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About this Document
This document is intended to help you with the design task ORC1—Robust Control of a
Spring-Mass-Damper System of the Control Lab practical course. It is written mainly in
the style of a tutorial and should provide you with all the necessary tools and Matlab
commands to solve the task.

This document is accompanied by Matlab files that you need to modify and execute
in order to develop your own design.

orc1_model.m This file deals with uncertainty modeling of the spring-mass-damper
system. It is meant to familiarize you with the Matlab functions and tools needed
to construct an uncertain model which can be used for controller synthesis.
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• You need to complete the code on your own and submit a published version
of this file (see Publishing) no later than one week before the scheduled date
for the experiment.

orc1_design.m This file deals with nominal and robust controller synthesis for the
spring-mass-damper system. Robust controller design is based on the uncertain
model constructed in the former file. It is meant to familiarize you with the
Matlab functions and tools needed to design a robust H∞ controller by applying
the Small Gain Theorem.

• You need to complete the code on your own and submit a published version
of this file (see Publishing) no later than one week before the scheduled date
for the experiment.

orc1_simulation.slx This file contains the uncertain simulation model and is used
for controller evaluation.

The code is guaranteed to work with Matlab 2016b 64bit, other versions might not
be supported. You can get the latest Matlab version from https://www.tuhh.de/rzt/
usc/Matlab/index.html or use the pool computers.

In this document, you will encounter blocks that indicate Matlab code:

1 [MATLAB COMMANDS]=USEFUL(TOOLS)

These are meant to get you started. You can (and should) use the help command
within Matlab to find out more about a particular command.

Another thing that you will encounter are preparation tasks:

Preparation: Sketch the Nyquist plot of G(s) = 1
s2 + 0.01s + 1 and check if unity

feedback stabilizes the standard closed-loop interconnection.

These are meant to prepare you for the question session that will take place prior to
conducting the experiment.

Task

Design a nominal controller and a robust controller for the spring-mass-damper system
that achieve the requirements specified in Section 1 and evaluate them in simulation.
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Attach all necessary Matlab and Simulink files that were provided to you no later
than one week before the experiment via email to the responsible Tutor and Supervisor.
You will get an email when your preparation is not sufficient to pass the Lab and will
get time to revise your design.

Checklist

� I read this whole document carefully.

� I did all preparation tasks and can explain them.

� I completed orc1_model.m.

� I completed orc1_design.m.

� I submitted all Matlab files.

1 Plant
In this laboratory project the design of a nominal and a robust control system for a single-
input-single-output (SISO) two-degrees-of-freedom (2-DOF) spring-mass-damper system
is considered. The spring-mass-damper system itself is a common control experimental
device which however is closely related to industrial control applications. The system to
be controlled consists of two rail mounted masses interconnected with two springs. The
springs connected to the masses can be changed. Furthermore, the rightmost cart can be
connected to a viscous damper. A free body diagram of the plant is shown in Fig. 1.

m1 m2

k1

x1(t) x2(t)

F (t)

k2

c2c1

Figure 1: Free body diagram of 2-DOF spring-mass-damper plant
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The springs connected to the carts are assumed to have spring stiffness constants k1

and k2, whereas the masses of the carts are m1 and m2, respectively. The equations of
motion of the system can be expressed as:

m1ẍ1(t) + c1ẋ1(t) + k1x1(t) − k1x2(t) = F (t), (1a)

m2ẍ2(t) + c2ẋ2(t) + (k1 + k2)x2(t) − k1x1(t) = 0, (1b)

where y(t) = x2(t) is the measured position of cart 2 in centimetres and F (t) is a force
input in Newton. Here, F (t) represents the control input to control y(t). Viscous friction
for each cart is taken into account by the damping coefficients c1 and c2.

During the experiment spring 1 represented by k1 and spring 2 represented by k2 can
be changed such that k1 ∈ K1 and k2 ∈ K2, where K1 = {200 N/m, 390, N/m, 830 N/m}
and K2 = {200 N/m, 390 N/m}. Here, (1) with k1 = 390 N/m and k2 = 390N/m is
considered as the nominal plant model. The masses of cart 1 and 2 are assumed to be
equal and given by m1 = m2 = 1.55 kg. To illustrate the effect of changing spring stiffness
constants for springs 1 and 2, Fig. 2 shows the Bode plots for all possible combinations
of springs connected to cart 1 and 2, where the damping coefficients c1 and c2 have been
set to c1 = c2 = 0.01 Ns/m.

Prep. 1.1: Construct a state space model based on (1) for the given physical parameters,
where x(t) = [x1(t) ẋ1(t) x2(t) ẋ2(t)]T .

As can be seen two resonance frequencies ωn1, ωn2 appear in the Bode plot which change
significantly with changing spring stiffness such that ωn1 varies between ωn1 ≈ 7rad/s
and ωn1 ≈ 10.5 rad/s while ωn2 varies between ωn2 ≈ 18.4 rad/s and ωn2 ≈ 34.8 rad/s.

Also the bandwidth ωb defined as the first frequency where the gain drops 3dB below
its static gain value varies and changes between ωb ≈ 12.5rad/s and ωb ≈ 28rad/s.
Furthermore, it can be observed that the static gain K0 solely depends on k2 and attains
the values K0 = {0.2564, 0.5}. Fig. 3 (a) shows the Nyquist plot of the plant for the
different springs k1 and k2, where the critical point marked in red is visible in the
enlargement shown in Fig. 3 (b).

Prep. 1.2: Looking at the Bode plot, what kind of controller properties (roll-off, poles,
zeros) can achieve robust stability of the closed loop? Which closed loop bandwidth
is reasonable for robust controller design?
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Figure 2: Bode plot of the plant for different spring stiffness

Prep. 1.3: What can be concluded regarding stability of the closed-loop system under
unity feedback from the Nyquist plot? What can be said about gain margin and
phase margin?

1.1 Including The Actuator

As mentioned before the force F (t) shown in Fig. 1 denotes the control force. This
force is generated by an actuator which is a DC brushless motor (permanent magnet
synchronous motor). Consequently, the input to the system which consists of actuator
and mechanical plant is not a force but a voltage V (t) applied to the DC brushless motor
that generates the force F (t) acting on mass 1. This is illustrated in Fig. 4, where the
actuator dynamics are represented by M(s) and the mechanical plant by G(s).

However, for controller design it is assumed that the output of the controller is the
force F (t) acting directly on the first mass. This is realized by inserting an approximated
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Figure 3: Nyquist plot of the plant for different spring stiffness

M(s) G(s)
V (t) F (t) y(t)

Figure 4: Actuator and mechanical plant

inverse motor model given by a constant gain U in front of the actuator as shown in
Fig. 5. The gain is chosen such that Fc(t) ≈ F (t) within the actuator bandwidth ωab ,
i.e., U = M(0)−1 such that UM(jω) ≈ 1 for ω ≤ ωab.

M(s) G(s)
Fc(t) V (t) F (t) y(t)

U

Figure 5: Inverse actuator model, actuator and mechanical plant

1.2 Limits of The Plant

Since the range of motion for the carts is limited, there are two limit switches such that
the maximal displacement is about 30mm in each direction. If the displacement exceeds
this limit an emergency shut down will be triggered to avoid damage. Therefore, and to
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leave room for overshoot when exciting the plant the reference signal r(t) is limited to
|r(t)| ≤ 20mm. Regarding the actuator, input voltages of V (t) ≤ 10V can be applied.
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1.3 Design Specifications

1. Nominal design (all model parameters are fixed to nominal vales)

• Command tracking: The rise time (10%-90% of the final value) for the reference
input r(t) = σ(t) is less than 0.75 seconds.

• Command tracking: The overshoot is less than 10%.

• Command tracking: The steady state error is less than 2%.

• Input Constraints: The control input u(t) satisfies |u(t)| < 10 for r(t) = σ(t).

• Stability margins: At least 6dB gain margin and 60deg phase margin.

• All controller poles satisfy: |pi| ≤ 2000

2. Robust design

• Robust stability is guaranteed for all admissible operating conditions.

• Command tracking: The rise time is less than 3 seconds for all admissible operating
conditions.

• Stability margins: At least 6dB gain margin and 20deg phase margin for all
admissible operating conditions.

• All other requirements of the nominal design are met.

2 Modeling Uncertainty
To model rational parametric uncertainties linear fractional representations or LFRs
are very useful. In this framework uncertainties are modeled by including an additional
uncertainty channel in a nominal plant description. To illustrate this, consider the state
space model you constructed as preparation in the last section. Now represent the
uncertain spring constants as

ki(δ) = ki0 + k̃i δ, (2)
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where ki0 is the nominal spring stiffness of spring i and k̃i is determined such that ki(δ)
covers all admissible values of ki when |δ| ≤ 1 for i = 1, 2.

Prep. 2.1: How should ki0 and k̃i be selected to cover the admissible values specified in
Section 1?

Let

ẋ(t) = A0x(t) + B0u(t),

y(t) = C0x(t),

be the nominal plant model of the spring-mass-damper system. By adding a fictitious
input channel w(t) ∈ Rnw and output channel z(t) ∈ Rnz connected by a block ∆u, we
can construct an uncertain LFR

ẋ(t) = A0x(t) + B0u(t) + Bww(t), (3a)

z(t) = Czx(t), (3b)

y(t) = C0x(t), (3c)

w(t) = ∆uz(t), (3d)

where the model uncertainty is represented by the ∆u ∈ Rnw×nz block and ∆u is scaled
such that the constraint ‖∆u‖ ≤ 1 is satisfied.

Prep. 2.2: Review Exercise 21.1 ORC, and construct an LFR model as in (3) of the
spring-mass-damper system with uncertain spring constants k1 and k2. How should
∆u be selected for (3) to cover all admissible spring constants?

One convenient way to model parametric or structured uncertainties in Matlab is to
use uncertain state space models. In order to do that we can define real parametric
uncertainties with the Matlab command ureal (see help and Exercise 21.1 ORC lecture
notes). This allows us to define the uncertain state space matrices symbolically and
extract the LFR later on from an uncertain state space model created with the Matlab
command uss. As a simple example we can define the uncertain state space matrices of
a 1-DOF spring-mass-damper system with the following code.
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1 k_range = [0.75 1.25]; k0 = mean(k_range);
2 m_range = [0.75 1.25]; m0 = mean(m_range);
3 c_range = [0.05 0.1]; c0 = mean(c_range);
4

5 k = ureal('k', k0, 'range', k_range);
6 m = ureal('m', m0, 'range', m_range);
7 c = ureal('c', c0, 'range', c_range);
8

9 A = [ 0 1;...
10 -k/m -c/m];
11

12 B = [ 0;...
13 1/m];
14

15 C = [1 0];
16

17 D = 0;
18

19 sys = uss(A,B,C,D);

2.1 How to proceed

Take a look at the provided Matlab File orc1_model.m and complete it to familiarize
yourself with modeling parametric uncertainties using Matlab. Create an uncertain state
space model of the plant that can be used as a synthesis model for controller design later
on.

3 Controller Design
For designing an LTI output feedback controller, which stabilizes the plant robustly and
achieves the performance objectives for all admissible springs, Matlabs H∞ synthesis
tools for controller design will be used. Before the synthesis is discussed two weighting
schemes known from the lecture are briefly reviewed.
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3.1 S/KS Design

As it is known from the lecture Optimal and Robust Control (ORC lecture notes,
Chapter 17), a powerful method for controller design is to shape certain transfer functions
of the closed-loop system shown in Fig. 6. A standard approach is to shape the sensitivity
S and the control sensitivity KS.

K(s) G(s)

di(t) do(t)
e(t) u(t) ū(t) y(t)

n(t)

−
r(t)

Figure 6: Closed-loop system with input and output disturbance, noise and reference signal.

To actually shape S and KS weighting filters WS and WK are introduced to weight
the outputs specified by the performance objective.

3.2 SG/TK Design

A design based on shaping S and KS can lead to undesirable pole-zero cancelations
between plant and controller, which lead to a poor response to input disturbances. This
can be avoided by shaping the transfer functions from di to y and ū, respectively (compare
Exercise 17.2.c ORC). In this way we consider input disturbances instead of references
changes or output disturbances as the external input. The transfer function Tydi(s) is
denoted by SG and −Tudi(s) by TK respectively. Since we consider a SISO plant in this
laboratory experiment it holds that T = TK. By shaping SG we can design a controller
which rejects input disturbances to a satisfactory degree, whereas shaping TK means that
we shape the transfer function from input disturbance to controller output. However, to
achieve high frequency controller roll-off, shaping TK is more involved than shaping KS.

Prep. 3.1: Review the concept of closed-loop shaping (Chapter 16 and 17 of the ORC
lecture notes). Make sure you understand how the tuning works qualitatively.

Prep. 3.2: What kind of weighting filter is needed for TK to achieve high frequency
controller roll-off?
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3.3 Generalized Plant

In the lecture Optimal and Robust Control the generalized plant concept was introduced,
where the generalized plant P is of the form

ẋ(t) = Ax(t) + Bww(t) + Buu(t), (4a)

z(t) = Czx(t) + Dzww(t) + Dzuu(t), (4b)

v(t) = Cvx(t) + Dvww(t), (4c)

with external input w(t), control input u(t), performance output z(t) and measured
output v(t). For our synthesis tools to work, we need to first construct a generalized
plant that includes the desired performance inputs and outputs. The generalized plant
for the S/KS formulation is depicted in Fig. 7.

G(s) WS(s)

WK(s)

u(t)
−

w(t)

zs(t)

zk(t)

v(t)

Figure 7: Open-loop generalized Plant P for the S/KS mixed sensitivity design.

In order construct it, it is convenient to use Matlabs sysic command (see help). To
get you started, consider the following code:

1 systemnames = 'G Ws Wk';
2 inputvar = '[w{1}; u{1}]';
3 input_to_G = '[u]';
4 input_to_Ws = '[w-G]';
5 input_to_Wk = '[u]';
6 outputvar = '[Ws; Wk; w-G]';
7 P = sysic
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However, to familiarize yourself with the generalized plant concept we want to construct
it by hand. Consider the physical plant described in state space by

ẋp(t) = Apxp(t) + Bpu(t), (5a)

y(t) = Cpxp(t) (5b)

and let sensitivity and control sensitivity weighting filter WS and WK be given by

ẋs(t) = Asxs(t) + Bsv(t), (6a)

zs(t) = Csxs(t) + Dsv(t), (6b)

where v(t) = w(t) − y(t) and

ẋk(t) = Akxk(t) + Bku(t), (7a)

zk(t) = Ckxk(t) + Dku(t). (7b)

Prep. 3.3: Construct the generalized plant matrices given in (4) based on (5) to (7) for
xT (t) = [xT

p (t) xT
s (t) xT

k (t)]T . Why do we need Dk 6= 0?

A typical choice of weighting filters WS and WK is shown in Fig. 8.
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Figure 8: Typical choice of weighting filters. Plotted are the inverse weights W −1
S (blue) and

W −1
K (red)
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3.4 Synthesis & Robust Stability

Stability and H∞ constraints can be expressed as linear matrix inequalities (LMIs). If
there exists a symmetric positive definite Lyapunov matrix P , which satisfies

P > 0 , (8a)
AT P + PA PB CT

BT P −γI DT

C D −γI

 < 0 , (H∞ constraint, Theorem 18.3 ORC lecutre notes)

(8b)

the system is stable and ‖Tzw‖∞ < γ, where Tzw denotes the closed loop transfer function
from external input w(t) to performance output z(t) and some performance index γ.
The output feedback controller synthesis is based on solving LMIs (8) for the closed-loop
system, which is shown in Fig. 9.

P (s)

K(s)

w(t) z(t)

v(t)u(t)

Figure 9: Closed-loop interconnection of generalized plant and controller

Since we are not only interested in designing a nominal controller but also in designing
a robust controller the external input and the performance output are augmented by
the uncertainty channels of the LFR. Consequently, the closed-loop interconnection of
generalized plant and controller becomes as shown in Fig. 10, where P0 represents the
nominal plant with wu(t) = 0 and wp(t) equals w(t) from Fig. 7 in case of S/KS design.

Comparing the block diagrams shown in Fig. 9 and in Fig. 10, we see that for the
uncertain generalized plant P we have w(t) = [wT

u (t) wT
p (t)]T and z(t) = [zT

u (t) zT
p (t)]T .

To include the uncertainty of the plant we close the upper loop by inserting a ∆u block
and obtain the block diagram shown in Fig. 11 for which we want to find a controller K

that guarantees robust stability.
To achieve our goal we can invoke the Small Gain Theorem (Theorem 21.1 ORC). To

further include performance objectives we can formally close the performance loop by
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P0(s)

K(s)

wp(t) zp(t)
wu(t) zu(t)

v(t)u(t)

Figure 10: Uncertain closed-loop interconnection of generalized plant and controller

∆u

P0(s)

K(s)

zu(t)wu(t)

wp(t) zp(t)

v(t)u(t)

Figure 11: Closed-loop interconnection of generalized plant and controller with uncertainty
block ∆u

adding a second, fictitious uncertainty block ∆p, yielding the block diagram shown in
Fig. 12. In contrast to ∆u which is diagonal by construction of the uncertain plant model
(3), we assume ∆p to be an arbitrary, unstructured complex matrix that is subject to
the constraint ‖∆p‖ ≤ 1

γ
, where γ > 0 will be used as a performance measure.

Theorem 1 (Small Gain Theorem). Suppose that M(s) is a proper real rational stable
transfer function. Then the interconnected system shown in Fig. 13 is internally stable
for all proper real rational stable transfer functions ∆(s) with

a) ‖∆(s)‖∞ ≤ 1/γ if and only if ‖M(s)‖∞ < γ.

b) ‖∆(s)‖∞ < 1/γ if and only if ‖M(s)‖∞ ≤ γ.

Prep. 3.4: Express the closed-loop interconnection in Fig. 12 in terms of M and ∆ as
shown in Fig. 13. What is M and what is ∆? (Hint: consider a block diagonal
matrix ∆).

Prep. 3.5: How can the Small Gain Theorem be used to express the condition that the
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∆p(s)

∆u

P0(s)

K(s)

zu(t)wu(t)
wp(t) zp(t)

v(t)u(t)

Figure 12: Closed-loop interconnection of generalized plant and controller with uncertainty
block ∆u and performance block ∆p

closed-loop system is stable and the H∞ performance from wp to zp is less than γ

for all admissible springs, as a constraint on the H∞ norm from w to z in Fig. 13?

Prep. 3.6: Why is this condition conservative?

∆(s)

M(s)

z(t)w(t)

Figure 13: Small gain theorem

In this experiment we will use the tools for H∞ optimal controller design implemented
in Matlab, where we just need to provide the generalized plant P and the number of
available measurements nmeas and control inputs ncont:

1 [K,CL,gam,INFO] = hinfsyn(ssbal(P),nmeas,ncont,'method','lmi');

Note that we do not use the generalized plant ”as it is” but that we do apply a
balancing transformation by invoking ssbal. This transformation scales the states of
the system in such a way, that the entries in the B and C matrices are ”of the same
size”. The reasons for doing so are numerical issues related to representing the numbers
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with finite precision. It is easy to find examples in which the synthesis code without this
balancing does not produce any useful results at all, so balancing is one of the things
that should always be performed to avoid unnecessary numerical issues.

A second thing to note is, that optimality with respect to the H∞-norm can yield a
numerically ill-conditioned controller. The reasons here are a bit more complex, and
again are largely related to numerical issues within the solution of the LMI problem.
So often a suboptimal, rather than a truly optimal controller is desired. We can get a
suboptimal controller with a specified loss-of-performance by again calling the hinfsyn
command, but this time tell the optimization to stop when a predefined γ is reached.
We know from the first synthesis, that we can find a controller that achieves gam, so now
we can just search for a controller that achieves 1.1*gam, i.e., that is at most 10 % worse
in the H∞ sense.

1 [K,CL,gam,INFO] = hinfsyn(ssbal(P),nmeas,ncont,'method','lmi',
2 'GMIN',1.1*gam);

Note that we need a first run to determine the gam that we use in this second
synthesis step. In order to determine whether the designed controller K is feasible
for implementation on a digital system we have to consider the sampling frequency of
fs =1000 Hz as well as the fastest controller dynamics. More precisely speaking the
following inequality should be satisfied

fs >
|pmax|

π
, (9)

where pmax denotes the fastest controller pole. This can be checked in Matlab using

1 pmax_abs = max(abs(eig(K.a)));

3.5 Robustness vs. Performance

As shown in the previous section the uncertain generalized plant description is given as
shown in Fig. 14 and the Small Gain Theorem can be invoked to test for robust stability.

However, it is also known that this test is conservative and may lead to unsatisfactory
results. To account for this conservatism, robustness can be traded against performance
by rescaling the uncertainty as well as shifting the nominal plant model. In particular,
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∆u

P0(s)

zu(t)wu(t)

wp(t) zp(t)
u(t) v(t)

Figure 14: Generalized plant with uncertainty block ∆u

the range of the uncertainty as well as the nominal plant model can be seen as additional
tuning knobs in the design process. That is, instead of the generalized plant shown in
Fig. 14 a modified generalized plant depicted in Fig. 15 is used for controller design.

c ∆u

P̄0(s)

zu(t)wu(t)

wp(t) zp(t)
u(t) v(t)

Figure 15: Generalized plant with rescaled ∆u and shifted nominal plant model

Here, the scaling factor c can be chosen such that c ∈ [0, 1] and for the shifted nominal
plant model holds that P̄0 ∈ Co(K1 × K2), where Co(.) denotes the convex hull.

Prep. 3.7: Which consequences has the choice c = 0 for controller design?

Prep. 3.8: Sketch the set Co(K1 × K2).

4 Closed Loop Analysis
As a first step before entering a more detailed analysis of the closed-loop system, it has to
be checked if the closed loop is stable for all possible springs k1 and k2. A sufficient test
for stability is given by the Small Gain Theorem. However, since this test is conservative,
even if it fails we may still have a stable closed-loop interconnection for all possible spring
stiffness constants. To check a posteriori for robust stability the Matlab command
isstable can be used, which returns true for a stable closed-loop interconnection and
false otherwise.
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4.1 Frequency Domain

In order to check the stability margins of the uncertain closed-loop system the Matlab
command allmargin can be used. For a graphical interpretation it is also meaningful to
look at the Nyquist plots generated for different combinations of springs. Such Nyquist
plots are shown in Fig. 16, where an H∞ suboptimal controller K has been designed as
discussed in the previous section.
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Figure 16: Nyquist plot of the closed-loop system for different spring stiffness

Comparing these results to Fig. 3, it becomes apparent that robustness margins as
gain and phase margins have been improved and the controller K robustly stabilizes the
plant G.

Prep. 4.1: For which springs k1 and k2 does the controller K yield the lowest phase
margin?

Additionally, the sigma plots of the transfer functions S, KS, SG and TK/T give valuable
insights into the closed loop properties. One way to compute these transfer functions is to
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use the Matlabs sysic command. For example to compute the closed-loop sensitivity
transfer function S we can use the following code:

1 systemnames = 'G K';
2 inputvar = '[r{1}]';
3 input_to_G = '[K]';
4 input_to_K = '[r-G]';
5 outputvar = '[r-G]';
6 S = sysic;

Prep. 4.2: Think about how to compute the remaining transfer functions KS, SG and
T without using the sysic command.

Fig. 17 shows sigma plots of the four transfer functions mentioned above for all possible
combinations of springs.
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Figure 17: Typical sigma plots of the transfer functions S, SG, KS and TK/T for S/KS
design
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In order to achieve good steady state accuracy we have to make sure that the sensitivity
is small at low frequencies. Considering a low frequency reference input r(t) = sin(ωl t)
with magnitude of 1 and some frequency ωl ≤ 10−4 rad/s we can see that the steady
state error will be less than −60 dB. Furthermore, KS shows controller roll-off at high
frequencies which is of dire importance since with higher frequencies model inaccuracy
will inevitably increase.

Prep. 4.3: Think about which further information can be read off the four sigma plots.

4.2 Time Domain

We are interested in designing a controller that achieves good tracking performance.
Looking at the frequency response of the open-loop plant shown in Fig. 2 it is intuitively
clear that a robust controller of the order of the generalized plant can not cancel all
poorly damped modes which can occur due to changing springs. Moreover, it is also
unlikely that pole-zero cancelations occur at all which is a consequence of the uncertainty
description. However, this is not the case for the nominal S/KS design. In this case the
resonant frequencies are assumed to be known precisely such that controller zeros may
cancel plant poles, yielding better tracking performance. Note that this price has to be
paid for with reduced performance regarding input disturbance rejection. First, we look
at the simulated step response for the nominal design shown in Fig. 18.
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Figure 18: Step responses and control effort – Nominal design

It can be seen that resonances are not excited by the controller and quite a low rise
time with no visible overshoot is achieved. Regarding the robust design and in order
to really reduce the resonant peaks in S controller roll-off can be used. However, this
will inevitably slow down the controller. Consequently, there will be a visible trade-off
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between not exciting resonances and speed of response. Figures 19 and 20 show step
response as well as the control effort u(t) for r(t) = σ(t) for two different controller
designs illustrating the fact mentioned above.
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Figure 19: Step responses and control effort – Design 1
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Figure 20: Step responses and control effort – Design 2

One problem which may occur using the S/KS controller design approach is that the
controller K(s) cancels lightly damped poles of G(s). However, although the transfer
functions S and KS may look fine, the transfer function SG can show undesirable peaks.
This results in a poor response if input disturbances are applied. To assure us that
undesirable pole zero cancellations do not occur we can plot the pole zero map of G(s)
and K(s) using the Matlab code

1 pzplot(G, 'b', K, 'r');

A plot of the pole zero map is shown in Fig 21 for the nominal system G0(s) and a
controller K(s).
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Figure 21: Pole zero map of G0(s) (blue) and K(s) (red)

In fact due to the uncertain spring stiffness and therefore uncertain pole locations of
G(s) it is unlikely that the controller tends to cancel poles as becomes apparent here.

Furthermore, instead of looking at the closed-loop transfer functions in frequency
domain we can analyze the closed-loop pole zero map by comparing it to the open-loop
pole zero map of G(s). As we want to improve the damping in closed-loop we would
expect that the closed-loop poles in the complex plane are shifted to the left with respect
to open-loop poles of G(s). The relevant information of the pole zero map of the nominal
plant G0(s) and the nominal complementary sensitivity are T0(s) is shown in Fig. 22.
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Figure 22: Pole zero map of G0(s) (blue) and T0(s) (red)

In fact damping is significantly improved by the designed controller and pole zero
cancellations do not occur which is consistent with the shape of SG.
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4.3 How to proceed

Take a look at the provided Matlab file orc1_design.m and complete it in a way that
allows you to design your own controller for nominal performance and for robust stability.
Tune your controllers iteratively by adjusting the weights, scaling the uncertainty and
shifting the nominal plant model to achieve the requirements given in the task description.
For simulation in Simulink the file orc1_simulation.slx is provided.

5 Real-Time Experiments
During the lab, the file orc1_interface.slx will be provided to interface the spring-
mass-damper plant. Its structure is depicted in Fig. 23. As you can see, it looks like the
Simulink file used for simulation.

Scope

K

Robust Controller

G

Spring-Mass-Damper Plant

Signal 1

Group 1

Reference Signal

Signal 2

Group 1

Input Disturbance

Figure 23: Simulink model: Plant, Controller and Interface

The blue block represents the spring-mass-damper plant and contains interfaces to the
Digital/Analog and Analog/Digital converters of the physical plant. The inputs
and outputs of the block are the same as in simulation.

The red block is identical to that used in the simulation.
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The green blocks are identical to that used in the simulation except that the output
structure is now named expdata. Code for plotting this data will also be provided.
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5.1 The Experiment

Proceeding to the experiment and implementing the designed controller will reveal
differences between simulation and experiment. This can be expected and is due to model
errors and unmodeled dynamics. Experimental closed-loop step responses are shown in
Fig. 24 for the nominal design as well as for the robust design evaluated on the nominal
plant.
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Figure 24: Nominal vs. robust design for k1 = 390 N
m , k2 = 390 N

m

It can be seen that the nominal design outperforms the robust design in terms of rise
time and steady state error. Moreover, comparing these results to simulation results
shown in the previous section it becomes apparent that viscous friction is underestimated
by the values c1 = c2 = 0.01 N s

m . In addition, the plant is subject to nonlinear stick slip
friction resulting in flat plateaus visible in the responses which may yield limit cycles due
to high loop gain at low frequencies. This is however not the case here. The Figures 25
and 26 depict experimental step responses for all combinations of springs and show
that the robust design indeed stabilizes the plant robustly with worst performance for
k1 = 200 N

m and k2 = 390 N
m .

5.2 How to proceed

• Adjust the damping coefficients c1 and c2 of the simulation model such that the
simulated step response of the nominal plant model with k1 = 390 N

m and k2 = 390 N
m

shows approximately the same damping when compared to the experimental step
response.
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Figure 25: Robust design for k2 = 200 N
m
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Figure 26: Robust design for k2 = 390 N
m

• Retune your controller for nominal performance tested in simulation such that all
requirements are met in the experiment for the nominal plant.

• Test the same controller with combinations of springs different from the nominal
plant model.

• Retune your robust controller tested in simulation such that all requirements are
met in the experiment for all combinations of springs.
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