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About this Document
This document is intended to help you with the design task ORC2—Robust Control of
a Gyroscope of the Control Lab practical course. It is written mainly in the style of a
tutorial and should provide you with all the necessary tools and Matlab commands to
solve the task.

This document is accompanied by Matlab files that you need to modify and execute
in order to develop your own design.

orc2_design.m This file deals with control design and linear evaluation. It is meant to
provide a structure very similar to the tutorial given in this document and uses
the section numbers of this document for orientation.

! You need to complete the code on your own and submit the file.
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orc2_GyroSimulation.slx This file contains the nonlinear simulation model.

! You need to modify the block diagram to suit your own design.

orc2_simulation.m This file deals with evaluation in nonlinear simulation.

! You need to submit this file.

There are also several other auxiliary files provided. The code is guaranteed to work
with Matlab 2016b 64bit, other versions might not be supported. You can get the latest
Matlab version from https://www.tuhh.de/rzt/usc/matlab/index.html or use the
pool computers.

In this document, you will encounter blocks that indicate Matlab code:

1 [MATLAB COMMANDS]=USEFUL(TOOLS)

These are meant to get you started. You can (and should) use the help command within
Matlab to find out more about a particular command.

Another thing that you will encounter are preparation tasks:

Preparation: Review the concept of closed loop shaping in the Optimal and Robust
Control lecture notes.

These are meant to prepare you for the question session that will take place prior to
conducting the experiment.

Task

Design a controller for the control moment gyroscope and evaluate it in nonlinear
simulation. Attach all necessary Matlab and Simulink files that were provided to you
no later than one week before the experiment via email to the responsible Tutor and
Supervisor. You will get an email when your preparation is not sufficient to pass the Lab
and will get time to revise your design.

Checklist

� I read this whole document carefully.

� I did all preparation tasks and can explain them.
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� I completed orc2_design.m.

� I completed orc2_simulation.m.

� I attach all Matlab files.

1 PLANT
A control moment gyroscope is a spinning rotor (flywheel) suspended in two motorized
gimbal mountings and modeled as a four-degrees-of-freedom multibody system. The
motorized mountings can tilt the flywheel’s angular momentum, which causes a gyroscopic
torque. A kinematic model is shown in Figure 1. Each body is linked to the previous
body by a rotational joint perpendicular to the last joint axis.

Figure 1: Kinematics of the control moment gyroscope

The nonlinear equation of motion which can be derived from mechanic principals, e. g.,
by using the Newton-Euler or Lagrange formalism, is

M(q) q̈ + k(q, q̇) = f(q̇) +
I

0

 T1

T2

 ,
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with the generalized coordinates q = [q1 q2 q3 q4]T, the generalized inertia M , the vector
of generalized non-dissipative forces k and the vector of generalized dissipative forces
f . The inputs T1 and T2 of the system represent torques, which are applied by electric
motors at axis 1 and axis 2. The controlled outputs are the unactuated angles q3 and q4.

If we consider the actual physical plant, we notice that the torques are generated by
motors, which themselves take voltages as inputs. In order to simplify the design, we
neglect any dynamics of the motor and assume that it is just a constant gain. We can
then add an inverse model of the motor in order to recover torques as control variables.
Figure 2 illustrates the concept, where M denotes the motor model and U is the inverse
model, i. e., M U ≈ I.

Motor Plant
Voltage Torque

(a) Actual physical plant with actuator

M G
Torque Voltage Torque

U

(b) Plant with actuator and inverse actuator model

Figure 2: Actuator model

1.1 Linearized Model

The system is nonlinear, but it can be approximated by a Jacobian linearization about an
operating point given by a fixed flywheel rotation speed q̇1,0 and fixed angular positions
q2,0 and q3,0. This yields a linear time invariant (LTI) state space model

ẋ = A x + B u ,

y = C x ,
(1)

with state vector x = [δq3 δq4 δq̇2 δq̇3 δ̇q4]T, input u = [δT1 δT2]T and output y =
[δq3 δq4]T. We will drop the δ in the following to simplify notation and use the plant as
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shown in Figure 3 with

y =
q3

q4

 , u =
T1

T2

 , and further r =
q3,ref

q4,ref

 as a reference signal.

Plant
u1 y1

u2 y2

Figure 3: Inputs and outputs of the model

In order to justify our linear design, we have to make sure that we stay “close to” the
operating point, which is arguably a rather blurry expression. In fact there are several
methods how to quantify the region in which a model is valid but they are beyond the
scope of this course. For now, we might assume that we can deal with about ±5 rad/s
deviation in q̇1 and ±10◦ deviation in q2 and q3. These are however values obtained from
experience and guarantee nothing.

Prep. 1.1: Review the concept of linearizing nonlinear plants (e. g. Problem 1.10 in the
Control Systems Theory and Design Lecture Notes) and make sure you understand
that we are now considering the perturbations around an operating point, i. e.
δq3 = q3 − q3,0.

The effects of the control inputs on the controlled outputs depend strongly on the angle
q2 and thus the operating point. For q2 = 0, the system is decoupled, which means that
the input T1 has an exclusive effect on q3 and T2 has an exclusive effect on q4. This
consideration is quite hypothetical, since applying a torque T2 also changes q2. Thus, in
practice q2 will almost always be nonzero and the inputs have a combined effect on the
outputs. This is termed cross coupling. The effect of cross coupling depending on the
angle q2 is illustrated in Figure 4.

It can be observed that the directions of the cross couplings depend on the sign of q2.
For q2 = ±90◦ the effect of the inputs on the outputs completely swaps. However, we will
consider only the operating point q̇1,0 = 45, q2,0 = 0, q3,0 = 0 throughout the document.

Prep. 1.2: What do you expect in terms of cross couplings when we design our controller
for the given (decoupled) operating point and apply it to the real plant?
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Figure 4: Normalized input response gain for different values of q2 ∈ [−90◦ , 90◦]

To load the linearized model into the Matlab workspace you can use the provided
function

1 Gp = linearize_gyro(q1dot_0,q2_0,q3_0);

which contains a parameterization of the linearization at different operating points. You
can use the commands

1 bodemag(Gp)
2 sigma(Gp)

to bring up a Bode magnitude plot and a Sigma plot of the plant as shown in Figure 5.
Note that the selected design point does not cover any cross-couplings.

Prep. 1.3: Recall why we usually use Sigma plots instead of Bode plots for multivariable
systems and why it is not that important in the special case considered here.
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(a) Bode magnitude plot of the Plant
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(b) Sigma plot of the Plant

Figure 5: Frequency response of the plant

1.2 Initial Scaling

Scalings are of dire importance when working with frequency domain synthesis techniques.
The following (very simple) scaling just normalizes the input and output values of the
plant, such that the magnitude 1 corresponds both to the maximum expected change in
the reference signal Dr,max and the maximum actuator capacity Du,max, i. e.

u = D−1
u,max ureal (2)

y = D−1
r,max yreal (3)
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Just think of a rescaled input vector Bs = B umax and a rescaled output vector Cs = 1
rmax

C

for the SISO case and keep in mind that since we are dealing with MIMO systems, we
need to use diagonal matrices Du,max and Dr,max instead. The usefulness of this scaling
becomes apparent when we realize that a unit reference step now corresponds to the
maximum input that we expect and that the available control signal is now also one, see
Figure 6. Thus, if a unit step results in a control signal less than one, the actuators are
likely not to saturate. In terms of frequency domain indicators, this means that we can
look at the transfer function K S and try to achieve ‖K S‖∞ < 1. Once a controller for
the synthesis model is designed, the scalings have to be reversed when the controller is
applied to the original model:

u = K y (4)

ureal = Du,max K D−1
r,max︸ ︷︷ ︸

Kreal

yreal (5)

Figure 6 illustrates the procedure.
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G

(a) Scaling the actual plant to obtain a synthesis
model

Greal

Du,max K D−1
r,max

ureal yreal

−

rreal

Kreal

(b) Scaling the controller for implementation on the
actual plant

Figure 6: Scaling for controller design based on frequency responses

For the gyroscope, reasonable assumptions on the largest allowed input signals are

T1,max = 0.666 Nm, T2,max = 2.44 Nm

due to the different gearing mechanisms of the two motors. The outputs can be scaled
for instance with

q3,max = 10 π

180 , q4,max = 45 π

180

since we mostly control the rotation about the vertical axis described by q4.

2 CONTROLLER DESIGN
The task will be to design an LTI output feedback controller, which stabilizes the plant
and achieves performance specifications in terms of the H∞-norm of a generalized plant.

9



2.1 S/KS closed-loop shaping filter design

Mixed sensitivity design methods are useful tools in order to express design specifications
on the controller. The main ideas of these methods should be already familiar (see
lecture notes Optimal and Robust Control). We decide to start with an S/KS weighting
scheme, which is more or less a standard approach. The sensitivity S defines our nominal
performance while shaping KS provides some basic robustness and limits control effort.
The transfer functions S and KS are weighted by shaping filters WS and WK , which act
as an upper bound on the singular values of the transfer functions. These filters are part
of the generalized plant.

While we could use the parameterization from the ORC lecture notes and build the
filters manually as tf objects, a built-in command that we can use is

1 W_1 = makeweight(dcgain1, bandwidth1 , feedthroughgain1)
2 W_2 = makeweight(dcgain2, bandwidth2 , feedthroughgain2);
3 W = mdiag(W_1,W_2);

where dcgain specifies the low frequency gain, bandwidth species the frequency at
which the gain is one and feedthroughgain specifies the high frequency gain. For WS,
the steady-state gain determines our inverse error constant, the bandwidth of the error
dynamics and the feedthrough gain limits the peak of S. For WK , the low-frequency gain
determines available control effort, the bandwidth corresponds to the available actuator
rates and the feedthrough gain limits authority at high frequencies. Note that these
filters despite having ‘clear interpretation’ are tuning knobs, so you can (and should)
iteratively adjust them for your design.

A good starting point for tuning is nevertheless provided by physical insight and this
is again a reason why we needed to scale the plant in the previous section. For tracking
applications, we usually require a small steady state error and hence the sensitivity
function must be close to zero in the low frequency range. You can think of it as the
maximum error measured in the size of our maximum change in the reference signal.
Thus if we want a steady state error of less than 1 % of this value, we should set dcgain1
to at least 100; if we desire 0.1 % we have to use 1000 and so on. The feedthrough gain
of the sensitivity filter on the other hand determines our peak and since we know that
S = I at large frequencies, any choice larger than one does not make any sense. Usually
we want to limit the peak of the sensitivity function to something like 6 dB (that means a
factor of two) and consequently feedthroughgain1 = 0.5 is usually a good initial value.
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The bandwidth, on the other hand, determines how fast the error decays and thus gives
us direct control over the speed of the response of the system. It helps to think in terms
of a first order system, although of course the sensitivity function will be of higher order.
So if we want, let’s say a settling time of 4 s, a bandwidth of 1 rad

s would be roughly
what we are aiming at. The choice of WK follows the same considerations. In the low
frequency range it provides an upper bound on the available actuator capacity, which
with proper scaling is one. Thus, choosing something like 0.9 for dcgain2 appears to be
reasonable (we cannot directly choose one with the parameterization that we use, thus
we choose something close by). To enforce a roll-off, we should use something like 100 or
1000 in the high frequency range. A good starting point for the bandwidth is the actual
physical actuator bandwidth, although noise considerations can also be used. Figure 7
shows a typical selection of weighting filters for the control moment gyroscope. These
weights are used throughout this document in an example design.

Prep. 2.1: Review the concept of closed-loop shaping, e. g., in Chapter 17 and 18 of
the Optimal and Robust Control lecture notes. Make sure you understand how the
tuning works qualitatively.
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Figure 7: Choice of weighting filters. Plotted are the inverse weights W −1
S (blue) and W −1

K (red)
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2.2 Generalized Plant formulation

As you remember from the lecture Optimal and Robust Control, a generalized plant is of
the form

ẋ = Ax + Bww + Buu ,

z = Czx + Dzww + Dzuu ,

v = Cvx + Dvww ,

with external input w, controller output u, performance output z and controller input v.
For more details review Chapter 19 of lecture notes Optimal and Robust Control.

For our synthesis tools to work, we need to first assemble a generalized plant that
includes the desired performance inputs and outputs. The generalized plant for the
S/KS formulation is depicted in Figure 8.

G WS

WK

u

−

w

z1

z2

v

Figure 8: Open-loop generalized Plant P for the S/KS mixed sensitivity design

In order to assemble it, it is convenient to use Matlabs sysic command. You should
look up the help in Matlab, but to get you started, consider the following code
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1 systemnames = 'sys1 sys2 sys3';
2 inputvar = ['w{2}; u{2}]'];
3 outputvar = ['[sys1; sys2; sys3+w]'];
4 input_to_sys1 = '[u]';
5 input_to_sys2 = ['[sys3+w]'];
6 input_to_sys3 = '[u]';
7 P = sysic

You can verify that you correctly interconnected the systems by using the built-in
command augw (augment with weights),

1 P = augw(G,W_S,W_K);

which does exactly the same thing but may order the states differently. Therefore you
should use Sigma plots to verify your results instead of looking at the matrix entries.

2.3 Synthesis

Stability and H∞ constraints can be expressed as linear matrix inequalities (LMIs). If
there exists a Lyapunov matrix P , which satisfies

P T = P > 0 ,
AT P + PA PB CT

BT P −γI DT

C D −γI

 < 0 , (Theorem 18.3 ORC lecture notes)

the system is stable and ‖Tzw‖∞ < γ for the overall transfer function Tzw from w to z

and some performance index γ > 0.
The output feedback controller synthesis is based on solving such LMIs for the closed-

loop system, which is shown in Figure 9. Because the inequality constraints will be
nonlinear in the variables, transformations are applied in order to develop equivalent
LMI constraints, which are affine in the variables. Since the controller variables were
also affected by the transformations, the computed controller has to be transformed back
in order to obtain the controller for the original system (see pp. 137 of the Optimal and
Robust Control lecture notes for more details).

This quite lengthy procedure is luckily already implemented in Matlab, where we
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P

K

w z

vu

Figure 9: Closed-loop interconnection of generalized plant and controller

just need to provide the generalized plant P and the number of available measurements
nmeas and control inputs ncont:

1 [K,CL,gam,INFO] = hinfsyn(ssbal(P),nmeas,ncont,'method','lmi');

The first thing to note here is that we do not use the generalized plant “as it is”
but that we do apply a so called balancing transformation by invoking ssbal. This
transformation scales the states of the system in such a way that the entries in the B
and C matrices are “of the same size”. Since a state transformation does not affect the
input-output behavior of the plant, we don’t need to reverse this transformation later
on. Its only purpose is to avoid numerical issues related to representing the numbers
with different orders of magnitude in finite precision. It is easy to find examples in which
the synthesis code without this balancing does not produce any useful results at all, so
balancing is one of the things that should always be performed to avoid unnecessary
numerical issues.

A second thing to note is that optimality with respect to the H∞ norm is not necessarily
what we are looking for. The reasons here are a bit more complex, and again are largely
related to numerical issues within the solution of the LMI problem. Further, theory
suggests that a slight decrease in H∞ performance can largely increase performance as
measured in the H2-norm, which in general is also a good thing. So often a suboptimal,
rather than a truly optimal controller is desired. (Note further that even the solution of
the optimization problem is only approximately optimal because we use numeric methods
to find it.) We can get a suboptimal controller with a specified loss-of-performance by
again calling the hinfsyn command, but this time tell the optimization to stop when a
predefined γ is reached. We know from the first synthesis that we can find a controller
that achieves gam. Hence there also exists a controller that achieves at least 1.1 gam,
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which is what we solve for in the second step. This condition means, that the performance
degradation in the H∞ sense is at most 10 %.

1 [K,CL,gam,INFO] =
2 hinfsyn(ssbal(P),nmeas,ncont,'method','lmi','GMIN',1.1*gam);

Note that we need a first run to determine the gam that we use in this second synthesis.
What might also be of interest for implementation, is the fastest controller pole:

1 fastestpole = max(abs(eig(K.a)))

For the example, we get 1.5118 · 103 rad
s , which is relatively fast. But since we have

a sampling rate of 1100 Hz available on the experimental device, it should nevertheless
cause no problems.

Prep. 2.2: Verify that the pole is not too fast for implementation.

Prep. 2.3: Why is it desirable to accept suboptimality in H∞ performance? Think
about possible benefits of better H2 performance especially for transfer function
KS related to the control effort.

3 LINEAR EVALUATION

3.1 Frequency Response Analysis

A first step in evaluating our controller can be a frequency response analysis. We can
calculate all the six different transfer functions of interest using loopsens. The structure
loops then contains all closed-loop transfer functions which are accessible as

1 loops = loopsens(G,K);
2 loops.So % S
3 loops.Si % Si
4 loops.To % T
5 loops.Ti % Ti
6 loops.CSo % KS
7 loops.PSi % SG
8 loops.Stable % 1 if closed loop is stable

Matlab uses a different convention than we do and labels the plant with P instead
of our usual G, and the controller with C instead of K. Sticking to our notation, the
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transfer functions that we obtain are in the order of appearance S = (I + G K)−1,
Si = (I + K G)−1, T = I − S, Ti = I − Si as well as K S and G Si, which are the same as
Si K and S G, respectively. Further note that the loopsens command expects a negative
feedback controller. Depending on how you defined your generalized plant, you might
need to use loopsens(G,-K) instead. This is again one of the many reasons why we
should always check whether our interconnection is really stable.

K G

di do

e u y

n

−
r

Figure 10: Closed-loop system with input and output disturbance, noise and reference signal.

Prep. 3.1: Consider the block diagram shown in Figure 10. Derive the six transfer
functions stated above on your own and pay attention to the fact that transfer
function matrices in general do not commute, i. e. G K 6= K G. Make sure you
understand which signal path (e. g. input disturbance to error) each of the transfer
functions represents. Chapter 16 of the Optimal and robust Control lecture notes
will help you getting started.

We can identify quite a few relevant properties of our design by looking at the frequency
response of what is sometimes called “the gang of four” (S, SG, KS, Ti). Note that
these are exactly the four transfer functions that define internal stability of feedback
interconnections, see Control Systems Theory and Design lecture notes pg. 86. The
closed-loop frequency response for our example S/KS design is shown in Figure 11. For
example, we can see that we will achieve tracking of step responses since the sensitivity
function starts with a slope of +20 dB per decade. Further, KS tells us that the controller
rolls off at high frequencies, i.e., noise does not cause large control signals. The transfer
function, SG on the other hand, shows the same peak as our open loop plant, which
indicates poor damping. This is due to the fact that the S/KS formulation encourages
the controller to simply cancel lightly damped poles. Further, the low frequency gain
of SG is large, which means that input disturbances are not suppressed but amplified!
This is a consequence of the fact that the controller does not include integral action but
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just makes use of the integral behavior of the plant to achieve tracking. We can verify
this by taking a look at the frequency response of the controller shown in Figure 12.
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Figure 11: Closed-loop transfer functions (blue) with S/KS mixed sensitivity design and
inverse weights (red

3.2 Time Domain Analysis

The pole cancellation problem with the S/KS design can be best realized when looking
at the pole zero map of the open-loop plant and the controller shown in Figure 13. You
can bring it up by using

1 pzplot(G,K,'r')

The pole-zero map shows us that the controller indeed simply cancels the lightly damped
pole pair of the plant. Since this cancellation does not occur when looking at the transfer
function S G, input disturbances are not adequately damped.

Prep. 3.2: Why is input disturbance rejection important?

Since we are mainly interested in tracking a signal in the time domain, let’s take a
look at the step responses of the complementary sensitivity T . It shows us how the
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Figure 12: Example controller synthesized with S/KS mixed sensitivity design

−1 0
−25

0
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Figure 13: Typical pole-zero map of plant (blue cross) and a controller synthesized with S/KS
mixed sensitivity design (red cross/red dots)

plant reacts to a change in the reference signal. If we are further interested in what
control effort is required, we can plot the step response of K S. Since we scaled the plant
properly, both responses should be of the same magnitude and we can plot them together
in Figure 14.

1 step(loops.To,'b',loops.CSo,'g',10)

Even though there is some oscillation visible in the second response, the overall tracking
can be seen to be sufficient. If, on the other hand, we consider input disturbances, the
deficits of the present design that we expected from the frequency response analysis
become very apparent:
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1 step(loops.PSi,'b',10)

Figure 15 shows that disturbances are amplified and weakly damped.
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Figure 14: Step response with a controller synthesized with S/KS mixed sensitivity design

3.3 Robustness

There is a variety of linear robustness margins. For simplicity, we only consider the
(rather conservative) multiloop disk margin. These are computed by using what is called
structured singular values and which are beyond the scope of the Optimal and Robust
Control class. The important thing however is that they correspond to simultaneous gain
and phase variations at all plant inputs and outputs and are therefore a relatively safe
measure for robustness of MIMO systems.

1 mm = loopmargin(G*K,'m');
2 minGM = db(mm.GainMargin(2))
3 minPM = min(mm.PhaseMargin(2))

For the example design, we get something like 9 dB gain margin and 50 degree phase
margin, which is an excellent result.
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Figure 15: Response to a step disturbance at the plant input with a controller synthesized
with S/KS mixed sensitivity design

How to Proceed

Take a look at the provided Matlab file and complete it in a way that allows you
to design your own controller. Repeat the design process a few times and iteratively
adjust the weights to see what happens. Once you have a design that looks promising in
the linear analysis, you can proceed to the following Section 4, which discusses a more
advanced design approach.

To give you a little orientation, try to come up with a design that achieves

• a 5 % settling time of less than 2 seconds on both channels

• a steady state error of less than 1% on both channels

• that the control input magnitude never exceeds 1 at any time

• a controller with a fastest pole < 2000 rad
s

• at least 3 dB gain and 25 degree phase multiloop disk margin
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4 ADVANCED DESIGN CONCEPTS
There is a variety of different design approaches other than the S/KS formulation that
we discussed in Section 3. We will consider a relatively simple extension to show you
that design is inherently about trade-offs (usually robustness vs. performance) and that
there is usually room for improvement at the expense of (design) complexity...

4.1 Four-block problem

In what is called a four-block design, we explicitly consider input disturbances and
therefore avoid the cancellation problems known from the S/KS formulation. The only
difference in this setup is the additional input disturbance weight Wd, which is set to
identity for our example design. The generalized plant is depicted in Figure 16 and the
only difference to the S/KS formulation is that an additional disturbance at the plant
input is considered. There are thus not two but four transfer functions involved.

Wd

G WS

WK

u

−

w1

w2

z1

z2

v

Figure 16: Open-loop generalized Plant P for the four-block mixed sensitivity design

Prep. 4.1: Figure out which four transfer functions are involved. Review exercise 17.2
of the Optimal and Robust Control lecture notes.
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In Matlab, we can set up the generalized plant with

1 systemnames = 'G Wd W_S W_K';
2 inputvar = ['[w1{2}; w2{2}; u{2}]'];
3 outputvar = ['[W_S; W_K; w1-G]'];
4 input_to_G = '[u+Wd]';
5 input_to_Wd = '[w2]';
6 input_to_W_S = ['[w1-G]'];
7 input_to_W_K = '[u]';
8 P = sysic;

and then run the same synthesis procedure as before.
The main difference in the closed-loop transfer functions shown in Figure 17 now is

that the transfer function SG related to the input disturbance is drastically decreased
in magnitude. In the low frequency range it tends to zero, thus step disturbances are
completely regulated in steady state. To achieve this, the controller now actually includes
integral action, i. e., it has a high gain at low frequencies. We can verify this by looking
at Figure 18. We further see from the pole-zero map in Figure 19 that there are no pole
cancellations anymore.

If we look at the responses to the reference step in Figure 20, the result looks however
much worse than with the S/KS controller. The large overshoot is—loosely speaking—
caused by the steep slope of the sensitivity function. If you take a close look at the
sensitivity plot in Figure 17, you can see that the sensitivity now has a +40dB per decade
slope, which is 20dB more than we desired. This is a consequence of the fact that we
need integral action to reject disturbances and that in the sensitivity function, both
integral behavior from the plant and the controller add up. The disturbance response in
Figure 21 now looks much better than before but if we test for robustness, we note that
it is decreased (to around 5 dB gain and 30 degree phase). Again, this is a consequence
of the larger controller gains, or more precisely of the larger control bandwidth.

We see, that while we indeed are able to improve disturbance rejection, we pay a price
for this in terms of trajectory following as well as robustness. Such trade-offs are inherent
to feedback control design and are most of the time impossible to overcome. Experiment
with the four-block design to confirm this on your own. In general, decreasing Wd brings
the design closer to (with Wd = 0 being obviously the same as) the S/KS design. That is,
decreasing Wd should improve trajectory tracking and robustness, while the disturbance
rejection gets worse.
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Figure 17: Closed-loop transfer functions (blue) with four-block mixed sensitivity design and
inverse weights (red)
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Figure 18: Example controller synthesized with four-block mixed sensitivity design
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Figure 19: Pole-zero map of plant (blue cross) and a controller synthesized with four-block
mixed sensitivity design (red cross/red circle).
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Figure 20: Step response with a controller synthesized with four-block mixed sensitivity design
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Figure 21: Response to a step disturbance with a controller synthesized with four-block mixed
sensitivity design

4.2 Design with two-degrees-of-freedom

If you played with the tuning of the four-block problem, you might have realized that
it is very hard to achieve satisfactory tracking performance and disturbance rejection
simultaneously. The main reason is that disturbance rejection and tracking are coupled:
Since the controller receives only the error signal, both unknown disturbances and known
set-point changes enter the controller in the same way. We can however take advantage of
the fact that they are not the same by processing them separately. This is referred to as
two-degrees-of-freedom control and—without going into detail—is usually advantageous
for tracking applications. We consider a very simple modification of the four-block
problem that results in a two-degrees-of-freedom control law. The only necessary change
in the generalized plant formulation is the additional input r and the fact that it is
directly provided as a measured signal to the controller as shown in Figure 22.

The closed-loop transfer functions (Figure 23) now are derived using only the feedback
path of the controller (v1 =

[
y1 y2

]T
) and not the two additional feedforward inputs

(v1 =
[
r1 r2

]T
). The controller is shown in Figure 24. We can build the closed loop

(which is now different from the complementary sensitivity T since it involves the two-
degree-of-freedom controller) using sysic:
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Figure 22: Open-loop generalized Plant P for the two-degrees-of-freedom design

1 systemnames = 'G K';
2 inputvar = ['[r{2}]'];
3 outputvar = '[G]';
4 input_to_G = '[K]';
5 input_to_K = '[-G;r]';
6 CL = sysic;

The controller now receives the measurement and the reference as two independent
signals. The step response to changes in the reference signal now looks exactly as we
want: no overshoot, and almost no oscillations (Figure 25). The response to the input
disturbance (Figure 26) looks also nice and very similar to the one that we obtained from
the four-block design. Also, it can be confirmed that robustness is pretty much the same
as with the four-block design (around 5dB gain and 30 degrees phase for the example
design).

The two-degrees-of-freedom design allows to combine the benefits of the S/KS design
(good tracking performance) with the benefits of the four-block design (integral dis-
turbance rejection). It thus relieves the trade-off between tracking performance and
disturbance rejection that we encountered in the single-degree-of-freedom four-block
design. The second inherent trade-off—disturbance rejection vs. robustness—is however
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Figure 23: Typical closed-loop transfer functions (blue) with two-degrees-of-freedom design
and inverse weights (red)
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Figure 24: Typical controller synthesized with two-degrees-of-freedom design
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Figure 25: Typical step response with a controller synthesized with two-degrees-of-freedom
design
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Figure 26: Typical response to a step disturbance with a controller synthesized with two-
degrees-of-freedom design
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still very visible (as confirmed by the lowered margins) and as designers we have to pay
close attention which is more important to us in a certain situation.

Prep. 4.2: Draw conclusions about the three design approaches and compare them with
each other. What are the benefits of each and which trade-offs do they address? Is
there still a trade-off in the two-degrees-of-freedom control design?

How to Proceed

Again, repeat the design process a few times and iteratively adjust the weights to see
what happens. Once you have a design that looks promising in the linear evaluation, you
can proceed to the following Section 5 to verify your controller in nonlinear simulation.

To give you some orientation, try to come up with a design that achieves

• a 5% settling time of less than 2 seconds on both channels

• a steady state error of less than 1% on both channels

• that the control input magnitude never exceeds 1 at any time

• a controller with a fastest pole < 2000 rad/s

• at least 3 dB gain and 25 degree phase multiloop disk margin

• that disturbances are compensated after 2 seconds on both channels

• that disturbances lead to outputs of less than 3 in magnitude

5 NONLINEAR SIMULATION
The file orc2_GyroSimulation.slx provides a nonlinear simulation environment resem-
bling the control moment gyroscope.

The structure of the model is depicted in Figure 27.

The blue block represents the control moment gyroscope and contains the equations of
motion implemented as a mex-file/C-code. It takes the control signal u = [T1 T2]T

as an input (in Nm). The outputs of the block are the physical available output
y = [q3 q4]T [rad] used for feedback, the saturated (i. e. actually applied) inputs
[Nm] and a signal bus that contains all states of the simulation model.
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! You have to set the correct initial conditions in the file orc2_simulation.m

The red blocks represent the controllers and a switching logic to select whether single-
degree-of-freedom or two-degrees-of-freedom control is used. It also contains the
reverse scalings that we used during the design.

! You have to select which controller is used in the file orc2_simulation.m

The green blocks are associated with the user interface. On the left side, you can see
the signal generator for the reference trajectory. On the right, the state bus is sorted
into different signals that can be viewed in the scope. The scope data is further
written to the workspace as a structure simdata. The file orc2_simulation.m
contains code for plotting this data.

Simulation 
Data

T

x_nonlinear

inputs

outputs1

Gyroscpe Model

ref erence

x

q3 tracking

q4 tracking

Angular v elocities

Operating Point

Signal Sorting for Plot

Switch

[select]

From2

[select]

Goto

select_controller

Degrees of freedom

DOC

Text

-1

Gain

Signal 1

Signal 2

Reference Signal

D2R

Degrees to
Radians

ref erence signal

measurement

control signal

Two-Degrees-of-Freedom Controller

control error control signal

Single-Degree-of-Freedom Controller
Selector

applied torque

u

Figure 27: Simulink Simulation: Plant, Controller and interface-related blocks

Prep. 5.1: Familiarize yourself with the simulation. You should be able to explain the
purpose of every single block.

If we apply our two-degrees-of-freedom controller example design to the nonlinear simu-
lation, we get the results depicted in Figures 28 and 29. They look reasonably similar to
the linear simulation results that we used during the design.

An important difference is however visible when we look at Figure 30, which shows
the state variables that we used to define our linear operating point. Although we did
assume that they are constant, they obviously are not. We are dealing with a nonlinear
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Figure 28: Typical trajectory for tracking in nonlinear simulation with two-degrees-of-freedom
controller.

plant here, and it should not surprise us that these states are affected by what we
are doing to the others. As discussed in Section 1.1, we have to make sure that these
states stay “close to” the operating point. If you experience an unstable closed-loop in
simulation, it is most likely due to being too far away from the operating point. An
approach that promises relief from these problems is to adjust the controller to the
current operating point online and therefore to make sure that the system is always
“right on” the operating point, which of course is even better than just “close to”. This
approach is called gain-scheduling and is treated in detail in the lecture course Advanced
Topics in Control and the corresponding Control Lab experiment Gain-Scheduled Control
of a Gyroscope.

A second problem with our controller are cross-couplings that will show up in the
nonlinear simulation although they were not present in the linear simulations used for
design. Our controller does simply “not know” that there are cross-couplings since the
model that we used for design did not contain them. It should thus not surprise us, that
the nonlinear simulation reveals this weakness. In fact, this weakness can easily become
the limiting factor in the design since large cross-couplings are likely to drive the system
far from its operating point which then might cause instability. Again, gain-scheduling is
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Figure 29: Typical input signal in nonlinear simulation for tracking with two-degrees-of-
freedom controller.

an appropriate tool to counter this effect and you are welcome to experience this on your
own in the Control Lab experiment Gain-Scheduled Control of a Gyroscope.

Prep. 5.2: Make sure that your controller works in nonlinear simulation and delivers
consistent results with what you achieved during the design phase. Compare the
single-degree-of-freedom controller with the two-degrees-of-freedom controller with
respect to the cross-coupling problem. Pay close attention to the available control
action since saturation might easily cause instability on this plant. Also try out
your S/KS design, although you are likely to produce an unstable closed-loop.
Think about why this happens even though the robustness margins were larger for
the S/KS than for the four-block design.

6 EXPERIMENTAL SESSION

6.1 Advanced two-degrees-of-freedom design

As part of the design task ORC2—Robust Control of a Gyroscope of the Control Lab,
different concepts for the design of an output feedback controller for the gyroscope were
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Figure 30: Typical trajectory of the operating point in nonlinear simulation with two-degrees-
of-freedom controller.

examined. So far, only the angles q3 and q4 were considered as output variables in the
feedback loop. However, all angles can be measured and the angular velocities can be
determined by using first order differentiation filters. This raises the question of whether
the controller performance can be significantly improved by taking additional output
variables into account.

Note that for instance q̇2 is not visible for the controller so far, so it does not contribute
to an improved damping though this would be desirable on the actual plant. Further
note that the model inaccuracy due to neglecting the differentiation filters in the model
is addressed in the controller design, since we assume measurement noise on all channels.
This is an important advantage over directly using state feedback. From a theoretical
point of view, not even the slightest disturbance in the states would be allowed for state
feedback.

In the following, your task is to design an advanced two-degrees-of-freedom controller
using the full state vector x = [q3 q4 q̇2 q̇3 q̇4]T as output variable y for feedback. We
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want to track the first two outputs, but simultaneously reduce disturbances on the three
other outputs, i.e. improve damping. Tracking of more than two outputs is no feasible
control objective because the actual plant only has two inputs. So, the system would be
underactuated.

As we are considering five output variables now, the shaping filter WS has to be
of dimension five. As before, the first two channels should be weighted with integral
behavior in order to achieve good reference tracking. All other channels are only provided
to improve damping and should therefore be chosen as constants. Note that the reference
only acts on the first two output variables. So the input to WS should look something
like

1 input_to_W_S = ['[w1(1:2)-G(1:2)+r ; w1(3:5)-G(3:5)]'];

How to Proceed

Design an advanced two-degrees-of-freedom controller for the gyroscope. Use the full
state vector x = [q3 q4 q̇2 q̇3 q̇4]T as output variable y for feedback. Again, repeat the
design process a few times and iteratively adjust the weights to come up with a promising
design in linear evaluation. Compare the advanced two-degrees-of-freedom design to
the two-degrees-of-freedom design of Section 4 to work out why using the velocities in
the feedback loop is useful. Verify your controller in nonlinear simulation and try to
come up with the design requirements given in Section 4. For nonlinear simulation, the
file orc2_GyroSimulation2.slx will be provided during the lab. This file contains the
advanced two-degrees-of-freedom design, otherwise it looks pretty much the same as the
file orc2_GyroSimulation.slx.

6.2 Experiment

During the lab, the file orc2_GyroExperiment.slx will be provided to interface the
control moment gyroscope. Its structure is depicted in Figure 31. As you can see, it is
very similar to the nonlinear simulation.

The blue block represents the control moment gyroscope and contains interfaces to the
Digital/Analog and Analog/Digital converters of the physical plant. The inputs
and outputs of the block are the same as in simulation except that differentiation
filters are used to estimate the states.
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The red blocks are identical to that used in the simulation.

The green blocks are identical to that used in the simulation except that the output
structure is now named expdata. Code for plotting this data will also be provided.

The yellow blocks are associated with a dedicated “start-up” controller and the switch-
ing logic necessary to switch to the robust controller. The start-up controller is
used to bring the plant to a certain operating point. It consists of a simple PI
controller acting on q̇1 and q2. The first yellow switch on the upper left is used to
activate/deactivate the start-up controller. The second can be used to reset the
output variables in order to define an operating point.
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Figure 31: Simulink model: Plant, Controller, Start-Up Controller and interface-related blocks

Prep. 6.1: Make sure your design file produces all the files necessary to run the nonlinear
simulation by simply executing it.

! Bring this file with you to the experiment as you may need to retune your
controller.
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Goal

Implement your controller in the Simulink real-time interface and try it out on the actual
plant. On the predefined trajectory that captures 5◦ steps in q3 and 40◦ steps in q4, you
should be able to achieve

• stability throughout the runtime

• a 5% settling time of less than 2 seconds on both channels

• a steady state error of less than 1% on both channels

• cross coupling should not exceed 1◦ per 5◦ command (i. e. should be less than 20%)

• an overshoot of less than 10%

• that the control input magnitude never exceeds 10 V at any time

• that the control input is smooth and does not result in mechanical wear (you’ll
hear what we mean if you fail to achieve this)

If necessary, retune your controller and try again. Also, compare your experimental
results to the simulation results that you have obtained.

! Be careful and obey all safety requirements when working on the experimental
device. An unstable controller can cause fast and unpredictable motion of the
gimbals which can cause severe injuries.
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