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Introduction

The aim of this lecture course Advanced Topics in Control is to bridge the gap between
a basic knowledge of Hy and H., optimal control and of the LMI framework used to
design and analyse such controllers (which is taught in the course Optimal and Robust
Control), and some issues arising in currently active research areas in the field of advanced
control. This course is intended to provide a thorough understanding of advanced concepts
and methods as well as familiarity with associated state-of-the-art software tools, that
will enable students to apply techniques such as gain-scheduling control of nonlinear and
time-varying systems, cooperative control of multi-agent systems or distributed control of
interconnected systems.

This course will build on the material taught in Optimal and Robust Control; a firm grasp
in particular of the use of the H,, norm for synthesis and analysis, and of formulating
these problems as LMI Problems will be essential here. We will see how the notion of the
H,, norm - interpreted as a system norm induced by the signal-2 norm - can be extended
to time-varying as well as to multi-agent or distributed systems, leading to analysis and
synthesis tools similar to H,.-norm-based tools for LTT systems.

Three research areas will be covered. The first one, control of Linear Parameter-Varying
Systems (or LPV systems for short), extends the machinery of H., optimal control from
LTI systems to time-varying systems. This is particularly useful when a nonlinear plant is
represented as a parameter-dependent linear system, where the time-varying parameters
are allowed to be functions of input, output or state variables of the nonlinear plant
model. In this case the approach can be used to design gain-scheduled controllers for
nonlinear plants in the same way H,, controllers are designed for LTI systems (e.g. in
the mixed-sensitivity framework); the associated analysis and synthesis problems can be
solved as LMI problems. Moreover, as with LTI systems these gain-scheduled controllers
come with stability and performance guarantees for the nonlinear closed-loop systems.
This part of the course starts with a brief look at the history of gain scheduling, and a
review of heuristic gain-scheduling control, and concludes with case studies on the design
of gain-scheduled controllers for a robot manipulator, for a control moment gyroscope and
of a torque vectoring scheme for an electric car.

The second research area covered in this course is Cooperative Control of Multi-Agent
Systems. Here one can think of groups of mobile agents such as unmanned aerial or
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underwater vehicles, or wheeled mobile robots, equipped with sensors and actuators, which
are operating in a coordinated fashion in order to perform a common task. Possible
applications include monitoring of disaster areas and search and rescue operations. Rather
than employing a centralised control scheme that requires communication links between
a central control unit and each single agent, a much more efficient and robust approach
(inspired by swarm behaviour observed in nature) is to operate with a group of autonomous
agents, where each agent communicates only with its nearest neighbours and acts based on
local information. The communication structure in such a group of agents can be repres-
ented by a graph, and the design of cooperative control schemes involves a combination of
control theory and graph theory. Beginning with the study of consensus protocols, we will
focus on a typical problem arising in cooperative control, the formation control problem.
Agents will initially be modelled as LTI systems, but results will later be extended to
agents with LPV dynamics, thus allowing to solve formation control problems for agents
subject to non-holonomic constraints.

The third part of this course presents an introduction to Distributed Control of Spatially
Interconnected Systems. An important feature of these systems is that they do not only
depend on time as independent variable, but also on space. Applications we will consider
in this context are control of a heat profile over space using an array of temperature
sensors and actuators, and vibration control of a flexible structure with the help of an
array of piezo sensors and actuators. The underlying systems are governed by partial
differential equations, and the use of an array of collocated actuator-sensor pairs induces a
spatial discretisation that turns the partial differential equations into partial difference
equations. The spatially discretised system can thus be seen as an interconnection of
individual segments (each corresponding to a single actuator-sensor pair and interacting
with neighbouring segments). The aim is to design a distributed control scheme where a
local controller is attached to each actuator-sensor pair and controllers communicate with
each other, using the same communication structure as the plant.

The material in each part of the course is accompanied by a number of exercise problems.
In some of these problems students are asked to fill in gaps in the derivation of theoretical
results; the majority of problems however present illustrative examples, including simulation
studies for design problems that involve test rigs available at the Institute of Control
Systems, where an experimental validation is possible (e.g. LPV gain scheduling for a
control moment gyroscope, which can be carried out as a project in the new Control Lab
offered by the Institute).

Much of the material presented in this course is based on results that have been developed
only recently and are not yet available in standard text books. Reference is therefore made
frequently to the research papers where these results were presented originally. All papers
in the literature list are available as pdf documents via StudIP, and students are strongly
encouraged to browse through the papers for more details.
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Chapter 1

Nonlinear Systems and Classical
Gain Scheduling

1.1 Heuristic Gain Scheduling — A Historic
Perspective

We will begin the study of gain scheduling control with a brief look at the history of this
particular field of control engineering; the following summary is based on a survey in [1],
which contains many references that can be consulted for more details. Heuristic gain
scheduling has been in practical use since the 1950s, even though until the 1990s there
is little literature on this topic. Gain-scheduled controllers have been widely employed
in applications where linear, fixed-gain control was not sufficient; they were designed
heuristically and applied without rigorous stability and performance analysis, justified by
the fact that they did indeed perform satisfactorily. Gain scheduling is still widely used;
in [1] it is stated that

7

... in any case, the market has now spoken: gain scheduling is an effective
and economical method for nonlinear control design in practice ... With little
exaggeration we can say, for at least the last few decades, 'Machines that walk,
swim, or fly, are gain scheduled’”

The first applications of gain scheduling were actually "machines that fly”; in fact for more
than two decades the use of gain scheduling control was limited to the military domain.
New developments after the second world war - the arrival of jet aircraft and guided missiles
- posed challenges to control systems in maintaining stability and performance that could
be addressed by gain-scheduled controllers. The reason that at the time there was no
commercial interest in this type of control was that it was rather difficult to implement.
In flight control for example the dynamic properties of an aircraft depend strongly on
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Figure 1.1: Development of number of experimental results in LPV control, together with
publication years of key papers in the field

altitude and speed, and in order to schedule controller gains on these quantities one has to
calculate e.g. the true air speed based on available measurements. That would be a simple
task when digital control is employed, but digital control was not available at the time and
everything had to be done using analog circuits. As a result, implementing gain-scheduled
control required complex and expensive hardware, which made the approach unattractive
for civilian use. The first reported application of gain-scheduled control was the autopilot
of the B-52 strategic bomber of the US air force, which was scheduled on air speed and
was supposed to maintain a desired closed-loop bandwidth over the whole flight envelope.

Commercial interest in gain scheduling emerged when microprocessors and digital control
became available in the 1970s, and one of the first civilian applications of gain scheduling
was automotive engine control, in particular control of the air/fuel ratio. The first gain-
scheduled engine controller was implemented in serial production on the Ford Pinto, as
well as on its rebadged version Mercury Bobcat, in 1978. What was used then was integral
feedback scheduled initially on engine speed and later on speed and manifold pressure.

From Heuristic to LPV Gain Scheduling

Gain scheduling as it was used in the above mentioned applications basically meant to
design local LTI controllers for local plant models that were linearised about suitable
operating points, and to either switch or interpolate between these local controllers,
depending on the current value of the scheduling variables. In the early 1990s, following
the development of LMI-based solutions to H,, analysis and synthesis problems, it was
recognised that the H., approach can be extended from LTI systems to nonlinear and
time-varying systems if it is possible to represent these as linear parameter-varying models,
and that the resulting analysis and synthesis problems can still be solved efficiently as
LMI problems.

It is this latter "modern control approach” to gain scheduling that we will study in in the
first part of this course, after taking a brief look back at heuristic gain scheduling as a
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way of controlling nonlinear plants. Starting in the mid-90s, there has been an increasing
number of reports about the use of LPV gain scheduling in practical applications. Figure
1.1, which is taken from [2], shows how the number of reported experimental validations
of LPV gain scheduling control increased over the last 20 years, together with the year of
publication of some of the important theoretical results. Indicated is also the synthesis
technique used in each case: based on gridding, on LFT models or on polytopic models;
these approaches will be studied in detail in Chapters 3 and 4.

1.2 Nonlinear Systems

Consider a nonlinear dynamic system represented by the model

ety = f(tat),ult), =(0) =,
" {y(t) = hgt,x(t),u(t)g (1.1)

where z(t) € R" is the state vector, u(t) € R™ the input and y(¢) € R! the output signal
of the system. The functions f : Rt x R" x R™ — R” and h : R+ xR" x R™ — R! (where
R* denotes the set of positive reals, here time) are nonlinear, and in the following we
will, unless stated otherwise, assume that these functions are continuous in x and y, and
that f is continuously differentiable and satisfies a Lipschitz condition, so that existence
and uniqueness of a solution to the state equation is guaranteed (see [3]). Note that f
and h are allowed to depend on time; the system in (1.1) is referred to as a nonlinear
time-varying system. When f and h do not depend on time, the system is called nonlinear
time-invariant. A familiar special case of the latter is the linear time-invariant (LTT)
system

(t) = Ax(t)+ Bul(t)
y(t) = Cx(t) + Du(t)

where f and h are independent of time and depend linearly on x and u, respectively.

Definition 1.1 A wvalue of the state vector x is called an equilibrium of the unforced
system % if it satisfies
0= f(t,z0) Vt>0.

Unforced LTI systems always have an equilibrium at x = 0; if an LTT system has a
nonsingular system matrix A (no integral behaviour), this is the single unique equilibrium.
Parameter-dependent systems

We will be interested in systems whose dynamic models depend on a set of possibly
time-varying parameters p;(t), i = 1,...,n,. Collecting the parameters into a parameter
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vector p(t), we represent such a parameter-dependent system by the model

o[ = (e ), =)=,
Tl y@) = A

Note that in this representation f and h do not explicitly depend on time. The system

(1.2)

(1.2) is still a nonlinear time-varying system, but the dependence on time is expressed via
the time-varying parameter p(t).

We will usually associate with a time-varying parameter vector p(t) a compact set P, and
assume that the parameter vector satisfies

p(t) e P CR™ Vt>0. (1.3)

For the finite dimensional vector space R™ considered here compact means closed and
bounded.

p(t)

u(t) y(t)

—_— EP —

Figure 1.2: Nonlinear system

A block diagram of such a system is shown in Fig. 1.2. For a fixed value of p, 3, in (1.2) is
a nonlinear time-invariant system. For such systems, we can consider a forced equilibrium
with a constant input u, determined by

0= f(p. 7(p). ulp)).

The equilibrium values Z(p) and u(p) are functions of the parameter vector p, and we
refer to (f(p), ﬂ(p)) as an equilibrium family parameterized by p. Associated with this
equilibrium family is the equilibrium output family

5(p) = h(p,3(p), u(p)).
Generalized plant

The parameter-dependent System ¥, can be augmented to include an additional external
input channel w and a fictitious output channel z, as indicated in Fig. 1.3, These signals
can for example be used to represent a performance channel or model uncertainty; how
this is used in the case of LTI systems is discussed in the Lecture Notes Optimal and
Robust Control. A state space realisation of the generalised plant in Fig. 1.3]is then

i(t) = f(p(t),x(t),ult),w(t)), (0) =z,
() = ha(p(t), (1), u(t), w(t))
o(t) = ho(p(®),x(t), u(t) w(b)). (1.4)
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where the feedback signal has been re-labeled v(t).

p(t)
o] % ot

Figure 1.3: Generalized plant

A parameterized equilibrium family for this system is characterised by the condition
0= f(p.2(p), u(p), w(p))

with a corresponding output equilibrium family (Z(p), 6(,0)).

1.3 Jacobian Linearisation and quasi-LPV Models

For the model (1.4) of a nonlinear generalised plant, we will now consider control strategies
based on gain scheduling. In Section 1.1 we introduced the distinction between heuristic,
classical gain scheduling based on Jacobian linearization on one hand, and gain scheduling
based on a quasi-LPV model on the other hand. In this section we focus on the former
approach and analyse properties and potential shortcomings of classical gain scheduling.

Given a nonlinear model ¥, the idea of classical gain scheduling is to obtain a linear
representation of ¥ that involves a set of scheduling parameters, and to use these parameters
to schedule a control law. The way of selecting these parameters (which we will collect into
the parameter vector p) may not be obvious initially but will become so in the process of
linearisation, when they are used to parameterise an equilibrium family. This is illustrated
by the following example, which is borrowed from [1].

Example 1.1 Jacobian Linearisation

Consider the system
©(t) = —a(t) +u(t)
y(t) = tanhxz(t)

2(t) = r(t) —y@), (1.5)

where y(t) is the controlled output, r(t) an external reference input and the performance
output z(t) is taken to be the control error.

A block diagram of this generalised plant is shown in Fig. |1.4. The objective is to bring the
control error z to zero, and we consider equilibrium states associated with this objective:
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Y
\

Figure 1.4: Block diagram for Example 1.1

let an equilibrium be determined by the condition

z=0 (1.6)
which implies

y=r
for constant equilibrium values of y and r. Using (1.6), such equilibria can be characterised

by a parameter p, defined as
p =7 =1y =tanhzx. (1.7)

With this definition of p and noting that the static gain from u to x is 1, we obtain the
equilibrium family
Z(p) = u(p) = tanh™" p

It is also clear from the definition that we have
pel[-1,1 =P,

which defines the admissible parameter set P.

To linearise this nonlinear model about p = r = y, we consider the deviation from the
equilibrium

r=z+2, y=y+y, u=u+u z=2,
where Z, y, u and Z represent the deviation variables. The system considered here has the
form

T = f(x,u,p)
y = h(z,p).

A linearisation about the equilibrium is obtained by calculating

. ofl . off .
Tla(p) Ulap)
T
0|z
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Note that the system is linearised about the equilibrium values of x and u, but not about
p, which is used to parameterise the equilibrium family. With f = —z 4+« and y = tanh
we obtain for the example considered here

z(t) = —z(t)+a(t)
gt) = clp)a(t) (1.8)
where 5
c(p) = E » tanhz = 1 — tanh® z(p)
or using (1.7)
c(p) =1—p"

For fixed values of p, the linearized system (1.8) can be represented as a transfer function

parameterised by p B
Y(s) 1-—p?
G(s,p) = =—~= , 1.9
50 = 55 = 571 (1.9)

as illustrated in Fig. 1.5. We refer to G(s, p) as a linearisation family parameterised by p.

The static gain of this transfer function is 1 — p?, which is equal to the slope of y(z) at
y = p =1y, see Fig. 1.6l From the figure we also see that the slope is 1 when p = 0, whereas
it approaches 0 as p — +1, which is in agreement with (1.9).

Quasi-LPV model

An alternative way of bringing system (1.5) into the form of a linear model is to represent it
as a quasi-LPV model. An important feature of quasi-LPV models - in contrast to models
obtained via Jacobian linearisation - is that they provide an ezxact representation of the
nonlinear system under consideration. This is achieved by hiding nonlinear terms of the
system dynamics behind the introduction of new model parameters. Such a representation
of a given nonlinear system is usually not unique, as is now illustrated for system (1.5).

Example 1.1 continued

Consider again the nonlinear first order system (1.5). The dynamics from input u to
output y can be represented as

T = —r+u
y = c(p)z. (1.10)
Yot Gl ot
u(p) y(p)

Figure 1.5: Linearized model for fixed p
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Y

Figure 1.6: Equilibrium about p =y

Note that the output equation has the same form as in (1.8). As before, we are looking for
a model that captures the nonlinear dynamics and is parameterised by a suitably selected
parameter p. Here, however, we are interested in an expression ¢(p) that does not involve
an approximation, 7.e. we need

c(p) x = tanh x,

therefore we choose 1
c(p) = —tanhx,
T

(for x # 0 and taking c¢(p) = 1 if = 1), where we still have to define p as a function of
z. In an LTI model, ¢ in (1.10) would be a constant; the nonlinearity of the system (1.5)
is here reflected by the fact that ¢ depends on the state variable x. This dependence is
expressed via p, and the selection of p is not unique: one possible choice is to take

which leads to

On the other hand the choice

leads to

1.4 Classical Gain Scheduling

We now return to the linearized model (1.8), obtained via Jacobian linearisation, and the
associated parameterised transfer function G(s, p) in (1.9). In this section we consider the
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construction of a feedback controller K for this system, and since the plant dynamics G
depend on the value of the parameter p, we are interested in a controller K (s, p) that is
also parameterised by p. We will refer to time-varying parameters of a plant model that
are used to parameterise a controller as scheduling variables.

y(p)

Figure 1.7: Classical gain scheduling: feedback loop

The principle of classical gain scheduling is illustrated by the feedback loop shown in
Fig.|1.7. Plant and controller are represented as linearisation families, operating on the
deviation variables @ and . Here G, and K, are used as shorthand notation for G(s, p)
and K (s, p), respectively. Assuming that the equilibrium families u(p) and y(p) of plant
and controller match, i.e. are equal for a given value of p, it can be seen from the figure
that on each side of the loop the same equilibrium values are added and subtracted,
respectively, so that one can equivalently consider a feedback loop that involves only the
deviation variables.

When considering this feedback loop, it is assumed that the scheduling variable p is known
and used to tune the controller to the current operating point of the plant. Note that the
linearised plant model and its parameterisation were derived under the assumption that
the plant is in equilibrium and p is constant. The idea behind classical gain scheduling
is to ignore this assumption and treat p as a time-varying scheduling variable, that is
measured and used to adjust the controller gains on-line.

Tracking

Assuming that the equilibrium families of plant and controller match, we now consider the
loop shown in Fig. 1.8, where a reference signal has been introduced that is to be tracked,
and we assume that 7 =r — 7.

LT— K/) > Gp >

Figure 1.8: Classical gain scheduling: tracking

<
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Since for fixed values of p both GG, and K, are transfer function models of LTI systems,
we can apply linear design techniques to design a family of controllers K, for the family of
plants G,. Thus, we consider a PI controller

K
K(s.p) = Kplp) + 210) (1.11)
where we choose 1 1
Kp(p) = 30— ) Ki(p) = — (1.12)

Note that the controller gains will be large when p is close to 1 or —1, i.e. when the plant
gain is small, and that the controller gains will take their minimum values when p = 0, i.e.
when the plant gain takes its maximum value 1. In other words, the controller gains are
scheduled to compensate for changes in the plant gain. This is confirmed by calculating
the closed-loop transfer function from 7 to 7 as

1
3 1
Gals, p) = G(s,p)K(s,p) 35+

= = . 1.13
1+G(s,p)K(s,p) s>+ 3s+1 (1.13)

An interesting feature of this closed-loop transfer function, which in general should be
itself a linearisation family parameterised by p, is that here it is independent of p. The
choice of scheduled controller gains indeed completely compensates for changes of the
plant gain, to the effect that the closed-loop dynamics are independent of the scheduling
variable. This is generally the goal of classical gain scheduling: to determine a scheduling
policy that adjusts the controller gains on-line such that a desired closed loop behaviour is
achieved, independent of the current value of the scheduling variable.

Note that G is stable; since it is independent of p this implies that it is stable for all
pEP.

Implementing Gain-Scheduled Control
The idea behind designing and implementing gain-scheduled controllers for nonlinear plants
can be summarised as follows:

o treat p as a frozen parameter in the design process, but

e use p as a time-varying scheduling signal once the controller is implemented.

Applied to the example considered here, this means to replace the choice p = y of the
scheduling variable, on which the derivation of the linearized model (1.8) was based, by

p(t) = y(t).

In other words, the scheduling variable, which was introduced to represent the value y of
the plant output in equilibrium, is now taken as the current value y(¢) of the plant output
not only in steady state but also in transient stages of plant operation.
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Letting ¢ denote the state variable of the PI controller, a state space model of the controller
is then

(1) = r(t) —y()
u(t) = Ki(y()¢+Kp(y®)(r— ()
3¢(t) +r —y(t)
3(1—-2(t))
If the denominator in the controller output equation was constant, this would be a standard
PI controller. The dependence of the denominator on y has the effect that the controller

(1.14)

gains are large when the plant gain is small, and small when the plant gain is large.
Hidden Coupling

As pointed out above, the closed-loop transfer function obtained with the scheduled PI
controller is stable and independent of the scheduling variable p, so we might expect
the scheduled closed-loop system to be stable for all admissible values of p. However,
simulation experiments reveal that the closed-loop system displays unstable behaviour in
response to input steps as soon as p(t) = y(t) exceeds the value 0.7.

This disappointing closed-loop behaviour is obviously related to the fact that we are using
p, introduced as an equilibrium value, as a scheduling signal in transient operations. To
explain the reduced stability range, we represent the state space model (1.14) of the
controller in the form of (1.2) as

() = frelp(y(1)),C(1), y(),r(1))
u(t) = hi(p(y(t)), C(1), y(t),r(t)). (1.15)

To obtain a linearisation family of the controller, we need to calculate

dhg

dhg _ Ohg GhK@
dy -

p

since we need to account for the dependence of p on y. For the controller design only
the first term of the right hand side was used. The second term is referred to as hidden
coupling [1], because it represents a coupling between plant and controller that is caused
by the fact that both plant and controller are scheduled by the same scheduling signal
p(t) = y(t); see Fig. |1.7. It is this second term, which has not been taken into account
when designing the controller, that is responsible for the reduced stability range; this is
further explored in Exercise 1.1.

Stability of Linear Time-Varying Systems

The example discussed in this chapter raises questions about the stability of linear
time-varying systems (the closed-loop system in this example is a linearisation family
parameterised by a time-varying scheduling variable p(t) = y(t)). We know what the
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condition for an unforced linear system & = Ax is to be stable: the eigenvalues of A
must all be strictly inside the left half of the complex plane. What can be said about a
parameter-dependent system @ = A(p)x? As long as the parameter p is fixed, the system
matrix is constant and we are considering an LTI system whose eigenvalues can be checked.
But what if p is allowed to be time-varying? Assume we know that p(t) € P Vt > 0, and
that A(p) has all eigenvalues inside the left half plane for all p € P: can we then conclude
that
i = A(p(t))z

is stable as long as p(t) € P, i.e. as long as the eigenvalues of A(p(t)) do not leave the
right half plane?

Unfortunately the answer is no: even if A(p(t)) has its eigenvalues strictly inside the left
half plane at all times, is it possible that the the free response to a non-zero initial state
becomes unbounded. A well-known example that illustrates this fact, a spring-mass-damper
system with time-varying stiffness of the spring, is explored in Exercise 1.2.



Exercises — Chapter 1

Problem 1.1 (Hidden Coupling)

Learning Goals

Understand the source of possible instability in ad hoc gain-scheduling design

References The original example is contained in (1|, which has been reworked for the

purpose of this exercise. The paper is also an interesting read for a historical and practical

perspective on gain-scheduling.

Task Description Consider the nonlinear plant (1.5) and its linearisation family (1.9),
together with the scheduled controller (1.11), (1.12).

a)

Check that the equilibrium families u(p) and y(p) of plant and controller match, i.e.
that

hic (Co), 5(p) 7(p)) = ulp),  p € [=1,1].

Recalling that the closed-loop transfer function (1.13) is stable independent of the
value of p, simulate a step response of the closed-loop system as shown in Fig. 1.8
with

7(t) = ko(t), k=0.5,0.6,0.7,0.8.

What do you observe?
Linearise the controller about an equilibrium while taking into account the depend-
ence of p on y by using (1.16).

Construct the closed-loop system comprised of the linearized controller and linearized
plant and determine its stability for different values of p.
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Exercises

d*)

Try to modify the implementation of the scheduled controller such that hidden
couplings are avoided. Specifically, move the scheduled gain such that it appears
before the integrator, instead of at the controller output. What do you observe in
comparison to the previous implementation? Does the closed-loop also turn unstable
for large step changes?
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Problem 1.2 (Inferring LTV from LTI Stability)

Learning Goals

e Observe that (in-)stability of LTV or LPV systems cannot be inferred from the
(in-)stability of frozen-parameter LTI snapshots

References A similar example is contained in [4], a collection of conference papers
compiled during a workshop at the Conference on Decision and Control in Kobe, Japan,
1996. The compilation has long been out of print.

Task Description Consider the mass-spring-damper system shown in Fig. 1.9, with
mass m = 1, damping coefficient b and variable stiffness k. The system is governed by the
following set of differential equations:

(4 2

Yy
—
k b

m

N

N

Figure 1.9: Simple mass-spring-damper system

a) Plot the free response to 2(0) = [0 1] in the phase plane

i) whenb=0,k=1/3,
ii) whenb=0, k=3.

What can be stated about the stability of the systems?
b)  Plot the free response to z(0) = [0 1]7 in the phase plane

i) when b=0.25, k =1/3,
ii) when b=0.25, k= 3.

What can be stated about the stability of the systems?
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Exercises

c)

Take cases i) and ii) from subtask b) and implement a switching law

J 3 Lifyy >0
1/3 Lifyy <0

Plot the free response to z(0) = [0 1]7 in the phase plane. Also try to turn the
switching condition around, such that

L 1/3 ifyy >0
3 Lifyy <0

What can be observed in terms of stability of the switching system?
Explain the observed effect physically. Where does the energy come from?

Instead of a switching stiffness k, consider a smoothly time-varying stiffness
1
k(t) =1+ 3 cos(2t).

Is the system stable? Try to find a smoothly time-varying law that does the opposite
(stabilize/destabilize).



Chapter 2

LPV Systems - Stability and
Performance

2.1 Lyapunov Stability

The discussion at the end of the last chapter shows that the concept of stability used for
LTT systems is not appropriate even for linear time-varying systems, let alone for nonlinear
systems, and in this section we will introduce a more general concept of stability. In
particular, we will see that - in contrast to LTI systems - it is not meaningful to consider
stability as a property of a given system, but as a property of an equilibrium. As an
example, consider a pendulum shown in Fig. 2.1.

Figure 2.1: Stable and unstable equilibrium of a pendulum

The motion of the pendulum is governed by a nonlinear differential equation; a second
order nonlinear state space model

i(t) = f(2(t))
with angle and angular velocity as state variables, is analysed in Exercise 2.1. It is clear
that there are two distinct equilibria (if we ignore periodicity there are in fact infinitely
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many): one (Zs) where the pendulum is at rest when hanging, and the other one (z,)
where the pendulum is balanced in an upright position. We will refer to the hanging
equilibrium as stable and to the upright equilibrium as unstable: when slightly perturbing
the pendulum away from its equilibrium state, it will return to it when hanging but move
away from it (fall down) when in the upright position.

These notions of stable and unstable equilibria of nonlinear systems are now expressed
formally in the following definitions. Consider an unforced nonlinear system

i(t) = f(z(t)) (2.1)
with an equilibrium state z such that f(z) = 0.

Definition 2.1 = is a stable equilibrium of system (2.1) if for every e > 0 there ezists
a d(g) > 0 such that

lz(0) =z <6 = |lz(t)—z| <e VE>0.

This definition is illustrated in Fig. 2.2. Note that ¢ is allowed to be a function of ¢.

Figure 2.2: Definition of stability

Definition 2.2 An equilibrium state T of system (2.1) is attractive if there exists a
n > 0 such that

[o(0) 2l <n = lma()=2z
This definition is illustrated in Fig. 2.3. Note that a state trajectory is not required to
stay within the n-ball at all times.

Definition 2.3  An equilibrium state of system (2.1) is asymptotically stable if it is
stable and attractive.

From now on we will assume without loss of generality x = 0 for equilibrium states under
consideration; if x # 0 it is always possible to apply a coordinate transformation that
moves the equilibrium to the origin of the state space.
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Figure 2.3: Definition of attractiveness

Based on the above definitions of stability and asymptotic stability, we now present a
result, due to the Russian Mathematician A.M. Lyapunov (1857 - 1918), that provides a
sufficient condition for a system to be stable or asymptotically stable, respectively.

For a given r > 0, let B, denote the ball
B, ={z e R"[ |||l <7}
and B,\0 the ball B, without the origin.

Theorem 2.1  Consider system (2.1) and assume that f(0) = 0. The equilibrium at
the origin is stable if there exist a continuously differentiable function V : R™ — R and a
constant r > 0 such that

V(z) >0 VYax#0 (2.2)

and

V(z) <0 VzxebB,. (2.3)
The equilibrium is asymptotically stable if

V(z) <0 VxebB\0 (2.4)

A proof of this result can be found in [3]. A function V' that satisfies the conditions
of the theorem is called a Lyapunov function for system (2.1). Note that the theorem
provides only a sufficient condition; if a Lyapunov function can be found, then stability
or asymptotic stability, respectively, is proven. If such a function cannot be found, then
no statement is possible. An exception are LTI systems, for which one can show that the
existence of a quadratic Lyapunov function V(x) = 27 Pz with P > 0 is not only sufficient
but also necessary for stability [3].

A Lyapunov function of a given system can be interpreted as a generalisation of the total
energy of a system; conditions (2.3) and (2.4) then imply that the total system energy
decreases or strictly decreases, respectively, along any state trajectory of the system. This
is illustrated in Exercise 2.2 for the pendulum example.
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Note that Theorem 2.1 presents a local result: required is the existence of a positive
constant r such that the conditions of the theorem are satisfied inside a ball of radius
r. If the conditions hold for r — oo, the equilibrium is called globally stable or globally
asymptotically stable, respectively. For LTI systems one can show that if the origin is
(asymptotically) stable, it is globally (asymptotically) stable; this is the reason why for
LTT systems we consider stability as a property of the system.

2.2 Linear Parameter-Varying Systems

In this section we will formally introduce the concept of a linear parameter-varying (LPV)
system. For the system in Example 1.1 it was illustrated in Chapter |1/ that it is possible to
represent a nonlinear system in the form of a quasi-LPV system; this is the basis for using
analysis and synthesis results on LPV systems to analyse and control nonlinear systems.

p(t)

w(t) 2(t)

—_— EP T

Figure 2.4: LPV system

An LPV system is a dynamic system that can be represented in the form

. {f(t) = Agpm) z(t) + B(p(t)) w(t)
7T ) = Cp(t) () + D(p(t)) wit)

where p is a time-varying vector of scheduling variables, and A(-), B(-), C(-) and D(-) are

(2.5)

continuous functions of p. As before, we assume that
p(t)ye PCR™ Vt>0

where P is a given compact set. Note that the continuity assumption together with
compactness of P implies that A, B, C' and D are bounded on P. Fig. 2.4 shows a block
diagram of an LPV system.

The LPV system X, in (2.5) is linear in  and w, but depends on the time-varying parameter
p. In Example 1.1 see (1.10), a nonlinear system was represented as a quasi-LPV system
in this form; this requires that p in turn depends on the state vector x and/or on the input
u.

The set P has been introduced as a compact subset of the Euclidean vector space R™. It
will be convenient to define also a set

Fp ={p(t) € C'R*,R™)| p(t) € PVt >0} (2.6)
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where the notation C'(R™,R™) is used to denote the set of continuously differentiable
mappings from R* to R". Note that whereas P is a subset of the finite-dimensional vector
space R™, Fp is a subset of a signal space, i.e. the elements of Fp are not admissible
scheduling vectors but admissible scheduling trajectories. We will use the notation

Sp = {2, |p € Fp} (2.7

to represent an LPV system whose dynamic properties are determined by (2.5), and
on which in addition the constraint is imposed that the scheduling trajectories p(t) are
continuously differentiable w.r.t. time and confined to the compact set P.

We will also consider LPV systems with constraints not only on the values of the scheduling
vector p(t) but also on the rate of change p(t). In this case we assume that

lpil < VE>0, i=1,...,n, (2.8)
Defining a vector
v=_[n vy ... ynp]T
and the set
V:{VERnp||Vi|§17i, izl,...,np}, (29)

we can modify the set (2.6) and define a set of scheduling trajectories
7y ={p(t) € C'(R*,R™) | p(t) € P, p(t) €V ¥t >0} (2.10)

that satisfy constraints on the values and the rate of change of the scheduling variables.
We let 2% denote an LPV system whose scheduling trajectories are confined to this set.
The set Fp represents scheduling trajectories without rate limit.

2.3 Classes of Linear Systems

An LPV system as defined in (2.5) is a linear system, in the sense that both state and
output equation are linear in the input signal and in the state vector. The simplest class
of linear systems consists of LTI systems

#(t) = Az(t) + Bu(t), y(t) = Ca(t) + Du(t),

with constant model matrices A, B, C' and D. A more general class of linear systems
is obtained when the model matrices are allowed to vary over time, resulting in linear
time-varying (LTV) systems

z(t) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t) + D(t)u(t).
Note that an LTV system is different from an LPV system

() = A(p(t)) z(t) + B(p(t)) ut),  y(t) = C(p(t)) x(t) + D(p(t)) u(t),
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where the model matrices do not explicitly depend on time, but on a scheduling vector p
which in turn is a function of time. One can view both LTI systems and LTV systems
as special cases of LPV systems: an LTI system can be interpreted as an LPV system
with a constant scheduling trajectory, whereas an LTV system can be seen as an LPV
system with a particular choice of a time-varying scheduling trajectory. This is because for
a given LTV system (A(t), B(t),C(t), D(t)) it is always possible to construct a scheduling
vector p(t) that includes all time-varying elements of the model matrices, and select the
scheduling trajectory that results in the given LTV model. (For viewing a given LTV
system as a special case of an LPV system ¥p pr X%, it is however required that the
time-varying model matrices of the LTV system satisfies the constraints imposed by P
and V.)

2.4 Stability of LPV Systems

In this chapter we will extend the notions of stability and performance defined for LTI
systems to LPV systems, and we begin with stability. We will do this by applying the
definitions and the stability result introduced in Section 2.1 for nonlinear systems to LPV
systems. This will also provide a basis for analysing quasi-LPV systems, which are used
to represent nonlinear systems.

Consider the state equation of an unforced LPV system

i(t) = A(p(t))a(t) (2.11)

Recalling Definition 1.1, it is obvious that x = 0 is an equilibrium of this time-varying
system. Note that for z to be an equilibrium, it is required that A(p(t))i is zero for all

t > 0. If there exists any time instant ¢, > 0 at which A(p(t8)> is non-singular, then it
follows that z = 0 is the single unique equilibrium of the system, and from now on we
shall, unless stated otherwise, make that assumption.

It is also clear that, for a given set P of admissible scheduling variables, z = 0 is an
equilibrium for all p € P. In this section we will be looking for a condition under which
the equilibrium z = 0 of system (2.11) is stable for all p(t) € Fp, or - if rate bounds are
known - for all p(t) € Fp. If we can establish that this condition is satisfied, we will say
that system (2.11) is stable over P, or stable over (P x V), respectively.

LTI Systems

Before we derive a condition for system (2.11) to be stable, we briefly review a stability
condition for LTI systems based on a quadratic Lyapunov function. To establish stability
of the system

i = Az,

we define the Lyapunov function candidate V(x) = 27 Pz with P > 0. The condition that
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V(z) < 0Vaz # 0 yields
V(z) = iT Pz 4 2T Pi = 2T(ATP + PA)x <0 Vz #0.

Using Theorem 2.1, we conclude that V' is a Lyapunov function and the system is globally
asymptotically stable ' if there exists a P > 0 such that

ATP+PA<O. (2.12)

For LTI systems it can in fact be shown that this condition (a linear matrix inequality in
P) is not only sufficient but also necessary for stability, see e.g. [3].

LPV Systems

Now we apply this approach to system (2.11) and define again V(z) = 27 Pz with P > 0.
The condition that V(z) < 0 Vx # 0 then yields the following result.

Theorem 2.2  System (2.11) is stable over P if there exists a P > 0 such that

AT(p)P + PA(p) <0 VYpeP. (2.13)

Quasi-LPV Systems

When the model (2.11)) is used to represent a nonlinear system as quasi-LPV system, i.e.
when p depends on x, then stability over P, established by condition (2.13), can be related
to the stability condition (2.4) of Theorem 2.1 as follows. Assume that there exists an
r > 0 such that

reB, = plx)eP,

then (2.13) implies that £ = 0 is a stable equilibrium of (2.11)).

In contrast to the above result for LTI systems, the condition of Theorem 2.2 is only
sufficient and not necessary. An LPV system that satisfies this condition is said to be
quadratically stable. An important feature of quadratic stability is that the matrix P in
the quadratic Lyapunov function is constant. Demanding that P is constant is however
unnecessarily restrictive - if a constant positive definite solution P to (2.13) does not exist,
it may still be possible to find a matrix-valued function P(p) that proves stability of the
system over (P x V), with some constraints ) imposed on the rate of parameter variations.
A stability condition less conservative than quadratic stability can be derived as follows.
Define a quadratic Lyapunov function

V(z) = 2" P(p)z, (2.14)

where P € C(R",8"*™), and 8"*" is the set of n x n real symmetric matrices (this
means that P is a matrix-valued, symmetric, continuously differentiable function of p).
Imposing the condition that

P(p)>0 YpeP (2.15)

'From now on we will - unless stated otherwise - use the term stable to mean asymptotically stable



26 2. LPV Systems - Stability and Performance

and that V(z) < 0V # 0 yields

Viz) = " P(p)r + 2" P(p)x + 2" P(p)
= " (A(p)" P(p) + P(p)Alp) + P(p))x <0 Va #0, Vp e P.

Because the Lyapunov matrix is now time-varying (via its dependence on p(t)), the left
hand side of the above inequality now includes the term P(p); with p € R™ we have

(o) =Yg

i=1

We can summarise the above results as follows.

Theorem 2.3 System (2.11) is stable over (P xV) if there exists a P(p) €
CL(R™, 8™ ™) such that (2.15) holds and

AP+ POAG)+ Y G <0 Vpp)ePxV)  (216)

Quasi-LPV Systems

When the model (2.11)) is used to represent a nonlinear system as quasi-LPV system, i.e.
when p depends on z, then stability over P x V), established by condition (2.16)), can be
related to the stability condition (2.4) of Theorem 2.1 as follows. Assume that there exists
an 7 > 0 such that

reB, = plx)eP and p(z) eV,

then (2.16) implies that £ = 0 is a stable equilibrium of (2.11)).
Bounds on the Rate of Parameter Variation

If the scheduling vector p(t) is allowed to change arbitrarily fast, i.e. if p — oo, then
only constant solutions P to (2.16) are possible, because otherwise for any non-zero
value of p; the third term on the left hand side of the inequality can take arbitrarily
large positive values; only a constant P can accommodate an infinite rate of parameter
variation. On the other hand, this discussion shows that quadratic stability guarantees
stability in the presence of arbitrarily fast variations. When upper bounds on the rate of
parameter variation are known, this turns into a source of conservatism, because stability
is guaranteed for stronger conditions than needed. The smaller the bounds on the rate are
(meaning a small V), the better are the chances for finding a solution P(p) that satisfies
(2.16) and (2.15)). Later when discussing controller synthesis we will see that Theorem
2.3 offers a way of exploiting known bounds on the rate of parameter variation to achieve
improved performance, or of finding a solution at all when the problem is infeasible with
constant Lyapunov functions.
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Testing the Stability Condition

A practical difficulty when testing conditions (2.16) and (2.15) is that they have to hold
for all admissible values of p and p. A heuristic approach that is used in practice is to
check the conditions on a suitably dense grid over (P x V). For a given grid on P, the
partial derivatives can be approximated using a finite difference scheme. In this case
inequalities (2.16) and (2.15) are affine in P(p) for fixed values of p and p, and can be
solved by solving an LMI feasibility problem; this has to be done however in each grid
point. A simplification is offered by the fact that (2.16) is affine in p;. As a consequence,
we do not need to grid over the range —1; < p; < ;5 it is sufficient to check (2.16) at the
boundaries —; and v; for each grid point on P. This is illustrated in Fig. 2.5 for the case
where p is scalar.

S
™
=Y

Figure 2.5: Gridding with a scalar scheduling variable p

Gain-Scheduled State Feedback

To illustrate how the analysis conditions (2.16) and (2.15) can be used to construct a
stabilising gain-scheduled controller for a plant represented as LPV model, we will now
consider a gain-scheduled state feedback control law. We first briefly review the state
feedback synthesis problem for LTI systems (see Lecture Notes Optimal and Robust Control,
Chapter 19). Thus, consider the LTI plant

T = Az + Bu

and LTI state feedback u = Fx. We can use (2.12) as an LMI condition for closed-loop
stability when we replace A by A + BF": the state feedback gain F' will be stabilising if
and only if there exists a P > 0 such that

(A+ BF)'P+ P(A+ BF) < 0.

This is however not an LMI in ' and P. A linearising change of variables is not possible
in this form, but becomes possible when we replace A + BF by its transpose: then we can
define a new variable Y = F'P to obtain the condition

AP+ PAT + BY +YTBT <,
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which can be solved as an LMI problem for the variables P and Y and yields a paramet-
erisation of all stabilising state feedback gains as

F=YP'

Replacing A + BF by its transpose in a stability condition for LTI systems is justified by
the fact that this does not change the eigenvalues. This reasoning based on eigenvalues
is not valid when we consider gain-scheduled state feedback for an LPV systems; the
following example illustrates how a linearising change can be performed.

Example 2.1  For the system
&= (Ap+ pAi)z+ Bu (2.17)

where p € [0,1] and |p| < v (this defines the set P x V), we consider the problem of finding
a stabilising gain-scheduled state feedback law

u=F(p)x. (2.18)

Features of the LPV system (2.17) that simplify the synthesis are (i) the affine dependence
of A(p) on p and (ii) the fact that the input matriz B does not depend on p. Substituting
(2.18) in (2.17) yields the closed-loop system

i = (Ao + pAs + BF(p)) « (2.19)

We can now apply Theorem 2.5 to obtain a condition for (2.19) to be stable over (P x
V): a sufficient condition for stability is that there exists a matriz-valued, continuously
differentiable function P(p) such that

P(p)

< 0.
dp

(Ao + pAs + BF(p)) P(p) + P(p) (Ao + pAs + BF(p)) + 2

for all (p,p) € (P x V). As in the LTI case, this condition is not affine in P(p) and
F(p). For a linearising change of variables we need to rearrange the closed-loop Lyapunov
inequality. In contrast to the LTI case, here we cannot simply replace the closed-loop
system matriz by its transpose, since stability is not determined by eigenvalues. But we

can apply a congruence transformation: multiplying the above inequality from left and right
by P~1(p) yields

opP

P~ (p) (Ao + pAi+ BE(p))' + (Ao + pAL + BF(p)) P~ (p) + PP, P e) <0

Note that this is indeed a congruence transformation because P is symmetric. Using

oP op~!
ptl—pt=_
op op
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renaming the variable P~ by P and defining

Y(p) = F(p)P(p), (2.20)

we can conclude that the closed-loop system (2.19) is stable over P x V if there exist Y (p)
and P(p) such that
P(p) >0 (2.21)

and

P(p)(Ao + pA1)" + (Aot pADP() + Y ()BT + BY(p) = p50 <0 (222)

for all (p,p) € P x V.

We will now discuss two different ways of using this condition for gain-scheduled stabilising
state feedback gain: by gridding, and by imposing a structure on the solution.

1. Gridding: Divide the admissible range [—1,1] for p into N intervals of width h (see Fig.
2.6), and define
pe="kh =1, P.=P(pr), Yi=Y(pr)

oooooooooo

oooooooooo

Figure 2.6: Example 2.1, gridding

Using a finite difference approximation for the partial derivative, the infinite family of
conditions (2.21) and (2.22), which must hold on P XV, can then be approzimated by a
finite number of conditions
P, >0
and ]
(Ao + prA1) Pe + Pu(Ao + peA1)" + BY, + Y, BT + DE(P/CH — ) <0

indexed by k = 0,1,...,N — 1. The £ in front of the last term on the left hand side
means that this inequality must be checked at each value of pyx for v and —v. Note that
the conditions are linear in the variables Py, Pyy1 and Yy, which can thus be obtained by
solving a finite collection of LMI conditions. Using these values of P, and Yy, we can
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construct a lookup-table for the values of the scheduled state feedback gain F(py) from
(2.20) as F(pp) = Vi Py L.

2. Imposing a structure: An alternative way of turning the infinite family of conditions
(2.21) and (2.22) into a finite number of LMIs is to impose a structure on the functional
dependence of the variables P and Y on p. In this approach one typically copies the
functional dependence of the model matrices on p into the variables; thus here we assume

P(p):P0+,0P1

and
Y(p) = Yo + pY1.
Substituting this into (2.22) yields

(A() + pA1)<P0 + pPl) + (Pg + pPﬂ(Ao + pAl)T+
B(Yy + pY1) + (Yo + pY1)" B = pP1 < 0 (2.23)

which must hold together with (2.21) for all (p,p) € P x V.

p;

Figure 2.7: Example 2.1, imposing a structure

Note that condition (2.23) is linear in the variables Py, Py, Yy and Y1 and can thus be
solved as LMI problem. The fact that it is linear in p means that it is sufficient to check
for each value of p only the extreme values p = +v. Unfortunatley the condition is not
linear in p: expanding the brackets shows that the left hand side of (2.23) includes the term

pQ(Alpl + PlA{)

Thus, one still has to grid over p. A way of avoiding gridding altogether is to impose the
additional constraint
AP+ PLAT > 0. (2.24)

This renders the quadratic dependence on p convez, so that it suffices to check that (2.21)
and (2.22) are satisfied at the extreme values of p and p (see Fig. 2.7). Imposing the extra
constraint (2.24) introduces however additional conservatism: this condition is not required
for stability but only for the convenience of reducing the number of LMIs to be solved.
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This example is further explored in Exercise 2.3.

2.5 Performance of LPV Systems

Having established stability conditions for LPV systems, we will now define performance
and establish conditions that will later be turned into synthesis tools for LPV controllers.
More precisely, we will extend the notion of the H,, norm for LTI systems to LPV systems
by taking an induced system norm as performance measure.

p(t)

w(t) 2(t)

— Ep =

Figure 2.8: LPV system

Consider again an LPV system X, as defined in (2.5) and shown in Fig. 2.8. We will use
the notation introduced in Section 2.2 and let ©¥ denote a system with dynamics defined
by (2.5), and admissible scheduling trajectories p(t) confined to the set F% defined in (2.6).

The Lo-norm of a vector-valued signal z : Rt — R" is defined as

(D)])» = (/ 2072 (t) dt>2. (2.25)
0
The associated space L3 of n-dimensional signal vectors is
£y ={z:R" 5 RY| |lz(t)|l2 < o0} .

Since the Ly-norm is the only signal norm considered here, we will usually drop the
subscript and let ||z(t)|| denote the Lo-norm of z(t).

Definition 2.4  Assume 2(0) = 0. The induced Ly-norm of the LPV system L is

= sup sup HZ(t)H (2.26)

=%
pEFY OFwEL: Jw(®)|l

Lo

In the special case where ¥% is an LTI system (and therefore there is no scheduling variable
to be constrained to an admissible set), this definition reduces to the familiar H.-norm.
For an LPV system with scheduling trajectories confined to a compact set, the definition
of the induced ¥% involves taking the supremum over all admissible scheduling trajectories,
(i.e. considering the worst-case admissible scheduling trajectory).

Review: Induced L;-Norm of LTI Systems
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Before we derive a condition for an upper bound on the Ls-norm of an LPV system, we
briefly review the LTT case. Thus, consider the system

{:‘c(t) = Az(t) + Buw(t)

2(t) = Cux(t) + Dw(t) (2:27)

which is shown in Fig. 2.9.

w z
| T >

Figure 2.9: LTI system

An upper bound on the H-norm of T(s) is provided by the following result (compare
Lecture Notes Optimal and Robust Control, Theorem 18.3).

Theorem 2.4 T(s) is stable and ||T || < 7 if and only if there exists a positive definite
matrixz P that satisfies
ATP+PA PB C7
BTP I DT| <o, (2.28)
C D —I

Note that stability follows immediately from negative definiteness of the (1,1) block on
the left hand side of (2.28). The proof of (sufficiency of) this result is based on the
idea of “using a Lyapunov function to bound the Lo-gain” of a system: with a function
V(x) = 27 Pz where P > 0, it follows from
av 1
(z) T

7_’_*
dt y

that || 7|l < 7. This can be seen by integrating (2.29) from 0 to oo and assuming z(0) = 0.
The LMI condition (2.28) is then obtained by substituting
dV(x)
dt

z—ywlw <0 (2.29)

=3Py + 2" Pi (2.30)
= (Az + Bw)" Pz + 2" P(Ax + Bw)

and
2 = (Cz + Dw)" (Cx + Dw)

in (2.29), rewriting the left hand side as a quadratic form in [z7 w”], and using a Schur
argument to obtain the 3 x 3 block matrix in (2.28).

LPV Systems

Now consider the LPV system

(2.31)
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Defining V(z) = 27 P(p)z with P > 0, we obtain

dV(x)
dt
Compared with (2.30) we have the extra term

sz

Assuming that the admissible trajectories are confined to a set F%, and following the

= iTP(p)x + 2T P(p)x + zTp(p)i.

Op;

same reasoning as in the LTT case, we obtain a sufficient condition (necessity is lost for
time-varying systems) for y-performance of an LPV system.

Theorem 2.5 XX is stable and ||X%||z, < v if there exists a continuously differentiable
matriz-valued function P that satisfies

A(p)"P(p) + P(p)Alp) + i1 pig P(p)B(p) C(p)
B(p)" P(p) -y D(p)"| <0 (2.32)
C(p) D(p) —

and P(p) > 0VY(p,p) € P x V.

Note that by considering frozen values of p and p, condition (2.32) can - like the stability
condition (2.16) - be turned into a finite collection of LMIs on a grid over P (when
approximating the partial derivatives by finite differences). The statement “X% is stable”
is used here as equivalent to “X, is stable on P x V",

Quadratic Ls-Performance

A special case of the above result is obtained by imposing the constraint that P is constant.
In this case the partial derivative term in the (1,1) block of the above matrix inequality
disappears.

Corollary 2.1 Xp is stable and ||Xp||z, < v if there exists a P > 0 that satisfies

A(p)"P+ PA(p) PB(p) C*(p)
B(p)TP —vI  D(p)T| <. (2.33)
C(p) D(p) =1

An LPV system that satisfies the condition of Corollary 2.1 with constant P is said to have
quadratic Lo-performance . In this case the performance level v is achieved even when
p — oo. For this reason, conditions imposing quadratic performance are more conservative
than the conditions of Theorem 2.5, which allow to exploit bounds on the rate of parameter
variation to achieve a better performance.

Next we illustrate the conservatism incurred by the constraint that P be constant with an
example. In particular, we will consider an unstable LPV system for which a gain-scheduled
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state feedback gains exists that makes the closed-loop system stable, but for which no
gain-scheduled state feedback gain exists that makes the closed-loop system quadratically
stable. We first define quadratic stabilisability.

Definition 2.5 An LPV system
&= A(p)z + B(p)u

is quadratically stabilisable over P if there exist a continuous matriz-valued function F(p)
and P > 0 such that

(Alp) + B(p)F(p)) P+ P(A(p) + B(p)F(p)) <0 VpeP.

Example 2.2  This example is taken from [5]. Here we will show that the following
system is not quadratically stabilisable; that a stabilising gain-scheduled state feedback law
exists nevertheless will be established in Ezercise 3.1.

We consider a fourth-order system with two input and two output channels, see Fig. |2.10.
Both input channels include first-order low-pass filters with fixed time constants T; the
filtered signals v1 and vy are then passing through a rotation matrix

CoS sin
R(y) —[ 0 p]
—sinp cosp

where p € [—m, 7).

uy T U1 V1
S+T
Lp
R(p) Tp=Apxp +0 —
U2 T V2 '52
—_— - L
S+ T

Figure 2.10: System for Example 2.2

The rotated vector v = R(p)v is then taken as input to second order LTI dynamics (A,,I),
as shown in the Figure. The overall system can be represented as

ip | _ | A R(p) Tp 0
[@]_[O—TI v+7'[u’
or in a more compact form as
& = A(p)x + Bu.

We will now show that if A, is unstable, then (A(p), B) is not quadratically stabilisable
over |—m, |, whereas Exercise 3.1 will establish that a stabilising state feedback law does
exist when the rate of parameter variation is bounded.
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We prove the above claim by contradiction. Thus, assume that (A(p), B) s quadratically
stabilisable over [—m, 7). Then there exist a P > 0 and a continuous function F : [—m, 7] —
R2** such that

T
(A(p) + BF(p)) P+ P(A(p)+ BF(p)) <0 Vp € [-m,7].
In particular, there exist F'(0) and F(w) such that
(A(0) + BF(0))' P+ P(A(0) + BF(0)) <0 (2.34)
and .
(A(x) + BF(r)) P+ P(A(r)+ BF(r)) <0. (2.35)
Adding inequalities (2.34) and (2.35) and dividing by 2 yields

(A+ BF)TP+P(A+BF) <0

where
A= 3 (40) + Am) = l 0 ]

and

F= ;(F(O) + F(m)).

In other words, there exists a matriz F € R**4 that stabilises

~ A, O 0
an-(% % ]15)
which is obviously not possible if A, is unstable.

An intuitive explanation of the fact hat the system in Fig. 2.10 is not quadratically
stabilisable if A, is unstable, is that quadratic stabilisability allows an infinite rate of
parameter variation. In particular, quadratic stability allows that p switches between
0 and 7, which here means that R(p) can switch between I and —I. Since the input
channels of the system are band-limited, no gain-scheduled state feedback law can cope
with the sign of the input channels switching between plus and minus. On the other hand,
in Exercise 3.1 a gain-scheduled state-feedback gain is presented that stabilises the system
even when A, is unstable, if a bound on the rate of parameter variation is assumed.






Exercises — Chapter 2

Problem 2.1 (Muitiple Equilibria of Nonlinear Systems)

Learning Goals
o Appreciate that stability is a property of an equilibrium, of which there may be

multiple in a nonlinear system.

References A resource that treats the analysis of nonlinear equilibria in great detail can

be found in [6].

Task Description Consider the damped pendulum shown in Fig. 2.11, with mass m = 1,
pendulum length L and damping coefficient b. The system is governed by the following

set of differential equations where 1 = a, x5 = &

L'CQ] - [—i sin(zy) — bmJ (2.36)

Figure 2.11: Simple damped pendulum

a) For b =0, determine the equilibria of the system.
b) Determine the stability properties of the equilibria.

c) For some positive b > 0, determine the equilibria and associated stability properties.
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Problem 2.2 (Prove Stability by Lyapunov Function)

Learning Goals

e Prove the asymptotic stability of the damped pendulum by means of a Lyapunov
function.

References A resource that treats the direct method of Lyapunov in great detail is [5).

Task Description Reconsider the damped pendulum shown in Fig. 2.12, with mass
m = 1, pendulum length L and damping coefficient . The system is governed by the
following set of differential equations where x1 = o, o = @

= Lt e

Figure 2.12: Simple damped pendulum

a) Derive the total energy FE(t) of the pendulum with respect to the downwards
equilibrium position Ej.

b) Prove the (asymptotic) stability of the (0,0) equilibrium by means of a Lyapunov
function using the total energy as a candidate.
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Problem 2.3 (Scheduled Stabilizing State Feedback)

Learning Goals

o Work out the details of synthesizing a scheduled stabilizing state feedback gain via a
finite set of linear matrix inequalities

References The example is new, the methodology required in this exercise, however, is
contained in (1] and has first been proposed in.

Task Description Consider the parameter varying plant

&= A(p)r + Bu = [ 2PP21 z+ lﬂ u, Y=uax. (2.38)

0 1
Synthesize a scheduled state feedback gain F(p), such that A.(p,0) = A(p) + BF(p) is
stable for all p € [-1,1] and p =0 € [-1,1].
a) Is the plant stabilizable for all admissible values of p?

b)  Find an affine representation A(f) by defining an adequate affine scheduling parameter
O(p). What can be stated about the bounds on both # and its time derivative § = v/?

c) Starting with the inequalities

0 P
P(0)Aq(0) + ACI(H)TP(H) + Zuiaae(e) <0, Ve P, VveP,, (2.39)
i=1 i
P(0) >0, Ve P (2.40)

and an Ansatz

F(6)P(6) = Y(6) = Yo + 6%:,
PH0) = Q(0) = Qo+ 0Qu,

and the multi-convexity condition to derive convex LMI conditions, in order to find
a stabilizing state feedback gain F'(0).






Chapter 3

Gain-Scheduled Control of LPV
Systems

In this chapter we will see how the analysis results on stability and performance of LPV
systems presented in Chapter 2 can be be turned into synthesis tools. We will illustrate this
in detail for the state feedback case and briefly outline the extension to the output feedback
case, referring to the literature for details. One approach to designing a gain-scheduled
state feedback law for an LPV system (under simplifying assumptions) was illustrated in
Example 2.1, using a linearising change of variables. Here we will introduce an alternative
approach, based on the elimination of controller variables from the synthesis conditions.

3.1 The State Feedback Problem

Consider the generalised plant

t= A(p)r+ By(p)w +Bu(p)u
X, z= C.(p)x +D..(p)u (3.1)

where we assume p € F} for given compact sets P and V. This system is shown in Fig.
3.1.

P

w z
— —
u Ep V=

Figure 3.1: Generalised plant for gain-scheduled state feedback

The input-output channel from w to z will be used as performance channel; © € R™ is the
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control input, and since we consider state feedback the feedback signal v is the full state
vector x € R™. We will make two assumptions:

e Al: there is no direct feedthrough from w to z, and

o A2: D.,,(p) has full column rank Vp € P.

Moreover, in order to facilitate the derivation of the synthesis result presented in this
chapter, using assumption A2 we will also assume that a transformation is applied to z
such that it can be represented as

Z1 Ci(p) 0
’ l@] [Cz(P)]xJF[I]u 32)
Mixed-Sensitivity S/KS Design

To motivate these simplifying assumptions, we briefly review a mixed-sensitivity S/KS
design. A closed-loop system with plant G, controller K and shaping filters Wg and Wi
for sensitivity and control sensitivity, respectively, is shown in Fig. 3.2.

Wy — %1

Wy, — 22

a

- G - Y

s

el

Figure 3.2: Mixed-sensitivity S/KS design

Now assume that (3.1) is used to represent the generalised plant for this design problem.
From Fig. 3.2 it is clear that there is no direct feedthrough from wu to z; if G is strictly
proper. As for the path from u to 2o, there is usually a direct feedthrough because Wi is
typically chosen to be bi-proper (see Lecture Notes Optimal and Robust Control, Chapter
17); in this case the feedthrough matrix is the D-matrix of Wy. This feedthrough matrix
will typically have the form (I, where 3 is a small positive gain. Thus, in order to obtain
the representation (3.2) for the performance output in the generalised plant (3.1), only
scaling with a scalar factor 1/ is required.

State Feedback

The problem we now want to solve is this: for system (3.1) and a given set P x V, find a
continuous function F': R™ — R™*" such that ¥% is stabilised by the state feedback law
u= F(p)x, and

=3, <~
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This is illustrated in Fig. 3.3. Using the conditions of Theorem 2.5 and assumptions Al
and A2, we formulate the following problem.

w z
— —
u EP v =

il

Figure 3.3: Gain scheduled state feedback

Parameter-Dependent State Feedback Problem: Find F € C°(R",R™ ") and
Z € CYR"™,8™*™) such that
Z(p) >0 VpeP (3.3)

and

AL(P)Z(p) + Z(p)Ar(p) + X vise  Z(p)Bulp) SCE(p)
* —1 0 <0 V(pv)ePxV
* * —I
(3.4)

where Ap and Cp represent the closed-loop matrices

Ap(p) = A(p) + Bu(p)F(p),  Cr(p) = C.(p) + D F(p), (3.5)

respectively, Z is a matrix variable representing the Lyapunov matrix, and (x) stands for
matrix blocks required to make the left hand side of (3.4) symmetric.

Note that in the partial derivative term in the (1,1) block we let the real vector v € V C R™
represent the rate vector p. Compared with the condition in Theorem 2.5, a slight change
has been introduced concerning the representation of the performance level v; we leave it
as an exercise to verify that (3.4) is indeed equivalent to (2.32).

Since the conditions of Theorem (2.5 are only sufficient and not necessary for stability
and Lo-performance, the parameter-dependent state feedback problem, i.e. the problem
of finding F' and Z that satisfy (3.3) and (3.4) is not equivalent to finding a parameter
dependent F'(p) that guarantees stability and performance on P x V: even if (3.3) and
(3.4) turn out to be infeasible there may still exist scheduled state feedback gains that
solve the problem. The conservatism incurred by this problem formulation is the price
for being able to do controller synthesis by solving a convex optimisation problem. In
practical applications it turns out that this conservatism is usually at an acceptable level,
and that the synthesis tools resulting from this approach provide a simple and efficient
way of tuning gain-scheduled controllers for nonlinear plants to a performance level not
easily achievable otherwise.

Now turning to the task of finding F' and Z that satisfy (3.4), we note that this condition
is not linear in the variables because of the product term ZApg, where Ar depends on F.
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One way of dealing with this problem is to introduce a linearising change of variables. For
state feedback this was demonstrated in Example 2.1l A linearising change of variables for
the output feedback case is also possible (see Lecture Notes Optimal and Robust Control,
Chapter 19), however more complex than in the state feedback case. Here we will introduce
a different technique, referred to as elimination approach, that significantly reduces the
complexity of the synthesis problem.

3.2 State Feedback Synthesis - An Elimination
Approach

We now present a result, first proposed in [5], that provides a necessary and sufficient
condition for the solvability of the parameter-dependent state feedback problem defined in
the last section.

Theorem 3.1  The parameter-dependent state feedback problem is solvable if and only if
there exists a P € C*(R™ 8™ ") such that Vp € P

P(p) >0 and (3.6)

P(p)A(p)T + A(p)P(p) — X522 — Bu(p)Bu(p)™ P(p)Ci(p)" LBu(p)
* —1 0 <0

* * —1
where A(p) = A(p) — Bu(p)Ca(p). If the problem is solvable, then

F(p) = = (BL(p)P~"(p) + Ca(p)) (3.8)

In (3.7) we use the notation £;; since this condition is affine in p and needs to be checked
only for the extreme values, we remove the set V from the problem formulation. The
notation +7; indicates that for each p € P one has to check 2"» conditions: one for each
combination of the extreme values of 7;, 1 = 1,...,n,.

Before we prove this theorem, we observe that compared with condition (3.4) in the
formulation of the parameter-dependent state feedback problem, the state feedback gain
matrix F(p) has been eliminated from the problem; only P(p) is left as the single variable
to be solved for. Since the problem is affine in P and also in the rate of parameter
variation, (3.6) and (3.7) can be turned via gridding over P into a finite collection of LMIs.
The practical value of this theorem for solving the parameter-dependent state feedback
problem is then that instead of having to solve (3.3) and (3.4) for Z(p) and F(p), we can
equivalently solve (3.6) and (3.7) for P(p) only, which can be done by solving a collection
of LMI problems. If the parameter-dependent state feedback problem is solvable, then



3.2. State Feedback Synthesis - An Elimination
Approach 45

the theorem guarantees that a solution P(p) exists, and the state feedback gain can be
constructed from (3.8).

Proof: (=)

Assume that F € CO(R™,R™*") and Z € C*(R™,8™*") exist that satisfy (3.3) and
(3.4) on P x V. We have to show that this implies the existence of P(p) that satisfies (3.6)
and (3.7) for all p € P.

Let M(Z, F') denote the right hand side of inequality (3.4) (to simplify notation, from now
on we suppress the dependence on p). The inequality can be rewritten as

M(Z,F)=R(Z)+UZ)FVT + VFTUT(Z) <0 (3.9)
where | i
A£Z+ZAF+Ziz7ig—i k1w
Mz F)=| _____ Bz —Lox |
011
ATZ—i—ZA—l—Zj:ﬂig—Z x 1ok %]
|
BgZ —I' x *
R(Z)= |~~~ - SRR :
*Cl 0 ‘—] *
7 |
lCYQ 0 I O —I
’y ' .-
Z By, 1
0
U(Z) = "5 and V= 8
1
;I 0

(Note that assumptions Al and A2 as well as (3.2) are used here.) The point of rewriting
(3.4) as (3.9) is that the controller variable F'(p) has been "pulled out” so that it can be
eliminated. Introduce

Pzﬁz*, (3.10)

and define bases U, (P) and V| for the null spaces of U and V', respectively, as

AP 0 0 00 0
0 0 I I 00
1(P) 0o I 0|’ + 010
-BT 0 0 00 I

u

By assumption, M (Z, F') is negative definite over P x V. Since both U, and V| have full
column rank, we have from (3.9) on P x V

UMU, <0 and VIMV, <0,
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which implies
U'RU, <0 and VIRV, <.

Whereas VI RV, < 0 does not provide any useful information, the condition UT RU; < 0
is exactly condition (3.7), and that P(p) > 0 Vp € P follows from the assumption that
Z(p) > 0VYp € P and from (3.10).

(<)

Now assume that there exists P(p) that satisfies (3.6) and (3.7) on P. We have to show
that this implies the existence of Z(p) and F'(p) that satisfy (3.3) and (3.4) on P x V, and
that F'(p) is given by (3.8)).

Consider (3.7), here repeated as

where we for simplicity we introduce the notation W% = Zj:ﬁig—i. Using the Schur
complement, we see that (3.7) holds if and only if

N N P
PA" + AP — WY - B,B] + |[PCl y7'B,)| l ngT 1 < 0.
Y w
Expanding the last term on the left hand side, defining
7 =~2pt (3.11)

and multiplying from left and right by Z, we obtain
ATZ + ZA+ V2 —4*ZB,BYZ +y2CTCy + ZB,BYZ <0

where we introduce the notation ¥Z = iﬁig—f. This is equivalent to (after adding and
subtracting Cy and some further manipulation)

(A= B.(Co++*BI2)|' Z+ Z[A~ B,(Cy + *BLZ)| + ¥7

i

b [ CF — (CF + 7B, [ oo e

] +ZB,BYZ < 0. (3.12)
Now introducing a new variable
F=—(BIP+C)

and recalling the definitions

Ap=A+B,F, Cr=C,+D,F= 1 LY
C I
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where (3.2) is used, we can rewrite (3.12) as
1
ALZ + ZAp + U7 + o CECr+ ZB,BLZ <.

Again employing the Schur complement, we see that this inequality is equivalent to
(3.4). Thus we have shown the existence of Z and F' that satisfy (3.4) on P x V. That
Z(p) > 0Vp € P follows from the assumption that P(p) > 0Vp € P and from (3.11).

Constructing a Gain-Scheduled State Feedback Controller

If the state feedback problem is solvable, one way of constructing a gain-scheduled state
feedback controller is to assume affine dependence of P(p) on p, i.e.

P(p):P0+p1P1+...—|—pinnp.

Conditions (3.6) and (3.7) can then be solved by solving a finite collection of LMIs in
Py, Py, ..., P,, ona grid over P. The state feedback gain F(p) is then obtained from (3.8).
An application that illustrates this approach on gain-scheduled state feedback for a control
moment gyroscope with experimental results, is presented in [7].

3.3 Output Feedback Synthesis

In the previous section the state feedback synthesis problem and its solution via an
elimination approach was presented in detail. In this section we will give a brief outline of
the extension to output feedback synthesis, and refer to the literature, in particular to [5],
for more details.

We consider the generalised plant

= Alp)z + Bu(p)w + Bulp)u
= Cu(p)r + Duw(pw

where the feedback signal v is a linear combination of state variables and external inputs.
We make the following assumptions.

e Al: D,,=0and D,, =0
e A2:  D,,(p) has full column rank Vp e P

e A3:  Dyu(p) has full row rank Vp € P.

Based on assumptions A2 and A3, we assume that

Ch

Bw = [Bl B2]7 Cz = [ Cg

1, Dy = [0 11, Dw:[O]
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so that the generalised plant (3.13) becomes

i = Az + B Bz]llwull + B
5, : lZ] [g;]x + [?]u (3.14)
v o= Ca + [0 I]M;l

It was pointed out in Section 3.1 that the assumption on D,,, that results in partitioning
of z, is easily satisfied e.g. in mixed-sensitivity S/KS design problems. Similarly, the dual
assumption on D,,,, can be interpreted in terms of partitioning the external input w into
a reference and a disturbance signal, or into process and measurement noise.

The controller that closes the feedback loop as shown in Fig. 3.4 is

p -

. (3.15)
u= Ck(p,p)¢ + Dx(p,p)v

Note that in contrast to the parameter-dependent state feedback control law derived
in the previous section, this controller depends not only on p but also on p. This is a
particular feature of the solution to the parameter-dependent output feedback control
problem formulated below, that makes it difficult to implement - it requires the on-line
availability not only of the scheduling signals but also of their derivatives. In practice
one often tries to avoid control laws depending on p, usually at the expense of achievable

performance.
w z
u EP v
Il
Figure 3.4: Gain scheduled output feedback
Defining

z = Ceup,p)ze. (3.16)
where
) A+ B,DgC, B,Ck . B, B;+ B, Dk
Ac(p, p) = ) Bc(p, P) = )
BrC, Ag 0 By
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4 0

. (3.17)
Cy + DxC,y Cx

Celp, p) =

Because of the assumed partitioning of the external input and output channels in (3.14),
the closed-loop matrices B, and C, are 2 x 2 block matrices.

We are now ready to formulate the synthesis problem.

Parameter-Dependent Output Feedback Problem: Find continuous, matrix-valued
functions (Ag, By, Ck, Di) and Z € C'(R",8"*") such that

Z(p) >0 VpeP,

and

AL(p,p)Z(p) + Z(p)Aclp, p) + S vi§e Z(p)Belp,p) 2CL(pp)
* —1I 0 <0
* * -1

V(p,v) € P x V.

where A., B. and C, are defined in (3.17). The product terms ZA, and Z B, that involve
products between the Lyapunov matrix Z and the controller matrices, prevent turning
this condition directly into a collection of LMIs via gridding. One way of dealing with this
is a linearising change of variables as in the LTI case; here we present a simpler solution
based on an extension of the elimination approach that was used for the state feedback
problem in the previous section.

The following result is due to [5].

Theorem 3.2  The parameter-dependent output feedback problem is solvable if and only
if there exist X, Y € CY(R™, 8™*") such that Vp € P the following conditions are satisfied:

X(p)>0, Y(p)>0 (3.18)
and R R
XAT + AX - 5 (#3:5%) - B,BT XCT 1B,
* -7 0 < 0, (3.19)
* * i
ATY + YA -3 (#2,55) - CTC, YBy LT
* -7 0 < 0, (3.20)
* * —1I
X 3., (3.21)
iy | T '

where A= A — B,Cy and A= A — ByC,.
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Comparing this theorem with the state feedback result of the last section, we see that the
conditions involving X have the same form as the state feedback conditions. Here we have
in addition two dual conditions in Y, and a coupling condition. The conditions of this
theorem can be turned via gridding into a finite collection of LMIs; the two conditions
involving +7; have to be solved at each grid value of p for the 2™ extreme combinations
of ;.

Constructing a Gain-Scheduled Output Feedback Controller

If the output feedback problem is solvable, an output feedback controller (3.15) can be
constructed as follows. Assume affine dependence of X (p) and Y (p) on p, i.e.

X(p)=Xo+mXi+...+pp, X0, Y(p) =Yo+pY1+ ...+ pp,Yn,

Solve (3.18), (3.19), (3.20) and (3.21) on a grid over P for X; and Y;, i = 1,2,...,n,.
Define

F(p) = —(Bi(p)X " (p) + Calp))

L(p) = = (Y™ (p)Cu(p) + Ba(p))

and
H(p,v) =
vt Tyl | aXﬁl T 2yl Ty -1
X 'Ap+ ARX '+ Vi +CLCr +~4°X'B,B X!,
i=1 .k
where

Ap(p) = A(p) + Bu(p)F(p),  Cr(p) = C.(p) + Do F(p).
Note that H depends not only on p but also on v, which represents p. Furthermore, define
Qp) =Y(p) =X '(p) >0

and
M(p,v) = H(p,v) = 7*(Y LDy + QB ) BLX !

Then the GS output feedback problem is solved by

Ag(p,v) = A+ B,F+Q'YLC, —y*Q ' M(p,v)
Bi(p) = —Q " p)Y(p)L(p)

Ck(p) = Flp)

Dk (p) = 0.
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Problem 3.1 (Parameter-Dependent Lyapunov Function Based Analysis)

Learning Goals

e Implement gridding based analysis conditions via LMIs and parameter-dependent
Lyapunov functions

References The original example is contained in the PhD thesis of Fen Wu, [5].

Task Description Consider the nonlinear plant
&= A(p)x + Bu, y=u. (3.22)
with

ao=[n, S0 mo= [0 )

0.75 2.00] B l()m]

— 3.75
0.00 0.50 Lo ’

- |

and a state feedback control law
u=F(p)x.
Consider the parameter range and range of the rate of change

peppz[_ﬂ-vﬂ-L pIUEPU:[_lvl]'

a) Suppose a continuous state-feedback gain F'(p) exists. Is the system quadratically
stable, i.e. does there exist a symmetric matrix P = P? > 0, such that

(A(p) + BF(p))" P+ P(A(p)+ BF(p)) <0, VYpePF,?
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c)

Assume the state-feedback gain

F(P) = - [RT(P) (’Y[zx2 + An) O2x2} , 7 =0.5.

has been derived.

Analyze the closed-loop system’s stability in the parameter range
peP,=[-mm|, p=ocebP,=[-11]

by means of solving the linear matrix inequalities

opP
P(p)Aa(p) + Aa(p) " P(p) + o 8§)p) <0, VpeP, VoeP,, (3.23)
P(p) = Py +cos(p)P, +sin(p)P, >0, Vpe P, (3.24)

for Py, P, and P, on a grid.

Check the feasibility with the resulting solutions for Py, P, and P, on a much denser
grid.



Exercises for Chapter 3 53

Problem 3.2 (State Feedback Synthesis with Parameter-Dependent Lyapunov Func-
tions)

Learning Goals

o Synthesize an LPV state feedback controller for a control moment gyroscope with
Wu’s method using Matlab Tools

o Investigate the use of parameter-dependent Lyapunov functions

e Implement the LPV controller in Simulink
References The example is adapted from [7].

Task Description A model of a control moment gyroscope is described by the nonlinear
differential equation

. . . 1| |T
M(q) 4+ k(q,q) = f(@) + 1
0 15
where ¢;, i = {1,...,4} are angles and T}, i = {1, 2} are torques.

Linearization around a moving operating point p(t) = [ql, G2, q;;} yields a linear parameter-
varying plant model

i = Alp(t) 2 + Blp(t)) u
y=Clp(t)x

p:R—=P,prR—=V
The model has

T
e controlled outputs y = [q;g qd
_ T
e control inputs u = [Tl T2:|
-
o state vector x = {q;), Q1 G2 3 61'4}

The model matrices can be obtained by using the provided Matlab function
linearize gyro(qldot, q2, g3).

The Matlab script exercise_design state_feedback.m contains all necessary commands
to design an LPV controller using Matlab’s Robust Control Toolbox and the LPVTools.
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a) Design an integral augmented LPV state feedback controller for the Gyroscope using
Matlab. As weights, you can use
1
= 0
o=l
03
10
Wi =
ol
Compare the results to an LTT state feedback controller.
b) Experiment with different choices of basis functions for the Lyapunov matrix. The

LPVTools” basis(F,NAME1,PARTIAL1,NAME2,PARTIAL2,...) command can be
used to specify a basis function F and its partial derivative PARTIAL with respect to
the variable specified by NAME. Does the performance index depend on the choice
of basis functions? Does the computational effort depend on the choice of basis
functions?

Implement the controller in Simulink by reconstructing the state feedback gain in
every time step from 1) the model matrices and Lyapunov matrix according to Wu'’s
formula; 2) a lookup table representation. Run Simulations. Are there noticable
differences?



Chapter 4

Gain-Scheduled Control of LFT and
Polytopic Systems

In the last chapter a rather general result was presented that can be used to synthesise gain-
scheduled controllers for nonlinear plants modelled as LPV systems, with no restrictions
on the type of functional dependence of the model on the scheduling signals. The synthesis
problem is based on a quadratic Lyapunov function which is allowed to depend on the
scheduling parameters in order to reduce conservatism. The price to be paid for the
generality of this approach is its complexity. This includes complexity of the synthesis
problem, which involves gridding the admissible parameter range and solving a collection
of LMIs on the grid points. As for controller implementation, it requires - at least in the
output feedback case - that not only the scheduling signals but also their derivatives are
available online.

There are thus strong incentives to look for simplifications when LPV gain scheduling is
considered in practical applications. Simplifications are possible when the LPV model
of the plant displays special types of functional dependence on the scheduling signals, in
particular when the dependence is affine or rational. LPV models with affine parameter
dependence can be represented as polytopic systems or as LFT systems, and LPV models
with rational dependence can be represented as LFT systems. Both model structures
will be introduced in this chapter, and synthesis techniques applicable to each will be
presented.

4.1 LFT Representations

LFT stands for linear fractional transformation; many control problems can be represented
in the form of LFTs. Before we discuss the representation of LPV systems in LFT form,
we first provide a definition and an illustrative example.
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Definition 4.1 Let M be a complex matriz partitioned as

P — [ Py Pry e C(ll+l2)><(M1+m2)’

P21 PZQ

and let A € Ch>*™ be another complex matriz. Then the upper LFT with respect to A is
defined as
fu<P,A) :P22+P21A([—P11A)71P12 (41)

This definition is illustrated by the block diagram in Fig. 4.1, where P and A are assumed
to be complex matrices with dimensions given in the definition. Then A can be seen as
mapping z — w, whereas (4.1) represents the mapping v — v.

w[ijz

U - U

Figure 4.1: Linear fractional transformation

We will often assume that the matrix A is unknown, but confined to a compact set

A C Chxma,
Definition 4.2  The mapping in (4.1) is said to be well-posed if

det([—PnA)#O V Ae A

A lower LFT can be defined similarly, where A is connected to v and z in a lower loop,
resulting in a new map w — 2

Fi(P,A) = Py + PoA(I — Py A) ' Py,

where well-posedness of the mapping is defined accordingly. Representations as shown in
Fig. 4.1 are frequently used in the context of robust control, where P is assumed to be an
LTT system with input channels partitioned into w and v, and output channels partitioned
into z and v. A typical usage of this structure is to let P represent a generalised plant,
and A a matrix containing uncertain plant parameters; see e.g. Lecture Notes Optimal
and Robust Control, Chapter 21. When constructing such a representation of an uncertain
system, care must be taken to ensure the well-posedness of the model.

Here we will present an example that illustrates the technique of "pulling out parameters”,
i.e. isolating uncertain or time-varying parameters of a physical plant model and expressing
them as uncertainty block A in an LFT representation. This technique is also used for the
design of gain-scheduled controllers; the parameters to be pulled out are then time-varying
scheduling parameters.
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Example 4.1 Consider the coupled-mass spring system shown in Fig. 4.2. Masses mq
and mg are connected by a spring with stiffness k. The position of mass mo is to be
controlled by applying force u at mass my. Awvailable for feedback is only the measured
position of mo. Since sensor and actuator are non-collocated, this becomes a challenging
control problem when the model parameters my, mo and k are uncertain or time-varying.

== S ===

Figure 4.2: Coupled-mass spring system

The equations of motion are
miiy =u—f and Mmodo = f

where f is the spring force

f = k’(l‘l — ZL’Q).
The measured output is
Yy = Ta.
A state space model of this system is
T 0 0 10 1 0
To B 0 0 01 To N 0
iy | _mil mil 0 0 x3 m%
iy e =0 0] [ 0
€
y = [0100]|"
€3
Ty

Now assume that the model parameters my, ms and k are uncertain or time-varying and
are to be pulled out of the model. For example, assume that we only know about my that
0.5 <my; < 1.5. Define a nominal mass myy = 1, and express my as

my = my + @101,

where ag = 0.5 and 01 is an unknown parameter satisfying |01] < 1.
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In this manner, the other uncertain model parameters can be represented as

meo = m20+a2(52
k :k0+&353.

where |0;| < 1, i =1,2,3, and «; represents the admissible parameter range. Substituting
these expressions in the equations of motion yields for example for mq

(mlo + aq (51)@1 = mlofl + Ckldli.?l =UuU— f

Defining

w, = (5121 and 21 = Lfl

we can rewrite this as

ml(){i‘l +oiw; =u — f (42)

The equations for my and k can be rewritten in the same manner as

Maoda + aawy = f (4.3)
and
f=ko(z1 — x2) + zws, (4.4)
where
w1 (51 21 (51 :.C.l
Wa = (52 Z9 = (52 .fg . (45)
W3 53 zZ3 53 Ty — T2

Using &1 = x3, 9 = x4 and (4.2) - (4.5), we can construct a state space model for the
fixed, LTI part of the uncertain system, with state equation

[0 0 0] e
T3 7:?0 mki;)o 00 x3
1’4 ﬂ’”f;)o mLSO O O T4
0 0 0 0
0 0 0 e 0
_ o 0 _ o3 wy |+ | W
mio mio W mi0
0 _ oy o3 3 0

m20 ma20
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output equation

— ko ke 0 T
<1 mio mio T
2 m20 map T3
Z3 1 -1 0 0 .
4

Q1 a3 1
mio 0 mio wl milo
@2 a3
0 a0 o Wa + 0 u.
0 0 0 w3 0

and w = Az, where A = diag(d1,d2,03). In a more compact form, this reads

z = Ax+ Byw+ Byu
z = Ca+D,,w+ D,u

v = Cyr,

A block diagram of this system is shown in Fig. 4.5.

u

Figure 4.3: LFT representation of uncertain coupled-mass spring system

4.2 Gain-Scheduled Control of LFT Systems

The approach presented in the previous section can be applied to pull out uncertain
parameters, so that the small gain theorem can be used for robust controller design. This
approach can also be used to model parameters that are known but time-varying. Assume
e.g. that a plant to be controlled has model parameters pi(t), p2(t), ..., pn,(t) which vary
over time and whose values can be measured online. Assume further that we want to
design a gain-scheduled controller for this plant with the p;s as scheduling signals, as
shown in Fig. 4.4l
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w z
—_— ——

u EP v

il

p

Figure 4.4: Gain scheduled control

In the same way as in Example 4.1 we can pull out the time-varying parameters by using
the representation

pi(t) = poi + c.ibi(t) (4.6)
and arranging the new parameters ; in a diagonal matrix
01 (t)1r,
O(t) = . (4.7)
On, ()1,
If the plant model depends rationally on p;, i = 1,...,n,, then it is possible to construct

an LFT representation F,(P,©) with © as in (4.7). Even though in Example 4.1 the
parameters appear only once in the diagonal block A, in general it may be required to
have parameter 6; repeated r; times along the diagonal, see Exercise 4.3.

Utilising the LFT representation F,(P, ©) of the parameter-dependent plant ¥, in Fig.
4.4, a gain-scheduled controller K, can now be designed that has itself a (lower) LET
form F;(K,©), as shown in Fig. 4.5. Since the scheduling signals p;(t) and therefore from
(4.6) the scheduling parameters 6;(t) are assumed to be available online, they can be used
to schedule the controller. A feature of the closed-loop structure shown in Fig. 4.5 is
that it allows to design an LTI controller K (s) for an LTI plant P(s), while taking the
time-varying scheduling blocks into account.

We 20

Y

Figure 4.5: Gain-scheduled control of LFT system

Note that the external channel from w to z in Fig. 4.4 has been split in Fig. 4.5 into an
LFT channel from wy to zp, and a performance channel from w to z. The scheduling
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channel of the controller has been labelled Zy and @y, to mirror the scheduling channel of
the plant. A state space realisation of the LTI part of the plant is (note that the plant
now has three input/output channels)

t = Ax + Bywy + By,w + B,u
zg = Cox + Dogwy + Dgpw + Dgy,u
z = C,v + Dywy + Dypyw + D,,u
v = Cyr + Dywy + Dy,w

with
Wy — © 29 - (49)

When constructing the LFT representation, we assume that the LTI part of the plant
model has been scaled such that

efte() <1 Vvt>Do. (4.10)

The LTI part of the controller (which has now two input/output channels) can be repres-
ented as _
¢ = Ag( + Bgyv + Bggwy
K U = CKuC + Dguwv + Drus iy (411)
Zg = CkoC + Dgpyv + Drggg
with
g = O 3. (4.12)

Equivalent Robust Control Problem

Omne approach to designing a gain-scheduled feedback controller K, was proposed in
[8]; it is based on transforming the problem of synthesising a scheduled controller for
a parameter-dependent plant into the problem of synthesising an LTI controller for an
uncertain plant. Consider Fig. 4.6. It represents exactly the same feedback configuration
as Fig. 4.5, displayed in a rearranged form (the ©-block of the controller has been “flipped

up”).
The point of redrawing the feedback configuration in this form is that one can now define a

new, augmented generalised plant P,(s) as shown in Fig. 4.7. This augmented generalised
plant has the LTI controller K(s) and an uncertainty block

= © 0
O = 4.13
Y (4.13
with norm less than one attached to it, in the same form as e.g. the representation of an

uncertain plant in Optimal and Robust Control, Chapter 21 (compare Fig. 21.6). If we
want to find a controller that guarantees robust stability of the system in Fig. 4.7 for all
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Zo 5 We
r__“ZQE{___G_}}Zf___Pa(@
w : ¢ P(s) , i .
T
K(s)

Figure 4.6: Fig. 4.5 rearranged

admissible ©, one can thus employ the small gain theorem, and design an LTT controller

K (s) that achieves a H,,-norm across the uncertainty channel
[7“39] - ['f"] (4.14)
We g
of less than one. This problem can be formulated as that of finding K such that

|7 (AP, ), 0) <1

Now consider the implementation of K (s). From the interconnection structure of P,(s) it
is clear that @ = Zy and w = Zy. Thus, the LTI controller obtained by solving the robust
control problem in Fig. 4.7 is the same as the gain-scheduled controller of Fig. 4.6 and Fig.
4.5 (since these figures all show exactly the same feedback configuration).

we 50
Ww——- o P(s) ——m— =z
— -

Figure 4.7: Equivalent robust control problem with augmented generalised plant

Structured Uncertainty and Conservatism

So a straightforward way of obtaining a robustly stabilising gain-scheduled controller for a
parameter-dependent plant ¥, that can be represented in LFT form (4.8) and (4.9), is to
find a controller for the generalised LTI plant P,(s) that achieves a H,, norm less than
one across the uncertainty channel, if such a controller exists. That is a standard H,
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synthesis problem. The resulting controller can then be implemented as the gain-scheduled
controller (4.11) and (4.12). This approach is however highly conservative: it is based
on the small gain theorem, and the small gain theorem guarantees stability for any real
(and in fact complex) uncertainty matrix, whereas the uncertainty block in Fig. 4.7 has
the repeated block diagonal structure of (4.13). Clearly, the set of all controllers that
robustly stabilise the configuration in Fig. 4.7 for all |©]| < 1 is larger than the set of
all controllers that robustly stabilise the same configuration when © is replaced by an
arbitrary matrix A where ||A]] < 1. In fact the latter set of controllers is a strict subset
of the former, because the highly structured matrix © is a special case of an arbitrary
matrix A. Thus, when we search for a controller that robustly stabilises F, (]:l(Pa, K), (:))

for all ||©]| < 1, and we do it by using the small gain problem, then we will be searching
only over the small subset of controllers that solve the more difficult problem of robustly
stabilising F, (]—"Z(Pa, K), A) for all ||A]| < 1.

In order to reduce this conservatism, define a set of symmetric, positive definite matrices
L={L>0|L6=6L}. (4.15)

Then one can modify the block diagram in Fig. 4.7/ as shown in Fig. 4.8 by introducing
scaling blocks L and L~! in the upper feedback loop. If L € £, then Fig. 4.8 is equivalent
to Fig. 4.7 because the scaling blocks commute with the uncertainty block.

Ll
s

Figure 4.8: Equivalent robust control problem with scaling

The introduction of these scaling blocks reduces the conservatism of the synthesis approach
outlined above, because the set of all controllers that robustly stabilise the closed-loop
system FU(E(PQ,K),L_1QL> for all ||©| < 1 and all L € £ contains the set of all
controllers that robustly stabilise F, (]—"l(Pa, K), (:)) for all [|©] <1 as a subset (i.e. the
special case L = I). The scaling blocks can be absorbed into the generalised plant, as
indicated in Fig. 4.9, so that L can be turned into a decision variable of the synthesis
problem.

Robust Performance

So far only robust stability of the closed-loop system F, (]:I(Pa, K), é) for all |©] <1
was considered. Performance can be included in the problem formulation by augmenting
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2=

e

Figure 4.9: Generalised plant with scaling and performance measure

the uncertainty block (4.13) with a performance block and closing the upper feedback loop
in Fig. 4.7 not only between zy, Zg and wy, Wy, but also between w and z according to

) @(t) 0 0 Weo
Zl=1] 0 Ok o Wy |, (4.16)
z 0 0  A(t) w

where A(t) is a fictitious, time-varying uncertainty block. Robust stability of the system
in Fig. 4.9 with an upper feedback loop closed by (4.16), for O (¢)O(t) < I and [|A(t)]| <
v Vt > 0, is then guaranteed by the small gain theorem if the H,, norm across the
uncertainty channel (4.14) is less than 1. We can now pose the following problem.

Robust Controller Synthesis Problem: Given P,(s) and v > 0, find an LTI controller
K (s) and a scaling matrix L € £ such that the H,, norm across the uncertainty channel
(4.14) is less than one.

It is shown in [8] that robust stability of F, (]-"l(Pa,K ) (:)) for all ©® and A such that
OT(t)O(t) < I and A(t)|| < v Vt > 0, implies that the gain-scheduled controller F;(K, ©)
quadratically stabilises the LPV system F, (P, ©), and achieves quadratic £y performance
~ for all admissible trajectories of #(¢). Thus, from an LTI controller that solves the robust
controller synthesis problem defined above, we can construct a gain-scheduled controller
(4.11)) that achieves quadratic stability and performance for the LET-LPV system (4.8).
Moreover, it is also shown in [§8] how the problem of constructing an LTI controller that
solves the robust controller synthesis problem can be obtained by solving an LMI problem;
this is achieved via an elimination approach.

Since the method proposed in [8] was published, considerable research effort has been
devoted to reducing the conservatism incurred by this approach. In [9] the use of parameter-
dependent Lyapunov functions was proposed. A method based on the full-block S-procedure
was presented in [10], which uses full block rather than structured multipliers, and in
[11] an extension of this approach using parameter-dependent Lyapunov functions was
proposed.
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4.3 Gain-Scheduled Control of Polytopic Systems

The second "simplified” model structure for LPV systems, that allows to avoid gridding
the parameter space, is that of polytopic systems. Consider the LPV system

t = Al@)r+ B(O)w
z = C@)x+ D(O)w. (4.17)

We assume that 0(t) € PVt > 0 for a given compact set P C R™. Such a system is called
polytopic if it satisfies two conditions:

1. The set P is a polytope, i.e. it can be expressed as a convex hull
P = CO{QUl, 91,2, Ce 7005} (418)

where the 6,; € R™ are the vertices of the polytope and s is the number of vertices.
The representation (4.18) implies that

P:{QGR"‘)W:Z%QW Zaizl, (0%} 20,2':1,...,5}.
1=1 i=1

The coefficients «; are referred to as conver coordinates. A typical occurrence of a
polytopic set of parameters is a hyperrectangle, which arises when the individual
parameters 6; are known to be confined to intervals 8, < 6; < 6;, i =1,...,s. Other
shapes are possible; Fig. 4.10 shows two examples.

92 A 02 A
01 92 6‘1

’

| 93 94 1 QQ QS _

91 91

Figure 4.10: Polytopic admissible parameter ranges

2. The model (4.17) depends affinely on the parameter vector 6. In this case, the set of
admissible LTI systems that is generated when # in (4.17) ranges over the polytope
P is itself a polytope, i.e. it can be represented by

A®0) BO)] 4 B
lcw) D(e)]—%ﬂ@ Di]aZ—l,...,s} Vo € P,

where

(As, Bi, Ci, D;) = (A(0,,), B(6,,), C(0,:)C(0,)), i = 1,...,s (4.19)
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are the vertex plants. Assume for example that ny = 1 and 6; < 6 < 05, then affine
dependence on p implies that

A(oz@l +(1-— oz)«92> =aAd1+(1—a)ldy, 0<a<l.

More generally, if

(t) = Z iy,
then we have -
e oo | X lel b -

where the «; are convex coordinates.

Quadratic £, Performance of Polytopic Systems
Recall from Section 2.5 that an LPV system

&t = Af)x+ B(O)w
z = C@)z+ DO)w (4.21)
is quadratically stable and has quadratic £y performance v on a compact parameter set P

if there exists a P > 0 such that

AT(O)P+ PA(9) PB(F) CT(9)
BT(9)P —I DY) | <0 (4.22)
c(0) D) —~I

for all 6 € P.

If (4.17) is a polytopic LPV system, i.e. if A(-), B(-),C(:), D(-) depend affinely on 6 and
P =Co{0,,04,,...,0,.},

then substituting from (4.20) in (4.22) yields the following result.

Theorem 4.1  System (4.17) is quadratically stable and has quadratic performance vy, if
there exists a P > 0 such that
ATP+ PA;, PB;, CF
BI'P —yI DI | <0
for i=1,2,...,s, where (A;, By, C;, D;) are the vertex plants as in (4.19).

In this case gridding is not required; it suffices to check the condition in the vertices of the
polytope P.
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Lo-Optimal GS Control of Polytopic Systems

This last result can be turned into a synthesis procedure for the design of gain-scheduled
controllers for polytopic LPV systems. Consider the generalised plant
t= A(l)r + B,(@)w + Byu
IR z= C,0)r + D.,,(0)w + D,u (4.23)
v= Cyx + D,,w
and assume that § € P V¢ > 0, that P is a polytope with vertices {0,,,...,0,,}, and that

A, By, C, and D,,, are affine in §. The synthesis approach we will present next requires
the following assumptions.

« Al: B, C,, D,, and D, are constant

o A2 (A(G), Bu) is quadratically stabilizable on P

« A3 (A(@), Cv) is quadratically detectable on P

Whereas it is clear that assumptions A2 and A3 are necessary for the existence of a
solution to the output feedback synthesis problem, assumption Al looks like a serious
restriction that may not be satisfied in many applications. It is however possible by pre-
and post-filtering the plant with low-pass filters of sufficiently large bandwidth, to satisfy
this assumption, see [12].

For the generalised LPV plant (4.23) we want to design a gain-scheduled controller

(4.24)

I é: Ak (0)¢ + Bg(O)v
N u= Cx(0)C + Dr(O)w

that is affine in . When this controller is used to close the feedback loop from v to u in
(4.23), we obtain the closed-loop system

T = AC(H)xc+Bc(9)w
z = Cu0)x.+ D.(0)w. (4.25)

The closed-loop matrices in (4.25) are given by

Ac(0)  Be(0)

C.(0) D.(6) (4.26)

| AW0) +BQ(0)C Bi(0) + BaS2(0) Doy
| CL(B) + DO)Cy Dy1(0) + D1oQ(0) Doy |

where the controller matrices are collected in

_ | Ax(0) Bxk(0)
Q“)‘ch(e) DK(H)]
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and augmented model matrices are defined as

A(@) 81(0) BQ 777077707:7770777:7]77977
Ci(0) Du(0) Diz | =| Ca(0) 01 Dey(0) 10 Dew
Co Dy, 0 0 I 0 0 0

From (4.26) it is clear that the closed-loop system (4.25) is affine in the controller €2, and
also in the parameter vector §. Here it becomes clear why assumption Al is necessary:
without it, affinity in 6 of the closed-loop system would be lost.

Now we are in a position to formulate the synthesis problem.
Quadratic £o-gain Performance Problem: Find P > 0 and vertex-controllers

AKi BKi
Cki Dk

i =

such that forz=1,2,...,s

Al(0,,)P + PA.(0,,) PB.(6,,) CI(6y)
BI(6,,)P —~I DY@, | <0 (4.27)
0(3(0'01') DC(QW) -1

From these vertex controllers, if they exist, on can construct a polytopic, gain-scheduled
controller (4.24), that guarantees quadratic stability and L, performance v over P for
the polytopic plant (4.23). Note however that even though the closed-loop matrices
(Ae, Be, Ce, D,) are affine in the controller variables, (4.27) is not an LMI in the controller
variables and P because of the product terms PA. and PB,. The following result, proposed
in [12], can be used to solve the quadratic Lo-gain performance problem via an elimination
approach.

Theorem 4.2 Define Nx and Ny as bases for the null spaces
R(NX) :N([Cv Doy 0])

and

R(Ny) =N ([BY DI, 0]),

respectively. The quadratic Lo-gain performance problem is solvable if and only if there
exist X = XT and Y = Y7 such that for i =1,2,...,s

ATX + XA, XB,; CT
NE BT X —~I DT, |Nx <0 (4.28)

Czi Dzwi _7[
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AY +YAT YCT By,

NE C..Y —~I Do | Ny <0 (4.29)
Bgi Dszi -1
X I
4.
[ oy |0 (4.30)

The controller variables have been eliminated from (4.28) and (4.29). The above conditions
can be solved as LMIs in the vertices for the variables X and Y. From these variables one
can construct the closed-loop Lyapunov matrix P. Substituting P in (4.27) turns (4.27)
into an LMI that can be solved for the controller variables. For more details see [12].






Exercises — Chapter 4

Problem 4.1 (LFTs - Pulling out the Deltas (Simple Example))

Learning Goals

e Learn how to derive linear fractional representations.

References The core methodology and many other useful lemmas and formulas can be
found in [15)].

Task Description The mass-spring-damper system shown in Fig. 4.11 has an uncertain
mass m(t) = mg—+ 01, damping coefficient b and a variable stiffness coefficient k(t) = kq+ 0s.
The system is governed by the following set of differential equations:

N

Figure 4.11: Simple mass-spring-damper system with uncertain mass

#= 5] = Lty —amen) o] =2 3

a) Derive an LFT representation of the state-space model with only the mass being
uncertain and k(t) = k.

b) Derive an LFT representation of the state-space model with all uncertainties.
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Problem 4.2 (LFT of system with repeated parameters)

Learning Goals

e Derive Linear Fractional Transformations of a system with repeated parameters.
References The original example is taken from (1.
Task Description Consider again the system given in example 1.1, and a corresponding
quasi-LPV representation:
() = —x(t) + u(t)
y(t) = (1—p*z=Clp) (4.32)
a) Derive an LFT representation of the output equation, such that y = F,(M, ©).

b) Construct a generalized plant of the system using the robust control approach as in
Figure 4.6.



Exercises for Chapter 4 73

Problem 4.3 (LFTs - Pulling out the Deltas)

Learning Goals

e Learn how to construct and manipulate linear fractional representations manually
and programmatically.

References The model is taken from actual research conducted at the Institute of Control
Systems, which has been published, e.g. in [14)].

2 - .

Figure 4.12: A simple single-track vehicle model

Task Description The following nonlinear plant represents a simple single-track vehicle
model as shown in Fig. 4.12, with v,, v, as the longitudinal and transversal direction,
respectively, as well as ¢ as the yaw rate.

Mb, = M, + up + up
Mv, = —Mijpv, —c2 +02% +eqw (4.33)
['(ﬁ = 01% —Cg% —blul +b1U2 “+csw

The disturbance input w denotes the steering angle, whereas controlled inputs u; and

AT
up are the left and right wheel forces, respectively. The plant outputs are v, = [vx w} .
Constants M and I denote mass and rotational inertia. The physical meaning of the
constants ¢y, ca, ..., c5 and by is omitted for brevity.

Table 4.1: Values of the physical parameters.

M I C1 Co C3 Cy Cr bl

Value 1772 1800 154,000 14,000 234,430 70,000 86,800 0.72
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Exercises

Manually derive a linear fractional state-space representation of the model. Use

: -
01 = v, and d = 9 as LFT parameters, as well as z = {’ux Uy 1/}} as the state
vector. Draw a block diagram with the "Deltas pulled out™

Use MATLAB to build a linear fractional representation and compare the size of the
resulting A-blocks from the manually and the MATLAB derived models.
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Problem 4.4 (Torque Vectoring by LPV Control)

Learning Goals

e Learn how to synthesize, tune and implement LPV controllers.

References The polytopic LPV synthesis method is described in [12], whereas the LFT
LPYV synthesis method is described in [15], [16].

Task Description Reconsider the vehicle model from Problem 4.3.

a) Derive an affine LPV parameterization of the nonlinear plant and synthesize an
affine LPV controller.

b) Synthesize an LFT LPV controller for the torque vectoring problem based on the
LFT model and using the LFT LPV synthesis method described in [15], [16]. The
MATLAB files implementing the synthesis method are provided.
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Problem 4.5 (Parameter Set Mapping vs. LFT (Simple Example))

Learning Goals

e Learn how to find a tighter convex hull or to reduce a set of affine parameters.
References The core methodology can be found in [17].

Task Description The crane-trolley system shown in Fig. 4.13 has the trolley mass
mr, trolley position z, damping coefficient b and a variable rope length L. The trolley is
actuated by a force up, whereas the rope length can be directly controlled by uy, = L. The
load mass is denoted mj and its oscillation is damped by a force parameterized by the
coefficient d. For small angles —10° < ¢ < 10°, the system is governed by the following

mry,

Figure 4.13: Simple crane-trolley system with variable rope length

set of differential equations:

T 0 1 0 0 x 0 0

i 0 —-L 0 0 i L 0

Tl = mr Tl | ur (4.34)
sl T o 0 0 1]]e 0 0 ||u

a) Use an affine LPV parameterization with ¢; = %, 0y = % and 03 = % to derive an

affine LPV model.

b) Investigate the relation between 6; = % and 6, = ﬁ Therefore assume the limits
1 < L < 10 and compare the physically admissible parameter range with the box
shaped convex hull spanned by the maximum and minimum parameter values.
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Generate a data set by gridding the parameter range in terms of L, resulting in

values L;,i = 1,..., N. Stack the resulting data samples in a fat matrix
01(Ly) 61(Ls) ... 01(Ly) I N
0= e RV,
Os(L1) O9(Ls) ... 02(Ly)

Then perform a singular value decomposition on the data matrix ©
O=UxV"
and recall the meaning of the matrices U and V.

Consider the data set ® = XV*. What is the relation to © and how can a new
parameter set ¢1, ¢o be derived from the set 6,6, that more tightly represents the
physically admissible trajectories?

Compare the singular values found in 3. Divide them into significant and less
significant ones and use the same approach on U to project the parameters 6, 6y
onto a reduced parameter set with only a single parameter ¢.
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Problem 4.6 (Parameter Set Mapping and Control — 2-DOF Robotic Manipulator)

Learning Goals

e Learn how to make polytopic LPV controller synthesis tractable for plants with a
large number of affine scheduling parameters.

References An extensive description of both plant and methodology can be found in [18]
using a slightly different approach and nomenclature.

Task Description Two degrees-of-freedom of a robotic manipulator are to be controlled.
The model has been transformed, such that ¢3 = g2 +¢3. Consider the following state-space

(a) Isometric view of the robot (b) Side view of the 2-DOF robot model
Figure 4.14: The CRS Thermo A465 robotic manipulator

model of the 2-DOF robotic manipulator.

q2 _All(e) A12(9> A13<9) A14(9) (]:2 Bll(‘g) 312(9>
q~3 A21(9) A22(0> A23<0) A24(0) 673 B21(‘9) B22(0) |j~@

Go 1 0 0 0 G 0 0 Us
723 I 1 0 0 G 0 0
o 2
1 ~
gz _ |0 0 10 a (4.36)
g (000 1] |g

q3
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A (0
A0
Asz(0
A0
Az (0
Aaa(
Ass(
Aaa(

) = —92(63[)7 — bgbg) - 936359 — 91 <b6b7 + bgbg) + (94b:2)),

) = 61babg + O3b3bg + Osbrbs,

) = 95b5b7>

) = 07(brby — bsbs) — Osbsb,

) = —02(bsby + bsbs) + 5(bsbg + bsbg) + 61(b1bg — bebs),
) =

) =

) =

22(0 —01b1bg — 03b3bg + Obsbg — 910b§>
23(0 O5b5b5 — O9bsbs,
24(0 67(bsby + b1by),
B11(0) = 01b7, Bi3(0) = —01by — 03bs,
Bgl (9) - 9168 - 93[)3, 822(9) - —91b1 —|— 93()3
and
01 = cos(—q2 + q3), 04 = ¢s,
dy = sin(—qa + g3), d5 = sinc(gq),
03 = G2, d¢ = sinc(gs),

v = b7b1 + b7(51b3 - b2(51b3 + bgbg - (5%()3 + 51b3b8,

6, =1/v, O = 0402/,
Oy = 0302/ v, 07 = 66/ v,

05 = 01 /v, s = 6601/,
0, = 30102/ v, Oy = 501 /v,
05 = d5/v, 010 = 040102/ v.

The parameters have been identified based on experimental data as described in [18]. The
resulting values are

Table 4.2: Values of the identified condensed parameters.

bbby by ba b5 be b7 by by

Value 0.0715 0.0058 0.0114 0.3264 0.3957 0.6253 0.0749 0.0705 1.1261

a) By the technique of parameter set mapping, [17], find a parameter set that approxim-
ates 01, ...,0,9 by two parameters ¢, ¢o. Therefore, generate data by gridding the
parameter range in terms of the actual degrees-of-freedom and their time derivatives.
Alternatively, use an experimental trajectory provided with the MATLAB files.

b) Synthesize a polytopic LPV gain-scheduling controller based on the approximate
model.
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Problem 4.7 (LPV Control of a 2-DOF Robotic Manipulator)

Learning Goals

e Learn how to synthesize, tune and implement LPV controllers.

References An extensive description of both plant and methodology can be found in [18)].
The polytopic LPV synthesis method is described in [12], whereas the LET LPV synthesis
method is described in [15], [16].

Task Description Two degrees-of-freedom of a robotic manipulator are to be controlled.
Use the model given in Problem 4.6, [1§].

a) Synthesize an affine LPV controller for the reduced parameter set-based model.
What issue arises when you are trying to synthesize a controller for the plant with
full scheduling order?

b) Synthesize an affine LPV controller for the robot based on the model with full
scheduling order using the LE'T LPV synthesis method described in [15], [16]. The
MATLAB files implementing the synthesis method are provided.



Part 11

COOPERATIVE CONTROL OF
MULTIAGENT SYSTEMS






Chapter 5

Consensus Protocol and Formation
Control

In this chapter we will introduce the concept of a consensus protocol, and we will see how
consensus protocols can be used as a basis for the design of formation control schemes for a
network of dynamic agents. A consensus protocol can be viewed as a local control law, that
each agent in a group is equipped with, in combination with a structure of communication
between individual agents. The formation control problem addresses the design of local
controllers for mobile agents that are required to move in space while maintaining specified
relative positions with respect to each other (a formation); this is to be achieved by each
agent using only local information (i.e. each agent uses its own measurements and data
received from its “neighbours”).

5.1 Consensus Protocols, Illustrative Example

We consider a group of dynamic agents who are exchanging information through a given
communication network. To describe such a group and its communication, we need a
dynamic model of each agent, and we need a representation of the communication topology
(who is exchanging information with whom?). In this section we will illustrate these
concepts with a simple example.

Consider a group of three agents (agent 1, agent 2 and agent 3), with the communication
topology shown in Fiig. 5.1. The communication topology is represented by a communication
graph: agent 2 is sending information to agents 1 and 3, and receives information from
those agents, whereas there is no exchange of information between agents 1 and 3.

In this example we assume that each communication link is bidirectional, i.e. whenever
there is a communication link between two agents then information is exchanged in both
directions; this is indicated by the arrow heads in Fig.|5.1. A communication graph that has
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1

£

2 3
Figure 5.1: Communication Graph

only bidirectional links between agents is called undirected, otherwise it is called directed.
In this section we will consider multi-agent systems with undirected communication graphs;
multi agent systems with directed communication graphs will be briefly discussed in
Section 5.2l

Note that the graph shown in Fig. 5.1/ does not tell us anything about the spatial location
of agents (e.g. it does not imply that agent 3 is located to the right of agent 2). It
provides only information about the existence or non-existence of communication links
between agents. We nevertheless assume that the agents we consider do move in space; of
practical interest are groups of agents moving in 2-dimensional or 3-dimensional space.
For simplicity we will first restrict our discussion to a group of agents that move only in
one spatial dimension. Fig. 5.2/ shows possible spatial locations for each agent, the position
of agent 7 is denoted by z;.
2 1 3

+—0—0—0—>
0 T2 T1 T3 x

Figure 5.2: Spatial location of agents

Here we assume that we want the agents to move such that they converge towards a
common location Z..,s (this is referred to as the agents reaching consensus on a common
position), and we want this consensus position to be the arithmetic mean of their initial
individual positions, i.e. our goal is

tliglo xq(t) = tli)rgo xo(t) = tlgglo 23(t) = Teons = §(£B1o + x99 + 30), (5.1)

assuming that the agents are located at initial positions xyg, x99 and s, respectively, at
time 0. If this is achieved, we will say that the agents reach average consensus.

So far we have discussed the communication topology; we have yet to specify dynamic
models of the agents. In the following, we assume that all agents have identical dynamic
properties; here we assume that

Thus each agent is modelled as a single integrator and can be seen as a point on which a
velocity u; is imposed. In order for the agents to reach average consensus, each agent is
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equipped with a local control law. Let 7; denote the set of neighbours of agent i, i.e. the
set of agents that exchange information with agent 7. In our example we have

Ji = {2}, Jo = {173}> J3 = {2}

We now assume that each agent ¢ is equipped with a local control law
wit) = > () — wi(t)). (5.3)
JE€ET:

This is called a consensus protocol; in addition to local feedback (using an agent’s internal
measurements) it requires information from neighbouring agents. Substituting (5.3) into
(5.2) yields

Ty = Ty— X
i’z = X1 — T2+ T3 — X2
= $1—21’2+$3

jfg = I9 — I3.

This can be represented in a more compact form as

jfl -1 1 0 T T10
.@2 - 1 -2 1 T R LU(O) == T . (54)
j?g 0 1 -1 T3 T30

This vector differential equation governs the motion of the three agents when they start
from given initial positions x19, x99 and z3zy. It has the form of the state equation of an
unforced LTT system

x(t) = Fz(t), x(0)=xo,

and we know that if F' has all eigenvalues strictly inside the left half plane, x(t) will
converge to zero for any initial state xy as t — oco. A closer inspection of the matrix F
reveals that all row sums are zero. Define

1=011...1TeRrY

as an N-dimensional column vector with all elements equal to 1, where N is the number
of agents, then we have
F1=0-1,

thus F' has a zero eigenvalue with corresponding eigenvector 1. The matrix F' was obtained
from the consensus protocol (5.3) - which represents the information contained in the
communication graph - substituted into the agent models (5.2). In Section 5.2 we will
formally define the unscaled graph Laplacian L° of a communication graph as the negative
of this matrix, i.e.

L' =—F
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Thus, if ) is an eigenvalue of F', then —\ is an eigenvalue of L°. In our example, the
eigenvalues of I are {0, —1, —3}, therefore the eigenvalues of L° are {0, 1,3}. Moreover,
we have

L°1=0-1. (5.5)

The graph Laplacian L° introduced here is called unscaled in order to distinguish it from
the scaled graph Laplacian discussed in Section 5.3, Since in this and the next section we
will consider only unscaled Laplacians, we drop the attribute "unscaled”. We now return
to the question of whether the agents (5.2), equipped with the local control law (5.3) and
starting from initial conditions ¢, x99 and x39, will reach average consensus as formulated
in (5.1). In terms of the graph Laplacian, (5.4) can be expressed as

@(t) = —LO(t). (5.6)

Thus, possible equilibrium states are all vectors z that lie in the null space of L°, which,
as we saw above, includes R (1), the space spanned by 1. The solution to this vector
differential equation is

z(t) = e "2(0). (5.7)

In order to further investigate this solution, we first observe that the graph Laplacian in
this example is symmetric. Symmetry of the graph Laplacian reflects the fact that the
underlying communication graph is undirected. A consequence of this symmetry is that
there exists a nonsingular matrix U such that

M0 0
LP =UAUT, where A=|0 X 0 |,
0 0 X

and U can be chosen to be orthogonal, i.e. such that UUT = I. Substituting in (5.7) yields
2(t) = e P2 (0) = e VA 2(0) = Ue MUT2(0),

where
e~Mt 0
—At O e—)\gt 0 ,
0 0 e st

(compare Exercise 1.4b, Lecture Notes Control Systems Theory and Design). Letting u;

. . . _70
denote the i** column of U, we can then express the matrix exponential e=*"* as

_L0 _ _ _ _
et = Ue™MUT = e Maugu] + e M ugul + e Mugul
The states of the agents then evolve as

z(t) = Ue™™UT2(0) = (e’*ltululT + e 2ypud + e’A3tu3u3T> 2(0). (5.8)
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Recalling that A\; = 0 with eigenvector u;, whereas Ay and A3 are strictly positive, we see
that the second and third term on the right hand side of (5.8) will disappear as t — oc.
With

1
uy = % 1
where the eigenvector has been normalised such that ||u,|| = 1, we obtain
1 mCOHS
Jim x(t) = 311 2(0) = Zeons1 Teons | (5.9)
',’CCOI'IS

where x.pns is the average consensus position defined in (5.1). Thus average consensus is
achieved.

Agreement Space

Let us summarise and try to generalise the observations obtained from the example
discussed in this section, that involves three single-integrator agents, a communication
graph as shown in Fig. 5.1 and the corresponding consensus protocol (5.3). We start with
a definition.

Definition 5.1 The agreement space associated with a group of N agents is

A=TR(1).

The question we tried to answer was whether the three agents, starting from arbitrary
initial positions, would reach average consensus, and we saw that this is indeed the case.
Conditions required to derive this result were the fact that the graph Laplacian has a
single eigenvalue at 0 with corresponding normalised eigenvector 1/ VN -1, and that all
other eigenvalues are strictly positive - this is what leads from (5.8) to (5.9). It is thus
straightforward to extend the reasoning leading to the above result to a group of N agents
and derive the following result.

Theorem 5.1  Given a group of N agents with single integrator dynamics
ml(t):ul(t), i:1,2,...,N,

an undirected communication graph with graph Laplacian L° = (L°)T € RMYN and a
corresponding consensus protocol (5.3), the state vector x = [x1 ...xn]|T governed by

i(t) = —L%(t), z(0) =z
will converge to the agreement space A if and only if
ML) =0 and N(L%) >0, i=2,...,N.

In this case we have 1

~ _ LT
tlgcr)lox(t) = Nl .
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In Section 5.2 we will present conditions that a communication graph must satisfy for
the eigenvalue conditions of the theorem to hold. If we assume that the eigenvalues are
ordered such that

0:/\1</\2§>\3§...§)\N,

then it follows from (5.8) that the speed of convergence is determined by the smallest
non-zero eigenvalue \y (sometimes referred to as the Fiedler eigenvalue or as the algebraic
connectivity of the communication graph), i.e. the dominant time constant is 1/\.

Constant of Motion

The observations about consensus protocols made so far can be used to gain some further
insight into the way a group of agents reaches the agreement space. From the vector
differential equation

#(t) = —LO%(t)

governing the motion of the individual agents, we obtain by left-multiplying with 17 (and
noting that L0 = LO)
173(t) = —17L°2(t) =0

or

jt(l%(t)) =0 Vt>0.

This simply says that the sum of the states of all agents 17z (¢) is constant over time; it is
referred to as a constant of motion for the agreement dynamics. Since this is true for all
t > 0, we have in particular

or

17 (x(t) — 2(0)) =0 vt >0.

Thus, the state vector z(t) will move along a straight line orthogonal to the agreement
space, starting from x(0). This is illustrated for two agents in Fig. 5.3. One can easily
check that the intersection of this orthogonal line passing through z(0) with the agreement
space is indeed the average of all initial state variables.

1'2‘ N
N L1 =

Figure 5.3: Consensus trajectory
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5.2 Some Facts from Graph Theory

In this section we introduce some concepts and results from graph theory that are required
for a more formal treatment of the consensus problem, and also for the analysis and
synthesis of formation control schemes. First we formally define a graph. A graph is built
upon a set with a finite number of elements, referred to as verter set

V = {Ul,UQ,...,/UN}.

In our context of multi-agent systems, each vertex v; will represent an agent; N denotes
the cardinality of the set V, written as N = |V|. We also consider the product space
V2 =V x V that contains all ordered pairs of vertices

V? = {(vi, v)|vi,v; €V, i # j}. (5.10)

Ordered pairs means (v;,vj) # (v;,v;). For example, if a vertex set V' has three vertices,
i.e. V = {v1, v, v3}, then V2 contains six ordered pairs, referred to as edges. With a given
vertex set V' we can associate an edge set

E C V2;
for example we can associate with the vertex set above the edge set

E = {(v1,v2), (va,v1), (v2,v3), (v3,v2) }.

Now we are in a position to formally define a graph: a graph is a pair of two sets, a vertex
set V and an associated edge set F; we let G(V, E') denote such a graph. The vertex set
and edge set used in the above example together define the graph shown in Fig. 5.4.

V2 U1

N

Figure 5.4: Graph with three vertices and four edges

Note that since we defined an edge as an ordered pair, this graph has four edges. In the
context of multi-agent systems where vertices represent agents, an edge represents the flow
of information from one agent to another. An edge (v;,v;) represents information flowing
from v; to v;; we refer to v; as the head and to v; as the tail of the edge (when a graph is
drawn, the head of an edge is indicated by the arrow head). We can now formalise the
notions of directed and undirected graphs introduced in the previous section.

Definition 5.2 A graph is undirected if
(Ui,l}j) S = (’Uj,’UZ') ek,

otherwise it is directed.
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Undirected Graphs

For an undirected graph, a path is defined as a sequence of edges

{Uioaviuviga s 7Uim}

such that
(Vip, Vi) €E - VE: 0< k< m.

We say that an undirected graph is connected if there is a path between any v;,v; € V, @ # j.
Thus, the graph shown in Fig. 5.4 is connected.

In an undirected graph, we define the degree of a vertex v; as the cardinality of its neighbour
set

d(vi) = [Tl

where the neighbour set that was introduced informally in the previous section can now
be formally defined as

Ji = {v; € V| (vi,v5) € E},

and d(v;) is the number of neighbours of vertex v;. For a given undirected graph G, we
next define three associated matrices. We first define the degree matriz as the diagonal
matrix

d(Ul) 0
A(G) = -
0 d(UN)

The unscaled adjacency matriz of an undirected graph is defined element-wise as

i 1 if (Uj,UZ') € E,
] 0 else.

EX@IP

)

And finally we define the Laplacian of an undirected graph as
L%(G) = A(G) — A°(9).

For the graph shown in Fig. 5.4, we have

1
A=10
0

S NN O

0
0 and AY =
1

o = O

1
0
1

o = O

Note that - following definition (5.10) of the product set V? where we excluded edges
between a vertex and itself - the adjacency matrix has always zero diagonal entries. The
Laplacian for this example is therefore
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This is exactly the Laplacian of the example in the previous section, which reflects the
fact that the graph in Fig. 5.4 is the same as the communication graph considered in that
section.

A useful result about the locations of the eigenvalues of L° and A° can be derived with
the help of Gersgorin’s disk theorem, which is stated next.

Theorem 5.2  All eigenvalues of a matriz M € R™™™ are located in the union of disks

n

n
USzeC: [z—=myu| < D> |myl g,
i=1 J=1,5#1

where m;; denotes the (i, j) entry of M.

Using this theorem, it is straightforward to check that all eigenvalues of A are located
inside a disk centred at the origin with radius

d = max d(v;),

whereas the eigenvalues of L are located inside a disk centred at d with radius d. Since
A® and L° are symmetric for undirected graphs, the eigenvalues in this case are real, and
an important consequence is that all eigenvalues of L° are nonnegative, and all eigenvalues
of A have a magnitude less than or equal to one.

We complete the discussion of undirected graphs with the following result.

Theorem 5.3  Given an undirected graph G, the following statements are equivalent:

i) G is connected
i) N(L°) = R(1), i.e. the null space of the graph Laplacian is the agreement space

wi) M =0and X\ >0,i=2,...,N.

The third statement is the necessary and sufficient condition of Theorem 5.1| for reaching
average consensus. Note that because an eigenvalue of LY is either zero or positive (from
Gersgorin’s disk theorem), statement (iii) is equivalent to saying that L° has rank N — 1.
In the previous section we saw that because of the special form of the graph Laplacian we
have (iii) = (ii); a proof of all equivalences can be found in [19].

Directed Graphs

According to Definition 5.2/ a graph is directed if there is at least one edge (v;,v;) € E
such that (v;,v;) € E. We let D(V, E) denote a directed graph, also referred to as digraph.
Figure 5.5 shows an example of a directed graph: there is an edge (vg,v) but no edge

(v1,v9).
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V2 U1

N

Figure 5.5: Directed graph

We can extend the definitions of matrices associated with undirected graphs to directed
graphs as follows. First we need now to distinguish between the in-degree and the out-degree
of a vertex: the in-degree dj,(v;) of vertex v; counts the number of edges of which v; is the
head, whereas the out-degree dy,(v;) counts the number of edges of which v; is the tail.
We then define the in-degree matriz of a directed graph as

din(Ul)
A(D) =
din(”N)

The unscaled adjacency matrix A%(D) of a directed graph is defined exactly as for an
undirected graph, and the graph Laplacian of a directed graph is

L°(D) = A(D) — A%(D).

For the digraph in Fig. 5.5 we have

0 00 0 00
AD)=]0 2 0|, AD)y=11 01
0 01 010
and therefore
0 0 O
L°D)y=| -1 2 -1
0 -1 1

As in the case of undirected graphs, it is clear from the way the graph Laplacian L° is
constructed that the row sums are still zero, and that we have in this case as well

L1 =0,
i.e. there is at least one zero eigenvalue with corresponding eigenvector 1.

Some further properties of directed graphs are explored in an Exercise.

5.3 Formation Control

In Section 5.1 we considered a consensus problem involving a group of NN first order agents
modelled as (5.2), each equipped with local control law (5.3) that involves the use of
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information received from neighbouring agents. Combining individual agent states x; into
an overall state vector x, we saw that the states are governed by

@(t) = — L x(t), (5.11)

where L? is the unscaled Laplacian of the underlying undirected communication graph.
We also found that because the Laplacian satisfies L1 = 0, all agents converge to the
average of their initial values as t — oo.

We will now extend this approach to a group of N agents that can be modelled as LTI
systems

P(s) { i;(t) = Apzi(t) + Bpu(t) (5.12)

yi(t) = Cpux(t).

Here we assume z; € R™ for the agent states: whereas in Section 5.1 the agents where
assumed to be single integrators (points with a velocity imposed on them), they are now
allowed to be general dynamic LTT systems representing e.g. linearised models of mobile
robots, unmanned aerial vehicles etc. The output y; does not need to be scalar; here we
assume it to be the position of agent ¢ that is being transmitted to its neighbours. Thus
we assume y; € RP and u; € R™, where p is typically 2 or 3 (the dimension of the space in
which agents are moving).

Each agent is equipped with a local controller

G(t) = Ag((t) + Brei(t)
ui(t) = Ck (1)

with ¢; € R"<. We can define the position error e;(t) € RP that forms the input to the
controller of agent 7 as

K(s): { (5.13)

ei(t) = 3 (5:(t) = 9;(1)). (5.14)

JET:
As before, we introduce stacked column vectors representing states, inputs, outputs and
position errors of the whole multi-agent system as

X1 Uy n €1
1) U2 Y2 €2

x = . ) u = . ) y = . a‘nd e = . )
TN un YN EN

respectively, where z € RY" 4 € RV and y,e € RM. We assume again that the
underlying communication graph is undirected. In order to represent the relationship
(5.14) between position error and agents’ positions in terms of the unscaled Laplacian
L° of the communication graph, we need to modify the approach we took in Section 5.1
because the individual positions y; and position errors e; are now p-dimensional vectors.
Assuming for a moment that y; and e; are scalar, it is easily verified that we have

e(t) = Loy(t).
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Note that in contrast to (5.4) there is no minus sign attached to L° because in (5.14) the
order of the terms in the bracket has been reversed compared with (5.3), i.e. the minus
sign has been absorbed into the controllers K (s).

To handle p-dimensional output and error vectors, we can use the Kronecker product and
write

e(t) = (L @ L)y(t),
where I, denotes the p x p identity matrix; thus on the right hand side an element [L];;

multiplies position y; of agent j to generate a term that contributes to the error e; of agent
i

We will now slightly modify the input to the controller: we replace the error signal e;(t) in
(5.14) by the weighted error

i) = 7 3 ()~ 1), (5.15)
il jeT;
With this redefined error we obtain
e(t) = (L®1,)y(t), (5.16)
where L is the scaled graph Laplacian, which is related to the unscaled Laplacian by
L=ATL'=T1-A, (5.17)

and where A = A~1A% is the scaled adjacency matriz (note that the cardinality |7,| of
the neighbourhood of agent i equals d(v;)). Returning to the undirected communication
graph shown in Fig. 5.1, we have

010 1 -1 0
A=|L1 o1 and  L=|-1 1 -1
010 0 -1 1

In this section we will find it convenient to use the scaled rather than the unscaled
Laplacian to derive a formation control scheme (and thus follow the approach in [20]).
One disadvantage of the scaled Laplacian is however evident from the above example: even
for undirected graphs the scaled Laplacian is in general not symmetric. An important
property that is preserved however is that

L1=0.

This property is the basis for reaching average consensus in the example studied in Section
5.1. That it will work also when agents transmit p-dimensional position vectors to their
neighbours can be seen as follows: assume that all agents have reached consensus on a
common position Yeons € RP, i.e. that

Yeons = Y1 = Y2 = ... = YN. (518)



5.3. Formation Control 95

Then the position vector of the multi-agent system can be written as

Y = 1® Yeons-
Substituting this in (5.16) yields
e = (L® L)1 6 Yoons). (5.19)
To evaluate this expression, we use the mized-product property of the Kronecker product:

Lemma 5.1 Let A€ R™" BeR™ CeR™ and D € R¥*'. Then

(A®@ B)(C® D)= AC®BD €R™" (5.20)

A proof of this fact and more properties of the Kronecker product can be found in La05,
Chapter 13 (the proof consists of representing the matrices A and C' in (5.20) in terms of
matrix elements a;; and ¢, respectively, and using the rules of matrix multiplication). In
the following treatment of formation control schemes we will frequently use the mixed-
product property of the Kronecker product.

If we apply (5.20) to (5.19), we obtain
e=L1® Yeons = 0,

which shows that we can extend the notion of agreement space to vector-valued agent
outputs: when the agents reach consensus on a position yeons € RY in the sense of (5.18),
the resulting output vector y € RV? will be in the null space of L ® I, € RNP* NP For
brevity we will frequently use the notation L) = L ® I,.

Returning to the agent and controller models introduced above, we now consider a scenario
where a group of N agents with dynamic models (5.12), equipped with local controllers
(5.13) that realise an underlying undirected communication topology with scaled graph
Laplacian L, are required to reach consensus with respect to their positions. In practical
applications, where the agents may represent mobile robots, UAVs etc., it would usually
be undesirable for them to converge all to the same point in space; one would rather have
them attain a formation, i.e. a specified geometric pattern where each agent’s position is
specified relative to the positions of its neighbours. Introducing a reference vector

A A

that specifies the shape of the desired formation, we can represent the information flow
between agents as shown in Fig. 5.6, where the P(s)-blocks represent agents and the
K (s)-blocks the local controllers. Note that an absolute reference position r; for agent i
has only an effect on the relative position of that agent with respect to its neighbours. To
see this, assume that two reference position vectors r € RV? and # € R™? differ only by a
constant offset Ar € R?, i.e.

’I"Z'—’FZ':AT, i21,2,...,N,
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or
r—7r=1x Ar.

Then the error vector e will be independent of that offset because
e = L(p)(”/’ =+ y) = L(p)(f—i- 1 Ar+ y) = L(p)(f—i- y)

For the same reason it does not matter whether the feedback signal y is added to or
subtracted from the reference r; here we consider positive feedback.

€1 U1 Y1

r Y e g =P g Y

L : :
() eN . uUN - yn
= K > P -

Figure 5.6: Group of N agents P(s) with formation controllers K(S) and formation

Y

Y

reference r

The feedback loop shown in Fig. 5.6 represents a group of N LTI agents P(s), each
transmitting its output y; to which a reference r; is added. The block labelled L,
determines the distribution of information between agents; the formation errors e; are
taken as inputs to the local controllers K (s). To analyse the dynamic properties of this
feedback system, we represent the dynamics of the whole group of N agents as

o(t) = (Iv @ Ap)z(t) + (Iny @ Bp)u(t)
y(t) = (In®Chp).
The matrices in this state space model are block diagonal, with each of the matrices of the

agent model (Ap, Bp,Cp) repeated N times along the diagonal. For brevity we introduce
the notation

A~

M=Iy®M

for such block diagonal matrices. Thus, the overall agent dynamics can be represented as

i(t) = Apx(t) + Bpu(t)
y(t) = Cpa(t). (5.21)

u(t) = CrC(t). (5.22)

We let
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i | () Pl [

Figure 5.7: Group of N agents in formation control loop

denote the systems with state space realisations (5.21) and (5.22), respectively. A more
compact form of the feedback loop shown in Fig. 5.6 is shown in Fig. 5.7, where we assume
for simplicity that r = 0.

We let
H(s) = P(s)K(s)

denote the series connection of agents and plants (note that H(s) is block-diagonal), and
consider a state space realisation of this transfer function

[A{(s): AH‘BH _ Ap Ep AK BK
Cr| 0 Cpl 0 J[Ck| 0 ]
It is straightforward to verify that
Ap BpCyg 0 A
Ag = n By =1 - Cy=1[Cp 0. 5.23
o i vl K I B A A e

With H(s) representing P(s)K (s), the loop shown in Fig. 5.7 is redrawn as in Fig. 5.8.

I

Figure 5.8: Group of N agents in formation control loop

Using the state space realisation (Ay, By, Cy) of ﬁ(s), this is equivalent to the loop
shown in Fig. 5.9

BH*{ % _—
AHJ

Lp)

Figure 5.9: Group of N agents in formation control loop
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1
s

1
s

By la—Lp)la—Cp = —L

a) formation feedback loop b) single integrator consensus loop

Figure 5.10: Comparison of formation feedback loop (a) and single integrator consensus
loop (b)

It is now instructive to compare this feedback loop that represents a group of N agents in
a formation control loop, shown slightly rearranged in Fig. 5.10.a, with the feedback loop
that represents the dynamics of N single integrators with a consensus protocol governed
by (5.6), shown in Fig. 5.10.b. We saw in Section 5.1 that the loop in Fig. 5.10.b results
in position consensus as equilibrium state because & = L1 = 0. The same is true for the
formation control loop, as we will now illustrate with an example.

Example 5.1 Consider a group of N agents, each modelled as

N HEHIAEA

yl) = [ 01[@’%],

where u; and y; are scalar, i.e. agents are moving only in one spatial dimension. Each
agent is equipped with a formation controller K(s), and the goal is to have all agents
converge into a single point Yeons ast — 00 (in the case where r =0, or to attain a specified
formation if r #0). A condition for this to be possible is that y = 1 & Yeons 1S compatible
with an equilibrium state of the closed-loop system, i.e. with [&T CT]T = 0.

For y =1 ® Yeons to hold in an equilibrium, we need the velocities v; and controller states
G to satisfy v; =0 and (; =0 fori=1,..., N, respectively, or

T = [ycons 0 Ycons 0... Ycons O]T7 and EZ 07
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with a closed-loop equilibrium state

]: Yoons | (5.24)

Referring to Fig. 5.11, we find that

and thus

¢ =Cy l Zﬁ 1 =1 ® Yeons- (5.25)

The input to the block Ly, the signal vector § = 1 ® Yeons, 5 therefore in the null space of

the Laplacian L, and the contribution to the summing junction at the integrator input in

Fig. 5.11 coming from the lower branch is zero. We also have

[0 1
00

where (x) denotes matriz blocks we are not interested in (since ( = 0), and therefore

Ap l 2_5 ] = 0. (5.26)

Thus both contributions to the summing junction at the integrator input in Fig. 5.11 are

1]

which shows that ¥y = 1 ® Yeons 18 compatible with an equilibrium state.

zero, and we have
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1

S

An

By |- L(p)< CH |-

Figure 5.11: Formation feedback loop, Example 5.1

This example illustrates that position consensus y = 1 ® ¥yeons is compatible with an
equilibrium of the feedback loop shown in Fig. 5.6 and in Fig. 5.7. In order to establish
that the agents do indeed reach this consensus, we must show that it is a stable equilibrium.
We will do this by showing that the closed loop system in Fig. 5.11 is marginally stable.
The state equation of this closed-loop system is

l ‘é ] — (A + BiLiyC) [ Z” ] (5.27)

Note that this system has an eigenvalue at zero, because it follows from (5.25) and (5.26)
that for the closed-loop equilibrium state (5.24) we have

(AH +BHL(p)CH) [ ZE 1 =0;

this is a necessary condition for the existence of a non-zero equilibrium. What is also
required for reaching consensus is that the other eigenvalues of the closed-loop system
(5.27) are strictly inside the left half of the complex plane.

Substituting from (5.23) in (5.27) yields
T AP BPOK ] l T ]
=1 A N " ) 5.28
[ ¢ ] [ BrLypCp Ak ¢ (5.28)

For the group of N agents P(s) to reach consensus on a position yeons, the block-diagonal
controller

K(s)
K(s) = =
K(s)

AK éK
Cx | 0

must stabilise (5.28) in the sense that all eigenvalues except for a single zero eigenvalue
are inside the left half plane. We now present a well-known result that states a necessary
and sufficient condition for K (s) to stabilise the closed-loop system.

Theorem 5.4  The block diagonal controller K(s) stabilises (5.28) if and only if K (s)
stabilises the loop shown in Fig. 5.12 for all eigenvalues N\;(L), i =1,..., N of the graph
Laplacian.
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pl

Figure 5.12: Single-agent loop for Theorem 5.4

This result was first proposed in [20]; it reduces the problem of assessing whether a
formation controller K (s) stabilises the feedback loop (5.28), the order of which depends
on N and can be very large, to assessing whether it stabilises the small (size of a single
agent) loop in Fig. [5.12 for all eigenvalues of L. Thus, it turns a possibly very large
stability analysis problem into a small robust stability analysis problem.

We will present a proof of Theorem 5.4 that is based on diagonalising the graph Laplacian
L. This requires the restrictive assumption that L is diagonalisable; recall that we are
working with the scaled Laplacian which is in general not symmetric even for undirected
graphs. Since the theorem is only concerned with stability and not with performance,
it would be enough to apply a Schur decomposition and upper-triangularise L, which is
always possible and enough for proving stability (this is in fact what is done in [20]). Here
we nevertheless assume that we can diagonalise L because we want to take this discussion
further to study also the performance of a group of agents forming a formation control
loop. If we are considering undirected communication graphs and want to exploit the
symmetry of the unscaled Laplacian, the Theorem can be modified to be applicable to the
unscaled Laplacian.

To outline the idea of the following proof, consider the system matrix of the closed-loop
system (5.28), which is a 2 x 2-block matrix. Three of the blocks are block diagonal, the
only one that is not is the (2,1)-block EKL(p)ép.That this block is not block-diagonal
is due to L,); the non-zero off-diagonal entries in this block represent communication
between agents. If we assume for a moment that there is no communication between
agents (i.e. L = I), all four blocks of the system matrix in (5.28) are block diagonal, and
stability of the overall feedback system is equivalent to stability a single agent P(s) in
feedback with its local controller K (s) (we are assuming that all agents and controllers,
respectively, are identical). This fact is however not immediately obvious from the system
matrix in (5.28); it seems not clear how block diagonality simplifies the stability analysis,
since even though each of the four blocks of this block matrix is block diagonal, the system
matrix itself is not.

To clarify this point, we can bring in a permutation matrix, as illustrated by a small
example.

Example 5.2  (Block-diagonalising permutation)

Consider a group of two agents, assume L = I (i.e. no communication) and write (5.28)
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as ‘
jfl AP 0 : d 0 I
T | 0 A 0 @ e (5.29)
gl ‘1/1 O :AK O Cl
G 0 WUy 0 Ag G

where ® and V;, ©+ = 1,2, denote the off-diagonal coupling blocks BpCy and éKép,
respectively, between x and ¢ (for later reference we allow the V;-blocks to be different).
The system matriz is not block diagonal, but can be made so by swapping rows and columns.

Define

o O O
o = O O
o O = O
_— o O O

and note that II"T1 = I. Applying the similarity transformation

I x
G L2
=1I
T2 G
G G
then yields
i Ap @ ‘ 0 0 )
él \I/1 AK 0 0 Cl
S AT G . 5.30
Ty 0 0 i Ap ) To ( )
(o 0 0 ¥ Ag || G

In this transformed block-diagonal system matriz each block represents the closed-loop
dynamics of a single agent.

Such a block diagonalising permutation is possible for any number of agents N when
all four blocks of the system matrix in (5.28) are block diagonal, i.e. when there is no
communication between agents. This provides the motivation for block-diagonalising
the (2,1)-block EKL(p)C'p in (5.28): as a result, the system matrix can be transformed
into block-diagonal form, and stability of the overall system can be assessed by checking
stability of the diagonal blocks (this is also true when the system matrix is brought into
block triangular form).

Before we now turn to diagonalising the term B K L) Cp, we present two useful facts about
Kronecker products involving matrices of the type M = Iy ® M and Ziny =2 @ I.

Lemma 5.2 Given M € R™™ and Z € RV*N | we have

ZimyM = MZ().
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Proof: Apply the mixed-product property to obtain

(ZoL)In©oM)=ZoM=(Iy® M)(Z® L,).

Note that when Z is nonsingular, we have as a direct consequence of Lemma 5.2 that

Z\M Z ) = M. (5.31)

Lemma 5.3 Given a diagonalisable matriz L € RVN*N and a nonsingular matriz Z €

RNXN such that Z='LZ = A, where A is diagonal, we have

2y Ly Zm) = Mwy-

Proof: Follows from

Zn

LZm = (Z0L) (L L)Z& L) = (2@ L)LZ®1,) =A® I,

where we used the fact that
(Z@ L) '=2Z"1'®1,.

Now we are ready to bring the closed-loop system matrix
l Ap BpCx ]
B KL(p) Cp AK

into a form that can be made block-diagonal by permutation. We do this by applying the

V]

0 Zue |
Introducing new closed-loop state vectors # and ¢ of agents and controllers, respectively,
defined by

similarity transformation

xr = Z(n):L‘, and C = Z(nK)C,

the above transformation results in an equivalent closed-loop system

. l A B Ci ] [ T ] : (5.32)
¢ BrCpAyy  Ag ¢
That the (1,1), (1,2) and (2,2)-blocks of the system matrix remain unchanged under this

transformation follows directly from Lemma 5.2. To see why we obtain the (2,1)-block
shown in (5.32), note first that from Lemma 5.2 we have

B L)Cp = BxCpLy.
Then again applying Lemma 5.2 together with Lemma 5.3| yields

Z*l

(nK)

éKCYpL(n)Z(n) = BKCA(PZ(;SL(n)Z(n) = EKOPA(n).
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The transformed closed-loop system is now in the same form as the two-agent system
(5.29) in Example 5.2, therefore a permutation can be used to bring it into the form of

(5.30). The (2,1)-block
v, 0
0 v,

in (5.29) corresponds to the block B KOPA(n) here. Note that whereas By Cp has identical
blocks repeated along the diagonal, right multiplication with A(,) results in each of these
blocks to be multiplied by a different eigenvalue of L; for this reason we allowed the
U;-blocks in the example to be different. For the transformed formation control loop (5.32)
considered here, we conclude that this system is stable if and only if all the diagonal
sub-systems

i = Ap¥;+ BpOk(
(i = MNBrCpE;i + Ak, i=1,...,N (5.33)

are stable. Note that these subsystems represent the closed-loop dynamics of a single
agent, however with the output scaled by an eigenvalue \; of L, so that (5.33) describes
exactly the feedback loop shown in Fig. 5.12. Thus, Theorem 5.4 has been proved.

5.4 Formation Control as Robust Control Problem

Theorem 5.4 provides a necessary and sufficient condition for stability of the formation
control loop shown in Fig. 5.7. The loop consists of a group of N agents each modelled
as P(s), and each equipped with a local controller K (s). A controller K(s) stabilises the
whole formation if and only if it stabilises the single-agent loop shown in Fig. 5.12. Thus,
a problem of potentially huge size (if N is large) has been reduced to a small (single-agent
size) robust control problem. For single-input single-output agents, this result can be given
an interesting interpretation in terms of the Nyquist stability criterion; this is explored in
Exercise 6.2.

In this section we will present a slightly different approach to the problem of analysing
and synthesising formation control loops within a robust control framework; the results
presented here are based on [21]. Instead of using the normalised Laplacian L to represent
the communication structure we use the normalised adjacency matrix A. From Gersgorin’s
theorem (Theorem 5.2) it follows that the eigenvalues of A are all located inside the unit
disk D; this fact will be exploited to formulate a condition for robust stability of the
formation. Since here we are interested only in stability, we ignore the external reference
r and the output signal y in Fig. 5.7 and consider the block diagram in Fig. 5.13| as
representation of the formation control loop.

From (5.17) the normalised Laplacian is related to the normalised adjacency matrix by

L=1-A.
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=

Figure 5.13: Formation control loop

Thus, the block diagram in Fig. 5.13 can be equivalently drawn as in Fig. 5.14.

Figure 5.14: Equivalent representation of formation control loop

Note that the feedback loop denoted by T (s) is block diagonal and given by
A A —1 A
T(s)= (I H(s)) H(s),
where the blocks along the diagonal are
-1
T(s)= (I - H(s)) Hl(s),

and H(s) = P(s)K(s), compare Fig. 5.7. Thus, each of these blocks represents a single-
agent loop as shown in Fig. 5.15.

o K | P

|

Figure 5.15: Single-agent feedback loop T'(s)

Y

To assess the stability of the formation control loop as represented in Fig. 5.14, one could
use the small gain theorem (Theorem 21.1 in the Lecture Notes Optimal and Robust
Control). The loop transfer function is

~ApT(s) = —(A® L) (Iy ® T(s)) = ~A@T(s)

where the mixed-product rule (Lemma 5.1) was used to obtain the last equality. Applying
the small gain theorem would yield as sufficient condition for stability that A ® T'(s) is
stable and ||A ® T'(s)||.c < 1. Here we use a slightly stronger result: the spectral radius
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theorem. The spectral radius p(M) of a matrix M € R™" is defined as
p(M) = max [\,()]
i.e. it is the largest of the magnitudes of the eigenvalues of M.

Theorem 5.5 Consider a system with transfer function L(s) and a unity feedback loop
connecting its input and output. The loop is stable if L(s) is stable and

p(L(jw)) <1 Vw.

A proof of this result, which is based on the generalised Nyquist theorem for MIMO
systems, can be found e.g. in [22]. Note that for each square matrix M we have

p(M) < a(M),

thus the spectral radius theorem is less conservative than the small gain theorem in the
sense that the former is implied by the latter.

To employ Theorem 5.5 in a stability condition for the loop in Fig. 5.14, we need the
following property of the Kronecker product. Let eig(M) denote the set of eigenvalues of
M.

Lemma 5.4 Given two square matrices X and Y, we have

eig(X ® Z) = {Ajuk : A;j € eig(X), pu € eig(Y)}.

This result states that the eigenvalues of a Kronecker product of two square matrices X
and Y include all products between pairs of eigenvalues of X and Y, respectively; a proof
can be found in La05, Chapter 13.

Now Theorem 5.5 requires two things to hold for stability: (i) that A® T'(s) is stable, and
(ii) that eig(A ® T(jw)) € . For (i) we note that A ® T'(s) is stable if and only if 7'(s) is
stable. And from Lemma 5.4 together with the fact that eig(A) € D it follows that (ii)
holds true if ||7(s)|lc < 1. In fact ||7'(s)||s < 1 implies that (ii) holds true for all possible
communication graphs G, since eig(A) € D is true for all normalised adjacency matrices.

We then have the following result.

Theorem 5.6 The formation control loop in Fig. 5.7 is stable for all possible commu-
nication graphs G if and only if T(s) is stable and ||T(s)]|e0 < 1.

Note that here we have only shown that the above condition is sufficient; a proof that it is
also necessary for robust stability under arbitrary communication graphs is given in [21].
An important feature of the above stability condition is that it does not require knowledge
of the particular communication graph that determines the information exchange between
agents in a given formation.



Exercises — Chapter 5

Problem 5.1 (Directed Graphs)

Learning Goals

e Apply the knowledge on convergence conditions of undirected graphs to directed
graphs.

Task Description Let D = (V,€) be a directed graph with n vertices and m edges,
that represent a network of n agents with integrator dynamics. The network dynamics

(t) = ult)

with 2,4 € R™ and initial states o = z(0). To reach consensus the linear consensus
protocol

is used, with L(D) being the Laplacian of D. With this consensus protocol the networks
dynamics is given as

Prove that the network dynamics converge to

lim z(t) = (qf:co) 1

t—o00

with ¢f'1 = 1 and ¢; being the left eigenvector corresponding to the zero eigenvalue of
L(D), if and only if there exist at least one vertex v € V, from who every other vertex can
be reached by respecting the direction of the edges.

Hint: Use Theorem F.2 for the proof and consider the proof for undirected graphs.
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Problem 5.2 (Convergence Rate)

Learning Goals

e Recapitulate the consensus protocol and understand the definition of convergence
rate.

Task Description Let G = (V,€) be a undirected graph with n vertices and m edges.
Assume a group of n agents with integrator dynamics

and initial states x;(0) for @ = 1,...,n. The agents are connected over a topology,
represented by the graph G to agree on the average of the initial values, such that

t—o00

1 n
lim z; = — Y 2;(0) Vi=1,...,n.
n =
Jj=1

Therefore the linear consensus protocol

w(t)= X a,(t) - ()
vi€J;
is used, which is a simplification of that in [23]. With the network states z(t) =
[21(t) ... 2,(t)]T we get u(t) = —Lax(t), where L is the Laplace matrix corresponding
to G. Given this consensus protocol the networks states evolves as

i(t) = —La(t).

a) How many edges m are at least necessary, such that G is connected.

b) The graph with the maximal possible number of edges is called complete graph,
where every vertex is connected to every other vertices. How many edges has the
complete graph.

c) Plot the convergence rate of the consensus protocol as the number of edges increases
in the previously determined possible range for n = 5. Start therefore with a graph
with the minimal possible number of edges and add one iteratively. Repeat that for
different numbers of vertices. What do you observe? Matlab files are provided.

d) Proof the observation of c¢) theoretically. Assume therefore a graph G with Ay the
2nd smallest eigenvalue of the respective Laplace matrix L. Let G be G with one
additional added edge and X, the 2nd smallest eigenvalue of the respective L and Z
the corresponding eigenvector. Hint: Use z7 (E — L) x.
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Problem 5.3 (Time Delay)

Learning Goals

e Understand the meaning of communication delays and their influence on stability.

Task Description In practice, when information is exchanged among agents through
communication the signal transmission as well as data processing takes some finite time,
that has to be considered. Therefore according to [23], [24] the consensus protocol used in
the previous task changes to the delayed protocol

wilt) = Y it —7y5) — @it — 7ij),
vjEJ\fi
where 7;; denotes the time it takes for information communicated by agent j to reach
agent 7. If we assume the simple case 7;; = 7 that all delays are the same, then the delayed
consensus protocol can be written as u(t) = —Lx(t — 7), such that the network states
evolve as

t(t) = —Lx(t — 7).

a) Take a random undirected graph G with 8 vertices and 10 edges. Derive in simulation
the minimal time delay 7* that leads to an unstable network. Start with 7 = 0.1.
Repeat the same procedure for a graph G, where a random edge is added to the
graph G. Compare 7% and 7*, the minimal time delay that destabilizes the network
connected by G. What do you suspect, how does the number of edges influences the
robustness against time delays?

b) Derive the transition matrix ®(s) such that X(s) = ®(s)X(0) of the network
dynamics.

¢) Derive 7*, such that for 7 < 7* the network is stable, formally. Use the transfer func-
tion derived in the previous task therefore and calculate its characteristic polynomial.
Show that the maximal eigenvalue A, influences the robustness against time delays.

d) In the previous substask it has been shown that the 7* decreases with increasing \,,.
With this knowledge proof the observation of a) theoretically. The proof is similar
to the previous Exercise d). Assume a graph G with A, the largest eigenvalue of
the respective Laplace matrix L and respective eigenvalue z. Let G be G with one
additional added edge and )\, the largest eigenvalue of the respective L and Z the
corresponding eigenvector. Discuss the trade-off between robustness and convergence
rate.
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Problem 5.4 (Discrete Consensus)

Learning Goals

o Transfer the knowledge for the continuous consensus protocol to the discrete case.

Task Description Let G = (V,€) be a undirected graph with n vertices and m edges.
Assume a group of n agents with discrete time integrator dynamics

xi(k+1) = x;(k) + ui(k)

and initial states x;(0) for @ = 1,...,n. The agents are connected over a topology,
represented by the graph G. The used consensus protocol is

u(k) = (W = D (k)

with W;; =01if 4,7 ¢ € and ¢ # j. We assume in the following that W is symmetric. Then
the network dynamics evolve as z(k + 1) = Wx(k).

a)  Which properties of the spectrum of W are required, such that the network (i) is
not unstable and (ii) converges to the average of the initial values.

b) How to define the convergence rate of the network dynamics in analogy to the
continuous case? Hint: Note that in the case, where the continous consensus protocol
is discretized with a sampling time 7, than this would lead to W = e~ 7,

c¢) Assume W =1 — aL, where « is a real positive scalar and L the Laplacian corres-
ponding to the graph G. Do we get convergence to the average value? For what
region of « is that discrete network stable? What is the optimal o with regard to
convergence speed. Try different values of alpha in simulation.



Chapter 6

Formation Control with LTI and
LPV Agents

The previous section presented with Theorem 5.4 a well-known result that allows to reduce
the analysis and synthesis of distributed formation control schemes to a problem of the
size of a single agent, regardless of the number of agents involved. So far we considered
only stability; in this section we will introduce a framework that facilitates the extension
of this approach to design for performance. Moreover, we will present an extension to
formations of agents that are modelled as LPV systems. The framework we present in this
chapter is referred to as the decomposable systems approach, first proposed in [25]. We
will see that Theorem 5.4/ can be seen as a special case of a more general result derived
within this framework.

T e u Y
+0—>L<p) K(q) P(é)

T

Figure 6.1: Formation control loop with reference input

Y

Y
\

When we discussed stability of formation control loops in the previous section, we ignored
the reference input channel, i.e. we assumed r = 0. Because we want to extend the
discussion to performance, we now bring the formation reference input back and extend
the closed-loop state equation (5.28) into the state space model

£ Lae 50 [ )
¢l I BxLwCr Ak || Bic L)
y = [Cp O][ﬂ. (6.1)

This loop is shown in Fig. 6.1. One way of characterising the performance of such a
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formation control loop is to consider the response of the formation error to commanded
changes in the formation reference r. A fictitious performance output can be defined e.g.
as a linear combination of filtered formation error and filtered control effort, as shown in
Fig. 6.2 (assuming that identical filters are used for all agents).

Y
=
'

’—>Wk—>
w = 2 L ol P

L)

Y
=

Figure 6.2: Formation control loop with shaping filters

To formulate and solve the analysis and synthesis problems for a formation of LPV agents,
we will use an approach that was proposed in [10] and is based on LFT representations of
LPV agent models and the full block S-procedure. This method can be seen as a refinement
of the synthesis result for LPV systems in LFT form outlined in Section 4.2, In Section
6.3 we will present an analysis result for scheduled state feedback without derivation (for
details see [10]), which will be used in Exercise 6.7 to design a distributed formation
control scheme for a group of wheeled mobile robots.

Throughout this chapter, we will assume that the Laplacian L of the underlying commu-
nication graph is diagonalisable, i.e. that there exists a nonsingular matrix Z such that
Z7'LZ is diagonal. When discussing formation control with LPV agents, we will even
assume that L = LT. In the previous chapter the symbol L was used to denote the scaled
Laplacian A~!'L%, which is in general not symmetric even for undirected graphs. To satisfy
the above assumptions, one could use the unscaled Laplacian, or the normalised Laplacian
A~Y2LOA=Y2 which are both symmetric if the graph is undirected. In this chapter we
will use the symbol L to denote a suitable type of Laplacian that satisfies the required
assumption of diagonalisability or symmetry, respectively.

6.1 Decomposable Systems

We begin with the definition of a decomposable matriz. This concept is based on the notion
of a pattern matrixz P that determines the interconnection structure between subsystems.
In the context discussed in this chapter, we will interpret the pattern matrix as the
Laplacian of a communication graph; the decomposable systems approach is however more
general and P can also represent different interconnection structures.
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Definition 6.1  Given a pattern matriv P € RY*YN and a matriz M € RNP*N9 the
matriz M is called decomposable (with respect to P) if there exist matrices M?, M¢ € RP*4
such that

M=Iy® M+ P M- (6.2)

Note that this definition implies that a matrix M € R**! can only be decomposable w.r.t.
P € RV*N if k and [ are integer multiples of N.

Definition 6.2  Given a pattern matrizc P € RN*N and a state space realisation

(A, B,C,D) of an LTI system, the system is called decomposable w.r.t. P if A, B, C
and D are each decomposable w.r.t. P.

It follows from (6.2) that any non-zero off-diagonal element of P represents communication
between subsystems; this motivates the superscripts ¢ and ¢, which stand for ‘decoupled’
and ‘coupled’, respectively. If the pattern matrix P is diagonalisable, we have the following
result.

Lemma 6.1  Given a diagonalisable pattern matriz P € RN*N and a matriz Z € RV*N
such that det Z # 0 and Z7'PZ = A, where A is diagonal. Then for any matriz
M € RNPXN4a that is decomposable w.r.t. P, i.e. for which there exist M?® and M¢ such
that

M=Iy®M*+ P M,

we have

ZyMZgy = Iy @ M? + A @ M°, (6.3)

Clearly the right hand side of (6.3) is block diagonal - the lemma says that when Z
diagonalises a pattern matrix P, then it can also be used to block-diagonalise any matrix
that is decomposable w.r.t. P. This result can be easily shown by applying Lemma 5.2
and Lemma 5.3 to the left hand side of (6.3).

To illustrate the concept of a decomposable system and the significance of Lemma 6.1, we
will apply it to a formation control problem. Consider again the formation control loop
(6.1), assume that N = 3, and that the underlying communication graph is represented by
the Laplacian

lin Lz O
L= 1y lyn ly
0 I3 33

Then a state space model of the closed-loop formation dynamics is
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In contrast to Example 5.2, the (2,1) block of the closed-loop system matrix in (6.1)) is
not block diagonal, because we are assuming communication between agents. The same is

true for the lower part of the input matrix.

If we now apply a state-permuting similarity transformation II similar to the one that was
used in Example 5.2, we obtain
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]
n Cp 01 | ) @ .
————— T x
Yo | = ' Cp 01 42 : (6.5)
,,,,, M O
vs w Cp 0] |2
I I $2
| G
We will use the more compact notation
= AF f + BFT
y = Cr¢ (6.6)

to denote this permuted closed-loop system. It is clear that this system is decomposable

with respect to L; the model matrices can be expressed as
Ar = LAY+ L® A%

Br = L®B}+L® B
Cr = L®CL+L®CS,

and

Ce =[Cp 0], C%=1[0 0]

Moreover, if L is diagonalisable and Z~'LZ = A, where A is diagonal, Lemma 6.1 tells us

how we can block-diagonalise the system: we have
ZiyArZmy = Iy © Af + Ay © Ag.
If we introduce the notation Ap = Z(;%AFZ(n), we have
Ap = ZwArZy),
and similarly

Bp = ZmBrZ)

If we substitute these expressions in the permuted state space model (6.6), we obtain

736 = ApZ 4 BrZiyr
Z(;)ly = C*FZ(;§§.

(6.7)
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Defining new signals

we can rewrite (6.7) as
€ = Ap+ Bpr
j = Crl. (6.9)

For the three-agent example above, the state equation in (6.5) is transformed into

[ -%1 ] [ Ap BpCik ! 1 Iy ]
~ | | ~
G MBxCp o Ax 0o I G
:?2 _ : Ap BPCK : %2
(o ' MBrCp  Ag G2
e + - L -2 P =z
T3 | | Ap BpCxk Ty
i 53 | L ! ! ANBgCp Ak i G |
o ‘ -
\ By 1 )
77777 - - - - == — - 1
0 2 6.10)
+ :)\QBK: 7:2 ) ( .
***** i T3
| | 0
| |
I | ' AsBr

where \;, i = 1,2,3, denote the eigenvalues of L, while the output equation (which does
not involve interaction between agents) is not altered by this transformation.

The block diagonal system matrix Ap is similar to Ap, so marginal stability of (6.1) and of
(6.9) are equivalent. This diagonalising transformation was illustrated with the three-agent
example (6.4); it is clear that a decomposable system with any number N of subsystems
can be brought into the form of (6.9), where the new system matrices are

Ap = Iy® A%+ A® A
Br = Iy®B%+A® B
Cp = IN®CE+A®CE. (6.11)

All system matrices are block diagonal, so we have a collection of N completely decoupled

HERAES R rAE
fj \jBxCp Ak G NiBg |7
gi=[ Cr 0][?] (6.12)
J
and stability of the overall system is equivalent to stability of all subsystems. Moreover,
the subsystems differ only in a scalar - the eigenvalues of L - that multiplies the “-part of

subsystems
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the model matrices. These subsystems have the size of a single closed-loop agent; they
are referred to as modal subsystems. Decomposition into modal subsystems is the key to
turning analysis and synthesis problems for groups of N agents into robust analysis and
synthesis problems for a single agent.

Vehicle Integral Action Required for Consensus

Note that because A\; = 1, the (1,1) block of the transformed closed-loop system matrix
A will have the eigenvalues of Ap and Ak, see (6.10). We know that as a condition
for reaching consensus Ar must have at least one zero eigenvalue. In formation control
problems where Ap represents the system matrix of a vehicle model, this condition will be
met because the vehicles display integral action.

While we refer to a system in the form of (6.6) as decomposable, we will call a system in
the particular block diagonal form of (6.9) as a decomposed system.

Note that the transformation of the formation control loop (6.1) into the form of (6.9)
involves not only a similarity transformation, but also the signal transformation (6.8). The
reason for this is that we need not only to transform Ap into block diagonal form, but
also Br and Cr in order to completely decouple the system into its subsystems. Whereas
this signal transformation has no effect on stability, it has an effect on the performance of
the system.

Performance of Formation Control Loops

We consider the performance of a formation control loop in terms of the H.,-norm of the
closed-loop map from an external input to a performance output. Referring to Fig. 6.2, we
assume a performance channel w — 2z, where w can be thought of as formation reference
input r, and z as a combination of filtered formation error and control effort.

The motivation for the diagonalising transformation that brings the system into the form
(6.9) is that we want to solve a synthesis problem that has the size of a single agent, and
to use the resulting controller for each member of the group of N agents, while being able
to obtain guarantees on stability and performance of the whole group. As discussed above,
this is possible for stability, since Ay and Ap are similar. The situation is different when
it comes to performance, as we shall now see.

Let T'(s) denote the closed-loop transfer function from r to z in the system shown in
Fig. 6.2, and T'(s) that from 7 to Z in the transformed system that has the form of (6.9)
but with the physical output y replaced by the performance output z. When we tune a
controller for performance, we do it by tuning a single subsystem TZ(S) of T (s), knowing
that these subsystems are identical up to scaling by the eigenvalues of L. Since T'(s) is a
parallel combination of all its subsystems Ti(s), it can be represented as in Fig. 6.3.

The question of interest is now: what is the relationship between the performance ||T(s)||s
of the fictitious, transformed system we are working on, and the performance ||T(s)||s of
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,,,,,,,,,,,,,,,,,

Figure 6.3: Transformed system

the actual formation loop? First we note that we have
IT(5) |0 = max[|Ti(s)]|oc,

which we can use to tune a controller for good robust performance by minimising ||7;(s)||so.
while treating \; as uncertainty. Next, the relationship between T'(s) and T'(s) is determined
by the signal transformation (6.8), and shown in Fig. 6.4. Using the interpretation of the
H,-norm as the induced Ls-norm, it is then straightforward to show that

a(Z),+ 0(Z) +

=T (8)|loo < |T(8)]|oe < —==|T(8)]00- 6.13

6(Z)H (oo < NT(s)lo0 < Q<Z)H ()l (6.13)
These bounds were proposed in [25]. Note that if L is symmetric, we can choose Z to
be orthogonal, so its condition number is 1 and we have equality in (6.13). If L is not
symmetric but diagonalisable, one can scale Z to obtain upper and lower bounds as tight
as possible, this is explored in [26].

Figure 6.4: Signal transformation on formation control loop 7'(s)

6.2 Non-Holonomic Agents

To motivate the use of LPV models for agents in formation control problems, we will
introduce a simple model of an actuated rolling disk, that can be used as a simplified
model of wheeled mobile robots. Consider the disk shown in Fig. 6.5, which is rolling
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without slipping in a horizontal plane. Here we work with the simplifying assumption
that the disk will not tilt away from the vertical. Its position in the plane is given by the
coordinates z(t) and y(t), and its orientation by the angle ¢(t).

Figure 6.5: Rolling disk

This system is said to be subject to non-holonomic constraints, because it is restricted to
move in the direction of its orientation. More generally, a mobile robot system is called
non-holonomic if the number of controllable degrees of freedom is smaller than the number
of total degrees of freedom. The constraint on the disk shown in Fig. 6.5 is typical for
non-holonomic constraints on wheeled vehicles or robots: even though they have three
total degrees of freedom (position in two axes and orientation), the two controllable degrees
of freedom are acceleration (or braking) and steering.

A state space model of the disk is

(t) = w(t)coso(t) (6.14)
y(t) = o(t)sino(t) (6.15)
o(t) = w(t) (6.16)

with three state variables x, z and ¢ and two control inputs v and w. The state variables
are assumed to be measured and available for feedback.

The non-holonomic constraint on the motion of this disk (no slipping) can be represented
as

(t) sin @(t) — g (t) cos ¢(t) = 0,

(t)
0

or

Nl

= tan ¢(t).

8

~—
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In order to construct an LPV model of this system, it is convenient to first apply a
coordinate transformation

cosp(t) sing(t) 0
T(t)= | —sing(t) coso(t) 0 |, (6.17)
0 0 1
which leads to the model
(t) = v(t) +w(t)jt) (6.18)
y(t) = —w(t)a(t) (6.19)
g'b = w(t). (6.20)

This coordinate transformation aligns the Z-direction with the orientation of the disk. An
LPV model is then obtained by writing

T 0 w O T 10
gl=|-wool|lag|+]oo0 M] (6.21)
¢ 0 0 0]]|¢ 01
which has the form
ip(t) = A(w(t))zp(t) + Bu(t). (6.22)

Note that this model is affine in the scheduling parameter w and has a constant input
matrix B.

6.3 Robust State Feedback Synthesis Using the Full
Block S-Procedure

In this section we present results that were proposed in [10] and can be used for analysis
and synthesis of LPV gain-scheduling controllers. This approach is based on the full-block
S-procedure; its application to decomposable LTI systems was first reported in [27] for the
case of state feedback. An extension to decomposable LPV systems and output feedback
was presented in |28]. The approach assumes that the LPV model is represented in linear
fractional form.

A Brief Review of LTI Systems

Before presenting a result that can be used for the synthesis of scheduled state feedback
control, we briefly review some related facts about LTI systems. Recall that a system

x(t) = Ax(t)
is stable if and only if there exists a symmetric, positive definite matrix X that satisfies

ATX + XA <0. (6.23)
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(Here we use X to denote the Lyapunov matrix since P is already used for agent models.)
Note that an equivalent formulation of condition (6.23) is

[IAT][)O(‘E)(][IQ]<O. (6.24)

Figure 6.6: Dynamic system

As for performance, consider the system shown in Fig. 6.6. Assume that the system is
linear time-invariant and stable, and has a state space realisation (A, B, C, D). Recall that
| T|loo < v for a given v > 0 if

M<’y Yw # 0,

where we assume x(0) = 0. Note that an equivalent formulation is
< o | =yl 0 w
a5l

Using (6.24) and (6.25), the following necessary and sufficient condition for stability and
performance can be derived in a way similar to the the derivation of the bounded real
lemma: T is stable and |7 < 7 if and only if there exists a symmetric X > 0 that
satisfies

dt < 0 Vw0, (6.25)

0 X1 0 0 I 0
I AT 0 CT]| X 010 0 A B
lo BT I DT] R R A (6.26)

It is straightforward to check that this inequality is equivalent to

ATX +XA XB C7T
BTX  —~I DT|<o.
C D —~I

Systems with Time-Varying Uncertainty

Next we assume that the system shown in Fig. 6.6 is linear but depends on uncertain
time-varying parameters, which are collected in a matrix A(¢), and that A(t) € AVt > 0
for some compact set of admissible values A. Let XA denote this uncertain, time-varying
system, and let a state space representation be given by

. T = A(A)z + B(A)w
Za { z = C(A)z +D(A)w

(6.27)
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If the dependence of the model on the parameters in A is rational, the system can be
represented in LFT form

t = Ar + Bpyp + Byw
Y q = Cixr + Dgp + Dgw and p = Ag, (6.28)
z = Cwx + Dyp + D,w

where ¥ is an LTI system and the uncertainty A enters via the channel p — ¢ in a linear
fractional manner, as shown in Fig. 6.7.

B

w —_— f——-1

z

Figure 6.7: LFT representation of uncertain system »a

Assuming that the LFT representation is well-posed (Definition 4.2), explicit expressions
for the model matrices in (6.27) can be given as

A(A) = A+ By(I — Aqu)_lACq

B(A) = By, + B,(I — AD,) 'ADg,

C(A) =C, + D, (I — AD,,) ' AC,

D(A) =D,y + D.,(I — ADy,) ' ADg,. (6.29)

Now applying condition (6.26) to the uncertain system XA yields the following result.

Theorem 6.1  Assume that the interconnection (0.28) is well-posed. The system Y is
stable and || XAz, < v if there exists X such that X > 0 and

0 Xi 0 0 I 0
X 01 0 0 A(A) B(A)

|:* i| *b**()*:**_:yj**(]*’ ’**0****1?*’ <0 VAEA (630)
0 01 0 57U C(A) D(A)

Note that necessity is lost. The condition of this theorem is difficult to evaluate, since it
must be checked at infinitely many values of A. The following result, proposed in |10,
facilitates the evaluation.

Theorem 6.2  The system Xa is well-posed, and X > 0 satisfies (6.30) if and only if
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there exist Q = Q1, R = RT and S such that

OXiOO:O o |11 o 0 ]
X 00 01 0 0 A B, B,
,,,,, 0000 A by B
0 0:Q Si 0 0 0 I 0
31
o oistri o 0 |6 ooy D |0 O3
0 010 01— 0 0o 0 I
0 010 01 0 AU ||C D, D,
and
. Q S1[A
A IHST RHI >0 VAeA (6.32)

For given model matrices of the generalised plant (6.28) and frozen A this is an LMI in
the matrix variables X, ), R and S. Note that whereas Theorem 6.1 provides a sufficient
condition for stability and performance of the system XA, the conditions of Theorem 6.2
are equivalent to the condition of Theorem 6.1; using the latter instead of the former does
not incur any additional conservatism. Note also that condition (6.31) involves only the
known LTT system (6.28); the uncertainty now appears in condition (6.32) in a form that
is easier to handle. This is achieved at the expense of introducing the elements of the

e s
el n

as additional decision variables. We refer to (6.31) as the nominal condition and to (6.32)

multiplier matriz

as the multiplier condition. The multiplier condition still needs to be checked at infinitely
many values of A, which can be approximated by checking it on a grid over the admissible
parameter range. Now assume that the admissible parameter range A can be represented
as a polytope

A= Co{A, Ay ..., A}, (6.33)
If the left hand side of (6.32) would depend affinely on A, it would be enough to check the
multiplier condition in the vertices A; of the polytope. But the dependence is not affine;
the matrix

W(W,A) = [AT ] [?T ;] lﬂ:ATQA+ATS+STA+R

is quadratic in A. It is nevertheless possible, at the expense of some conservatism, to turn

the multiplier condition into a condition that needs to be checked only at the vertices of
the polytope A: In Exercise 6.6 it is shown that if the extra condition

Q<0 (6.34)
is imposed in addition to (6.32), it follows that

U(W,A;) >0 and (W, A;) >0
= (W, aA;+(1—a)A;) >0 Va: 0<a<1. (6.35)
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A consequence of (6.35) is that if the multiplier condition (6.32) is satisfied at the vertices
A; of the polytope A in (6.33), it is satisfied by all A € A. Note that the extra constraint
(6.34)) is not required for stability and performance of the formation control loop; adding
it to the synthesis conditions is done only to simplify the evaluation of (6.32).

Dual Version of Theorem 6.2

The synthesis of a scheduled state feedback formation control scheme that is presented
in the next section requires a linearising change of variables in order to obtain an LMI

condition. For this, we will need the dual version of Theorem 6.2, which is also taken from
[10].

Theorem 6.3 The system Ya is well-posed, and X > 0 satisfies (6.30) if and only if
there exist Q = QT, R = RT and S such that

0 XiO 01 0 0][-AT —cT —cT
0 0iQ s o 0| -B, -p DI
p qp 2p
- ool r o0 ol o 1 a0 |7F (6.36)
00,70 0, —T 0| | -B —D," —DL,
0 010 01 0 I|| o0 0 1|
and
I
I _A][SQT JiH—AT <0 VAeA (6.37)

6.4 Scheduled State Feedback Formation Control for
LPV Agents

We will now apply the approach presented in the previous section to the design of gain-
scheduled formation control for a group of LPV agents. We consider again a formation
control loop as shown in Fig. 6.2, where we now assume an individual agent model P
to represent an LPV system, and the associated controller K to be an LPV controller
scheduled on the same parameter as the agent. Design objectives are stability and a bound
on the induced Lo-norm across the performance channel w — z, where we assume identical
shaping filters for all agents.

Whereas so far we assumed the Laplacian L to be diagonalisable, we will from now on
assume that
L=1L".

As mentioned at the beginning of this chapter, this will be the case when the underlying
communication graph is undirected and L denotes either the unscaled Laplacian or the
normalised Laplacian.
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Agent Model

To simplify the presentation, here we will assume that all agent states are available for
feedback so that formation control is realised as scheduled state feedback. Moreover, we
assume that the agents can be modelled as

ai(t) = A(0:(1))xi(t) + Buy(t), (6.38)

where

0; € Py, C R is the local scheduling parameter of agent ¢ and Py, denotes a compact set
of admissible values for 6;, i =1,..., N. Let

O(t) = [01(t) O2(t) ... On(t)]" (6.40)

denote the scheduling parameters of individual agents stacked in a column vector. We
assume that

0(t) e Py Wt >0

where Py is a compact set that includes all admissible values of scheduling vectors consistent
with 91 S 7)00.

Assumptions made here on the agent model to simplify the presentation of the following
synthesis results are that B is constant, that agents have only a single scheduling parameter
0;, and that A is affine in #;. Note that this LPV agent model has the same form as the
model (6.22) of the actuated disk introduced in Section 6.2; the results presented in this
section will be used in Exercise 6.7 to design a gain-scheduled formation control law for a
group of wheeled mobile robots that can be represented by such disks.

Scheduled State Feedback
As local formation controllers here we consider LPV state feedback. A general LPV output

feedback controller would take the form

(6.41)

where the local formation error ¢;(t) is formed according to
eilt) = Y (wt) —y;(1)).
Jj€T:

Recall that when considering LTI formation controllers as in (5.13), we assumed Dy = 0

in order to simplify the presentation. In contrast, state feedback can be seen as a special
case of (6.41) with Ax =0, Bx =0, Cx =0 and
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where F' denotes a scheduled state feedback gain matrix. Reflecting the parameter
dependence of the agent model, we choose the dependence of the state feedback gain on
the scheduling parameter also to be affine. The scheduled state feedback control law is
then

ui(t) = F(0:(0) es(t) = (Fo + 0:(£) ) ) es(t), (6.42)

where

ei(t) = > (wi(t) — x;(t)).
JET:
The formation control loop resulting when this control law is applied to a group of N
agents is shown in Fig. 6.8, where we initially assume no formation reference. As before,
x, u, e and 6 denote the states, inputs, formation errors and scheduling parameters of
individual agents stacked together in column vectors.

e — U —
> L = ['(0) = P(9) >

Figure 6.8: Formation state feedback control loop

Define the matrix

ot) = c RVXN,
On (1)

where we assume that

@(t) eEPe VE>O0

and Pg is the compact set of diagonal N x N matrices that corresponds to the admissible
parameter set Py. Then a state space realisation of the aggregated agent model P(6)
obtained from (6.38) is

i = (Ao + @A)z + Bu, (6.43)

where
0.1,
@(n) =0®I, =
On1n

and n denotes the order of the agent models. Substituting the aggregated control law

U= (ﬁb + G(m)ﬁl)L(n)x (6.44)



6.4. Scheduled State Feedback Formation Control for LPV Agents 127

obtained from (6.42), where m denotes the dimension of u; and O, is defined in the
same way as O ,), we obtain the closed-loop equation

T = (1210 -+ @(n)fL)x —+ éﬁbL(n)x + B@(m)ﬁlL(n)x
= (Ao + L ® BFy)z + (O A1 + BOmL & Fy ). (6.45)

The first term on the right hand side of (6.45) represents the parameter-independent part
of the closed-loop dynamics, and the second term the parameter-dependent one. Note
that the mixed product rule has been used to change the order of factors in terms that
involve the Laplacian L. To construct an LFT representation of this model, we rewrite
the closed-loop formation (6.45) as

a ~ [ ©m A
i = (Ag+ L ® BFy)z + [Inn B]l () O ] [L@)lﬂ ]33 (6.46)

An LFT representation

T = A:L‘—i—épp
q = Cu (6.47)

of the closed-loop formation, with LF'T channel p — ¢ and feedback through
p =64,

could be obtained from (6.46) by choosing
L _ . _ A,
A=Ay + L® BF,, B, = [Inn, B], Cy=

and

Note that A is decomposable w.r.t. L, whereas the matrices Bp and C’q are not decomposable
because of their 1 x 2 and 2 x 1 block structure, respectively. For this reason the matrices
Bp and C_'q in the LFT representation and also © are not chosen as above; instead, a
permutation is introduced similar to the one discussed in Example 5.2 and in Section 6.1.
To illustrate this, assume again N = 3 and

i1 ha O
L= ly ln lxs
0 32 Is3

The term

~ [ O, A
[Inm B]l ") O ] l Lo F ] (6.48)
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in (6.46) then reads

0.1,
0-1,

To turn the left and right factors into matrices that are decomposable w.r.t.

01,

a permutation matrix II € RN +m)xN(n+m) gych that

Ay
Lok

IT

and

A

]=IN®[/‘51]+L®[£1]

[Inn Blll=1Iy® I, B

Ay
Ay
L A
IhFy Lefy 0
lon By looFy  logEy
0 lsoFy I33F) |
L, we define

Using the fact that if II is a permutation matrix we have II7II = 1117 = I, we can rewrite

(6.48) as

. o) A

Iny, BITIT | 70 7 '
Hxn B l @m] L® k

[ 0.1, |

|
I B SR I P Ol 1
,,,,, TfnfféT——fff :92_[71
B PSR

| |

|

|

Al ; |
InFo R
| Al :
| |
lor By I By sy

| Al

The left factor is now repeated block diagonal, and the right factor is decomposable w.r.t.
L. Thus, the matrices B, and C, in (6.47) are chosen as

B,=1Iy®|[Il, B,

and the scheduling block © as

(91 In+m
é pu—

while

C,=Iy®

A
0

= @(n+m)a

GN[ner

A=A, +L® BF,

is taken as before.

|+20]

0

A
(6.50)
(6.51)
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Generalised Plant

In the formation state feedback loop shown in Fig. 6.8 that was considered so far, we
assumed for simplicity that the formation reference input r is zero. To formulate a synthesis
problem that includes performance specifications, we now introduce a performance channel
w — z into the LFT representation (6.47) and define the generalised plant

i = Az + Bpp + Byw
~ O
2z = C,o+ D,,w (6.52)

with feedback p = Og, see Fig. 6.9, subject to

O(t) e P Yt >0,

where Pg represents the compact set of admissible diagonal matrices with the structure of
O that satisfy § € Py. The feedback block © and the model matrices A, Bp and C_'q are
defined in (6.50), (6.51) and (6.49), respectively. The matrices B,, C, and D.,, can be
used to represent disturbance and performance specifications. We will assume that these
specifications are identical for all agents: if they are decoupled the corresponding matrices
will be repeated block diagonal, whereas in case of interaction between agents there will
be non-zero off-diagonal terms corresponding to non-zero entries in the Laplacian of the
communication graph. Note that in either case all model matrices are decomposable w.r.t.
the Laplacian of the communication graph, and so is the generalised plant (6.52). A typical
situation would be to have repeated block diagonal matrices B,, and D.,,, and couplings in

C,=Cl+LecCe

that represent weights on the formation errors in the performance channel.

O |-
p > A | Bp Bw q
Cgl 00
w . CZ 0 DZU) T—

Figure 6.9: Generalised plant model

Scheduled State Feedback Formation Control Problem

We can now formulate the formation control problem we want to solve: find a scheduled
state feedback law
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for agents i = 1,2,..., N, that stabilises the generalised plant (6.52) and achieves an
induced Lo-norm of less than . Recall that we assume undirected communication, i.e. L
is symmetric; this implies that the performance bound (6.13) on the formation control
loop can be made tight.

O (=
]3 > A | BI) BU} q
Cq| O 0
W ————» C.| 0 Dy E——

Figure 6.10: Generalised plant in decomposed form, with transformed input and output
signals

For symmetric L, there exists a nonsingular Z € R¥*¥ such that
Z7'L7Z = A, A diagonal.

Since the generalised plant (6.52) is decomposable, we can use Lemma 6.1 to bring it into
the decomposed form of (6.9). This is illustrated in Fig. 6.10, where all model matrices
are in block diagonal form and differ only in an affine parameter that represents a different
eigenvalue of L for each block. Note however that the signals p, w, ¢ and 2z have also
undergone a transformation. For LTI agents we saw in the previous chapter that this signal
transformation has no effect on closed-loop stability and (under undirected communication)
no effect on performance either. The situation is however different for LPV agents; to
illustrate this in Fig. 6.11 the decomposed generalised plant is shown in terms of the
original plant and the block-diagonalising transformation matrices.

q O | D
i © |

—1

Z(nq) Z(nq)

N A|B, B, 1,
~ C(I 0 0 ~
w w 0 D z 1 z

» Z(m) - Cz 0 Zw - Z(l) »

Figure 6.11: Generalised plant with transformation matrices, n, = n +m

Whereas the transformation of signals w and z in the performance channel can be handled
as in the LTT case, the transformation of p and ¢ in the LFT channel may actually alter the
plant dynamics. At this point we need to distinguish between two alternative assumptions
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that can be made about the scheduling policy of the LPV agents, referred to as either
homogeneous or as heterogeneous scheduling, respectively:

e Homogeneous scheduling means that the scheduling parameters 6; take the same
values for all agents, i.e.

0:i(t) = 0;(t) = 0o(t), 1<i,j<N, Vt>0

e Heterogeneous scheduling means that

0i(t) # 0;(1)

is allowed.

In practical terms, homogeneous scheduling might occur when considering e.g. a group
of unmanned aerial vehicles (UAV), where altitude and speed are taken as scheduling
parameters. Assuming that the UAVs are flying in formation, it is reasonable to assume
that altitude and speed take the same values for all agents. In contrast, when considering
a group of wheeled mobile robots that are modelled as LPV agents with quasi-LPV models
similar to (6.22), the scheduling parameter w; that represents the angular velocity of agent
1 can take different values for each agent.

When scheduling of agents is homogeneous, the LFT feedback block © in (6.50) can be
written as

é =0® In+m = HOIN(n—f—m)

(recall that here we assume the agents are scheduled on a scalar parameter ; € R). It
then immediately follows that

Z(ny)© = OZn,) = 00Z(n,),

so that the effect of the signal transformation in the LFT channel in Fig. 6.11]is eliminated.
Thus, when scheduling is homogeneous, the block diagonalising approach that was presented
in the previous chapter for LTI agents can be applied to groups of LPV agents as well.

In contrast, when scheduling is heterogeneous, as in the case of the nonholomic agents
introduced in Section 6.2, we have in general

Zng)© # OZny)-

So in the practically important case of heterogeneous scheduling of agents, the block
diagonalising technique of the previous chapter cannot be applied, and we need to take a
different approach to the synthesis of a scheduled formation control scheme.

Applying the Full Block S-Procedure
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Since the reduction of the synthesis problem to the size of a single agent cannot be achieved
by decomposing the overall multi-agent system into modal subsystems as in (6.12), we
will apply the conditions of Theorem 6.3 first to the overall closed-loop formation of N
agents, represented as generalised plant (6.52), and then decompose these conditions into
N small conditions, each the size of a single agent.

The following result is obtained by replacing in (6.36) and (6.37) the uncertain system
(6.28) by the closed-loop formation (6.52) and the uncertainty block A by ©.

Theorem 6.4  The closed-loop formation (6.52) is well-posed, stable and has an Lo-gain
less than or equal to v if there exist X >0, Q = Q", R = R" and S such that

0 X0 0 0 0 —AT -cI -CT
X 0,0 0, 0 0 Ing 0 0
,,,,, L I R LA
001 Q S 0 0 ~BI 0 0
A 54
e o 0ism Bl o 0 0 Iya, o |70 (659
,,,,, pon A 0 VY e, 0
0 010 0=y, 0 -BT 0 -DT,
i 0 01 0 01 0 Ian L 0 0 INTLZ i
and
1] Q S IN(ntm) =
IN(nim) —@]l ot pl|| er | <0 veee. (6.55)

Note that the model matrices (f_l, Bp, B, C_'q, C_’Z) which appear in the nominal condition
can be of huge size when the number of agents NV is large, and so are the decision matrix
variables; we have

X* c IRNnXNn7 Q’R’ Sv c RN(n+m)><N(n+m).

This would even for moderately large N render impractical any attempt to turn the above
conditions into LMIs that can be solved for the controller variables. In order to break the
problem up into smaller subproblems, rewrite the nominal condition (6.54) as

MTUM >0,
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and consider the transformation of the right factor M

-AT ¢y
Lo 0 0
T
-BI' 0 0 _
_nT 0 _DT
0 I
M
__AT AT AT
_Zf1 | ; 1 ¢ ?
(n) o I 0 0 .
-1 e — e ——— - - =
***** Zo! || =BT 0 0 L
SR 0 I 0 (na)
S T Rt I - . — Z(nz)
D -BT 0 -DI, ~
- ‘ ~| 0 0 I 2
zt - _
M

All model matrices of the generalised plant that appear in M are decomposable w.r.t. L,
where again we assume that

777 = A,

with A diagonal. As a consequence, all matrix blocks in
M= Z7'MZ,

are in decomposed form. In fact, we have by assumption

B, = Bw = BUM Bp = Bp = Bpu D, = Dzw = ﬁzwu

because these matrices are not involved in communication between agents. Moreover, the
matrices

imieronn one[M]aas[ L] a-errea
1

are in decomposed form.

This alone would not help to break the synthesis problem up into small subproblems; what
is required is a decomposition of the two matrix inequality conditions (6.54) and (6.55).

This can be achieved by imposing a structure on the matrix decision variables: we assume
that

P=P, Q=0Q, R=R, S=25, (6.56)
where as before the " notation means the Kronecker product of Iy with the matrix under
the hat, i.e. all decision matrix variables are constrained to have repeated block diagonal
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structure, such as

o
I

etc.
P

Now replacing the matrix factor M in (6.54) by the transformed factor M yields

0 X0 01 0 0
X 0,0 0, 0 0
,,,,, 00 00
pm 2 00O Z0 0 0|, -
LM 2y oiar Bl oo o |8 MEB>0
MT 77777 t-—-—-- - - == = — — - M
0 0'0 0;—7—21 0
0 010 01 0 I
7
or
NITUN = 2N (27) ez Mz, > 0. (6.57)

In general this condition is not equivalent to (6.54). Since we assumed L to be symmetric,
however, we can choose Z to be orthogonal so that we have

z=72" = (z) =z

Moreover, it follows from Lemma 5.2 and the structural constraints (6.56) that W2, =
Z "W thus (6.57) is equivalent to

M™M= ZI M2, Z2;" O M Zy = ZFMTYM Z, > 0.
This however is simply a congruence transformation of (6.54). We have thus shown that

matrices X > 0, Q = QT, R = RT and S satisfy the conditions of Theorem 6.4 if and only
if they satisfy

0 X0 0/ 0 0 —-AT  -CT (T
£ 0:0 0/ 0 0 Ine 0 0
,,,,, L
0 0:Q S 0 0 ~-BI' 0 0
A >0 (6,58
I I A Y 0 0 InNggm) O (6.58)
,,,,, oo B 0 0 Y ey O
0 010 0=y, 0 ~BT 0  -DT
0 010 O 0 Ing, || O 0 Inm,

and

<0 VO €O (6.59)
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Since all matrix blocks appearing in the "big” conditions (6.59) and (6.58) are in decomposed
form, these conditions decompose into "small” conditions

0 X1 0 01 0 0 —AT -cL -Cf
X 0,0 0, 0 0 I, 0 0
,,,,, S .
0 0@ S 0 0 —BZ 0 0
0 =1,2 N
L 1o 0lsm R 0 0 0 I, 0 |~ ‘Thorw
,,,,, U S R N DR e
0 00 O:—fy_QInw 0 -BT 0 -DI,
| 0 00 0 0 L. ] O 0 I,
(6.60)
and
Q S Inim
where
A
Ai:AO+)\iBuF07 qu: ! y CZZ:CS‘F)\,LC;
A Fy
and \;, ¢ =1,..., N, denote the eigenvalues of L. Since the matrices B,, B,, and D, are

not involved in interaction between agents, they are not scaled by eigenvalues of L.

We can summarise the above discussion in the following result.

Theorem 6.5 The closed-loop formation (6.52) is well-posed, stable and has an Lo-gain
less than or equal to 7y if there exist X >0, Q = QT, R = RT and S that satisfy (6.60)
forall \,(L), i=1,...,N, and (6.61) for all 6y € Py,.

Note that the conditions (6.60) and (6.61) have the size of a single agent, and are linear in
the variables. These analysis conditions can be turned into LMI synthesis conditions for
finding the gains Fyy and F} for a scheduled state feedback gain

by defining new variables

Yo = FoX and Y, =X






Exercises — Chapter 6

Problem 6.1 (Formation Stability for Arbitrary Topologies)

Learning Goals

e Understand the step from the global formation control problem to a single agent
problem

Task Description According to [20], a formation of N identical agents P(s) =

Ap | B
[C—P‘TP] equipped with local controllers K(s) is stable if and only if K(s) simul-
P

taneously stabilizes the systems

for all eigenvalues \; of the Laplacian of the communication topology.
a) Assume the Laplacian L not to be diagonalizable. Derive the transformed closed

loop state equation in terms of an upper triangular matrix U = T~!'LT at the place
of L using the Schur transformation 7. Assume r = 0.

b) From the Schur-transformed state equation, prove that the above stability criterion
holds.
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Problem 6.2 (Stability of a Multi-Vehicle Formation)

Learning Goals

o [llustrate the stability conditions for a formation control problem

Task Description Consider a multi-agent system (MAS) consisting of 5 identical
vehicles moving along a line. The dynamics can be described by the model

P(s) : AP:B _bl/m], Bp = :1] Cp=[1 0], Dp=0 (663

with the parameters m = 10 and b = 0.5. The agents are connected by the communication
topology shown in Fig. 6.12. To achieve a formation movement, negative feedback control
is used with a decentralized formation controller

0.05
K(s) =202

_ 6.64
s+24 ( )

Figure 6.12: Topology of the multi-agent system

a) Using the given information about a single agent, show that the given multi-agent
system is stable.

b)  Generate the closed loop system of the whole formation using MATLAB, compute
the poles of this system and confirm the stability.

c¢) i) Draw the Nyquist plot of the forward loop P(s)K(s).
ii) In which area are the inverses of the non-zero eigenvalues of the Laplacian
allowed to be located for the closed loop MAS to be stable?
Hint: Apply the Nyquist stability criterion to \;P(s)K(s).
iii)  All eigenvalues \; of the normalized Laplacian lie within a unit disk shifted by 1
(called Perron disk). The boundary of this disk is described by A = 1 —¢e7®. Use

this property to determine the region where the inverses of \; can be located.
Is there any topology which drives the given MAS unstable?

d) Simulate the response of the closed-loop multi-agent system to step references

T
ro= [1 2 3 4 5} o(t) for zero initial values.
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Problem 6.3 (Design of a Formation Controller)

Learning Goals

o Apply the knowledge to a realistic problem

€1 ] N
i , A
r ¢ [&Z e Y K(s) - P(s) P> Y
SR [
- &, |
Information 2 T
Exchange  |€N_ YN

Figure 6.13: Formation control scheme

Task Description As an example of agents in a multi-agent system, quad-rotor heli-
copters (or short quadrocopters) are used for research at the Institute of Control Systems.
A simple linearized model of a quadrocopter is presented in [29], see Appendix G for
details.

Now consider the problem to achieve a formation flight of 4 such quadrocopters. We can
assume that each quadrocopter is equipped with the necessary sensors to measure all
the states of the model from [29]. As the quadrocopter is an unstable plant, additional
local state feedback should be used here, as shown in Fig. 6.13. Assume that each agent
transmits its position data via wireless communication links.

a) Formulate a stability condition for the quadrocopter formation based on the model
of a single quadrocopter and a local controller.

b)  Use the property that all eigenvalues of the adjacency matrix lie in the unit disk and
modify the quadrocopter model to consider the topology as LFT form uncertainty.

c) i) Draw a generalized plant to design a robust H,, formation controller guar-
anteeing stability for arbitrary communication topologies. For performance
measurement choose suitable shaping filters Ws(s) and Wg(s) to shape the
formation control error e and the control input u.

ii) Use the generalized plant in MATLAB to synthesize the H,, formation control-
ler.
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d)  Use Simulink to simulate the response of the quadrocopter swarm to a step reference

T
input in « direction r, = {2 4 6 8} o(t), assuming zero initial values. You may
try different communication topologies.
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Problem 6.4 (Information Flow Filter for Formation Control)

Learning Goals

Transfer the knowledge to a different formation control architecture

Task Description Consider the multi-agent system shown in Fig. 6.14, which is

proposed in [30] and is a simplification of a formation control scheme from [20]. The block

R(s) consists of a feedback loop around a system F'(s), which is called information flow

filter.

—’CI):—’ L) —‘CI)—' R(2) — k) P 7

Figure 6.14: Formation control scheme with information flow filter

i) Using R(s) = (Inq + F(s)) " F(s), derive the transfer function from r to p.

ii) Derive the transfer function from p to y.

Show that the transfer functions obtained in a) correspond to the control architecture
shown in Fig. 6.15. How can the signal p be interpreted physically?

Hint: Use the general formula for the transfer function of a feedback loop

Consider the communication topology as unknown. Transform the information flow

loop of Fig. 6.15 into a local LFT system considering the unknown topology as
uncertainty. Assume the signal communicated by each agent to be scalar (i. e.

g=1).

Derive a generalized plant for synthesis of an information flow filter which stabilizes
the loop for every topology.

Use Matlab to synthesize such an information flow filter and test the information
flow loop in simulation.

i_ Lig) —> F(z) _7_’?__' K(Z) _>}3<z) _TQ'>

Figure 6.15: Separated formation control scheme
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Problem 6.5 (Disturbance Rejection in Formation Control)

Learning Goals

¢ Understand the behavior of the information flow filter scheme and its differences to
the cooperative architecture

Task Description Recall the multi-agent system from Problem 6.2. Consider the goal

T
to achieve and maintain the formation y; = {1 2 3 4 5} and assume that agent 1 is
affected by an output disturbance d, = 20(t — t4),tqs = 10s.

a)  Use the formation controller given in Problem 6.2 and simulate the system response
to the disturbance acting on agent 1.

b) Simulate the system response to the same scenario using the information flow filter
scheme shown in Fig. 6.15 with

s+8.5 1+ 60s

F(2) = d K(2) =015—25
)= toie s to01 ™ (2) 1+ 0.6s

(6.65)

Compare the result to that of (a). What difference do you observe?

¢) Explain the difference between the two disturbance responses by means of the control
schemes.

d) Modify the multi-agent system by adding an agent with fixed position, which
transmits data to agent 1 and 2, but does not receive any. Repeat the simulation
with the modified system. What difference do you observe? Which function does
the fixed-position agent have?
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Problem 6.6 (Scheduled State Feedback Synthesis)

Learning Goals

e Apply the combined knowledge about LPV-control and decomposable system to
synthesize a decomposable scheduled state feedback controller.

Task Description In the following a system of five quasi-LPV agents is considered.
Each agent, whose dynamic given by

~1 —1:1.0:11 0 k k E_ |"1 k _ ok k
#1 o =110 110 1] " A1B, B | b l or| 4 =90
- l=----=-- - —— == == - qk = |-+ -2 pk , . 2
q* L 010010 0|, Cqt 01 0] 747 6y =sinaf,

0 1100100 1k = sinad,

is a two-dimensional stable systems with poles at —1, whose locations are perturbed by
LPV parameters. Since these depends on the system states, we call it a quasi LPV system.

=

The vector x x1, To]" is the state vector of the k-th agent.

a) How does the state matrices fl, ép, Bu, C'q and O look like if the state equation for
a group of five agents is

i A B, B]|" o
= |-~ +-=F - - =
q G100 pl, P q
: u
T
with z = [:plT, e ,:1:5T} and the other signals are composed respectively.

b) Each single agent is to controlled via scheduled state feedback u* = F*e* with the
gain F* = FO + ©FF!. Calculate the closed-loop system

p=06q

1
2, R
Il
Il
S
S_L_.
|
g:gul
-
|
.E \‘: |
—_
ISENESTINES
|
|

of the feedback loop shown in Figure 6.16.

¢) In the following weighting filters W and W, are to include to shape the sensitivity
and the controller sensitivity.

i) Include the weighting filters in the feedback loop in Figure 6.16, when the
performance outputs are zf = W,le, and z§ = Wi louy.
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ii)

i)

Figure 6.16: Closed-loop of distributed state feedback control

The filters are chosen as

B s24+2s+1
T 2402+001°

Why does that choice makes sense if good tracking should be achieved?

100s + 100

d W, =
an kT TS 1000

2.

Calculate the state space equations of the filters

o] _ Ao B [o8] o [ _ [Ax o Bi] [k
21_CS]DS ek ZQ_C]CID]C u®

and derive the state equations of the generalized plant for the group of five

agents as
_:'p_ -
i ) ) ) T
® A B, By T
T e = = - _
—_k— = Cq\qu\Dw |, p=06q.
29,799 Taw | | TR
7Q7 Cz ! qu ! Dzw p
21 ' ' - -
w
_z2_ ) )

d) Apply the full-block S-procedure to get conditions for stability and an induced
Lo-gain less than v of the closed loop generalized system .

e) The conditions derived in the previous task depends on the number of subsystems
and can get thus very large for a large number of subsystems. Lets consider the
main condition first, which is of the form MTUM < 0.

i)

ii)

i)

Repeat from the lecture, what transformation Z; M Z, = M built by (S ® I)’s
is necessary, such M contains only block diagonal matrices?

Under what conditions are the transformation matrices Z; and Z5 orthogonal?

We want to block diagonalize both outer factor and write
Zo MY 20V Z M Z, < 0.
Under the conditions derived in the previous exercise we have

ZiMT 2wz M 7, < 0.
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What structural constraints need to be applied on the Lyapunov matrix and
the multiplier matrices such that this is equivalent to ZZ MTWM Z, < 0?7 Why
does that implies M7 WM < 0 and vice versa.

iv)  Thus MTWUM < 0 is equivalent to MTWUM < 0. What is the advantage of that
form?

With the assumptions of the previous task we have a stability and performance
condition for the group of agents, which is only of the dimension of one agent. But
nevertheless this condition is not linear, because there are products of the controller
matrices Fy and F; and the Lyapunov matrix P and the controller matrices Fj
and F; and the multiplier matrices ), R and S. To get rid of the first products,
apply a congruence transformation as known from [31] for state feedback. The
resulting condition should only depend on the new variables Y = P71, Dy = F,)Y
and D; = 1Y and the unchanged multiplier matrices.

There are still products of the multiplier matrices with Y and D; left. Use the
Dualization Lemma (C.1/ to eliminate those.

The multiplier condition

N

has to be solved infinitely many times, because it should be valid for all § € Ps. It is

A

7 >0, VAe A

desired, that solving it in all vertices of the convex hull of Ps, guarantees that the
multiplier condition is fulfilled for all 6 € Ps. Why is this implied by the condition
Q<07

i)  For simplifications assume A to be the scalar § and

-
* q s
M
Why does ¢ < 0 and
-
* q s
i

ii)  What is the dual of the multiplier condition and what is the respective condition
to @ < 0 for the dual?

ol >0, Ve (6.66)

J

1 > O, V(S S {5min; 5max}

implies (6.66)?
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Problem 6.7 (LPV State Feedback Formation Control for Non-Holonomic Agents)

Learning Goals

e Apply LPV synthesis tools to a formation control problem for a group of LPV mobile
vehicles under time-varying undirected topologies.

Task Description A set of LPV non-holonomic agents must achieve a desired aligned
geometric formation under time-varying undirected communication topologies (Figure
6.17). For this purpose a distributed LPV state feedback design is considered. To proceed
with this exercise, the student must be familiar with Exercise 6.6.

¥
@

@9
N
S
N
LN
M

®

Figure 6.17: Set of mobile agents under possibly time-varying undirected communication.

;\/
&

a) Consider the rolling disk detailed in Section 6.2. The same disk is used here, but
now a handle is included, as shown in Fig. 6.18.

(s Ya)

Figure 6.18: Rolling disk with handle.

Obtain the non-linear equations that capture the dynamics of the point (x4, y4).
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Apply a change of coordinates by using the transformation 7' (Eq. 6.17) and find a
state space model.

A set of N agents is considered, individual agents are labeled with k. Based on the
transformed system, derive an LPV-LFT representation (Eq. 6.67) where, ©F = 0%,
0% € [—1,1] and 0% = w*/5. All states are available for feedback.

" A By B, | | 2"
p* | = |Co Dei Deu| | ¢" ¢" = erp* (6.67)
y* Cy Dyo Dy, | | u*

What is the benefit of the state transformation 77
What is the benefit of employing a handle? For this exercise d = 0.3 will be used.

Parameters are collected accordingly to:

O = diag(e'...0%)
0=1[0"... 0"

b)  Consider the closed loop system depicted in Figure 6.19, which contains N subsystems.
Each subsystem contains an LPV plant model P*(6%), a transformation matrix T
and an associated LPV state feedback F*(6%). All are collected according to:

(0) =In ® Fy + O(Iy ® F1)
(0) = diag(P'(6°) ... PN (M)
T = diag(T*...TV)
Ws = Iy ® Ws
Wis = Iy ® Wis

F
P

One can see that all systems are equal, in the sense that individual agents differ only
from each other on how are they scheduled (heterogeneously scheduled).

FVVKS
TF O Lo | T | F(0) 4| P(6) 71 g

Figure 6.19: Multi-Agent closed loop LPV system.

Notice that in the closed-loop system in Figure |6.19 the states are transformed back
to the coordinate system (x,y), then they are used for feedback purposes. After they
are shared through L, they are transformed back to the coordinate system (X,¥).
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Exercises

Why is this necessary? How can one guarantee that performance and stability will
be valid without explicitly introduce 7" and 7'~! into the generalized plant?

One can also notice that all systems are decoupled in the sense that they only share
their state information through L. How can a physical communication be avoided
and keeping the same interconnection among agents? Hint: Think of different types
of sensors that can be used.

An S/KS framework is used to weight the performance error and the control effort.
In Exercise 6.6, an LPV-LF'T representation of the same scheme proposed here is
obtained. There, the matrix inequalities in Eq. |6.70 were proposed to synthesize a
state feedback controller as the one proposed here.

(01 i 1 [~A(, Y2, Ys, Do)* =Cy (Y1, D1)" —C.(Ya, Ya)" ]
1o S N I L ] S
SRS -B; 0 -Di,
W LSTRL 7777777777777777777777 o 0 >0, YAeA
: :_72[0 _Bw(YlaDO)T _qu(Dl)T _Dzw(}/hDO)T
! ! 0 I_ i 0 0 1
(6.70a)
o S|

[+] {STR | <0 vaea (6.70b)

They are not linear in v and a substitution of variables cannot be suggested since ~y
is the decision variable to optimize.

Transform the matrix inequality in Eq. 6.70a to an LMI by using a Schur complement
argument.

In Exercise 6.6 it was suggested to impose R > 0 to ensure convexity of LMI 6.70b.
What other impositions can be made to guarantee that LMI 6.70b)is satisfied without
evaluation? Why is this conservative?

Choose reasonable weights Wg and Wixgs to penalize the formation error and the
control effort. Include your data into the Matlab file Synthesis\_LPV\_MAS\_SF to
synthesize the state feedback gains Fj and Fj.

Use the Matlab file Main.m to simulate your results for a group of 5 agents. Retune
your weighting filters to ensure that the control input is between the following ranges:

v; € [—15, 15], w; € [—5,5], Vi € {1 . 5}

In the file you can change the number and type of formation references, as well as
the communication topology. Both of them randomly change every 30 and 5 seconds
according to Figure 6.20.
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Figure 6.20: Different geometric references and interconnection topologies.
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Chapter 7

Distributed Control of Spatially
Interconnected Systems

7.1 Distributed and Interconnected Systems

Following the study of multiagent systems, we will in this chapter turn to a different type
of networked control systems. In contrast to the groups of mobile agents considered in
the previous two chapters, which communicate with their neighbours according to a given
communication graph, here we consider large distributed systems with dynamics governed
by partial differential equations. We assume that an array of sensor-actuator pairs - e.g.
micro-electrical mechanical systems (MEMS array) - is attached to the system and that a
distributed control scheme is to be used. Features of such a distributed scheme are that there
is no centralised feedback controller that collects information from all individual sensors,
but that there are local feedback loops that exchange information with neighbouring units.
A spatially distributed array of sensor-actuator pairs induces a spatial discretisation of the
system, and we may view the overall system as a network of individual subsystems with
a regular grid-like interaction structure, referred to as a spatially interconnected system.
As in the treatment of multiagent systems, when designing and analysing distributed
control schemes for such systems it is desirable to solve analysis and synthesis problems
with a complexity that is independent of the number of subsystems - ideally with the
complexity of a single subsystem. This is indeed possible; in [32] a framework is proposed
that provides analysis and synthesis results for spatially interconnected systems with
guaranteed Lo-norm, where the latter is extended to distributed systems.

In this chapter we consider two application examples in order to illustrate the approach:
we will study the problem of controlling the temperature distribution along a thin metal
rod, and in an exercise problem the same approach is applied to the problem of controlling
the vibration of an actuated beam.
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Example: Controlling the Temperature along a Thin Metal Rod

Consider a long and thin metal rod that has evenly spaced pairs of heating elements and
temperature sensors attached to it. Figure 7.1 shows a part of such a rod with three sensor
actuator pairs displayed. We will consider the rod as a dynamic system with an input and
an output signal that each depend on two independent variables: time and space. The
output y(t, o) represents the temperature of the rod at time ¢ and location o, and u(t, o)
stands for an external heat flow into the rod at ¢t and 0. Note that whereas in this example
(and for simplicity in this whole chapter) we consider systems with only a single spatial
dimension o, it is straightforward to extend the approach presented here to distributed
systems with more than one spatial dimension.

w(t,s — 1) wu(t,s)  u(t,s+1)

iii
TTT

y(t,s — 1) y(t, s) 138—1—1

Figure 7.1: Thin metal rod with sensors and actuators

While we will leave time to be represented by the continuous-valued variable ¢, it will be
convenient to spatially discretise the model to account for the evenly spaced sensor-actuator
pairs. Assuming that the distance between neighbouring sensor-actuator pairs is h (the
spatial sampling interval), we introduce an integer-valued space variable s = o/h, i.e.
se{...—2,-1,0,1,2,...}, as shown in Figure [7.1. The rod - equipped with actuators
and sensors - can now be seen as a dynamic system with spatio-temporal input and
output signals, and a dynamic model can be derived from spatially discretising the partial
differential equation governing the distribution of heat - the heat equation. This will be
done in Section [7.1.

Multidimensional Signals and Systems

So far the dynamic systems we studied were lumped-parameter systems where input
and output signals depend only on the single independent variable time. Assuming m
input channels and [ output channels, these signals can be seen as maps v : R, — R™
and y : R — R!, where R, denotes the set of nonnegative real numbers, reflecting the
assumption that all signals z(t) satisfy the assumption z(t) = 0 if ¢ < 0.

Figure 7.2 shows a lumped SISO system that produces a one-dimensional impulse response
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g(t)

y(t, s

t. s

Figure 7.2: Lumped-parameter system
u

Figure 7.3: Spatially interconnected system
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7.1. Distributed and Interconnected Systems
rod in Figure 7.1) can be seen as maps u : R; x Z — R™ and y : Ry x Z — R, see Figure

spatially interconnected system system (with a single spatial dimension such as the heat
7.3, where Z denotes the set of integers.

g(t) when excited by a unit impulse §(¢). In contrast, the input and output signals of a

A — o — O

[w] usweoe|dsip

An experimentally

measured response of the actuated beam introduced in Exercise 7.2/ to a spatiotemporal

impulse (¢ — 1, s — 4) is shown in Figure 7.4

time [s]

0 0.95
Figure 7.4: 2D-impulse input

beam length [m]
t = 0 and location s = 0, will propagate both in time (only in the future direction since

we assume the system to be causal with respect to time) and in space (in two directions,

The effect of a spatiotemporal delta impulse 6(¢, s) applied at the system input at time
indicating that the system is non-causal with respect to space).



156 Distributed Control of Spatially Interconnected Systems

Linear Time- and Space-Invariant Interconnected Systems

In |32] a modeling framework is proposed for spatially interconnected systems that lends
itself to LMI-based analysis and synthesis of distributed control schemes. We will illustrate
this framework with the heat rod model. Figure 7.5 shows again the heat rod and indicates
a spatial discretisation induced by the sensor-actuator array: the rod is partioned into
identical segments such that each segment contains a sensor-actuator pair. The idea is
now to model the overall system as a network of interconnected subsystems, as shown in
Figure 7.6.

Each subsystem has an input and an output signal, which represent the local actuator and
sensor signal, respectively. And since the subsystems interact with their neighbours, we
need also interaction signals between the blocks, which in the case of the heat rod represent
heat flowing along the rod from one segment into another. The following notation is
used: interaction signals flowing into a block are labeled v, while signals lowing out of a
block are labeled w. The direction from left to right is taken as positive, and superscripts
indicate the direction in which a signal is flowing. For example, the interaction signal
coming from the subsystem at location s at time ¢ flowing to the right is labeled w™ (¢, s).
Since this signal is also an input from the left to the subsystem located at s + 1, we have
wt(t,s) =vT(t,s+1).

Important assumptions made in [32] are: the distributed dynamics of the considered
spatially interconnected systems are linear and time invariant; moreover, they are also
assumed to be space invariant, i.e. the dynamic properties are constant over space. Such
systems are referred to as linear time and space-invariant) LTSI systems. Here we assume
that the heat rod used as illustrative example is an LTSI system. When the sensor-actuator
pairs are evenly distributed, this implies that all subsystems in Figure 7.5 are identical.

Distributed Control

The approach proposed in [32] is based on the idea of representing the dynamics of
the overall distributed, spatially discretised system by the state space model of a single
subsystem, and to reduce analysis and controller synthesis problems to the complexity of
such a subsystem. As for feedback control, there are different possible control structures
that vary in terms of information flow and complexity. Figure 7.7 shows three different

u(t,s — 1)  wu(t,s) t,s+1)

eeeeeeee ; e
T T

y(t,s —1) ylt,s) y(t,s+1)

Figure 7.5: Heat rod partitioned into segments
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wh(t,s —1) =vt(t,s) wh(t,s) =v(t,s +1)

T ‘v_(,s—l):w_(,s) ‘v_(,s):w_(,s 1) )
PR Rk Y

Figure 7.6: Model of heat rod as network of interconnected subsytems

structures. In Figure 7.7.a a centralised control structure is indicated where the distributed
system is treated as a lumped-parameter system with a huge number of input and output
channels, controlled by a MIMO controller. Figure 7.7.b shows a decentralised control
structure, where control input is generated by isolated local feedback loops. A control
structure referred to as distributed control is shown in Figure 7.7.c, where local feedback
controllers exchange information with neighbouring controllers, using the same interaction
structure as the plant. Clearly for a large number of sensor-actuator pairs the centralised
control scheme will be too complex both in synthesis and in implementation for practical
applications. The scheme with lowest complexity is the decentralised one; however the
information available to local controllers is rather restricted. The distributed scheme
combines a reasonably low complexity with the benefit of information exchange between
neighbouring units; it is this scheme that will be considered in the following chapter.

State Space Model

Before turning to closed-loop distributed control, we introduce a state space model of a
single subsystem of the open-loop system shown in Figure 7.6. Each subsystem can be
seen as a LTI system with state vector z(t) € R”. We also define the interaction signal

o(t,s) = l vt s) ] L w(ts) = l wr(t,s) ] (7.1)

v (t, 5) w™(t,s)

vectors

where v(t, s) represents interaction input and w(t, s) interaction output at location s. The
dynamic interaction of signals entering the subsystem in Figure 7.6/ at location s can then
be represented as

st ]l el e o
yhs) = [0 G l ffg 3 ]* Du(t, s) (7.3)

Next we introduce the spatial shift operator S, defined by
Su(t,s) = u(t,s+ 1)

and its inverse by
S~ u(t, s) = u(t,s — 1).
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(a) Centralised control structure

(b) Decentralised control structure

< < < < < <

(c) Distributed control structure

Figure 7.7: Control structures

Assuming that all interaction signals have dimension m, i.e. vt v, w™, w™ € R™, we
introduce the block diagonal shift operator

ST 0
Ag = "
° [ 0 S'I, 1
and note that from (7.1) and the interconnection structure in Figure 7.6/ we have
Agv(t,s) =w(t,s).

Moreover, defining the block diagonal operator

A 41, 0
0 Ag |

and the vector

we can rewrite (7.2) as

AE(t,s) =AE&(t, s)+ Bult,s)

y(t,s) =C&(t, s)+Du(t, s), (7.4)
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where

A:[ATT ATS’]’ B:lBT]7 C = [Cr Csl.
Bg

The representation (7.4) can be seen as a hybrid continuous-discrete state space model
with state vector &, where the temporal state variables - the elements of x - are governed
by a vector differential equation, and the spatial state variables - the elements of v - are
governed by a vector difference equation, and both differential operator and shift operator
are combined in the hybrid operator A.

Illustrative Example: Heat Rod

To illustrate the state space model (7.4), we return the to heat rod shown in Figure 7.1
that is equipped with evenly spaced sensor-actuator pairs. Assuming the rod is sufficiently
thin and long, the dynamics of heat conduction are represented by the one-dimensional
heat equation

dy(t,o)  0%y(t,o)
ot 002

where for simplicity the diffusivity constant is taken to be 1. To account for the spatial

+ult, o) (7.5)

discretisation that is induced by the distribution of the sensor-actuator pairs, we replace
the second partial derivative w.r.t. space by a central difference approximation: at location
o = sh we have, neglecting higher order terms

0?y(t, o) _ y(t,sh+h) —2y(t, sh) +y(t, sh — h))
o2 N h? )

o=sh
Substituting this in (7.5) and taking the temperature as the single (temporal) state variable
in a first order state space model, we obtain the state equation

1 2 1
x(t, sh) = ﬁx(t, sh+h)— ﬁx(t, sh) + ﬁx(t, sh — h) + u(t, sh) (7.6)

together with the output equation
y(t, sh) = z(t, sh).

If we now see this difference-differential equation in the context of the block diagram in
Figure 7.6, we can interpret the interaction signals as the temperature values, i.e.

vt (t,sh) = x(t,sh —h), v (t,sh) =x(t,s+h), w(t,sh)=w (t, sh)=x(t,sh).

The state space model (7.4) then takes the form

&(t, sh) -z 5 L x(t, sh) 1
wt(t,sh) | = 1 0 0 vt (t,sh) | + | 0 |u(t,sh) (7.7)
w™(t, sh) 1 0 0 v~ (t, sh) 0
(7.8)
x(t, sh)
y(t,sh) = [1 0 0] | v™(t,sh) |. (7.9)

v~ (t, sh)
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Infinite-Dimensional State Space Model

In order to formulate conditions for stability and performance of spatially interconnected
systems, we will now construct a condensed version of the hybrid state space model (7.4)
(hybrid in the sense that it includes both temporal state variables - the elements of z, and
spatial state variables - the elements of v). Recall that the state equation in (7.4) is a
compact representation of (7.2). We can solve the second row of (7.2), i.e.

Agv(t,s) = Asr x(t,s) + Ags v(t, s) + Bg u(t, s)

for
U(t, S) = (AS — ASS)_lAST x(t, 8) + (AS — Ags)_lBS u(t, 8).

By substituting this in the first row of (7.2) and in (7.3), we eliminate the spatial state
variables v from state and output equation and obtain the model

B(t) = A(As)z(t) + B(As) u(t)
y(t) = C(As) x(t) + D(As) ult), (7.10)

where

[ A(Ds) B(As) ] B [ Arr By ] N [ Ars

C(As) D(Ag) Cr D Cs ] (As — Ags) ™" [Asr Bs]. (7.11)

Note that the model matrices (A, B,C, D) are now matrix-valued operators, i.e. they are
rational functions of the spatial shift operator Ag. Eliminating the explicit representation
of the spatial state variables v leads to a model where each entry of the temporal state
vector z(t) now represents the complete spatial distribution of its values at time t. The
notation z(t) in (7.10) thus stands for an infinite sequence

x(t)={ .., x(t,s—1), z(t,s), x(t,s+1),...} (7.12)

For the case where x is scalar, i.e. x(t,s) € R for frozen ¢t and s, this is illustrated in Fig.
7.1, where the spatial distribution of a signal x(t) at time instant ¢, is shown.

Figure 7.8: Infinite-dimensional temporal signal x at frozen time t = ¢,
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If z(t,s) € R™, then the sequence is vector valued, e.g. if n = 2 we have

l’(t) o zl(tv S — 1) :Ul(ta S) ml(t> s+ 1)
ST mat, s = 1) |7 | mat,s) |7 | ael(t,s 1) |7
The spatial dynamics that are shown explicitly in (7.2) and (7.4) are now represented by

the operators (A, B,C, D), which are acting on the infinite-dimensional signals x(t), y(t)
and u(t). To illustrate this, consider as a simple example n = 2 and

A(As>=[5 0]

0 S-!

In this case the action of A on the infinite-dimensional signal x(t) is given by

A(AS).’L'(t):{...,[xl(t78> ] lxl(t,erl) ] lxl(t,s+2) ] }

xo(t, s — 2) xo(t,s — 1) xa(t, s)

Example: Heat Rod

To illustrate the infinite-dimensional state space model (7.10), we consider again the heat
rod example. Assuming for simplicity A = 1, we obtain from (7.7) and (7.11)

a0 5] - [ LA e
_ [S+51_1_2 (1]]

Thus we have A(Ag) =S+ St —2, B(Ag) =C(Ag) =1 and D(Ag) = 0. Substituting
this in the state space model (7.10) yields

(t) = (S+87 = 2z(t) +ult), y(t) = (),
which is exactly the difference-differential equation (7.6) together with its output equation.

Signal Norms

The infinite-dimensional state space model (7.10) will be used to formulate analysis
conditions on spatially-interconnected systems, that can then be transformed into synthesis
conditions for distributed controllers. Before we outline the derivation of such conditions,
we first extend the signal and system norms that we used when studying lumped-parameter
LTI systems, to spatially-interconnected systems.

Again referring to the infinite sequence (7.12) that represents the spatial distribution of a
signal z(t) at a frozen time instant, illustrated in Fig. [7.1 for ¢ = ¢(, we define a norm on
such sequences as

lz(@)lle, = ( i (2, l)ll2) : (7.13)

l=—0
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where the norm of the terms in the sum on the right hand side is the vector-2-norm. Note
that ¢ is a variable here; (7.13) is the norm of the infinite-dimensional signal z(¢) at a fixed
time t. Obviously this norm is bounded only if the spatial sequence is square summable.
The space of all sequences with finite fo-norm, taking values in R"”, is referred to as the
signal space (3: we define it as

b ={x(t) [ z()lle, < oo}, (7.14)

where again t is a variable frozen at a given value. The signal space {5 can be seen as a
discrete equivalent of the signal space £, that was introduced in Chapter 2 when studying
the performance of LPV systems. But since the f,-norm is only a measure of the ‘size’
of a spatio-temporal signal at a given time ¢, we still need a measure of the ‘size’ of that
signal when taken as a function of space and time. This is provided by the Lo-norm of a

spatio-temporal signal, defined as

Jott. M = ([ el ) (7.15)

Here we use for the norm on spatio-temporal signals the same symbol £ that was used for
the one-dimensional (temporal) signals in Chapter 2. The difference is that whereas in the
latter case the integration is over the vector-2 norm of finite-dimensional signal vectors,
here integration is over the /5 norms of infinite sequences. The space of all spatio-temporal
signals with finite £o norm, taking values in R", is then

5 ={x(t,9) [ l2(t,5)llc, < o0} (7.16)

The Induced £5-Norm

The induced Lo-norm plays a significant role when analysing and synthesising control
loops. For lumped-parameter LTI systems the induced Lso-norm reduces to the H,,-norm,
which can be used to represent performance and / or robustness specifications. Convex
analysis and synthesis conditions in the form of LMIs can be formulated with the help of
the bounded-real lemma. In Chapter 2 this approach was extended to lumped-parameter
LPV systems. Here we will now outline how it can be extended as well to spatially
interconnected systems modelled as in (7.10), based on the definitions in (7.15) and (7.13).
Thus, let M denote the system

@(t) = A(As)x(t) + B(As) d(t)
() = C(Ag)2(t) + D(Ag) d(t), (7.17)

where the input-output channel d — z can be thought of as a performance channel. We
define the induced Ls-norm of this system as
12(2, 5)l.c,

M = su _ 7.18
IMile. = 5w e, ). (7.18)
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Analysis Results

In the following we will briefly outline one of the main results presented in [32], an analysis
result for spatially interconnected systems proposed in Theorem 1 of that paper. Three
properties of such systems need to be established:

e Well-posedness
o  Stability

¢ Performance

The first property, well-posedness, was already encountered in Chapter |4 in the context
of LF'T representations. It means, roughly speaking, that a feedback loop is defined in a
physically meaningful way, such that for given external signals the loop signals exist and
are unique. This property is required for spatially interconnected systems to make sure
that loops resulting from the interconnection of subsystems are physically meaningful. It
turns out that a spatially interconnected system is well-posed if (Ag — Agg) is invertible.
More precisely: since this expression represents an operator that maps ¢y into ¢, the
condition for well-posedness is that (Ag — Agg) is invertible on #s.

Stability of spatially interconnected systems can be defined in terms of the Lo-norm of
the state vector x(t). We say that a system is exponentially stable if for any non-zero
initial state the norm of the state vector along the free response is converging to zero at
an exponential rate.

Performance is also defined in terms of the Ls-norm: we say that a system M has
performance level 7 if || M|z, <. Moreover, we say M is contractive if || M|z, < 1.

Lyapunov Stability

For lumped-parameter LTI and LPV systems, Lyapunov stability was a key for formulating
stability conditions that can be expressed in the form of LMIs. In order to see how this
can be extended to spatially interconnected systems, we will briefly review the Lyapunov
stability condition for LTT systems and express it in terms of the inner product on the
space R™.

The system
x(t) = Ax(t) (7.19

)
is stable if there exists a Lyapunov function V(x) that has the two properties that (i)
V(z) > 0 for all x # 0 and (ii) that %V(w(zﬁ)) < 0 along all possible trajectories z(t)
except when z = 0. A suitable Lyapunov function candidate is V(z) = 27 Pz where P is a
positive definite matrix. We note that (i) is satisfied because by assumption P is positive
definite, and that (ii) is satisfied if

(jtv(x@)) = T (1) Pa(t) + 2T () Pi(t) < 0
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along all possible trajectories z(t) except when x < 0, or

2T ATPx + 2TPAz <0 Vz #0,

which leads to the well-known Lyapunov inequality AT P + PA < 0, which is an LMI in P.
In fact it turns out that for LTI systems the existence of a positive definite matrix P that
satisfies the Lyapunov inequality is a necessary and sufficient condition for stability.

Inner Product Spaces

To extend this stability result to spatially interconnected systems, we will first reformulate
the above result in terms of the inner product on the space R™. Recall that for a given
real vector space V, an inner product is a map

(,):VxV—=R

that satisfies the following three conditions for all x,y, 2 € V and all scalars a € R:

e Symmetry
(z,y) = (y,7)

e Linearity
(az,y) = alz,y) and  (z+y,2) = (2,2) + (Y, 2)

e Positive-definiteness

(x,z) >0 and (r,z)=0 & z=0.

A vector space on which an inner product can be defined is called an inner product space.
The Euclidean space R" is an inner product space; its inner product is the dot product
(x,y) = 2Ty. Note that when ¢ is frozen the state vector z(t) of an LTI system is in R™,
and the system matrix in (7.19) can be seen as a linear operator A : R" — R™.

We can now rewrite the stability condition for the LTI system (7.19) in terms of the inner
product on R™: the system is stable if (and only if) there exists P > 0 that satisfies

(¢, Pr) >0 and  (Az, Pz)+ (Px,Az) <0 V0 # 2 € R"™. (7.20)

The Signal Space ¢} as Inner Product Space

The extension of the above Lyapunov approach to spatially interconnected systems with
infinite-dimensional state space models of the form (7.10) or (7.17) is achieved by exploiting
the fact that the infinite-dimensional real vector space ¢ is an inner product space as well.
First we note that whereas for an LTI system with time frozen we have z(t) € R", for a
(stable) spatially interconnected system (7.17) with time frozen we have x(t) € ¢5. For
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x(t, s),y(t,s) € £y (for clarity we here also display the dependence on the space variable
s), the inner product on ¢4 is denoted by (x(t, s), y(t, s))s, and defined as

o0

(x(t,s),y(t,s))e, = Z 21 (t, 8)y(t, s). (7.21)

S§=—00

Now we are ready to address the problem of selecting a Lyapunov function candidate that
can establish stability of the unforced spatially interconnected system

(t) = A(Ag) z(1).
Inspired by (7.20) we define
V(1)) = (@(t), Pra(t))e,

where Pr € R"™" is a symmetric, positive definite matrix. One can check that the negative
definiteness condition on the Lyapunov derivative is then given by

(Ax, Prx)e, + (Prz, Ax),, <0 V0 # x € (5. (7.22)

Note that x € ¢4 stands here for a spatial sequence, and both Pr and A(Ag) here represent
operators mapping ¢4 into ¢5. For example we have

Prx(t) ={..., Pra(t,s — 1), Pra(t,s), Praz(t,s + 1),...}.

An Analysis Result in LMI Form for Spatially Interconnected Systems

We conclude this chapter by outlining and briefly discussing an analysis result for spatially
interconnected systems that has been proposed in [32]. Consider a system M = (A, B,C, D)
that is represented in the form of (7.17).

Theorem 7.1  The system M = (A, B,C,D) is well-posed, stable and contractive, if
there exist real matrices Pr = P+ > 0 and Ps = PY that satisfy

J(Pr, Ps) = M{WU,(Pr, Ps)M; + M Uy (Pr, Ps)M, < 0, (7.23)

where the block matrices My, My, V1 and Vo are defined below.

In order to define the block matrices in (7.23), we first rewrite the state space model (7.2),
(7.3) for partitioned interaction signals

vt wt
v = e w = B
v w

and partition the model matrices accordingly as

wh | =] Agry | Assir Assi- vt |+ | Bsy |u
w Asr— v Ags— Ass—— | | v Bs_
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Now we define the matrices

Assyyr Assy— ] - T 0
58 l 0 I 78| Assy Asgs——
A | B [0
Asr = [ %TJF o Asr = Asr_ ]
Bg. ] B 0
B;—[ o] BS—[BS]

Atg =[Arsy 0,  Apg=1[0 Ars_].

The matrices My, M,, ¥, and W, can then be expressed in terms of the above as

[ AL.Pr+ PrAry PrAts PrBrp
U, (Pp, Ps) = x —Pg 0 (7.24)
I * 0 —1I
[0 PrAzg O
\IJQ(PT7PS> = * PS 0 (725)
| x 0 1
I 0 0 I 0 0
M, = | Ay, Ase Bg |, My,=| AL, Afy B |. (7.26)
0 0 1 Cr Cs D

Three observations about the above theorem can be made at this point.

1. Condition (7.23) is an LMI in Pr and Ps.

2. In contrast to the corresponding result for LTT systems, the theorem provides only a
sufficient condition for stability and performance.

3. The LMI condition that has to be solved has the size of a single subsystem; it is
independent of the number of subsystems (which is actually assumed to be infinite).

From (7.24) - (7.26) it is clear that the left hand side J(Pr, Ps) of (7.23) is a 3 x 3 block
matrix, i.e. the condition has the form

Jll J12 <]13
* Jy Jog | <0,
* * J33



7.1. Distributed and Interconnected Systems 167

where * denotes blocks that are required for symmetry. This inequality is required to hold
in order to enforce the condition

Ju Jiz Jis x
[T T dT) | % Jay Jos || v | <0 VO# | v | € RMPEANG
* * J33

ISH
ISH

which in turn implies that

v(t) |,J | v(t) > <0 VYO# | u(t) | €gtmina

Stability Condition

To illustrate the idea behind the proof of this theorem, a brief outline of a derivation of
the stability condition is given here. Note that stability is implied by the existence of
matrices Pr > 0 and Ps = PZ that satisfy

J [J“ 1o <0, (7.27)

J =
JL oo

because only the signals z(¢) and v(t) are involved in the stability condition. Let accordingly
My, My, Wy and W, denote the upper left 2 x 2 submatrices of the matrices M, My, ¥y
and Wy, respectively. Note that (7.27) implies

a(t) | 5| =)
.
v(t) v(t)
To see that the existence of Pr > 0 and Ps = PI that satisfy (7.28) is a sufficient condition
for stability, we use the definition of the inner product on /5 to rewrite (7.28) as

x(t)

>£2 <0 YO# [ o(t) ] € b, (7.28)

<0 VO£ Hgg

i ["(t,5) o7 (¢, )] (M] Uy My + M Wa M) [ x(t, s) €ty

v(t, s)

S§=—00

The left hand side can be decomposed into two infinite sums, the first involving MlT U, M,
and the second MQT U, M. Again using the notation

x(t) x(t)
M, | vt(t,s) | = | vT(¢t,s)
(t

,S) w™(t,s)



168 Distributed Control of Spatially Interconnected Systems

and similarly in the second sum
x(t) x(t)
M,y | vt(t,s) | = | w'(t,s)
t v (t,s)

Thus left multiplication of the signal vector by M; only changes v~ into w™ and leaves
the other signal components unchanged. Left multiplication by M, changes vt into w™.

Also note that N )
M‘((ttss)) ] N l Sém S‘?Im ] H—((: j)) ] : (7.29)

v (t,s)

It is now straightforward to check that (7.28) can be written as

<l x(t) ] N [ x(t; De (A, Py, + (Ppr, Ay,
R b P P S e

w|

> <0
12

"0 ] “

Because of (7.29), the last two terms in the inequality represent inner products of shifted
versions of the same sequences; they are therefore equal and their difference is zero. As a
consequence, (7.28)) is equivalent to

(Azx, Praye, + (Pra, Ax), <0 Y0 #x € (5,

which is the Lyapunov condition (7.22).
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Problem 7.1 (State Space Realization of a PDE)

Learning Goals

o Deriving the state space realization of a given partial differential equation (PDE)

Task Description FEuler-Bernoulli beam theory is one of the simplest and most useful
beam theories in structural analysis. The Euler-Bernoulli equation (7.30) provides a means
of calculating the applied load and deflection characteristics of a homogeneous beam.

'y(t, s)
Ost

where E denotes the Young’s modulus, I the second moment of area of the cross-section,

Py(t, s)

p the density, A the area of the cross-section, ¢t and s the continuous temporal and spatial
variables, respectively. Under the assumption of Euler-Bernoulli beam theory, the beam is
subject only to lateral loads u(t, s), whereas the deflection y(t, s) does not count for shear
deformation, as shown in Fig. 7.9.

u(t, s)

Figure 7.9: An Euler-Bernoulli beam

a) Spatially discretize the whole beam into the interconnection of identical subsystems
as in Fig. [7.10. We denote the distance between any two neighbouring subsystems
as h, and the discretized spatial variable also as s. Apply the central finite difference
method to equation (7.30) in space to derive a 2-D equation of motion, which is
temporally continuous and spatially discrete.
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Us—1 Ys—1

|

Us Ys

3

Us+1

Ys+1

-

G

G

]

~-—

G

Figure 7.10: Discretize the beam into the interconnection of identical subsystems

b) Realize the state space representation of the 2-D transfer function obtained in a).

c) Discretize equation (7.30) both in time and space using central finite difference

method. The sampling time is denoted as T'.

d) Realize the state space representation of the 2-D difference equation obtained in c).
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Problem 7.2 (Simulate the Open Loop Response)

Learning Goals

e Using MD toolbox to simulate the open loop response of a multi-dimensional system

Task Description Consider an aluminium beam of a length 4.8 m, a width 0.04 m and
a thickness 0.004 m, as shown in Fig. [7.11. The aluminium has a density of 2710 Kg/m?
and a Young’s modulus 70 x 10° N/m?. 16 pairs of collocated piezo actuators and sensors
spatially discretize the beam into 16 identical subsystems.

i

Figure 7.11: An aluminium beam equipped with 16 pairs of collocated actuators and
Sensors

a) Based on the state space model obtained in problem 7.1, use the MD toolbox
(Multidimensional Systems Toolbox) to simulate the beam response to an impulse

disturbance. Suppose the impulse is injected at subsystem 8 at time ¢t = 1 s. (A
manual of the MD toolbox can be found in StudIP)

b)  Use the MD toolbox to simulate the beam response to a step input at subsystem 8.
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Problem 7.3 (Controller Design and Closed-loop Simulation)

Learning Goals

o Construct the generalized plant of a single subsystem, shaping both the sensitivity
and the control sensitivity.

o Design the subsystem controller K for subsystem G

e Simulate the closed-loop response.

Task Description Consider the Euler-Bernoulli beam equation 7.30 with the physical
parameters in Problem 7.2. Fig. 7.12 shows the output amplitude spectrum up to 50 Hz
of the subsystems 5 and 8 to an impulse disturbance. Assume that the first 3 modes are
of our interest, i.e. w; = 0.6 Hz, ws, = 2.9 Hz, and w3 = 6.8 Hz. A distributed controller is
to be designed to suppress the vibration at the first 3 resonance modes.

_2  X:0.4883
10 [ Y:0.004526 — w :
- |
X:2.93
3 Y: 0.0nn7040
10 - X: 6.836 E
Y:0.0002734

subsystem 8\

amp. spectrum
=

0 10 20 30 40 50

subsystem 5

amp. spectrum

0 10 20 30 40 50
Frequency (Hz)

Figure 7.12: Output spectrum of subsystem 5 and 8 to an impulse disturbance
a) The control loop with a generalized plant for subsystem G is sketched in Fig. 7.13,

with both the sensitivity and the control sensitivity being shaped. Construct the
state space model of the generalized plant in an analytic way.
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z1(k, s) Wk
29(k, 8)437 Ws = /ﬁ% d(k,s)
y(k, s) ¢ T
" u(k, s)

Figure 7.13: Control loop with a generalized plant of subsystem G

b) Suppose that both the shaping functions for control sensitivity and for sensitivity of
first order are chosen:

WS/MS
= 31
We= L (7.31)
Wy = S SeK (7.32)

- MKS—FCWK.

Use the function 'hfMD.m’ of the MD toolbox to design a distributed controller and
‘esimulateMD.m’ (or 'dsimulateMD.m’ or ’dsimulateMD_ATC.m’) to simulate the
closed-loop response. Tune your controller, such that the first 3 resonance modes are
efficiently suppressed, and the maximum control effort does not exceeds 15 N/m.

Hint: you can start with a choice of wy, = 0.1, My, =1, My, = 10, wg =1, ¢ = 100
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Appendix A

Solutions to Exercises

Solutions — LPV Systems I

Problem 1.1 (Hidden Coupling)

a) To obtain the equilibrium control input % = tanh™(p), note that the PI controller’s
state takes the value ¢ = Kj(p)~'u. Substituting this in the state space model

(1.14)

|
lﬁ
P
s
SN—
R
—
s
N—
[
,
=
Yy
SIS
AR
N
'
|
| — |
SO
[

shows that the equilibrium families match.

b) It is observed that the closed loop becomes unstable if r(t) = 0.7, even though the

linearized closed loop is stable for all p.

¢) To linearize the controller compute

2 dfx| = dfx| . dfx|
C= 4 5”'“ ay |- YT ar | "
dh -~ dh dh
U= 7[( C+ 7K " + 7K ~7
dc e dy e " drg
which results in
C=7—7.
~ 1 ~ 1 ~ ~ GhK dp
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d%)

Due to hx = K;(p){ + Kp(p)(r —y), we have

Ohg 0 0
5 9, = 5y IO+ Ee(o)(r =) -1,

:(1_222)2(54“;(7"_9))7

which evaluated in the equilibrium 7 = 4, { = (1 — p?) tanh™'(p), gives

I\
I

r— gv
R 1 . 2ptanh'(p)
A ey M e

By identifying §j = (1 — p*)Z from the linearized plant above, the closed-loop system
description yields

<
I

~, 4 —1 1 1 ~
Lf 3 + 2p tanh (p) (1—p2) : 3(1—p?) :E
cl=1__ . —0=p) 0+ 1T |]¢
z G ) 01 P

Plotting the real parts of the closed-loop eigenvalues for values of p € [—0.9,0.9]
reveals that they are negative for p € [—0.7,0.7].

The Matlab file model Hidden Coupling mod.slx compares both implementations.
The only difference is that the integral gain is swapped with the integrator. Note
that for time-invariant gains this would not affect the controller at all, but that the
time varying gain, although scalar, does not commute with the integrator.

For small steps (r < 0.4) the responses are similar, although with slightly less
overshoot and hence faster settling time. For larger steps (r > 0.8), the response
with the modified controller is essentially unchanged and does not become unstable.

This form of implementation is a simple example of what is known as wvelocity
algorithm (see Section 4.4 of the Rugh and Shamma Paper for details and references).
The velocity algorithm is common in practice and is proven to remove any hidden
couplings in gain-scheduled control systems. Note, however, that stability and
performance results remain limited to some neighborhood of the equilibrium condition
and that transients between different equilibria are not fully incorporated.
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Problem 1.2 (Inferring LTV from LTI Stability)

As the systems are both deprived of damping, the systems are marginally stable as
illustrated by the phase plots in Fig. A.2(a). Checking the eigenvector /-value pairs,
one observes two distinct purely imaginary eigenvalues A\;, A\ and corresponding
eigenvectors vy, vs.

A general solution to the ordinary differential equation can be found in
y(t) = Croie™t + Chvge™?,

or—more specific to our case of complex conjugate eigenvalues, with A = Ay = Ay =
a+ jf and v = vy = vy = u + jw—one express the solution as

y(t) = e (O} (ucos(Bt) — wsin(at)) + Cy (usin(Bt) + w cos(at))) .

For a = 0, it becomes clear that the trajectory will circle endlessly on an ellipsoid.
The spring stiffness determines, how far away from the equilibrium the turning point
will be. Intuitively, we can imagine that the higher the stiffness, the closer the cart
remains to the origin and that it will also achieve higher velocities.

As the systems are now damped, the systems are stable as illustrated by the phase
plots in Fig. A.2(b). Due to the negative real part the trajectories spiral towards the
equilibrium.

Observe that the switching law is designed to incur switches at the main axes. The
resulting trajectories can be seen in Figs. A.2(c) and A.2(d). To explain the effect,
consider the marginally stable case again. In these cases, the switching and resulting
(in-)stability is illustrated in Figs. A.1(a) and A.1(b), respectively. It is interesting to
note again that both systems individually are marginally stable systems. The only
difference to the switching between the stable systems resides in the existence of the
spiral trajectories, which are not circling close enough to the equilibrium within a
single quadrant.

Physically, we simulate an immediate and sudden change in the spring’s stiffness.

If the stiffness is lowered, however, the spring’s potential energy is lowered as well,
which is computed from

1
Epot = §]€y2

The system is therefore destabilized by introducing energy at the right time.
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(a) Quadrant-wise stabilizing switching (b) Quadrant-wise destabilizing switch-
ing

Figure A.1: Quadrant-wise stabilizing switching

e) The proposed smoothly time-varying stiffness appears to not destabilize the system,
as apparent from Fig. A.2(e). A variation law for the stiffness that lets the system
behave lightly damped could be

k() = 1— %sin(2t).

and a resulting trajectory is shown in Fig. /A.2(f). Can you find a destabilizing law?
In fact, it is possible which makes one realize that the trouble of finding a Lyapunov
function is one of the few options to systematically deal with nonlinear systems. Try
the following law

k(t) = 2 — 2 cos(nt).
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(a) Marginal stability due to lack of
damping

1
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///\\K

-1 -0.5 0 0.5
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(c) Stable system response due to bene-
ficial quadrant-wise switching law

LAV

-1 -0.5 0 0.5 1

-0.5

/7$K

(e) Stable system response due to some
smooth parameter-variation law

0.5

=y

(b) Stable system responses due to pos-
itive damping
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(d) Unstable system response due to
adverse quadrant-wise switching law

v
Il

L

-1 -0.5 0 0.5 1

1/\
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(f) System response showing lightly
damped modes due to some smooth
parameter-variation law

Figure A.2: Various phase plots for different scenarios
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Solutions — LPV Systems II

Problem 2.1 (Multiple Equilibria of Nonlinear Systems)

a) The distinct equilibria of the simple undamped pendulum are intuitively found as
the ones shown in Fig. A.3, namely ay = 0 and a; = 7. This is verified by setting

O

O

Figure A.3: Equilibria of the simple pendulum

the time derivatives to zero

m N l—j—is(i)n(&)] ’ (A1)

which is clearly true in the above-mentioned cases. In fact, this holds true for
O_ék = km.

b) The phase portrait can be determined by either solving for the trajectories with
initial conditions gridded over the state-space, or by evaluating the Jacobian in each
grid point to give an indication of the trajectories instantaneous direction.

oz oz
o om|_| 0 o) 0 W e
o ol feos(@) b [—feos(a) 0f

Inserting the equilibria, we obtain

0 1
[—icos(km) 0] '

Whenever £ is an odd number the cosine is —1 and we obtain

0 1 0 1
My—opn_1 = = , n € 7Z.
h=2n—1 [—Z cos(km) 0] T lﬁ O] "
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On the other hand, whenever £ is an even number the cosine is 1 and we obtain

0 1 0 1
Mk—Qn:[ 1 :[ ],nGZ.
—4 cos(km) 0 o -4 0

The associated eigenvalues are therefore

Me—on—1 = A (My—op—1) = £ %,

Ak=2n = A (My=2n) = ij\/?;
since det (M, — M) = \* + 4.

The zero real parts of \y—o, indicate that we are dealing with a marginally stable
equilibrium. In fact, this point is a center, because the product of both eigenvalues
+ j\/% is positive. In terms of the definitions for stability and attractiveness, the
equilibria at (2nm,0), n € 7 are stable, but not attractive. This holds true as well
for the saddle points.

Loosely speaking, Ar—2,_1 indicates saddle points, because of the mixed positive/neg-
ative real parts. In conclusion the phase portrait looks as in Fig. A.4.  Simply

Figure A.4: Phase portrait of the simple undamped pendulum

put, trajectories of type A are regular pendulum motions oscillating back and forth.
Trajectories of type B are the limiting case, where the amplitude of the oscillation is
strong enough to reach the upper equilibrium point. It can then either return or and
therefore move into the regime, where & < 0 or pass the tipping point and therefore
the angular velocity will be sign-definite for all times.

The damped pendulum’s Jacobian is

diy i

S B —%cos(a) —b
We now have

0 1
Mk=2n—l - [ _?|

—4 cos(km)

:lg 1],716%.
g _p
k=2n—1 L
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and
0 1 0 1
My—s, = = , n € 7.
k=2 [—g cos(km) —b] o [—i —b] "
For the respective eigenvalues we obtain
b b g
Me=on—1 = A (My=2p—1) = — 2 £/ — + +,
k=2n—1 (My=2n-1) 5 1 + I
b P g
)\k—2n )\ ( k:—Qn) 2 4 L’

The equilibria at (2nm,0), n € Z are now asymptotically stable, because they are
also attractive. The other equilibria remain saddle points and are therefore not

attractive.

Figure A.5: Phase portrait of the simple damped pendulum
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Problem 2.2 (Prove Stability by Lyapunov Function)

a) The total energy is found by first determining the kinetic energy
Loo.o
Ekin(t) = —L*“a”.
2
The potential energy is

Eoot(t) = gL(1 — cos(v)).

The total energy is the sum of the energies

Figure A.6: The simple pendulum

E(t) = Fuan(t) + Byt (t) = ;L%ﬂ + gL(1 — cos(a)).

b) To prove Lyapunov stability, we require
V(t)>0 and V(t) <0, Vt>D0.

The energy only contains squared terms and (1—cos(«)), which is always non-negative.
Taking the time derivative of V(¢), we obtain

V(t) = a(L*& + gLsin(a))
= (LQ(—g sin(a) — b&) + gL sin(a))

L
= —bL*&* <.

It can be observed that in the absence of damping, the conditions on Lyapunov
stability are still fulfilled as V(t) = 0. Asymptotic stability can be established by
finding continuous and strictly increasing functions a(||z||), b(||z||) and c(||z]|), with
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a(0) =0, b(0) = 0 and ¢(0) = 0, and a ball around the equilibrium of some radius
r > 0, denoted B, such that

(@) a(lel) < V(t.2) < b(le]), Ve > to,Va € B,
<

(b) V(t,z) < —c(||z|), Vt > to,Vx € B,

If we now consider a ball around the equilbrium « = 0 of radius 7 it is sufficient to
show

V(t,z) >0, V(t,z) <0, Yz #0 € B,,

which is certainly true for the proposed Lyapunov function candidate. This proves
asymptotic stability.
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Problem 2.3 (Scheduled Stabilizing State Feedback)

The second state is directly controllable from the input and can therefore be stabilized,
even though it is open-loop unstable. The first state is stable, though, and therefore
the plant is stabilizable independent of the value for p.

Affine parameter dependence is easily established by defining 6 =

Aw>2[31?]:l6121+em ﬂ:a%+ﬂAL

5 £ . We then
P
have

All other matrices remain unchanged. The bounds on the new parameter can be
determined to Py = [—1, 1]. The bounds on the time derivative are more difficult to

derive. From
d@— d »p B 2+ p?

dt — dt2—p? (2—,02)20
it can be checked that P, = [-3, 3].

Starting from the LMI

P(0)(A(0) + BE(9)) + AT(O)P(9) + > VZO@H(Q) <0, Voe P, Ywe P, (A2)
i=1 i
PO) >0, Vo€ P (A.3)
By pre- and postmultiplying with Q(6) = P~1(#) > 0, and making use of the identity
8P(;;(9) = —Pil(Q)ag—y)P*l(Q), this is equivalent to
A(0)Q(0) + BF(0)Q(0) + Q(0)AT (0) + Q(O)F BT+X: <<,(A®
VO e Py, Ywe P,
QW) >0, Voek (A.5)

By using the change of variable Y (0) = F(0)Q(0), the matrix inequality is rendered
linear in Q(#) and Y (#). Making use of the Ansatz, we have for our problem

M(6,v) =AB)Q(8) + BY (6) + QO)AT(6) + YT (6)BT +nZ

<0, (A.6)

’L

V(Q,V> c PyxP,.

Including the multi-convexity condition

82
wM(@ l/) =
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renders the condition M(#,v) < 0, which is quadratic in #, convex. More explicitly,
this means that the additional LMI constraint

Q1A +A,Q, >0 (A7)

needs to be imposed, such that M(#,r) < 0 can be solved in the four extremal
combinations of parameter range and rate of change. Finally, (A.6), (A.7) and

Q) =Qo+60Q, >0, VYo PF (A.8)

make up the finite set of LMIs, necessary in order to solve for the decision variables
Qo, @1, Yy and Y] by means of solving a semi-definite program.
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Solutions — LPV Systems II1

Problem 3.1 (Parameter-Dependent Lyapunov Function Based Analysis)

We assume that the answer is "No” and try to find at least two points within the
parameter range, for which we cannot find a single matrix P = PT > 0, such that

(A(p) + BDi(p))" P+ P (A(p) + BDk(p)) < 0.
Let’s first assume F'(p) has the form
F(p) = [Fi(p) Falp)] € R
For p; = 0 and p; = 7, we have

(A(0) + BF(0))" P+ P (A(0) + BF(0)) < 0,
(A(m) + BF(m))" P+ P (A(r) + BF(r)) < 0,

or more explicitly

T
Ap Irxo 1 [02><2 02><2]>
+7 P+ P(x) <0,
(lozxz —Tloxo F1(0) FQ(O) ( )

T
An —szzl lozxz O2><2]>
+ 7 P4+ P(x) <.
<l02><2 —Tloxo F1(7T) F2(7T) ()

Adding the above inequalities and dividing by 2 gives

T
An Ogx2 D
P+ P(x) <0,
<|é(F1(0)+F1(7T)) _TIQ><2+%(F2(O)+F2(7T)) ( )
The actually relevant part is found in
Aipn + PiAn <0,

Py Pro
Py Py
it is impossible to find a P;; > 0 that renders the above inequality fulfilled.

if P is partitioned as P = l 1 Now it is easy to observe that since Ay; > 0

Please refer to the MATLAB file exercise_Analysis_State_Feedback.m for a
detailed solution.



190 Solutions

Problem 3.2 (State Feedback Synthesis with Parameter-Dependent Lyapunov
Functions)

a) The practical solution is implemented as 1pvsfsyn in the LPVTools. Further, there
as a modified synthesis routine available as 1pvsfsynth that improves the condition
number of the Lyapunov matrix P. Note that F is calculated from P~

b)  With parameter-dependent Lyapunov functions P(p) = 37 f(p;) P;, the goal is to
reduce conservatism (and hence increase performance).

We expect that by providing more degrees of freedom, i.e. more basis functions,
it should be easier for the optimization to find a feasible solution and hence that
more basis functions lead to better performance. On the other hand, more basis
functions increase the number of decision variables in the optimization and this
increases computational complexity.

1.5
S
=i )
s E
I 2
o o
2,
- kS
= 0.5 o
E E
= =
@)
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of basis functions Number of basis functions

1 No parameter dependence
2-4  Linear parameter dependence (g1, g2, g3)
5-7 Quadratic parameter dependence (42, ¢3, ¢3)
8  Multilinear parameter dependence (¢; g2 g3)
¢) The controller requires access to all states of the generalized plant. This in-
cludes those of the weighting filters. Hence, the filters have to be implemented

together with the state feedback gain to form an augmented state feedback controller.
y—r

> WS

Tws
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Please refer to the MATLAB file atc_GyroSimulation for implementation details.

Implement the explicit state feedback gain formula:

— evaluate parameter dependent B, and C matrices,
— evaluate parameter dependent P matrix ,
— invert P with LDLT-factorization,

— calculate parameter dependent F from B,, C;, P! and any scalings / trans-
formations used for synthesis,

— implement LTT weighting filters.
This approach is feasible for real-time application and gives the "exact” feedback
gain, but the implementation it is rather involved and error-prone.

Implementing the controller based on a lookup table:

— define the lookup table for F',
— implement LTI weighting filters.

This approach is easy to implement and requires less online computation in exchange
for possibly more memory requirements. Further, it only provides an approximation
of the "exact” feedback gain. Confirm this by looking at the difference of the gain
matrices in the Simulink model.

Note that there is also a Block provided by the LPVTools that implements the
complete parameter-dependent dynamic controller as an S-Function that interpolates
a lookup table representation.
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Solutions — LPV Systems IV

Problem 4.1 (LFTs - Pulling out the Deltas (Simple Example))

a)  Substitute m(t) = mg + 0, and observe that

-1 1
. :51*[m91+m01]:51*Mm

It is useful to factorize the state-space model as

and write

—mg 0 myg
1 0 i I
=0 .
[o 1/m(t)] e

—myt 10 my

Now we just have to substitute and expand to obtain

J— 71 | J— 1 J—
1 L B L]
. —(51* 0 I 0 1 .
|
Y —mgt 1 —mgtky —mg'h Y

01 1 0 ‘
LR (A ’673767”1’ — 6, % | Mean | M
—k(t) —b o ! I My ' Myoo|
—11—k0 —b ‘

Note that M} 11 = 0, since the LFT is affine in d5. Finally, we just have to apply the
rules for multiplying two LFTs to obtain

Fig. |A.7 recovers the same representation by graphical interpretation.
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il VAN
51
da
____________________________________ 7mal | m&l
m(t)y ij 7 Y m(t)y —mg” T;rzgr i ,_l Y Y
T . — IL, Z|—o—>
b b
0,1
ko + 02 {17 %U}
(a) General representation (b) "Deltas” pulled out

Figure A.7: Block diagram of the mass-spring-damper system’s differential equations in
linear fractional representation
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Problem 4.2 (LFT of system with repeated parameters)

a) Starting with the output equation

y(p) = (1—p?),

we can expand and rewrite it as

y(p) =z — ppz.

By declaring new inputs w; = pwsq, we = px we can then rewrite the output equation
as

vp) =7 —w

. As usual, the input-output mapping for these new inputs is w; = pzy, wy = pza,
which means z; = x and 23 = w;.

We can now proceed to write the above equations in matrix form

content...

T
A O2x2 D
P+ P(x) <0,
([;wl(m FR) —rlae + H(F(0) + Fy(r)) )
The actually relevant part is found in
A1T1P11 + P A <0,

Py Py
Py Py
it is impossible to find a P;; > 0 that renders the above inequality fulfilled.

if P is partitioned as P = l 1 Now it is easy to observe that since A;; > 0

b) Please refer to the MATLAB file exercise_Analysis_State_Feedback.m for a
detailed solution.
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Problem 4.3 (LFTs - Pulling out the Deltas)

a) Substitute v, = v, + d,, and observe that

1 1 e AR
1 Y S I N |
Vg U0 + 6’”@‘ Vg0 1 Vg0

"""""""‘: A
5, 0
[0 %]
O 0
[ o
Vg Vg ,7| (2
L
us _0_.;, - E Uy — om0
| & h !
. v E i ) . Uy,
g
L1 1 b M,
' L]
" .
I .
L
M,,
(a) General representation (b) "Deltas” pulled out

Figure A.8: Block diagram of the vehicle’s differential equations in linear fractional
representation
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Problem 4.4 (Torque Vectoring by LPV Control)

a/b)  For an extensive solution to the problem, please consult the MATLARB files.
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Problem 4.5 (Parameter Set Mapping vs. LFT (Simple Example))

2)

Using 0, = %, 0y = % and 63 = % an affine LPV model reads as
T 0 1 0 0 x 0 0
i 0 —-L 0 0 L 0
P L mr | me ur (A.11)
O 0 0 0 1 %) 0 1 ur,
g0 o~ —go | o) |—Lo —26

When investigating the relation between 6; = % and 6, = % by plotting them on
two axes, cf. Fig. |A.9(a), it becomes apparent that only a line is actually physically
possible. If simply the combinations of parameter bounds are used to derive the
bounding box, any controller synthesis based on these parameter limits would
guarantee performance and stability for many parameter pairs that can never occur
in reality.

A solution exists in considering the actual convex hull of the parameters, shown in

Fig. A.9(b). However, this leads to numerous vertices to be considered due to the
curve-like shape of the physically admissible pairs of parameters.

It is intuitive to then consider a tighter, rotated, rectangular bounding box as a
convex region as in Fig.|A.9(c). This box can be systematically derived via a method
called parameter set mapping, which is based on a principle component analysis.

By decomposing © into

O=UxV"
one can obtain information on the linear dependency of the rows. The matrix U
contains both the bases for the column space of © as well as the basis of the left
nullspace of ©, cf. Fig. |A.10. Now since O is a fat matrix and the rows will not be

linearly dependent, we can expect the left nullspace to be empty. In turn, U will
provide a unitary basis for the column space of our parameter samples.

Reinterpret ® = V™ as horizontally concatenated vectors of coefficients that are
used to build weighted sums of the basis vectors contained in U. Therefore from

0 =U9d, U'e=09,

we can perform a coordinate transformation into directions ¢y, ¢ that are maximally
independent. Accordingly define

0=Up, U'lh=¢, 0=1[00]", ¢=1[b1 0 .

By identifying bounds on the values of ¢ and converting them back into coordinates
in terms of # by premultiplication with U (linear combination of the basis vectors),
the bounding box shown in Fig. A.9(c) is obtained.
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e) With

v=[u, v, - l—0.7915 —0.6112] |

—0.6112 0.7915
v _ o 0 ... 0] [7.6655 0 0 ...0
10 o, ... 0 | O 09378 0 ... 0|’

the significant singular value is identified via the drop in an order of magnitude
versus the second singular value. Accordingly the first column of U corresponds to
the significant basis vector.

A reduced parameter set is obtained by projection

— 01
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1'2 N N N N N N 1'2

08l ......... ......... ............... ]
06 b NN - _
04l ........ ......... ......... ........ ................ i

] A N _

02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
t t

(a) Naive bounding box derived from maximum (b) Tight convex hull involving many vertices
and minimum parameter values (not shown)

1.2 T T T T T T
T T B S S 4

_0‘2 N N N N N N
02 0 02 04 06 08 1 12

t

(c) Tight rectangular bounding box derivex by
parameter set mapping

Figure A.9: Overbounding in different parameter sets
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R |

n L ! J
m

Figure A.10: Basis of matrix spaces using SVD of a matrix A € C"*™ with the first r
singular values being non-zero

1.2

0.8

0.6

0.4

02 0 02 04 06 08 1 12
t

Figure A.11: Reduced parameter set ¢ in green. The non-approximated parameter set is
shown in light blue.
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Problem 4.6 (Parameter Set Mapping and Control — 2-DOF Robotic Manipulator)

a/b)  For an extensive solution to the problem, please consult the MATLARB files.
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Problem 4.7 (LPV Control of a 2-DOF Robotic Manipulator)

a/b)  For an extensive solution to the problem, please consult the MATLARB files.
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Solutions — Multi-Agent Systems I

Problem 5.1 (Directed Graphs)

The solution for the network states is given by z(t) = e~ P

)1o. Similar to the undirected
case, we will use a decomposition for L(D). Whereas L(G) is symmetric and can thus
be diagonalized, L(D) is not symmetric, why the Jordan decomposition is used. Let
L(D) = PJP~ ! be the Jordan decomposition with

JO) 0 - 0
T 0 J(./\Q) 0
00 e )

Here the A;s are the eigenvalues of L(D) and J();) is the respective Jordan block with
the dimension of the algebraic multiplicity of A;. From Theorem F.2 it is known that the
algebraic multiplicity of the zero eigenvalue is one, if and only if there exist at least one

vertex v € V, from who every other vertex can be reached by respecting the direction of
the edges. Therefore the Jordan block J(0) = 0.

Similar to the undirected case, the decomposition is used to show that

_ e—PJP*txO

= Pe 7tP g,
el 0 0
0 e /) 0

=P P
0 0 e/ (An)t

Since all nonzero eigenvalues of L(D) have positive real parts, for all i > 1,

lim e/t = .

t—o00
Therefore lim; ., z(t) = (q{xo) p1, where py is the right eigenvector (1. column of P) and
q1 the respective left eigenvector (1. row of P~!) corresponding to the zero eigenvalue. Due
to construction of the Laplacian we know that p; = 1, and from the fact that P~'P = I,
qI'1l =1 results.
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Problem 5.2 (Convergence Rate)

d)

To connect n vertices there are at least m = n — 1 edges necessary. Those graphs can
be for example the line graph or the star graph, shown in Fig. |A.12(a) and A.12(b).

The complete graph shown in Fig. |A.12(c) has m = ”("2 D edges. If we count the
edges, we get n — 1 for the first vertex, n — 2 new ones for the second on, etc. The

last vertex then has 0 remaining edges.This can be written as the arithmetical series

" , n(n—l)'

— -

(a) Line graph ) Star graph ¢) Complete graph
Figure A.12. Basic graphs

For n = 8 the convergence rate is shown in Fig. A.13 depending on the number of
edges, whereby for increasing the number of edges by one, a new edge is added to
the previous graph. It can be observed that with increasing number of added edges
the convergence rate increases as well.

8

7k i

8 10 12 14 16 18 20 22 24 26 28
e

Figure A.13: Convergence rate for increasing number of edges

The graph G has Ay as 2nd smallest eigenvalue of the respective Laplace matrix
L. The graph G is G with the additional added edge {ij} and A, the 2nd smallest
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eigenvalue of the respective L. Then we have

i J
0 e 0]
_ 1 —1
L-L= !
~1 1 J
0 e 0]
Therefore the term hinted results in
z" (E — L) T=1 - 203+ 10 = (3, — ;) >0 2Lz <a'Lz. (A.12)

Assume that x is the eigenvector of L corresponding to A, then
o =2 Lo < 7' L7. (A.13)

The inequality holds, since x, as eigenvector of a Laplace matrix not corresponding
to Ay = 0, is perpendicular to 1, which is the eigenvector corresponding to \; = 0 of
any Laplacian. With (A.12) and (A.13) we get the final result

No=a"Lae <z'Lz <z'Lt =\
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Problem 5.3 (Time Delay)

Fig. A.14 shows a possible graph G with 8 vertices and 10 edges (bold) and G
with additional added edge (dashed). The corresponding minimal time delays to
destabilize the network are 7 = 0.3071 and 7" = 0.2824. Thus we suspect, that an
increasing number of edges leads to a decrease in the robustness against time delays.

Figure A.14: Graph G (G) with 8 vertices and 10 (11) edges

The Laplace transformation of the network dynamics lead to
sX(s) —xz(0) = —Le " X(s).
Thus the transition matrix evolves to

X (s) = (sI + Le ") *z(0) = ®(s)x(0).

With the transition matrix derived in the previous task, the characteristic polynomial
of G(s) is

n

p(s) =det(s] + Le™*") = [[(s + Nie™®") = lﬁllpz(s)

=1

Therefore for stability of the network dynamics all solutions s = ¢ + jw that satisfy
p(s) = s+ A\ie *™ = 0 have to have o < 0. To find the minimal time delay that leads
to instability, we determine the minimal time delay, such that p(s) has a zero on the
imaginary axis, such that s = jw. Substituted in p(s) this leads to

pi(jw) = wj + N 7T = wj + \i(coswT — jsinwr) = 0.
Comparison of the real and imaginary part of the last equality leads to

coswT = 0,
w— \;sinwt = 0.

The first equation is solved for w = -. Substituted in the second equality and

solved for 7 leads to 7 = 55-. Since we are looking for the minimal 7 that leads to

2
instability, we get
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d)  The proof that \, > A, is very similar to the previous exercise d) and follows

Fig. A.15 shows the minimal destabilizing time delay 7* and the convergence rate
for the same graphs as in the previous exercise ¢). As proofed the convergence rate
increases with increasing number of added edges, while 7* decreases. Since large

N, =2 Lz > a2 Lae > 2" Le = )\,

values of both characteristics are desired, a trade-off has to be made.

8

7

6

Figure A.15: Convergence rate and minimal destabilizing time delay for increasing number

of edges
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Problem 5.4 (Discrete Consensus)

For discrete systems we know that the system is unstable if there is an eigenvalues
with absolute value greater than one. Therefore the real eigenvalues ¢, < ... <y
of the symmetric matrix W have to fulfill |¢;| <1 for all i = 1,...,n. The networks
dynamics are given by z(k) = W*x(0). Such that we have convergence to the average
of the initial values, we need to enforce that
. 117
lim z(k) = —x(0). (A.14)
k—o0 n
We know that limy_,, 2(k) = limy_,.c W¥z(0). Using the decomposition W = PTW¥ P
with ¥ = diag(¢1,¢1, ..., 1,) leads to
. T k
lim z(k) = kll_g)l@W z(0)

k—00

= lim PTA*Pz(0)
k—o00
= (ip{p1 + ¥5pips + - ¢plpa) 2(0). (A.15)

All terms with |¢;] < 1 vanish. Comparing (A.14) and (A.15) leads to the conclusion
that W needs one unique eigenvalue 1, = 1 with corresponding eigenvector 1, while
|| <1 fori=2,... nsuch that

—1<¥,<...<Py <=1

In the continuous case, where the closed-loop eigenvalues are —\,,, ..., —M\s,0, the
convergence rate is determined by Ao: Thus by the distance between the imaginary
axis and the largest closed-loop nonzero eigenvalue. With the discretization trans-
formation z = e*7 the imaginary axis in the continuous plane is mapped to the unit
circle in the discrete plane and any parallel to the imaginary axis with negative real
part to circles around the origin with radius smaller than one. Thus the distance,
that determines the convergence rate in the continuous case, is in the discrete case
the distance between one and the maximal absolute value of all eigenvalues of the
discrete close-loop eigenvalues not equal to one. Thus the convergence rate of the
discrete network is given by

min 1—Jy| =1~ max [¢;] =1 —max(|tal, [¢a]).

This is shown schematically in Fig. A.16. The larger the gap the faster the
convergence rate.

From a) we know, that the network converges to the average if 1 is an eigenvector of
W corresponding to the eigenvalue 1. With the given W we have

W1l=(I-al)l=1
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f Im(s) Im(2)

Econvergence rate 7 .
L Ao
z=eT L 'X\‘ v Re(z
¢ <> ——
' . N ;o
X H Re(@) . ~. _x’ ;

Figure A.16: Mapping between s and z plane to understand the definition of convergence
rate

since 1 is an eigenvector of L corresponding to the eigenvalue 0. Thus we get average
consensus. The eigenvalues of W = I — aL are ¥; = 1 — al\;.

For stability they have to fulfill [¢;| < 1 for i = 2,...,n. This is not trivial if ¢; < 0.
Here the critical case is the smallest eigenvalue of W, that is ¢,, = 1 — a\,, resulting
from the largest eigenvalue of L, such that we need to fulfill |1 — a),| < 1, what
leads to o < % Thus the stabilizing region of alpha is 0 < a < )\2—”

By enlarging o we push vy away from 1 towards 0, thus 1 — ¢ gets larger, but at
the same time v, is pushed towards —1, thus 1 — |¢,,| gets smaller. Thus the o* for
optimal convergence rate is achieved if

1_¢2:1_|¢n|
1—(1—a"d)=1—|1—a"\|
adg=1—(=14a*\,)
N 2
R VT

For the bold graph in Fig. A.14 the convergence rate depending on « is shown in

Fig. A.17. The optimal alpha determine here to a* = /\Qi/\n = 0.59_2%.11 = 0.35.

020 | 5 ]
o :
g 015} i
<
@ 010 | o) ]
5 :
2 :
g 005} i
0 ]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

«

Figure A.17: Convergence rate depending on «
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Solutions — Multi-Agent Systems II

Problem 6.1 (Formation Stability for Arbitrary Topologies)

a) The state equation of the closed loop system can be obtained as

¢ BrCpLy) Ar | |€

A

Using the Schur transformation according to [20], we can transform L,y into Uy,
where U is an upper triangular matrix. Therefore, we perform the transformation
r = Tn)T and ¢ = T(,,)¢ and achieve

5 2]l)-
0 Tuwl [C

Ap + BPDKOPL(n) BPC'K
BKCPL(n) Ax

~
)

N

\3/ o
| I
| — |

L[E] 2 [ O | [Ap+ BeDiCrLay BrCi] [Twy 0 ]2
q 0 T(;L% BKCPL(H) AK 0 T(n) C

Using the rule (A ® B)(C' ® D) = AC ® BD, we can rewrite the blocks of A like

(T2 L)Iy® Ap)(T®1,) = (T 'y @ L,Ap)(T ® I,,) (A.17)
=T 'T®Apl, = Iy ® Ap = Ap

and

(T~ @ 1,)(Iy ® BpDxCp)(L @ I,)(T @ I,) (A.18)
= (T"'® BpDgCp)(LT ® I,
=T 'LT ® BpDrCp = (Iy ® BpDCp)(U @ 1,,).

This yields the transformed state equation

1 - [ bt 8104 [ "
¢ BrCpU,) Ag ¢

A

b)  With the shorthand notation ¥ = BpDgCp and & = BxCp, we can write (A.19)
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as
Ap+ TN Wu o Vuw 1 BpCk 0 |
0 ' : 0
) Vun_1,n i :
H: 0 0 ApWAwy 0 0 BpCk H
¢ PN\ Dduyy Dduy | Ag 0 ¢
0 ' 0
duy_1,n i :
I 0 0 Py 1+ O 0 Ak |
(A.20)

Due to the triangular structure of U, the equations for #y and (y do not contain
any other states than Zy and Cy, thus they have the form of a closed loop around a
single system (6.62) with ¢ = N, which is stable iff K (s) stabilizes (6.62) for i = N.
The equations for subsystem N — 1 have the form of a closed loop system with states
{j’:ﬁfl GFPJT and external inputs x and Cy. The latter are bounded if subsystem
N is stable and in this case do not influence the stability. This leads to the stability
problem of single system (6.62) for i = N — 1. The same observation is true for
subsystem N — 2 if the subsystems N and N — 1 are stable. This argumentation
can be continued until subsystem 1, which completes the proof.
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Problem 6.2 (Stability of a Multi-Vehicle Formation)

Using the result from Problem 6.1, the stability condition on a closed loop multi-
agent system can be reduced to a stability condition on a set of single agent systems
parameterized with the eigenvalues of the Laplacian. In particular, the MAS with
local controllers K(s) is stable if and only if K(s) simultaneously stabilizes the
systems

zZi = /\z‘CPZ’z‘

for all eigenvalues \; of the Laplacian.

For the topology shown in Fig. 6.12, the Laplacian matrix is obtained as

1 -1 -2 0 0
0 1 0 1 0
L=|-3 0 1 —3 0], (A.22)
1 1
0 i 3 11 0
L0 — 0 —5 1]

the eigenvalues are eig(L) = {0,1,1,1,2}. Computing the closed loop poles for the
systems (A.21) and K (s) yields

\; 0 1 2
poles | 0.0000 + 0.0000i -1.2000 + 0.7483i -1.2000 + 1.6000i

-2.4000 + 0.0000i -1.2000 - 0.7483i  -1.2000 - 1.6000i
-0.0500 + 0.00001 -0.0500 + 0.0000i -0.0500 + 0.00001

As clearly visible, in all cases all poles are located in the closed left half plane, thus

the systems (A.21) are at least marginally stable for all \;, from which we can infer
stability of the whole MAS.

Computing the eigenvalues of A shows that none of them is located in the right half
plane, thus the closed loop multi-agent system is stable. However, there is one zero
eigenvalue of A, which originates from the zero eigenvalue of L and corresponds to a
non-zero equilibrium.

i) The Nyquist plot of the forward chain P(s)K(s) is shown in Fig A.18. From
evaluation of the real test point s = € one can see that the Nyquist plot closes
to the right.

ii) From (A.21)), the stability of the formation is equivalent to the stability of
the loop around Ly, (s) = \;P(s)K(s) for all eigenvalues \; of the Laplacian.
According to the Nyquist stability criterion (assuming Ly, (s) to be open-loop
stable), the Nyquist plot of L, (s) must not encircle the point —1 for the loop
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Nyquist Diagram
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Figure A.18: Nyquist plot of the forward chain P(s)K(s) (blue), "allowed” region for
—1/X; (yellow) and possible locations of —1/); (orange)

iii)

around Ly, (s) to be stable. Rescaling the complex plane, it is easy to see that
this is equivalent to the Nyquist plot of L(s) = P(s)K(s) not encircling the
point —1/X;. With respect to the Nyqist plot shown in Fig. |A.18, the points
—1/\; are accordingly allowed to be located in the region left of the Nyquist
plot, the points 1/); accordingly in the image of this region mirrored along the
imaginary axis.

For any point A in the Perron disk, we can generally write

A\ =1—Be? =1 — Beos(ay) — jPsin(ay), B €10,1]
1 1 1 — Beos(a;) + jBsin(a;)
~ TN 1- Beos(a;) — jhsin(a;) T (1 — Beos())? + B2sin?(w)
B 1 — Beos(ay) + jBsin(a;)
1 —2Bcos(ay) + B2 (cos (a) + sin® (o))
=1

1 — Beos(ay) . Bsin(a;)

(1) = 28cos(ai) 7 (1+ 5) — 26c05(a)
In the worst case, meaning \; located on the boundary, we have = 1, with
which the real part of 1/\; becomes —1/2. Thus, the boundary of the Perron
disk is mapped to a parallel of the imaginary axis located at -0.5. For Re(—1/X\;),
this case marks an upper bound, accordingly 1/); are always located on or
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position of the agents

time [s]

Figure A.19: Simulation results for the formation

left of the -0.5 vertical line. This area is entirely within the ”allowed” region
determined in (ii), thus the given MAS is stable for all topologies.

From the simulation of the given formation, the results shown in Fig. A.19 were
generated. As one can see, the agents reach the desired formation, meaning the
desired relative distances among each other. However, with the architecture used
here it is not possible to control the absolute position of the formation. For this
reason the actual formation is shifted w.r.t. the reference values by some offset.

The reason for this behavior is that the controller only has access to the formation
control error

e=L(r—y)=Lr— Ly (A.23)
1

which depends on the reference distances between the agents, but not on the absolute
reference positions.
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Problem 6.3 (Design of a Formation Controller)

a) A linear model describing the dynamic behavior of a quad-rotor helicopter is given
in [29] and Appendix G| as a state space model

¢ = At + Bu (A.25)
y = C¢.

Unlike in the previous exercises, here input and output of an agent are vector signals.
Nevertheless, the equivalence proven in Problem 6.1 also holds in this case: The
formation is stable iff the controller K (s) stabilizes all systems

& = A& + Bu, (A.26)
v = NCO§;

for all eigenvalues \; of the Laplacian of the communication topology.

b) Using \; = 1 + ¢;, the systems (A.26) can be rewritten as

& = A& + Bu; (A.27)

Factorizing C' = D;Cs (e.g. using singular value decomposition), the second term of
(A.28) has a form that allows "pulling out the delta”, which yields

zs = Cs&;
v; = C& + Dsws
ws = 511 z§-
~—~
A

Due to the properties of the Laplacian, we already know |;| < 1, with which the
condition ||Al| < 1 for using the small gain theorem is automatically fulfilled.

c¢) i) A generalized plant for H,, formation controller design is shown in Fig. A.20.
For the shaping filters, a suitable choice is

Wy 1 CK S+ wg

— . ] p—
WS(S) ’ WK(S) My s+ cxwg

== Is. A.
MS S+ wg 3 ( 30)

ii) The H controller synthesis can be easily done using the function hinfsyn of
the Robust Control Toolbox, see the MATLAB file for more details. Suitable
values of the shaping filter parameters are

Wg Mg wrg | Mg | ck
0.001 | 0.001 | 1000 | 10 | 1000
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Ws

Ty

Us

Figure A.20: Generalized plant for H,, formation controller design

d)  The simulated positions in z-direction of the quadrocopters are shown in Fig. |A.21.
In this case, a topology was assumed with the Laplacian

1 0 -1 0
I— 0 1 -1 0
—-1/2 —-1/2 1 0
—1/2 0 —-1/2 1
4 T T T T
agent 1 1+
agent 2 |
2 agent 3
CICJ agent 4 |
o))
@®©
0] i
=
© _
c
i)
= ]
o
Q
4 6 8 10

time [s]

Figure A.21: Positions of the agents in x-direction

As one can see, the relative positioning of the agents meets the reference, whereas
the absolute position of the formation is not controlled.



218

Solutions

Problem 6.4 (Information Flow Filter for Formation Control)

a)

i)  According to Fig. 6.14 and with R(z) = (Inq+ F(2))"'F(z), we can write

p="R(Lgr—@—y)—y)+@-y) +y) = RLy(r—p)+ Bp
= RLyr+ R(I — Liy)p
=(I — R+ J%L(q))p = }A%L(q)'r
= (I=(I+ ) F 4+ (I+F) ' FLg)p=(I+F) " FLgr
:>([+F—ﬁ+FL(q))p: FL(q)r
=p= I+ FLy) "FLyyr

Gpr

ii) For the transfer function from p to y we obtain

y:pf((p—y):pf(p—]sf(y (A.31)

= (I + PK)y = PKp (A.32)

=y =(I+PK)'PKp (A.33)
Gyp

Based on the rule "Loop gain = forward gain by 1 - loop gain”, for a loop with
negative feedback around a system G(s) generally Gjo0(s) = (I +G(s)) ' G(s) holds.
With this formula, G, can be identified as a negative feedback loop around a series
connection of L, and F (s). Likewise, G, is identified as a loop around a series of
K(s) and P(s). This is exactly what is shown in Fig. 6.15.

From the structure of this setup some important observations can be made: The
two loops are only connected by a feed-forward path, thus they can be treated as
independent systems. With the position y as feedback signal, the loop on the right
acts as a position control loop with the signal p as reference input. Accordingly,
p can be interpreted as an estimated absolute reference position for each agent.
As all components of the right loop are block-diagonal, it can be decomposed into
independent systems for each agent. Conversely, the loop on the left depends on the
topology, but not on the agent dynamics. With p as output it can be interpreted as
a consensus algorithm to estimate the agents’ reference position.

Arp | B

For an information flow filter F =
Cr| O

1, the closed information flow loop is

obtained as

T = (AF — BFC'FL(n))I + EFLT (A.34)
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Figure A.22: Generalized plant for information flow filter design

In the same manner as in Problem 6.1, we can use the Schur transformation on the
state equation and achieve

i = (Ap — BpCpUp))z + BrUr. (A.35)

Accordingly, the stability of this loop is equivalent to the stability of a single system
t; = (Ap — \iBpCp)x; + \;Bpr; (A.36)

for all \; € eig(L). With \; = 1+ 0 and Cp = DsCs = I - Cp, we can rewrite this as
t; = (Ap — BpCp — dBrCp)x; + Bpr; + 0 Bpr; (A.37)

and "pull out” the factor § as uncertainty:

25 = _CFLUZ—'—T’L
Wws = 5[25.

A generalized plant to design the information flow filter is shown in Fig. A.22. The
shaping filter can be suitably chosen as

w 1
WF(S) = i

= . . A.
MF S+ wp ( 39)

The synthesis of the information flow filter can be done using the command "hinfsyn”,
for testing the information flow loop can be implemented in Simulink. A design with
the values was used to generate the results shown in Fig. |A.23, adopting the topology
from Problem 6.2. When the reference switches from zeroto |1 2 3 4 5 T, the
agents exchange their information and reach a consensus about every agent’s desired
position within one second. Note that the estimated positions are equal to the
positions actually reached by the cooperative formation controller in Problem 6.2.
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Figure A.23: Estimation values computed by the information flow loop
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Problem 6.5 (Disturbance Rejection in Formation Control)

a,b)

3
/
o 2r - 1
€
S
(U /
o 11 ]
=
©
c 0 R
.9
.‘i)
Q —
o 1t \ n
_2 i i T T i i i i
0 2 4 6 8 10 12 14 16 18 20
time [s]
(a) cooperative formation controller from Problem 6.2
3
@ 2r 1
C
o
&
o 17 ]
=
©
c 0 R
o
.‘5’)
Q
Q _qr \ =
_2 i i — T i pr— T T
0 2 4 6 8 10 12 14 16 18 20

time [s]
(b) information flow filter scheme, plant output y

Figure A.24: Comparison of cooperative controller and information flow scheme

Simulation results from both control schemes are shown in Fig. A.24. The major
difference to be observed here is that in case of the information flow filter only the
directly disturbed agent is affected by the disturbance, whereas the other agents
remain at their position. In contrast, in case of the cooperative control scheme, all
other agents react on the disturbed agent in different amounts. Note that this leads
to a different final position of the formation.

From the information flow filter scheme shown in Fig. 6.15, it is visible that there
is no feedback connection from the plant output y to the information flow loop.
Accordingly, the information flow loop is unable to react on any disturbances acting
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on the plant. The position controller is indeed able to react on the disturbance (as
visible in the reaction of the disturbed agent), but it does not contain any interaction
between the agents. In contrast, the cooperative controller both interacts with the
neighbor agents and has access to their real output data.

5 - |
[%2]
24 .
()
(@]
©
o 3r =
=
o 2f -
R
R 1
o

0

\ / i i i i i i
0 2 4 6 8 10 12 14 16 18 20
time [s]
(a) cooperative formation controller from Problem 6.3

5 -
[2]
£ 4f
(0]
()]
©
o 3
£ \
o 2r
3 \
3 1f e
o

0 S

0 2 4 6 8 10 12 14 16 18 20

time [s]
(b) information flow filter scheme, plant output y
Figure A.25: Results achieved with the modified topology
d) Results generated with the modified topology are shown in Fig. A.25, where the

yellow curve belongs to the new agent with fixed position. Whereas in previous
results only the relative positions matched with the reference, here also the absolute
positions match. The reason is that the control schemes are only able to control the
relative position, but in case of a fixed agent all relative positions are controlled with
respect to this position. Accordingly, the fixed agent acts as a leader of the formation
and defines its absolute position. Note that in this scenario the information flow
filter shows a significant performance benefit w/r/t the cooperative scheme.
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Problem 6.6 (Scheduled State Feedback Synthesis)

a)

b)

The state equation for a group of five agents is
!

2
[x] [[5®AI5®Bp[5®BU 63

- - = + - = - == - p 9 p: @ q
q LeC, 0 1+ 0 w o4
@5

The block P is described by the state equation of the previous task. The block Fis
described by F = I5; @ Fy + © (I5 ® F}), thus

u= (I Fy+0 (I;® F)(L® L)) (r+)
=(LF+0O0(LoF)) (w+z).

If this control input is substituted in the open-loop state equation from the previous
task, we get

i=(I;® A)z + (Is ® By)p + (I ® B,)u
=@ A+ (I;@B,)p+ (Is @ B,) (L® Fy + O (L® F1)) (w+ x)
=(l®A+ LB, Fy+ (I;®B,)O (L® Fy))x+ (Is ® B,)p
+ (L ® ByFy+ (Is ® B,)O (L® Fy))w.

Through the control input the uncertainty © appeared again, thus the LFT channel
has to be adapted, leading to

, @A+ L®BFy, I59B, Iy®B, L®B,F| [« o

x|l |----=--=-=---=--- l— — — = = — — = — — — l——— = === - -

il I®C 0 0 0 pl. p= ] .
| mee 3 ek

i)  The closed-loop systems with included weighting filters is shown in Figure |A.26.

ii) The plots of 1/|W;| and 1/|W}| are shown in Figure A.27. To achieve good
tracking in position and velocity, 1/|W;| should have positive slope of 40dB/dec
at small frequencies. Since the filter needs to be stable, a pure double integrator
is not possible, therefore two poles with frequency 0.1 are chosen, with lower
magnitude than the system poles, whose frequency is around 1. The control
sensitivity should roll off at higher frequencies for a reasonable control effort.
This frequency is chosen here to 1. To have a proper filter an additional pole is
added at very high frequency, here chosen to 1000.



224

Solutions

iii)

»S—1>
K—2>
ul .| p X

Figure A.26: Generalized plant for distributed state feedback control

Magnitude (dB)

—60

Frequency (rad/s)

Figure A.27: Magnitude plot of the inverse filter functions

One possibility for the state space equations of the filters are calculated by
Matlab to

-k
Vﬂ:(ﬂ% oolﬁ
21

iy —1000 1 256] [z
and TR = |- T22 anal I fad2
€ ) —390.2 1 100 u”

0.2 —0.0814] .,

0.45 3.98

The generalized system including the filters is then described by

T
T

s A+ L® B, 0

0 1I;®B,s®B, L& B,F,
|

Lo(I,®B,) ILy®A, 0 1+ 0 0 + L®(,®B,)
Lo (LeB)R, 0 L®A 0 Io®BiLe (Lo Bk
I;® C, 0 0 1 0 0 0
L®F; 0 0 0 0 L®F
****** 6*****L3®11776**;**dffflffﬁfikéﬁgéixy
L 0 0 Lo®Cy 0 Lo®Dy L® (Il D)k

:’EI\
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d) The group of five agents is stable and achieves an induced Lo-gain less than ~ if
there exist a P = PT >0, Q = Q7 <0, R= R" and S, such that

0 151 I 0 0
P 0 A B, B,
Y ____ |2 Pr DPw
" @5 o
,,,,;5?,@J,,,,,, Cy Dy Dy’
| \—%2[ 0 0 I
| | — _
L ‘ 1 I_ _Cz 2q Dzw_
«1' 70 36
[*] [ST R] 7 >0, VO € ©

e) In the following the first condition of the full-block S-procedure is called main
condition and is abbreviated as M7 WM < 0. The results of this part are similar to
[28].

i)  The transformation such that M contains only block diagonal matrices is given

by
S®IQ I ; ]
Sl l
| |
Zy = S@ b S® I i and
| S® 1
[ \S®I2
S @ I |
S® Iy
S® I
S® I
S® Iy
S® I
S® I
= S® I
S ® Iy
S ® I
S SseL
S® Iy
S® I
L S® I
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ii)

iii)

iv)

It is shown exemplarily how A is diagonalized

S @ I, oA+ L®B,F, 0 0 lsel
S®I, L®(ILboeBy) Loi®A, 0 S®1y,

I Sehl | L® (I ® By)Fy 0 Iio® A S® 1,
S® 1y [S® A+ LS ® B,F, 0 0

= S®I LS® (I,® Bs) S® (Ia® As) 0
I S®L)| | LS® (I, ® By)Fy 0 S® (I, ® Ap)
S-S @ A+ S'LS @ B,Fy 0 0

= S—'LS &® (.[2 ® BS) S-S X (IQ X AS) 0
i S—'LS ® (]2 ® Bk)FO 0 S-S X (]2 X Ak)
s © A+ A® B,F, 0 0

= A®(L®B,) o [l®A) 0
i A ® (I, ® By)Fy 0 Is ® (1o ® Ay)

If L is symmetric its diagonalizing transformation A = S7!LS is orthogonal,
thus Z; and Z, are orthogonal. Thus ZT = Z;* and ZI = Z;*.

The Lyapunov matrices and the multiplier matrices must be structured such
that ¥ commutes with Z;. Therefore they have to be partitioned as the
transformation matrix as

I, @ P,
Is @ Py . with P, Py € R¥? P, e R¥*,
I; ® P

N
I

5 ® Q)

with Ql,QQ € R2%2

Qi
I

I; @ Qs

and R and S accordingly.

The transformed main condition only contains block diagonal matrices. The
out multiplied condition can be permuted to get a block diagonal LMI, with
the blocks only differing in A\. Thus to fulfill the block diagonal LMI it suffices
to fulfill one block for all possible values of A. Since we use the normalized
Laplacian here, we know that A € [0,2]. Thus the main condition results in
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Py ;
0 | P | I 0 0
P i A+AB,F, 0 0 1B, B B,F,
P | | MIp®Bs) LeAs 0 0 O I,® B,
P00 1 WLeB)F, 0 LoAL0 LeBl(1:®Br)Fol
T P. [ [ 0 I 0
R o 1l 7 C, 00 0 0 0 ’
L@ [ S L AR 00 0 o W
{Sf }[]‘—h } 0 0 I
77777777 LSSl Ry 0 LeC, 0 0 0 A I®Dy)
| :—7121 . 0 0 I, ®Cy, 0l2® Dy (I2®Dy) Fo) |
_ | L
VA e [0,2],

] © ol

Mol )

f)  The congruence transformation 7" to eliminate products of controller and Lyapunov

©
O|| >0,V € O.
I

matrix in the main condition of the size of one agent derived in the previous task,
which we will call M PsiM > 0 in the following, is given by

-Pf .

Pt

resulting in a transformed system with the transformed Lyapunov variables Y; = P,
Y, = Pz_l, Y; = Pg_1 and the new controller variables Dy = FyY; and Dy = F1Y;.

g) The congruence transformation of the previous task let to the transformed conditions

1 0 0
01 } N rAY: + AB.Dy 0 0 B, B, B.Do
0o |l MEeB (koA 0 J 0 0 J (L®B,)Y;
[Ql } {Sl | LAU2®Bk)Do_ 0 (12®Ax)Ya][ 010 Byl [(1:® Bi) Do
[*]T | QQ So | 0 I 0
Pl . o 4 o bo) |
dslled oo od _bd_bol
[ 2
1 1 ! I 0 (12®C)Ys 0 0 O AMI2®D;s)Yq
) ) L |:0 0 (IQ@Ck)Y3:| |:012®ij| |:(12®Dk)D():|_

VA e 0,2],
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where the outer factors depend in the following way on the unknowns

o1 i I 0 0
IO ! ! A(}/la}/Q?)/E’nDO) Bp Bw(}/bDU)
[ P | e et e L e 2 e/ < Sl

T \ Q S 0 1 0

% ' STR | C,Y1,D1) 0 Du(Di) |’ vA€(0.2].

G | A Sl M. Lo S P

\ ! —,y%[ 0 0 1

\ \

L ! 1 [_ L Cz(Yéy YES) sz Dzw(Yh DO)_

Although we could eliminate the products of Lyapunov matrix and controller matrices
by the variable transformation, there are obviously still products of the multiplier
matrices with Y} and D;. This can be eliminated by the use of the dual version

given by
071 ALY Ve, Do) —Cy(Yi, Dy)T —C.(Ya, Vi)
o I 0 0
HT QS -B 0 br
*
CSTRL 0 __ r. 0o ’
: : —’yzl _Bw<}/17DO)T _qu(Dl)T Dzw(Y’bDO)T
| | Il 0 0 T |
VA €[0,2],

Q Sl_[e s
here | ;. ~| = . It is also necessary to use the dual multiplier condition
v [ST R] [ST R] Y P

as well, otherwise it would not be linear, because of the inverse appearing in the
dual form. The dual multiplier condition is considered in the following task.

g) i) If we out multiply

>0,¥5€4d. (A.40)

we get the quadratic inequality
f(6) =8*q+20s+r>0

If ¢ is negative, the parable open downwards, otherwise upwards. Only if it
opens downwards and thus ¢ < 0, f(dmin) > 0 and f(Omax) > 0 assures that
f(8) > 0 for all § € [Omin, dmax] as illustrated in Figure A.28.

ii) The dual multiplier condition is The multiplier condition

T ~ ~
T'[8 §][.4] <o vaca

with R > 0.
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)

Figure A.28: Multiplier condition in the scalar case
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Problem 6.7 (LPV State Feedback Formation Control for Non-Holonomic Agents)

a) The dynamics of the handle point can be obtained by finding the geometric position
of (z4,yq), based on the coordinate system (x,y), and derivate it w.r.t time. Below
are the dynamic equations of the handle.

Tg = vcos$ —wdsin ¢ (A.41a)
Yq = vsin ¢ + wd cos ¢ (A.41Db)
¢ =w (Adlc)

The transformation T represents a time varying a change of coordinates, i.e. the
horizontal direction of the disk is aligned towards the direction of motion. The
transformed equations for the handle point (z4,yq4), based on the coordinate system
(X,¥) are given by

-%d =v+ wgd (A42a)
o = —wiq + wd (A.42D)
¢=w (A.42c)
A state space model is given by
jjd Owo i’d 10 v
Ya| = |—w 00| |ga| +1]04d [ ] (A.43)
) 000 o 01

An LFT representation of the above state space model requires to pull out the
parameter w. One can do this by hand, which is relatively easy for systems with
small number of parameters or by employing Matlab tools which may find the most
efficient representation in terms of parameter repetition. An LFT representation is

given by:
[ 000110110]
| |
000 01:0d
| |
" 00000 01|,
- 050100000 |7
Bl k k_— @kpk kF— WL A.44
P 1= s00l00i00] [ ¢TOP 9=k (A44)
Y7 N e 4----- q------ U
10000100
010100100
1 001100100]

The transformation 7" eliminates the non-desirable trigonometric functions. Handling
these as LPV parameters can introduce conservatism and potentially lead to non-
feasible LMIs. A drawback of this transformation, is that all agents k are subject
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to different orientations, i.e. all agents’ positions are based on different coordinate
systems.

The benefit of the handle becomes apparent in Eq. A.43. One can see that, if d =0,
then the influence of the input w on gy is lost. Thus d # 0 increases the degree of
controlability to the system.

The transformation matrices are necessary due to the coordinate system on which
the communication occurs. It would not make sense to add/substract quantities in
different coordinate systems. Thus, it is necessary to perform the communication in
the same reference system, by using 7. However, the controller F (0) assumes that
the information it receives it is on the transformed coordinate system, thus T-1is
necessary after the communication.

Rearrange the block diagram, to obtain L; = T _1L(3)T . Notice that this matrices
do not commute, which would be nice. The matrix T is an orthogonal matrix, i.e.
T—! =TT That yields Ly = TTL(g)T, which is symmetric as required. Moreover,
since the modulus of all eigenvalues of T is always 1, the eigenvalues of Ly are the
same of L3). Since the approach to employ relies on a controller that is robust
against the eigenvalues of the communication topology, using Ly = TflL(g)T as a
transformed version of the original communication topology is still valid. Hence, no
changes in the generalized plant matrices are required.

The communication suggested for this problem can be interpreted in two ways: 1)
the usual physical communication where agents communicate their global position
(e.g. by using a GPS) to other agents. 2) use local position sensors where instead of
measuring their own position, agents measure other agents relative position (e.g. by
using a camera/laser system). For the latter, communication is directly implied by
measuring relative positions.

The LMI 6.70a/ is structured as

0] [Wer 0 0] [ Wy
,,,,, A I IS
WE WI 0| |0 =210 | Wy | >0, (A.45)
,,,,, A I A
I 0 0 If0o0 T
after performing the multiplications it yields
(vamnﬂwq-+{gﬂ)-—vv;(72fﬂn@ > 0. (A.46)

Applying the schur complement to above inequality leads to

01

W%m+Mvw
>0, (A.47)
[ Wy ’}/721

which is now linear in all the decision variables. Notice that one has to maximize
the variable 7 = y~2.
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To completely remove the LMI 6.70b, additionally to R > 0, one can impose the
following constraints:

Q=-R<0 RO=OR S"=-5 S0=063
Those constraints simplify the LMI 6.70b as follows (recall that ©T = ©)
Q- 05" - 50+ 6RO <0
—R+ 56 — 56 + ROO < 0
—R(I-0% <0

Since [©| < 1, the factor (I — ©?) is always positive definite. Under the mentioned
constraints, this LMI is satisfied at all times and, hence there is no need to include in
the synthesis. This is certainly very conservative since many structural constraints
are imposed on the multipliers, which possibly can lead to infeasibility. However, for
large number of parameters this can greatly reduce complexity.

d & e) A set of weighting filters to impose low steady state error and reasonable control
effort is given by

: (1/MS)(S+'IU5M5) )
Ws =d Z — =123 A48
° 1ag< s+ wg, Asg, ! U ( )
Wics = diag <(CKSZ/ sl wKSl)) L i=1,2 (A.49)
5 + Cks,Ws,
Ag, =001 Ag, =001 Mgs, =05 Mggs, =0.9 (A.50)

M51’2 =1 MS3 =1 CKs, = 1000 CKSy = 1000

After the state feedback gains are synthesized, the simulation can be run. A
test with a square formation can be seen in Figure A.29), where the trajectories,
initial conditions and the final interaction topology are shown. The formation and
orientation error can be seen in Figure A.30.
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Figure A.29: Formation reference simulation.
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Figure A.30: Formation error.
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Solutions — Distributed Control of Spatially Intercon-

nected Systems

Problem 7.1 (State Space Realization of a PDE)

a) The central finite difference of the n-th order derivative of function f(x) has the
analogous form
arf ol fl(z 1 & i n
TSy = B LSy (7 ) s oo, (A
h h™ = l 2

dzx™

where h is the distance between two grid points, in our case the distance between
two subsystems.

Discretizing (7.30) in space requires the discretization of —(t s). The application

of (A.51) yields

My

t,5) = ;4[ (£, s+ 2h) — Ay(t, s+ h) + Gy(t, 5)

—dy(t,s — h) +y(t, s — 2h)] (A.52)

Replace the continuous spatial variable s in (A.52) with its discrete counterpart s,
eg. s+2h—s+2

o Y(ts) = }}4[ (b5 +2) — dy(t,s + 1)+ 6y(t, s) — dy(t,s — 1)+ y(t, s — 2)].
(A.53)

Inserting (A.53) in (7.30) and then rearranging the terms leads to (A.54) discrete in
space and continuous in time

0%y

w(ta 8) == Ol[y(t, 5+ 2) - 4y(t7 5+ 1) + 6y<t7 3) - 4y(t7 s — 1) + y(tv S — 2)]
+ Bu(t,s), (A54)
where a = h4, and g = LA. It describes how the dynamics of subsystem s is

influenced by itself and its nearest neighbours, i.e. s —2, s —1, s+ 1 and s + 2.

According to the definition of the spatial shift operators S
Sy(t,s) == y(t,s + 1), (A.55)
the equation of motion (A.54) can be rewritten as

0%y

w(t, s) = —afS? —4S +6 — 4S5 + S7?y(t, s) + Bu(t, s). (A.56)
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b)

The state space model of a multi-dimensional system has the form

T'(t, s) At Al Al Bt [t(t,s)

|
wa(t,s)| _ |AY Ay Ay By | |val(t ) (A.57)
w-(ts)| AT A% A% B | o_(ts) |
y(t,s) ct ¢y C: D u(t, s)
Choose the temporal and spatial states as

y(tu s — 2)
oo | u(ts) e | yts=1)
gts) | o] T [ uts+2)
y(t,s+ 1)

It is not difficult to fill in the matrices A", A%® A” and B’ just by recalling the
equation of motion (A.54)

At — 0 17 Al — 0 O At = 0 O . Bl- 0
—6a 0 —a 4o —a 4o 15}

A3 A, A% B3
Ast Ass A% B

spatial states and spatial /temporal states are involved, i.e.

To fill in matrices [ ] , only the equivalences between the shifted

y(t,s — 1)
[@Mtﬁ)] U
w_(t,s) y(t,s+1)
y(t, s)

Finally, we obtain the state space model defining the dynamics on subsystems

gty ] [o 1o 00 0] wts) ] 0]
_ts) | |76a0r—adar —ada ) glts) || B
y(t,s — 1) 0O 00 10 O y(t,s —2) 0
N t,s) (A58
,,y(,t’,szif 7717707:797707: 7077077 7@{(?’757_717)7 + 797 u( 75) ( )
y(t, s +1) 0000 010 1 ||ylts+2) 5
Coyt,s) | |1 000 000 0|yts+1)] |0
[ y(ts) ]
_yts)
‘ ‘ y(taS_Q)
Be =1 A.59
y(t,s)=[10 00 00] o) (A50)
y(t, s +2)
y(t,s+1) |
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¢) The approximation of %(t, s) takes the form

‘2132/@, 5) = le ly(t +T,s) — 2y(t, s) + y(t — T, s)]. (A.60)

Analogously replace the continuous temporal variable ¢ in (A.60) with its discrete
counterpart k

gg%”):;ﬁﬁk+h@—2Mh@+y%—lﬁﬂ. (A.61)

Replacing both (A.53) and (A.61) in (7.30) and rearranging the terms leads to a 2D

difference equation discrete both in time and space

y(k78) :2y(k - ]-7 S) - y(k - 278> - Oé[y(k’ - 178 - 2) - 4y(k - 178 - 1) + 6y<k - 17 S)
—dy(k—1,s+1)+yk—1,s+2)]+ pulk —1,s), (A.62)

_ T?EI _ 1
where a = SART and = A

d) Following the same procedure of converting a discrete transfer function into its
controller canonical state space form, the matrices | A" A’ At_S: Bt | and C} can be
easily filled up. The rest of the matrices rely again on the equivalence of shifted
spatial states and spatial /temporal states. The state space model discrete both in
time and space is obtained as

w(k—1,s) | [o 1 io 010 0[] z(k—25) 0
z(k, s) -1 2—6a —adar —ada z(k—1,s) 1
,,,,,,,,,,,,,,,,,, A B T e R At 7 B Bt
z(k—1,s—1) 0 0O +0 10 0 ||z(k—1,5s—2) 0
_ t
(k=15 |01 10 010 0ffa(k-ls—1) o )
wh=1s+1 (07770 70 000 1| |[ak-1s+2)| |0
| a(k—1,5) | [0 1 10 010 0 ||a(k-1s+1)] |0
(A.63)
z(k—2,5) |
_alh—Ls)
C x(k—1,5—2)
= ’ A.64
y(k. s) @ﬁoooo]ﬂk_Ls_U (A.64)
z(k—1,s4+2)
| 2(k—1,5+1) |
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Problem (Simulate the Open Loop Response)

a) Fig. shows the experimental measurements after an impulse is applied at the
middle of the beam. The measured outputs are the sensor voltage.

output voltage [v]

4

beam length [m] time [s]

output voltage [v]
o

-5

2.745

2.74
beam length [m] time [s]

Figure A.31: The experimental impulse response (u.) and a zoomed-in where the vibration
starts (b.)

a/b)  For an extensive solution to the problem, please consult the MATLAB files.
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Solutions

Problem 7.3 (Controller Design and Closed-loop Simulation)

The state space representation of the plant discrete both in time and space, taking
the disturbance into consideration, has a form

[x(kjtl,s)]:[ATT ATS] la:(k,s)}_’_[BT BTl [d(k,s)] (A.65)

w(k, S) AST Ass ’U(k’, S) BS BS u(k:, S)
y=[Cr Cs | [“ZEZ j; ] (A.66)

The shaping filter for control sensitivity Wy has a state space representation

x1(k+1,8) = Ayzq(k, s) + Byu(k, s) (A.67)
21 (k, s) = Cixy1(k, s) + Dyu(k, s), (A.68)
whereas the shaping filter for sensitivity Wy
za(k +1,5) = Asws(k, s) + Boy(k, s) (A.69)
29(k, s) = Coxa(k, s) + Day(k, s). (A.70)

The series interconnection of the control sensitivity Wk and the sensitivity Wg with
the plant (A.65)-(A.66) only augments the temporal dynamics of the generalized
plant, which takes the form

z(k+1,s) Arr 0 0 Agps| [ z(k,s) Br Br
r(k+1,s)] | 0 A 0 0 x1(k, s) 0 By| [d(k,s)
zo(k+1,5)|  |BCr 0 Ay ByCs| | xo(k,s) 0 0 [u(k,s)]
w(k:, S) AST 0 0 ASS L U(k‘, S) BS BS
(A.71)
21k, s) o ¢ o o 1]*®] rp
olks) | = |DoCr 0 G Docs| [PF 0 0 ld(k”s)] (A.72)
y(k, ) cr 0 0 o | |7k o | Lulk:s)
Lv(k, )

Given the structure of the shaping filters Wg and Wy as in (7.31) and (7.32), by
adjusting the tuning knobs, it is possible to realize the required closed-loop bandwidth
(e.g. 10 Hz), efficient suppression of the vibration at modes, with reasonable control
effort being used.

To construct the generalized plant, the transfer function form of the shaping filters
needs to be converted into their state space representations (A.67)-(A.68), (A.69)-
(A.70) using standard ss command of MATLAB.

Remarks:
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—  The first argument of the function ’hfMD.m’ requires a generalized plant.

— Note that, the function ’hfMD.m’ admits by default that the last input of the
generalized plant is the output of the controller, and that the last output of
the generalized plant is the output of the plant. So when we construct the

generalized plant, the last input/output channel has to be u(k, s) — y(k, s) as
in (A.72).

— ’hfMD.m’ allows a controller design for either a continuous time or a discrete
time plant. The synthesis conditions written in '"hfMD.m’ are for continuous
time systems. If your plant is discrete in time, let the first element of the vector
‘sys.blk’ be negative when you define the system matrices. For example, for

a system with 2 temporal states, 1 dimension of v, (k,s) and 1 dimension of

v_(k,s), define sys.blk = [-2,1,1]. Then ’hfMD.m’ recognizes a discrete time

system, and applies the bilinear transformation to convert the discrete time

system to continuous time system, before the controller synthesis process starts.

— To simulate the closed-loop response, you can use the function ’starMD.m’ to
interconnect the subsystem plant G and the subsystem controller K. Note
that, the last input/output channel of the plant G should be defined as the
interconnection signals with the controller K, i.e. u(k,s) — y(k,s) as defined
in (A.74). ((A.73)-(A.74) are defined the same way as (A.63) by just adding
the disturbance d(k, s) as an extra input)

z(k—1,5) | [0 1 : 0 oi 0 0 ][] z(k-2,5)

z(k, s) -1 2—-6a —ada —ada x(k—1,s)
,,,,,,,,,,,,,,,,,, LG TR T e
r(k—=1,s—=1) |0 00 1100 z(k—1,5s—2)
ce(k-1s) | |01 10 010 0 fe(k-Ls—1)
z(k—1,s+1) 0 0 0 0101 z(k—1,5s4+2)

- x(k—1,s) 0 L 0 010 0 |[zk-1s+1)
-
11
00| | d(k,s)
’ AT3
+OO lu(k,s)] ( )
00
_OO_
x(k —2,5s)
‘ ‘ k—1
U(k’,S) 00,00,00 x(al::(—ls’i)Q) 01 (k‘ 8)
y(k,s) | =108,00,00 x(k—fs N + 100 l (k’s)] (A.74)
k 080000 |-=---= N ’
y(k, s) Br00! k- 1s19)
| 2(k—1,5+1) |
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—  When using ’csimulateMD.m’ or 'dsimulateMD.m’ or ’dsimulateMD_ATC.m’
to simulate the closed-loop responses, in order to observe the involved control
effort and measured output after simulation, it is necessary to output these
signals separately, as in (A.74), where the first output is to output the control
effort, the second output to output the measured output of the plant, whereas
the third output is directed to the controller by using 'starMD.m’.

Fig. A.32 and Fig. |A.33 shows the closed-loop response of the beam, where an
impulse and a chirp disturbance is injected at subsystem 8, respectively. In Problem
7.2 we have seen that, since the PDE does not include any damping terms, the
open-loop beam vibrates forever after the disturbance is introduced. Nevertheless,
under the control of designed distributed controllers, the vibration is fast suppressed.
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displacement [m]

beam length [m] 00 time [s]

x 10

displacement [m]
o

beam length [m] 0 0 time [s]

Figure A.33: Open-loop response of the PDE to an chirp signal up to 10 Hz as disturbance
(u.) and the closed-loop response (b.)



Appendix B

Linear Fractional Transformations

B.1 Definitions

Tty A
A f—
(a) Absorbed "Deltas” (b) Pulled out "Deltas”

Figure B.1: Visualization of the "Pulling-Out-The-Deltas”-procedure, [13]

Definition B.1 (Upper LFT, [13]) Let the complex matriz M be partitioned as

[Mn M, e QPrtp2)x(ai+az)

M21 M22

Then an upper LET with respect to A € CH*P1 s defined as the map
A x M : @tI2><p2 — CPlXQI
with

My 1 M
A % [Mi T ]\éj = M22 + M21A<[ - M11A>71M127

provided that the inverse of (I — M1 A) exists.
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Definition B.2 (Lower LFT, [13]) Let the complex matriz M be partitioned as in
Def. B.1. Then a lower LFT with respect to A € C®?*P2 4s defined as the map

A M : QUXPL iy QP2
with
My M
[Mi T ]\Aj * A = M11 + Mle([ - MZQA)ilMZM

provided that the inverse of (I — M) ezists.

B.2 Useful Formulas

A multiplication of two LFTs is another LFT

My, 1+ Mg Nyp 1 Nig Ay 0 \
AN e T B AN P = N N |-
( M*[M21+M22D< N*[NﬂNQJ) [0 AN]* O___ M LM

A useful formula exists in
—C-'D 1 Cc!
A+ BA DAY ' =Ax|---Z-__ o
(A+BA)C+ DA) *lB—AC—1D+AC—1]’

while it is assumed that the inverse of C exists.
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Mathematical Tools

Often, several tools are necessary to derive LMI formulations. Here is a collection of some
useful theorems, lemmas, etc.

Theorem C.1 (Full-Block S-Procedure, [16]) Given
G<5) =Ax [ e ] = Gy + G21A(I — GllA)_lGlg, 0 € P,

the matriz inequality
G (6)QG(5) <0, Vo € Ps

holds iff AM = M, such that

T | G11 Gio T
el [ 8] [ ufesen
‘ Ga1 G

Lemma C.1 (Dualization Lemma, [16]) Assume Q is a nonsingular matriz and S
a subspace with ing(Q|s). Then in(Qls) +in(Qs) = in(Q).

Lemma C.2 (Dual Quadratic Inequalities, [16]) Consider the matriz inequality in
X

I

.
]m m
[A + WTXV] @ [A cwrxy] <Y (G1)

with A € R™™, in(Q) = (m,0,n). Therefore P = Q™! exists. Then, due to Lemma C.1,
(C.1) is equivalent to

(C.2)

l_(A + IZTXV)T] ! » [—@4 + IZTXV)T] .
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Lemma C.3 (Parameter Elimination Lemma, [16]) Inequality (C.2) is solvable iff

T CATTT AT
NJ[IZ] Qlﬂ/\/vw, and NJV[f] P[f]/\fwm, (C.3)

with Q = P71,



Appendix D

Induced Lo-Gain Based State
Feedback Synthesis

The following reviews the synthesis of a gain-scheduled state feedback gain using parameter-
dependent Lyapunov functions. The derivation is based on [5] and is extended, such that
the existence conditions are convexified for the cases when simplifying assumptions on
the model are made. More specifically the cases of affine/polytopic and rational /LFT
models are considered using tools such as multi-convexity constraints and the Full-Block
S-Procedure to derive convex LMI constraints.

Goal

o Synthesize a stabilizing state feedback with three distinct methods to convexify the
problem:

—  Gridding,
— Polytopic approximation and multi-convexity conditions,

— Using the Full-Block S-Procedure and multi-convexity conditions on the quad-
ratic multiplier conditions.

References The core methodology worked out in this exercise is contained in [5] and
presented here with a slightly more streamlined proof. Results from [10], as well as [11],
are adopted to provide a relatively broad overview about the now standard techniques for
convexifying matrix inequality based problems.
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Problem Setup Consider the LPV plant

z A(p) 1 Bp(p) Bulp) | |z
2| =1Cp), 0 Dyulp)| |w (D.1)
y I ' 0 0 u

It is the goal to derive conditions for the synthesis of a scheduled state feedback gain
Dg(p), such that Ay(p) = A(p) + Bu(p) Dk (p) is stable for all p € [—1, 1] and achieves an
induced L9-gain performance of ~.

Dualization Starting from the parameter-dependent Bounded Real Lemma

P(p)Aa(p) + Aalp) P(p) + P(p) + ..
o ,1}/<CPT:C1<'0)CP701<10) + Dz—)rp,cl(p>DPP,cl<p)) - 71 < Oa vp S Pp (D2>
P(p) >0, VpeP, (D.3)

the dual matrix inequality in the unknown Y (p) = P~1(p) is first derived.
Therefore, rewrite (2.39) as

L |2 Plo) I 0
m Plo) 0y o] [ Bl <o, o e, xp, (D.4)

where n = p is the rate of change of the scheduling parameter and appears in P(p).
Dualize using Lemma (C.2 and receive

o v —Al(p) —CJalp)
x| |Y(p) =Y(p), I 0
o U 2 = s e S Y >0, V(p,n) € P,xP, (D.5)
[*‘| : _%I 0 B;:cl(p) Dppcl(p) i’ K
0 I 0 I

due to Y(p) = =P~ (p)P(p) P~} (p).

Parameter-Dependent Existence Conditions In order to derive parameter-
dependent LMI conditions for the existence of a state feedback gain that achieves an
induced L9-gain performance v as an upper bound, the elimination lemma can be used.
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With

i ) = o

the controller gain can be eliminated by pre- and postmultiplication of (D.5), NV (p) =
ker([BJ (p) D;u(p)}). For simplicity, assume that both matrices B,(p) and D,,(p) are

| Dt 1] D)

not parameter dependent, i.e. N = ker( [BUT D;u}). which yields the existence condition

S oY) AT (p) =Cy (p)
NT [j Y(p) ~Y(p) 3,;%1, o —Bgr(p) - 78— --|N>0, V(pn)eP,xP, (D7)
0 Al 0 I

Controller Construction Assume that the plant is properly defined and scaled such

0 C,,
p2

Under the assumption that a solution Y (p) = P~!(p) for the dual problem derived above

that we can write

has already been found we use the the closed-loop plant factorization

Aa(p) Bpalp) | _ | Alp) By(p)| | | Bulp)
[CP,CI(P) DPP,cl(p)] a [Op(p) 0 1 + leu(,O)] Dk(p) {I 0] (D.8)
to show that the state feedback gain
D (p) = —(vB, P(p) + Cp,), (D.9)

is a solution to the state feedback problem by comparing above results.

First, we are making use of the assumptions

0 C
Dy, = ) Cp = o
w=l o=l
to first find an explicit expression for N'. We will then prove the formula for the gain (D.9)
by comparing (D.5) and (D.7).

With

N = ker({BuT D;J) =

o S ~

&
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observe that (D.7) becomes

S0 Y —(A(p) — BuCy,) " —Cy,
«| | Y(p) —Y(p) I 0
o R e B B >0, VY(p,n)€P,xP,, (D.10)
M 110 ~B/ (p) 0 P
0 Al -B, 0

0 Y() | ~(A(p) + BuDk () ~CJ, ~(Cpa + Dic(p))T
JT YY) r - o o
H —110 0 —B) (p) 0 0 >0
0 4L 0 0 I 0
0 0l 0 0 I
(D.11)
Inserting (D.9) yields
[ —(A(p) — B.Cp,) T + |
ST YL o) 5L o
l ] L0 0] e e T > 0.
* g o 0 ~B] (p) 0 0
! 0 1 0
0 0 _ 0 0 7 _

Since in (D.10) we have a 2 x 2 block matrix, we will apply the Schur complement to the
larger matrix inequality. We therefore expand (D.11) and obtain

~Y (p)(A(p) = BuCyp,) T = (A(p) = BuCy,)Y (p) = Y(p) + 2yBuB, + 2B,B] -YC, B,
* ~vI 0
* * ~vI

which after a Schur complement with respect to the (3,3)-block yields exactly (D.10).

Convex LMI Conditions: Gridding We now derive convex LMI conditions to solve
for Y'(p) while minimizing v via gridding. Write (D.7) as

7[00 Y —AT(p) =Cy (p)
N RUCE T B 3 N
I 0 I
NT [* *}T}Y [—BpT(p) 0} N >0, V(p,n) €P,xP, (D.12)
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and apply the Schur complement. This yields

AT[ 0 YO L ] [-ATe -6 0 o)
Aﬂ'[] Y(p) ~Y(p)' I 0 A/,MT[ pp]
N Y B R R >0,
[—B;QﬂO}A/ ~T
[0 Y(p) —AT(p) —C} (p)
o ] pever [ o] A e
0 I NI L0 I o 117"
~BJ(p) 0] 7T
which eventually leads to
~Y(p) = Y(p)AT(p) = A(p)Y (p) Y (p)C, (p) —By(p)
Vg ﬂ « o 0 {g ?>0,(DB)

* * vI

When inserting Y(p) = 8;;5:’ ), it becomes apparent that the inequality is affine
in the parameters’ rate of change. It therefore suffices to grid the the parameters p and

consider only the extremal values of 7.

Convex LMI Conditions: Polytopic Approach We now derive convex LMI con-
ditions to solve for Y (p) while minimizing v via a polytopic multi-convexity approach,
assuming that both Lyapunov function and LPV plant are depending affinely on some
parameters . We take care of the special assumptions on the plant now and observe that
only A(#) is parameter-dependent. Including the multi-convexity condition

82

a2 (Y(OAT(O) + AB)Y (9)) 20,90 € Py

allows to solve

AT o] [Pl - YOAT0) —AOY(0) YOG By [,
l 0 I] * ~I 0 [0 I} > 0,
* * ~I
Y(0,v) € Py x P, (D.14)

in the vertices that span the convex hull of both the ranges of parameter values and
the parameters’ rate of change. Note that also the multi-convexity condition has to be
evaluated in all the vertices of the parameter range.

Convex LMI Conditions: Full-Block S-Procedure In order to derive convex LMI
conditions to solve for Y'(p) while minimizing v via the Full-Block S-Procedure and
multi-convexity conditions, use a quadratic factorization Y (p) = Ty (p) YTy (p) for the
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Lyapunov function. Here we assume that the dependeny of both Lyapunov and LPV plant
can be described as LFT with some parameters 9.

It is the goal to write inequality (D.7) in the form G(§)TQG(8) > 0, in order to straight-
forwardly apply the Full-Block S-Procedure. This will result in a convex parameter-
independent matrix inequality and a quadratic matrix inequality for the newly introduced
multiplier. We will first derive an LFT representation for G(9).

With Y (8) = Ty} (6) YTy (0) note that

ROR it R R ot

From an LF'T representation

one can get

Ty (8) =Ty (8) 0 0
S e 0| A 00 Vil ve oo
0 YO I 0 = AY * _Y21 _Y21 0 : YVQQ 0 0 0
0 0 01 Ay 0 0 Yo' 0 Yoz 00
0 0 0! 0 0 I 0
0 0 01 0 0 0 I

It is rather tedious to verify the above. A helpful identity can be
Ty (8) = You(I = Ay Y1) Ay (1 = YnAy) Vg,

Together with the LF'T representation

I 0 X Ay 1 Ay 1
fffffffffff oy dnide]
—By(d) 0 4 21 1 Az

0 I

we can now find

G(0) = [AY A ]* 0 A : Ao )
4 Yip YaoYo ]Y22Az2
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which can be constructed using the above formulae and should be reduced using the LFT
tools provided by MATLARB, in order to find a small-in-size LFR representation

17 0,0 Yy 0 0 Gu G2
l ] 0,Y 0 0 0 I 0 | >0, (D.15)
* 010 0 11 0 |[Gu Gn
00 0 0 ~I
00 [
li] M[A1<O, (6,n) € Ps x P, (D.16)

Condition (D.16) is quadratic in A, but can be solved in the vertices of a convex hull
including P5 x P,, if the multi-convexity conditions

My, M
My <0, My >0, withM:[ 1 12]

M21 M22

are imposed, where the M;; are sized conformably with A, for ¢,j = 1,2. Note that a
Schur complement is necessary to turn the above (sigmonial) inequality into an inequality
linear in 7.

The important contraint Y (6) > 0 should not be forgotten either. For this purpose, recall
that we factorized Y (8) = Ty (0) YTy (8) > 0, which is already in the form the Full-Block
S-Procedure can be applied to. Thus, with

and

< 0, \V/((S) € Fs.

Again, we consider solving the last inequality in the vertices of a convex hull including Ps.
We therefore require the multi-convexity conditions

Ny N
N11 < O, N22 > O, with N = [ 1 121 s

N21 N22

where the IV;; are sized conformably with Ay, fori,7 =1,2.
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Advanced Approaches






Appendix F

Graph Theory

Here some additional definitions and theorems useful for graph theory are given.

Definition F.1 (Incidence Matrix, [19]) Given is a directed Graph D = (V,€). If
the directed edge e, = (v;,v;) € &, then v; is said to be the tail (where the arrow starts)
and v; is the head (where the arrow ends). The n x m incidence matriz D(D) is then

defined as

—1 if v; is the tail of ey,
Dix(D) =31  ifwv; is the head of ey,

0 otherwise.

Lemma F.1 (Laplacian of Undirected Graphs, [19]) Given is an undirected
Graph G = (V,E). Assume an arbitrarily orientation to every edge in the edge set
E, the resulting oriented graph G° is directed. The Laplacian of G can then be constructed

by

L(G) = D(°)D(g")".

The Laplacian of G is symmetric and positive semidefinite, with its eigenvalues
0=XM(G) <X(G) <... < \(9).

Theorem F.1 (Connectivity of an undirected graph, [19]) The undirected graph
G is connected, if and only if A2(G) > 0.

Proof: The eigenvector corresponding to A\;(G) = 0 is 1. Suppose there exist another
vector z L 1, which is an eigenvector corresponding to the eigenvalue 0, such that

dALG):=0 <= ZD@G)DG)T2=0 <« DG)'z=0.
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Thus we consider the If (v;,v;) € £, we get z; — z; = 0. However since G is connected, this
implies z; = z; for all 4,5 € {1,...,n} and thus z || 1. Thus the geometric multiplicity
of the eigenvalue A1(G) = 0 is one. Since L(G) is symmetric the algebraic multiplicity is
equal to the geometric and thus also one, what finishes the proof. [ |

Theorem F.2 (Rank of a Directed Graph, [19]) Given a directed graph D. There
exist at least one vertex with a path to all other vertices, if and only if rank L(D) =n — 1.

Proof: The statement rank L(D) = n — 1 is equivalent to showing that the algebraic
multiplicity of \; = 0 is equal to one. Let us denote the the characteristic polynomial of
L(D) therefore, which is

pp = A"+ an X"+ gk + ag,
with g = 0 since zero is an eigenvalue of L(D). The algebraic multiplicity of that zero
eigenvalue is one if and only if oy # 0. We know that

= Z det LU(D) s

veY

where L,(D) is the matrix obtained from L(D) by deleting the vth row and vth column.
From Theorem F.3 it is known that L, (D) # 0 if there is is at least one possible path from
v to all other vertices. Thus a; > 0 if an only if there exists at least one v € V with a
path to all other vertives. This concludes the proof. [ |

The following Theorem is a simplified version of Theorem 2.12 given in [19], given there
without proof. The proof can be found in [33].

Theorem F.3 Let v be an arbitrary vertex of a directed graph D, then
det L,(D) = t(D),

where L,(D) is the matriz obtained from L(D) by deleting the vth row and vth column
and t(D) is the number of combinations of all possible cycle-free paths from v to all other
vertices. Here cycle-free means that no vertex is allowed to appear more than once in one
possible path.

Example F.1  The content of Theorem F.5 is shown exemplarily for the directed graph
in Fig. F.1 with the Laplacian

-1 -1 2

There are 3 possibilites to reach vertices 2 and 3 starting from vertex 1 as shown in Fig. F.1.
This is confirmed by

2 -1
det L1(D) = det l_l 5 ] = 3.
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There are no possibilities to reach the remaining vertices from vertex 2 or 3, which is
confirmed by

det Ly(D) = det Ly(D) = det [—01 g] ~0.

f oo o

(i)
Figure F.1: Graph D and all possibilities (i), (ii) and (iii) to reach all other vertices

g

starting from vertex 1
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Quadrocopter

Quad-rotor helicopters (short quadrocopters) are a suitable and popular research platform
for the application and testing of concepts for autonomous vehicles, such as e.g. formation

control. Here the dynamic behavior of such a quad-rotor helicopter is sketched based on
[29]:

A quadrocopter is a vertical take-off and landing (VTOL) aerial vehicle, the basic con-
figuration is shown in Fig. G.1: Four rotors are mounted on a cross-shaped body, such
that each of them exerts a thrust force directing upward perpendicular to the body plane.
These forces add up to the total thrust force

FTh:F1+F2—|—F3+F4 (Gl)

acting on the quadrocopter. The attitude of the body is described by the yaw angle
around the z-axis, the pitch angle 6 around the y-axis and the roll angle ¢ around the
x-axis. As a special property of the quadrocopter, within the z-y-plane the configuration
does not imply any predominant flight direction. However, here we define the positive
x-direction as "forward”, to which also the naming of the attitude angles refers to.

A horizontal movement can be achieved by tilting the quadrocopter, such that the thrust
vector gets a component in the z-y-plane and horizontally accelerates the quadrocopter.
With respect to a fixed coordinate system (aligned such that ¢ = 0), the forces on the
center of gravity are

F, = —Frpsin(6) (G.2)
F, = Frypcos(0)sin(¢)
F, = Frycos(0)cos(¢p) — myg.

Torques around the axes result from differences of the rotor speeds:
Tp = b(Fy — F) (G.3)
9 = b(F| — F3)

Ty = TM1 T TM3 — TM2 — TMA4,
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Figure G.1: Configuration of a quadrocopter

where 7;7; denotes the moment around the z-axis exerted by rotor ¢ on the body, b is

the distance between rotor and center of gravity. Note that the directions of rotation are
chosen such that T, = 0 for equal speed of all rotors.

Using Newton’s law F' = ma, we can write

ma = —Fpp,sin 6
my = Frp, cosfsin ¢

mz = Fpy cosf cosp —mg

Y =Ty
é:Tg
é:Tgba

where m = 0.64kg denotes the mass and g = 9.81 the gravity constant. Choosing a state
vector

. . . 1T
¢=ledygzzvd 0064 (G4)

and an input vector

u= [FTh —mg Ty Ty Td,}T, (G.5)
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we obtain a non-linear state space model £ = f(&,u) as

5:1 52

§2 —lsin g — gsin &y

&3 &4

& Mcos§gsinyy + geosfgsinéy

& €6

6 | _ | cos&ocos&iy +gcos§ycoséi — g . (G.6)
&r £

§8 U2

§9 &10

§10 us

§11 12
_512_ i Uy ]

A linear state space model can be derived by Taylor series linearization around the
equilibrium ¢ = 0 with f(0,0) = 0:

¢ = A + Bu (G.7)
y=C¢
with

(01000000 0O 0O O]
00000000 —g 000
00010000 0 0O0O
00000000 0O 0 g0
00000100 O 0O0O
00000000 O 0O0O

A= .

00000001 0 000 (G-8)
00000O0O0DO0 O 0O0O
00000O0O0DO0 O 100
00000000 O 0O0O
000000O0O O 0O 1
(00000000 0 00 0|
(00000 X000000]7
F_|[000000010000
100000 O0O0O0O0OT1TO0O0
000000 O00O0O0GO01
(1 00000000O0GO0O0O0
C=10010000000T00
(000010000000
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