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About this Document
This document is intended to help you with the design task CSTD1—Identification and
Control of a Torsional Plant of the Control Lab practical course. It is written mainly in
the style of a tutorial and should provide you with all the necessary tools and Matlab
commands to solve the task.

This document is accompanied by Matlab files that you need to modify and execute in
order to develop your own design.

`SysIdent_ParameterEstimation.m' It contains the general structure of the para-
meter estimation part.

`SysIdent_BuildMeasurementMatrix.m' It contains core of the parameter estimation
part.

`LeadLag_Design.m' It contains the design of the lead-lag compensator.

`LQG_Design.m' It contains the design of the LQG regulators.

`OpenLoopModel_Sim.slx' It contains the open loop model to be used for parameter
identification purposes in simulation.

`OpenLoopModel_Exp.slx' It contains the open loop model to be used for parameter
identification purposes in experiment for the lab.

`LeadLag_Sim.slx' It contains the lead lag simulation.

`LeadLag_Exp.slx' It contains the lead lag experiment setup for the lab.

`LQG_Sim.slx' It contains two different LQG simulations.

`LQG_Exp.slx' It contains two different LQG experiment setups for the lab.

The code is guaranteed to work with Matlab 2016b 64bit, other versions might not
be supported. You can get the latest Matlab version from https://www.tuhh.de/rzt/
usc/Matlab/index.html or use the pool computers.

In this document, you will encounter blocks that indicate Matlab code:

1 [MATLAB COMMANDS]=USEFUL(TOOLS)
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These are meant to get you started. You can (and should) use the help command
within Matlab to find out more about a particular command.

Another thing that you will encounter are preparation tasks, for instance:

Preparation: What can you tell from such stability margins about the plant?

These are meant to prepare you for the question session that will take place prior to
conducting the experiment.

Task

Design and compare a lead-lag compensator and 2 LQG controllers for the torsional
plant based on a model to identify. Attach all necessary Matlab and Simulink files
that were provided to you no later than one week before the experiment via email to the
responsible Tutor and Supervisor. You will get an email when your preparation is not
sufficient to pass the Lab and will get time to revise your design.

Checklist

� I read this whole document carefully.

� I did all preparation tasks and can explain them.

� I completed `SysIdent_ParameterEstimation.m'.

� I completed `SysIdent_BuildMeasurementMatrix.m'.

� I completed `LeadLag_Design.m'.

� I completed `LQG_Design.m'.

� I submitted all Matlab files.
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1 PLANT
The ECP Torsional Plant in Fig. 1 has a configuration of a series of three disks and
two torsional springs, k1 and k2, respectively. By changing the number of masses and/or
their location on a given disk, its moment of inertia Ji, i = 1, 2, 3 is accordingly changed.
Each disk model includes a damping constant di, i = 1, 2, 3.

A brushless servo DC motor at the bottom of the apparatus is used to excite the series
of spring-disks with a torque signal T . The angular position θi, i = 1, 2, 3 of each disk
can be measured by means of an incremental encoder.

Given the voltage input to the DC motor as the input and the measured angles of
the three disks as outputs, the plant, in its general configuration, is a SIMO system
(Single-Input-Multiple-Output). This configuration is used for identification purposes.

However, for the control experiments, the plant is regarded as a SISO system. The
controlled variable is the position of the top disk, θ3, i.e. only this signal is used for
feedback (see Figure 2).
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Figure 1: Torsional apparatus photography and schematic.
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Figure 2: Input and output signals of the torsional plant.

1.1 Control Objectives

Given a reference step of 360 deg, as the input signal, to the closed-loop system (reference
command for θ3), the following specifications are defined to test the performance of the
designed controllers (see Figure 3):

1. Settling time ts < 3 s (Of ±5%)

2. Rise time tr < 1.5 s (from 10% to 90% to the set point)

3. Peak overshoot Mp < 10% (relative to set point)

4. Steady state error ess < 2 deg (for t > 20 s)

Meanwhile, it has to be guaranteed that the controller does not exceed the system limits
(see Section 1.5). Special attention needs to be paid to the maximum twist angle of the
springs to avoid a permanent damage (see Section 1.5). A suitable controller should
realize a trade-off among these objectives.

1.2 Physical Plant Model

Assuming that non-linear friction is negligible, we can derive the differential equation of
motion for each disk by summing torques acting on it, according to Euler’s equations of
motion (rotational form of Newton’s second law):

T = J1θ̈1 + d1θ̇1 + k1(θ1 − θ2)

0 = J2θ̈2 + d2θ̇2 − k1(θ1 − θ2) + k2(θ2 − θ3)

0 = J3θ̈3 + d3θ̇3 + k2(θ3 − θ2)

(1)
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Figure 3: Time constraints to be fulfilled by the controllers.

For the three disks labeled i = 1, 2, 3, Ji is the inertia of the ith disk; di is the damping
coefficient acting on the ith disk; θi is the rotated angle of the ith disk; k1 and k2 are the
torsional stiffnesses of two perpendicular torsional springs.

To bring the differential equations of motion (1) into state space form

ẋ = Ax + Bu

y = Cx,
(2)

the state vector x is chosen as: x = [θ1, θ̇1, θ2, θ̇2, θ3, θ̇3]T, where θ̇i denotes the angular
velocity of the ith disk. The control input u represents the torque applied from the DC
motor. The angular positions of the three disks θ1, θ2 and θ3 are defined as the output y.
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A state space realization of the torsional plant is

ẋ =



0 1 0 0 0 0
−k1

J1
− d1

J1
k1
J1

0 0 0
0 0 0 1 0 0
k1
J2

0 − (k1+k2)
J2

− d2
J2

k2
J2

0
0 0 0 0 0 1
0 0 k2

J3
0 −k2

J3
− d3

J3


x +



0
1

J1

0
0
0
0


u

y =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 x +


0
0
0

 u

(3)

Prep. 1.1: Is the system in Eq. (3) controllable and observable?

1.3 Frequency Response

A bode diagram of the open-loop plant is shown in Figure 4. Two resonant peaks
can be seen at frequencies, ω ≈ 18 rad

s and ω ≈ 31 rad
s , respectively. Thus, a pair of

complex poles is to be expected at the corresponding locations. The resonant peaks may
induce oscillations in the closed-loop response of the plant; it is desired to suppress such
oscillations as much as possible.

Prep. 1.2: What would be the closed-loop bandwidth under feedback with a constant
gain of 1, i.e. K(s) = 1 in Fig. 6.?

Prep. 1.3: Given the control objectives, what closed-loop bandwidth is needed?

Additionally, one can see a decay of 20 dB
dec at the low frequency range; this indicates

integral action in the open-loop plant. This is expected as the controlled output is a
position signal, which comes from integrating a velocity signal. Therefore, the open-loop
plant is marginally stable.

Figure 4 also shows the gain and phase margins of the system.

Prep. 1.4: What are the gain and phase margins of the system?

Prep. 1.5: What can you say about the closed-loop stability by looking at those margins?
(under feedback with a constant gain of 1, i.e. K(s) = 1 in Fig. 6).
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Figure 4: Bode plot of the torsional plant.

1.4 System Hardware Gains

1.4.1 Input

The excitation motor with a toothed belt has a gearing ratio of kpull = 3 and a torque
current gain of kt = 0.086Nm

A . It is connected to the output of a DC current amplifier.
The amplifier contains a current control loop and receives its input signal as a voltage
from the I/O real-time card. A constant amplifier gain of ka = 1.5A

V is assumed. The
resulting overall hardware gain khw can be calculated as

khw = kaktkpull = 0.387Nm
V

8



which stands for the ratio of the torque over the voltage applied to the system (at the
bottom disk).

1.4.2 Output

The angular positions of each disk are measured via incremental encoders. An encoder is
a device that produces a train of pulses as it rotates. The hardware gain for the three
encoders is the same; it is

kenc = 360
16000

deg
pulses

which stands for the ratio of a complete revolution of encoder over the generated pulses.

1.5 System Limits

Given the hardware gain and the maximum allowed voltage of umax = ±10V, the
maximum torque applied to the bottom disk is about Tmax = umax · khw = ±3.87Nm.
It is recommended to limit the maximum output voltage to ±5V. To avoid permanent
squirm of the springs, the maximum torsional limit for each spring has to be restricted
± 25 deg. It is also recommended to twist the springs not more than ±20 deg. Once the
limit is reached, the experiment should stop immediately. To sum up, the following two
system limits have to be observed when working with the real plant:

• umax ≤ ±5 V → Tmax ≤ ±1.94 Nm;

• |θ2 − θ1| < 20 deg and |θ3 − θ2| < 20 deg.
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2 OUTLINE OF THE LAB PROJECT
Although a linearized dynamic model of the plant has been derived, it still remains to
accurately identify the involved physical parameters, i.e. inertia, torsional stiffness and
damping coefficients. To estimate the unknown parameters, a grey-box identification
technique is applied. Based on the identified model, three different controllers are to
be designed and compared: a lead-lag compensator, a standard LQG controller and an
LQG controller with integral action. The designed controllers need to be validated by
simulation first, then implemented on the real plant. Several criteria are predefined for
their performance assessment.

This laboratory experiment consists of the following tasks:

• Estimate the unknown parameters in the linearized model based on grey-box
identification

• Design and tune a lead-lag compensator and the two LQG controllers based on the
identified model

• Implement the designed controllers on the real plant and compare their performance
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3 PARAMETER IDENTIFICATION
All methods for designing and analysing control systems that have been introduced in
the course are model based, i.e. it is assumed that a dynamic plant model in the form of
a transfer function or state space realization is available. In practice, obtaining such a
model can take up a significant part of the time.
An alternative is to obtain a plant model experimentally by measuring the response of
the plant to suitable test signals; this approach is known as system identification.
The goal of this task is to accurately identify the system parameters contained in the
state space representation of the plant in Eq. (3). A suitable excitation signal is to be
designed by the student. This signal will be fed to the plant and by minimizing the least
squares error between the actual and the estimated torque, a set of parameters will be
obtained. Finally, the identified system will be validated by comparing the actual and
the estimated torque.

3.1 Least Square Estimation

To achieve this task, the least square estimation approach is used. The goal of the
method is to minimize the sum of squares of the errors:

V (p) =
∞∑

l=0
e2(l) =

∞∑
l=0

(y2
measured − y2

estimated) (4)

between the measured data and the estimated ones, by posing a parameter vector ’p’.
Assume that we are observing a process - characterized by a quantity y(t) - at time
instants t = 0, T, 2T, . . . where T is a given sampling time. Then, we can write the
equation:

y(k) = m1(k)p1 + m2(k)p2 + ... + mn(k)pn + e(k) (5)

where the vector: M = [m1(k), m2(k), ......mn(k)] is the vector containing the other
variables that affect y(k), such as the inputs u(k), u(k-1), y(k-1), etc. And the vector ’p’
is the vector containing the parameters to be estimated.
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To drive the error to zero, it is required that:

Y = Mp =
[
m1(k) . . . mn(k)

]
︸ ︷︷ ︸

M


p1

p2
...

pn


︸ ︷︷ ︸

p

(6)

The requirement for this is to have knowledge of the system order, so that the matrix M
is filled properly and all parameters are estimated. Hence, assuming M has full rank, we
can write:

p = (MT M)−1MT Y (7)

where p is the vector containing the parameters to be estimated, and Y is the vector
containing the outputs at every time step.

3.2 Generate Excitation Signals

To collect all the required data, the input signal should be rich enough. This means
that the input signal should have the minimum amount of energy to excite all of the
system parameters, which is the number of frequencies contained in the signal. This
is the notion of Persistent excitation (PE). Mathematically, the PE condition insures
that the matrix M is invertable. Band-Limited white noise contains the spectrum of all
frequencies, which makes it PE of any order, step input is PE 1, etc.
Matlab provides various possibilities to generate excitation signals, for example the block
Band-Limited White Noise in Simulink.
You can also add a low-pass filter to filter out higher frequencies.

Prep. 3.1: What would be a good maximum frequency for the excitation signals?
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3.3 Collect a Set of Input-Output Data

The system can be written in the form:

ŷ(k) = −a1y(k − 1)... − any(k − n) + b1u(k − 1)... + bn(k − n) = Mp (8)

This is known as the difference equation. Thus measurement data should be retrieved
from the plant along with the input signals, which represent the matrix M. The matrix
P is then calculated using the least square estimation.
Include your excitation signal, choose a sampling time and run the Simulink model
`SysIdent_OpenLoopModel.slx'. Save the data in workspace as a mat-file. One point
needed to be addressed here is that, in off-line simulation, we can simply regard torques
generated by the DC motor as the input of the plant u. However, in real-time experiments,
torques have to be converted into voltages written to the I/O real-time card through the
hardware gain khw. Do not forget the system limits.

Arrange the measured data in a form that allows to compute the unknown parameters
by solving a linear least squares problem (as mentioned above): given the differential
equation (1), the excitation signals u and the measured output θ1,k, θ2,k and θ3,k at each
sampling instant k, the following augmented difference equation contains the input-output
information at all sampling instants and has the form:



T1

0
0
...

Tk

0
0


︸ ︷︷ ︸

T

=



θ̈1,1 0 0
0 θ̈2,1 0
0 0 θ̈3,1

θ̇1,1 0 0
0 θ̇2,1 0
0 0 θ̇3,1

θ1,1 − θ2,1 0
−θ2,1 − θ1,1 θ2,1 − θ3,1

0 θ3,1 − θ2,1
... ... ... ...

θ̈1,k 0 0
0 θ̈2,k 0
0 0 θ̈3,k

θ̇1,k 0 0
0 θ̇2,k 0
0 0 θ̇3,k

θ1,k − θ2,k 0
−θ2,k − θ1,k θ2,k − θ3,k

0 θ3,k − θ2,k


︸ ︷︷ ︸

M



J1

J2

J3

d1

d2

d3

k1

k2


︸ ︷︷ ︸

p

(9)

where the torque vector T contains the torques applied by the DC motor at the bottom
disk. The observation Matrix M contains measured entries θi,k and entries calculated from
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measurements θ̇i,k and θ̈i,k. The vector p contains all the unknown physical parameters
to be estimated.

3.4 Fix the m-file

To organize the differential equation in this form after measurements are collec-
ted, the m-file `SysIdent_BuildMeasurementMatrix.m' is provided, in which a part
of the code needs to be completed. The execution of this file occurs inside of
`CSTD1_ParameterEstimation.m'; it is important to open this function first as it
is the main file of this part of the experiment.

To construct the M matrix, the angular velocity θ̇i,k and the angular acceleration
θ̈i,k need to be calculated from measured angular position θi,k of the ith disk at each
sampling time k by numerical differentiation. One can use a central difference approach
to calculate the angular velocity as

θ̇i,k = θi,k+1 − θi,k−1

2Ts

(10)

and the angular acceleration as

θ̈i,k = θi,k+1 + θi,k−1 − 2θi,k

T 2
s

. (11)

When doing this in the experiment, it is necessary to low-pass filter the measured angular
positions before using it to calculate velocity (10) and acceleration (11), in order to
reduce the influence of measurement noise. The calculated velocity and acceleration need
to be filtered as well for identification. In the given m-file, parts of the code are missing.
They are required to be filled in before submission. The missing parts are:

1 The calculation of velocity and acceleration according to (10) and (11) by means
of central difference.

2 Signal filtering: a second order Butterworth low pass filter is recommended. In this
experiment, the same filter can be employed to filter the angular position, velocity
and acceleration. You can use the following commands

1 [B,A] = butter(N,Wn,'low')
2 Y = filtfilt(B, A, X)

14



3.5 Identification of Unknown Parameters

The objective of the identification is to estimate the unknown parameter vector p, so
that the difference between the given excitation, which is the torque vector T applied to
the bottom disk, and estimated torque T̂ (p) is minimized (see Exercise 7.1, of the lecture
notes Control Systems Theory and Design):

min
p

n∑
i=1

(T̂ (p) − T )2 (12)

Starting with (9), where

T = Mp , (13)

use the approach discussed in the lecture notes Control Systems Theory and Design,
Chapter 7, to derive a formula for the solution to (12) and write the code for the
estimation of p as part of the function `CSTD1_ParameterEstimation.m'.

3.6 State Space Realization

By replacing the unknown physical parameters in Equation (3) with the identified values,
the state space model of the linearized system can be generated with the given m-file
`SysIdent_StateSpaceConstruction.m'. Save the state space model, as it will be
used for the controller designs.

3.7 Validate the Identified Model

To examine the accuracy of the identified model, you can excite the Simulink model with
excitation signals that have not been used in the identification experiment, and compare
the given torque T and estimated torque T̂ (p) = Mp, where T and M are generated by
the new signals, whereas p is the original identified parameter vector.

To assess the accuracy, compute the sum of the squared errors of those signals
(see Figure 5). This part must be completed by the students as part of the function
`CSTD1_ParameterEstimation.m'.
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Figure 5: System identification validation.

4 CONTROLLER DESIGN
In this section, the identified model will be used to design three different controllers: a
lead-lag compensator and two LQG regulators (without and with integral action).

The controllers must satisfy as close as possible the design specifications described
in Section 1.1. At the same time, it has to be guaranteed that the controller does not
exceed the system limits. Special attention needs to be paid to the maximum twist angle
of the springs to avoid a permanent damage.

4.1 Lead-Lag Compensator

First a classical lead-lag compensator is to be designed. By adding poles and zeros to
the open-loop system, the lead and lag compensators influence the phase and gain at
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different frequencies, leading to better transient behaviour and steady state accuracy.
The control loop has the structure shown in Figure 6.

r K(s) G(s)e u y

Figure 6: Closed-loop system.

Here G(s) is the plant model and K(s) the controller to be designed. The signal r is
the angular reference in [deg], u is the control input in [Nm], y is the angular position of
the third disk, i.e. θ3.

Prep. 4.1: What are the different control objectives of a lead and a lag compensators?

Prep. 4.2: How are the relative pole/zero locations of lead and lag compensators?

Follow the next steps to design your lead-lag compensator.

1 Calculate the transfer function from the control input u to the third disk output
θ3 in the open-loop system. Use the information of its Bode diagram to design
a phase lead compensator to achieve a phase margin larger than 30 deg with a
closed-loop bandwidth of ωb > 1 rad/s.

2 Design a lag compensator to improve the performance (e.g. high-frequency suppres-
sion) of the closed-loop system already designed, without significantly changing
the behavior achieved by the designed lead compensator.

3 For fine-tuning of the lead-lag compensator use the Matlab Toolbox SISO tool to
achieve the performance criteria.

The code for designing your lead-lag compensator must be included in the file
`LeadLag_Design.m'.

5 Test the performance of the designed lead-lag compensator with a step reference in-
put using the Simulink model `LeadLag_Sim.slx'. Before you run the simulation,
make sure the designed compensator is written to the corresponding block, and
the previously identified state space model of the plant exists in the Workspace.
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In Figure 9, a typical step response is shown, for a reference command of r = 360 deg
for θ3, using a lead-lag compensator.

4.1.1 Loop Shaping Approach

As mentioned before, some guidelines to design a lead-lag compensator can be found in
the Introduction to Contol lecture notes in Chapter 4. Those can be useful as a starting
point to iterate your design. For a broader perspective on how to tune your lead-lag
compensator, e.g. with SISO tool, or to design your lead-lag compensator differently, the
idea of loop shaping is now briefly reviewed.

Loop shaping is a classical approach to design controllers for SISO systems. The idea
is to shape the open loop transfer function to satisfy some restrictions. As a graphical
method, it is very intuitive. It allows to infer the overall performance of the closed-loop
system from the frequency response of the open loop.

Consider the loop shown in Figure 6 and define L(s) = G(s)K(s). In Figure 7, three
frequency regions are defined: performance region, transition region and robustness
region. Figure 7 shows a desired shape for the open loop gain L(s). Basically, it is
desired to have high gains at low frequencies (e.g. to obtain integral action) and a rapid
decay at high frequencies (e.g. to reduce the effect of high-frequency noise or possible
model uncertainties). In the center region (bandwidth), the active limits of operation
of the system are determined. In this region, stability must be ensured, therefore the
need of a sufficient phase margin at the crossover frequency. A sustained 20 dB/dec
roll-off achieves a phase margin of 90 deg and is hence desired (see Section 4.4, Bode’s
Gain-Phase Theorem, in the lecture notes ‘Introduction to Control Systems’). Recall
that the phase margin of a system is related to its damping properties, i.e. a large phase
margin implies a good damping, i.e. good transient behaviour.

A first step is always to establish the bandwidth of the system. One can employ a
lead compensator to adjust the slope of the system at the transition region; thus, the
phase margin. A lag compensator can be used to increase the gain at low frequencies or
to decrease the gain at high frequencies. It is important to mention that, for minimum
phase systems, a loop shaping approach requires only to look at the Bode magnitude
plot.

You can tune your lead-lag compensator by keeping in mind the shape of a desired
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Figure 7: Loop shaping restrictions.

open-loop gain L(s), or you can design a compensator by successively adding different
stages (e.g. leads, lags, filters, notches etc.) to your plant G(s) in order to shape L(s).

In the following it is described how to design a lead-lag compensator by employing the
loop shaping approach. Matlab code for the design of your lead-lag compensator must
be included in the file `LeadLag_Design.m'.

1 From the open-loop plant Bode diagram, find the gain that achieves the desired
bandwidth.

2 Design a lead compensator to adjust the slope one decade above and below the
crossover frequency to 20 dB/dec.

3 Design two notch filters to reduce the resonance of both peaks. The frequency
region of the peaks is close to the crossover frequency, be careful to not change the
bandwidth of the system.

A notch filter F (s) has a pure complex zero pair at ωN that defines the notch and
two poles to have a proper filter and 0 dB gain everywhere else except at ωN , i.e.

F (s) = (s + jωN)(s − jωN)
s2 + qωNs + ω2

N

, (14)
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where q defines the amplitude of the notch. Give a try to the following code to feel
familiar with the behaviour of a notch filter.

1 %A Bode plot of a Notch filter at 3 rad/s is shown
2 wn = 3;
3 q = 0.5;
4 F = tf([1 0 wn^2],[1 q*wn wn^2]);
5 bode(F)

4 Test your design; if required increase the phase gain of the lead compensator to
increase a possible phase loss due to the lag compensator.

In Figure 8 one can see the adjustments that are performed on the open-loop (in blue)
frequency response with the inclusion of the compensators listed above.
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Figure 8: Loop shaping procedure.
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Figure 9: A typical step response of the closed-loop system with two lead-lag compensators.

4.2 LQG Controller

For comparison with the classical lead-lag compensator, an LQG controller is to be
designed in this experiment. In this scheme, only the third output (y = θ3) is used for
feedback. Figure 10 shows the simplified control diagram. It combines a linear quadratic
estimator (LQE) and a linear quadratic regulator (LQR). Moreover, a static prefilter
(constant gain υ) is added to loop.

r

x

u yv G(s)

-ObserverF
^

Figure 10: LQG control structure with a prefilter.
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Prep. 4.3: What are the trade-offs to consider when an LQG controller is to be designed,
and how are those trade-offs tuned?

Follow the next steps to design an LQG controller.

1 In the m-file `LQG_Design.m', write the Matlab code for the design of an LQG
controller with a static prefilter υ.

• Determine the prefilter υ.

• Determine the estimator gain vector L and the state feedback gain F with
the Matlab command lqr().

• Tune the weighting matrices so that the tracking specifications are satisfied.

2 Test your designed LQG controller by implementing it in the Simulink model
`LQG_Sim.slx'. Use the same input reference as for the lead-lag compensator;
compare the closed-loop response of the two controllers.

Figure 11 shows a typical the step response for a reference command of r = 360 [deg],
using an LQG controller. Here the, performance of the LQG controller seems to be
slightly better.

Prep. 4.4: What are the possible reasons for a better performance of an LQG controller
compared to the lead-lag controller?

Obtain the closed-loop Bode plots for both designs (lead-lag and LQG) and compare.

4.3 LQG Controller with Integral Action

Introduce the step disturbances by changing the corresponding variable in the simulations
of both the lead-lag and the LQG design. You should observe a behaviour similar to
what is shown in Figure 12. The first disturbance (t = 4s) is an output disturbance. Due
to the integral action of the plant, the output tracks the reference signal. The second
disturbance (t = 7s) is an input disturbance, both controllers are severely affected. Thus
the need for a new design.

To completely bring to zero any steady state error and to cope with disturbances, the
designed LQG controller has to be extended. To achieve this, integral action must be

22



0 1 2 3 5 10
0  

10%

90 

180

270

90%

360

450

Time [s]

U
pp

er
 D

is
k 

Po
si

tio
n 

[d
eg

]
Closed-Loop Step Response (LQG)

Figure 11: Step response of the closed-loop system with an LQG controller.

included in the LQG design. For this, the error signal must be integrated, i.e. a direct
measurement of the error will take place (see Figure 13).

Refer to the Problem 5.15 in the lecture notes ‘Control Systems Theory and Design’
for details.

Prep. 4.5: Why does the steady state error vanish when integral action is included?

Prep. 4.6: What modifications to the plant are required to design an LQG controller
when integral action is considered in the loop?

Follow the next steps to design an LQG controller with integral action.

1 Construct the corresponding augmented system.

2 In the m-file `LQG_Design.m' write the Matlab code to design an LQG controller
with integral action.

• Determine the new state feedback gain F with the Matlab command lqr().
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an LQG controller.

Figure 13: LQG control structure with integral action.

• Tune the weighting matrices so that the tracking specifications are satisfied.

3 Test your newly designed LQG controller by implementing it in the Simulink model
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`LQG_Sim.slx'. Use the same input reference and disturbances as before, compare
the closed-loop response of all the controllers (see Figure 14). Notice how the input
disturbance is suppresed almost instantaneously.
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Figure 14: All designed controllers.

Notice also the rejection to high-frequency resonance. Plot the closed-loop Bode
diagram of this design and compare to the previous controllers.
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5 EXPERIMENT
Before working with the real plant, students should prepare themselves by going through
the preliminary tasks and carefully reading the safety instructions contained in the next
section. The main tasks in this section are similar to the preliminary ones, but the object
is now the real plant. All Matlab m-files and Simulink models needed for the real-time
experiment are saved in the project computer. The real-time system employed in this
torsional plant is the TwinCAT automation suite provided by Beckhoff. In order to do
this one must click on ’Activate Configuration’ in the visual studio file for the torsional
plant - TorsionalPlant.sln.

The following tasks are to be fulfilled in the laboratory:

1. For the parameter estimation part of the experiment, use the provided Simulink
model `OpenLoopModel_Exp.slx'. Add appropriate excitation signals to the
input and choose the sampling time Ts = 1 ms. Check that the conversion between
torque and voltage is correctly implemented. Make sure that the excitation signals
do not exceed the system limits. The block Analog Output works in real time
and connects the user’s input to the I/O real-time card. Another real-time block
Encoder Input reads back the measurements from the encoders. To run the Simulink
model, click the Play button; it will automatically run on the real system after
compilation of the code.

2. Collect the excitation signals and measured outputs. Estimate the parameters by
solving a linear least squares problem.

3. Construct the A, B, C and D matrices of the state space model and validate the
estimated parameters by generating different input-output data and comparing the
response of the identified model with that of the real plant.

4. Tune your lead-lag compensator based on the on-line identified model, so that
the tracking specifications are fulfilled as much as possible for the new identified
system.

NOTE: A more accurate representation of the torsional plant would include a
friction model. Therefore, controllers with low input signals might show a poorer
performance in the real system than in simulations. Make sure your controllers
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has high gain at low frequencies high control action to avoid this issue as good as
possible.

5. Open the Simulink model `LeadLag_Exp.slx' and write the designed compensator
in the controller block. Save the measurements as mat-file for later comparison.

6. Tune your designed LQG controllers based on the on-line identified model, so that
the tracking specifications are fullfilled.

7. Use the given Simulink model `LQG_Exp.slx', for the standard LQG design and
for the LQG controller with integral action. Compare the results with the lead-lag
compensator.

8. Change the plant dynamics by adding two masses to the upper disk to test the
robustness of the two controllers. Discuss the results of the comparison.

5.1 Safety Instructions

Before working with the real plant, please read and follow the instructions below carefully
to prevent damages and accidents:

• Before powering up the ECP amplifier, check that all moveable parts (disks and
additional weights) are fixed in a proper way and all screws are tightened.

• Check whether the red emergency stop button is connected to the amplifier.

• Do not touch the plant directly if the amplifier is powered up.

• Take care about your hair and cloths (e. g. ties, scarves, etc.). Avoid to be
caught in the rotating apparatus.

• Do not uncover or touch any interior parts of the amplifier or PC until the power
plugs have been disabled.

• Switch off the power plugs when switching fuses.

A motionless system is not sufficient to assume that it will keep motionless. To
prevent unwanted and uncontrolled movements of the apparatus please follow the following
steps during the process of experiments:
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1. Always boot up the PC first.

2. Start TorsionalPlant.sln-file in Visual Studio and Activate Configuration.

3. Start Matlab Simulink and load a given Simulink model.

4. Check if the emergency stop simulink-block is connected and set up in a proper
way.

5. To prevent a spring twist angle more than ±20 deg, check if the boundary in the
saturation simulink-block is less than 5 V or 1.94 Nm.

6. Turn on the amplifier for the experiments.

7. Run the Simulink model to run the experiment.

8. Switch off the amplifier after the experiment.

9. After finishing all experiments, switch off the PC and the amplifier to set the I/O
Real-Time Card default output value to zero.

If the plant moves out of control, which leads to a permanent spring squirm, press
the red emergency button immediately.
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