, the controller also depends on
scheduling rates. Often, this dependence can simply be ignored, although again, any
theoretical guarantees are lost in doing so. For the current case, we would require q̈1,
q̇2 and q̇3 to be available online. It’s your decision whether you want to implement the
rate dependence with differentiation filters or ignore it. In order to neglect it, we can
interpolate the controller for zero rates:

1 K0 = lpvelimiv(lpvinterp(K,'q1dotDot',0,'q2Dot',0,'q3Dot',0));

4.4 Design Task

Design a gain-scheduled output feedback controller to achieve the following design
specifications:

• a 5% settling time of less than 4 seconds on both channels at every grid point

• a steady state error of less than 1% on both channels at every grid point

• that the control input magnitude never exceeds 1 at any time

• a controller with a fastest pole < 2000 rad/s when evulated at a grid point

• at least 2dB gain and 10 degree phase multiloop disk margin at every grid point

24

• that disturbances are compensated after 10 seconds on both channels at every grid
point

• that disturbances lead to outputs of less than 5 in magnitude at every grid point

Also design LTI controllers with the same methodology and compare them to their
gain-scheduled counterparts. Again, lpvsplit and lpvsyn (without basis functions) can
be used.

5 LINEAR EVALUATION OVER THE GRID
We can only assess whether our controller performs well in nonlinear simulation and on
the actual experiment. Nevertheless, linear analysis for individual grid points can be
very helpful during the design. If the linear responses are not satisfactory, for sure, the
nonlinear ones won’t be either.

5.1 Frequency Response Analysis

A first step in evaluating our controller can be a frequency response analysis. We can
calculate all the six different transfer functions of interest using loopsens. The structure
loops then contains all closed-loop transfer functions which are accessible as

1 loops = loopsens(G,K);
2 lpvgetfield(loops,'So') % S
3 lpvgetfield(loops,'Si') % Si
4 lpvgetfield(loops,'To') % T
5 lpvgetfield(loops,'Ti') % Ti
6 lpvgetfield(loops,'CSo') % KS
7 lpvgetfield(loops,'PSi') % SG
8 lpvgetfield(loops,'Stable') % verifies that the closed loop is stable

Matlab uses a different convention than we do and labels the plant with P instead of
our usual G, and the controller with C instead of K. Sticking to our notation, the
transfer functions that we obtain are in the order of appearance S = (I + G K)−1,
Si = (I + K G)−1, T = I − S, Ti = I − Si as well as K S and G Si, which are the same
as Si K and S G, respectively.

25

Since we are considering nonsquare plants for the output feedback case, make sure that
you look at the correct input/output pairs. For example, when looking at step responses,
we are interested in just y and not ẏ, so only the first two channels are of interest.

5.2 Time Domain Analysis

You can perform step response simulations on the linear models at all grid points
simultaneously with the step command.

5.3 Robustness

Linear robustness margins cannot guarantee anything for LPV systems. Nevertheless,
the same argument as for the step responses remains true: the parameter varying nature
will just make things worse and hence linear margins at a grid point are a first indicator
whether a design can succeed. Just as in Control Lab—ORC2, we only consider the
multiloop disk margin and are further just interested in a worst case analysis, i.e. the
lowest margins across the grid. Note that this is a VERY conservative measure, so we
can’t expect too much. Still, try to aim for something like 3dB gain and 15 degree phase
margin.

1 [~,~,~,~,~,~,MMIO]= loopmargin(Gv,Ky);
2

3 GM = lpvgetfield(MMIO,'GainMargin');
4 PM = lpvgetfield(MMIO,'PhaseMargin');
5 lpvmin(GM(2))
6 minGM = db(lpvmin(GM(2)))
7 minPM = min(lpvmin(PM(2)))

Note that the analysis for the state feedback controller would require to break the
loops for every state in addition to the outputs. You can try this on your own if you like.

26

6 NONLINEAR SIMULATION AND
IMPLEMENTATION

6.1 Simulation Environment

The file atc1_GyroSimulation.slx provides a nonlinear simulation environment re-
sembling the control moment gyroscope. The structure of the model is depicted in
Figure 10.

The blue block represents the control moment gyroscope and contains the equations of
motion implemented as a mex-file/C-code. It takes the control signal u = [T1 T2]T

as an input (in Nm). The outputs of the block are the physical available output
y = [q3 q4]T [rad], the estimated velocities ẏ = [q̇2 q̇3 q̇4]T [rad/s] used for feedback,
the saturated (i. e. actually applied) inputs [Nm] and a signal bus that contains all
states of the simulation model.

! You have to set the correct initial conditions in the file atc1_simulation.m

The red block represents the controllers. It also contains the reverse scalings that we
used during the design.

The green blocks are associated with the user interface. On the left side, you can see
the signal generator for the reference trajectory. On the right, the state bus is sorted
into different signals that can be viewed in the scope. The scope data is further
written to the workspace as a structure simdata. The file atc1_simulation.m
contains code for plotting these data.

Prep. 6.1: Familiarize yourself with the simulation. You should be able to explain the
purpose of every single block.

Prep. 6.2: Make sure that your controllers, both state feedback and output feedback,
work in nonlinear simulation and deliver consistent results with what you achieved
during the design phase. Pay close attention to the available control action since
saturation might easily cause instability on this plant.

Prep. 6.3: Compare the two controllers. Which controller performs better and why?

27

Simulation
Data

D2R

Degrees to
Radians

T

x_nonlinear

inputs

outputs

v elocities

Gyroscpe Model

ref erence

x

q3 tracking

q4 tracking

Angular v elocities

Operating Point

Signal Sorting for Plot

state bus

state v ector

scheduling v ector

Sort state bus for scheduling

Signal 1

Signal 2

Reference Signal

DOC

Text

-1* u

negativ feedback

scheduling signal

ref erence

measurement

v elocities

control signal

LPV Controller [Lookup Table]

state signal

scheduling signal

error signal

control signal

LPV augmented state-feedback Controller [Lookup Table]1

Switch

[ctr]

From2

[ctr]

Goto

controller_switch

Select Controller

-1* u

negativ feedback1

applied torque

u

u

Figure 10: Simulink Simulation: Plant, Controller and interface-related blocks

Prep. 6.4: Also try out an LTI controller. In order to use the provided structure, you
can simply implement it as an LPV controller with just a single grid point. Vary
the size of the reference trajectory and find out the admissible operating range.
Compare the results of the LPV and LTI controllers that you obtain especially
with respect to the cross-coupling problem.

6.2 Lookup Table Implementation

The default method of implementing gridded LPV controllers is in terms of lookup tables
with element-wise linear interpolation. Simulink provides a block called n-D Lookup
Table for this purpose.

We need to specify the number of dimensions, the table data and breakpoints. An
example implementation for the state feedback gain dependent on the three parameters
q̇1, q2, and q3 looks as follows:

1 Table data: reshape(F.Data,[size(F,1)*size(F,2), size(F.Domain)])
2 Breakpoints 1: 1:size(F,1)*size(F,2)
3 Breakpoints 2: F.Parameter.q1dot.GridData
4 Breakpoints 3: F.Parameter.q2.GridData
5 Breakpoints 4: F.Parameter.q3.GridData

As inputs, a vector containing the linear indices 1:size(F,1)*size(F,2) and the
three parameters are required. The output is a vector containing all entries of the matrix
F . It can be transformed into the correct dimensions using the reshape block.

28

A dynamic controller is implemented analogously: The three state space matrices A,
B, and C can all be stored as lookup tables in the form described above and then the
dynamic system is formed by including an integrator of compatible dimension.

Prep. 6.5: Verify the implementation in the Simulink model. You can use the display
block or scopes to actually see the varying entries in the matrices during simulation.

Alternatively, a complete nonlinear implementation is possible that calculates the
controller directly from the Lyapunov matrices in every sampling instant, see Exercise
3.2 of the Advanced Topics in Control lecture notes. In this case, memory requirement
is usually lower, since only the coefficients of the Lyapunov matrices need to be stored.
Computational complexity is on the other hand larger, since several matrix multiplications
and inversions need to be performed. While this is in general more accurate and
computationally indeed tractable, the implementation requires extreme care to include
all scalings and transformations performed during synthesis. As these quantities are not
accessible when using commercial tools such as the LPVTools, we will not address this
possibility further.

7 EXPERIMENT
During the lab, the file atc1_GyroExperiment.slx will be provided to interface the
control moment gyroscope. Its structure is depicted in Figure 11. As you can see, it is
very similar to the nonlinear simulation.

The blue block represents the control moment gyroscope and contains interfaces to the
Digital/Analog and Analog/Digital converters of the physical plant. The inputs
and outputs of the block are the same as in simulation except that differentiation
filters are used to estimate the states.

The red blocks are identical to that used in the simulation.

The green blocks are identical to that used in the simulation except that the output
structure is now named expdata. Code for plotting this data will also be provided.

The yellow blocks are associated with a dedicated “start-up” controller and the switch-
ing logic necessary to switch to the LPV controller. The start-up controller is

29

used to bring the plant to a certain operating point. It consists of a simple PI
controller acting on q̇1 and q2. The first yellow switch on the upper left is used to
activate/deactivate the start-up controller. The second can be used to reset q3 and
q4 in order to define an operating point.

T1

reset

x

inputs

outputs

Laboratory Plant

1

Constant3

Experimental
Data

ref erence

x

q3 tracking

q4 tracking

Angular v elocities

Operating Point

Signal Sorting for Plot

Signal 1

Signal 2

Reference Signal

D2R

Degrees to
Radians

set

Goto1

state bus

u_in

u_out

Start-Up Control

Clock1

Manual Switch1Ground

[reset]

Goto2
Manual Switch2Ground1

[reset]

From

DOC

Text

state bus

state v ector

scheduling v ector

v elocities

Sort state bus for scheduling

-1* u

negativ feedback

state signal

scheduling signal

error signal

control signal

LPV augmented state-feedback Controller [Lookup Table]1

Switch

[ctr]

From2

In1Out1

Set Switch2

In
1

O
ut

1Set Switch3

In1Out1

Set Switch4

[ctr]

Goto

controller_switch

Select Controller

scheduling signal

ref erence

v elocities

measurement

control signal

LPV Controller [Lookup Table]1

-1* u

negativ feedback3

In1Out1

Set Switch1

applied voltage

u

u

Figure 11: Simulink model: Plant, Controller, Start-Up Controller and interface-related blocks

Prep. 7.1: Make sure your design file produces all the files necessary to run the nonlinear
simulation by simply executing it.

! Bring this files with you to the experiment as you may need to retune your
controller.

Goal

Implement your controller in the Simulink real-time interface and try it out on the actual
plant. On the predefined trajectory that captures 45◦ steps in q3 and 90◦ steps in q4, you
should be able to achieve

• stability throughout the runtime

• a 5% settling time of less than 4 seconds on both channels

30

• a steady state error of less than 1% on both channels

• cross coupling should not exceed 2.5◦ per 45◦ command (i. e. should be less than
6%)

• that the control input magnitude never exceeds 10 V at any time

• that the control input is smooth and does not result in mechanical wear (you’ll
hear what we mean if you fail to achieve this).

If necessary, retune your controller and try again.

! Be careful and obey all safety requirements when working on the experimental
device. An unstable controller can cause fast and unpredictable motion of the
gimbals which can cause severe injuries.

31

	PLANT
	Linearization and LPV Modeling
	Initial Scaling

	CONTROLLER DESIGN—STATE FEEDBACK
	S/KS Design
	Synthesis
	Augmented Controller
	Design Task

	SYNTHESIS MACHINERY—A CLOSER LOOK
	Lifting Assumptions on the Generalized Plant
	Suboptimal Synthesis

	CONTROLLER DESIGN—OUTPUT FEEDBACK
	Four-Block Design with Velocity Feedback
	Synthesis
	Controller Post-Processing
	Design Task

	LINEAR EVALUATION OVER THE GRID
	Frequency Response Analysis
	Time Domain Analysis
	Robustness

	NONLINEAR SIMULATION AND IMPLEMENTATION
	Simulation Environment
	Lookup Table Implementation

	EXPERIMENT

