
Lecture Notes

Linear and Nonlinear
System Identification

Herbert Werner

Copyright ©2020 Herbert Werner (h.werner@tuhh.de)
Hamburg University of Technology

ver. November 20th, 2020

mailto:h.werner@tuhh.de

Contents

Introduction 1

1 Least-Squares Estimation 4

2 Prediction Error Method 15

3 Multilayer Perception Networks 27

4 Solving the Estimation Problem 40

5 Training Neural Networks Levenberg-Marquardt Backpropagation 51

6 Predictive Control Using Neural Networks 62

7 Linear Subspace Identification 72

Bibliography 82

A APPENDICES 83

A Solutions to Exercises 84

Introduction

This lecture course Linear and Nonlinear System Identification provides an introduction
to a field that is of considerable importance for the solution of practical control problems
when a model-based controller design is involved (as it usually is). It is concerned with
obtaining a model of the plant to be controlled when a first-principles model is hard
to obtain or would not lend itself easily to controller design because of its structure or
complexity. An alternative to first-principles modeling (that can serve as a complement
when an existing physical model is too complex for control synthesis) is experimental
system identification, where numerical optimisation is used to fit the parameters of a
predetermined model structure to experimentally obtained input and output data. The
chosen model structure may be motivated by physical insight into the plant dynamics
(in that case we speak of a grey-box model, in contrast to first-principles models which
are referred to as white-box models). Often the choice is just dictated by the need for a
model that is simple enough to be employed in standard model-based controller synthesis
procedures. When linear control techniques are used, that typically means linear state
space or transfer function models. Since such models are not based on physical insight,
they are referred to as black-box models. In this course we will focus on the identification
of black-box models.

In black-box identification the choice of the model structure represents a trade-off between
on one hand the complexity of the model and the ensuing control synthesis procedure, and
on the other hand the desired accuracy and control performance. A fundamental decision
to be made is that between a linear and a nonlinear model structure. In practice linear
models are preferred, because powerful control techniques are available for such models.
But there are critical applications where nonlinear plant dynamics are too dominant for
a linear approximation to be acceptable. In this course we will cover the identification of
both linear and nonlinear model structures. We will introduce a framework that unifies
the identification of a variety of different model structures, linear and nonlinear. This
framework is known as the Prediction Error Method and forms the basis of most identifi-
cation techniques that are employed in practical applications: the chosen model structure
is transformed into a predictor model, a model that takes the experimental input-output
data up to a given time as its input and generates a one-step-ahead prediction of the
output. The parameters of the predictor model (which are the desired model parameters)
can then be found by solving the problem of minimising the sum of squared prediction

2 CONTENTS

errors.

Before presenting the framework of the prediction error method, we show in Chapter 1
that in the simplest case - a linear model structure and output measurements corrupted
only by white noise filtered through the plant dynamics - the identification problem can
be solved as a linear least squares problem. The price for being able to solve this problem
simply by solving a linear equation - the normal equation - is that the model structure does
not allow any information about noise and perturbations to be extracted and exploited for
improving the model. This model structure is known as ARX model and appears again
in Chapter 2 as a special case; it is the simplest of a number of linear model structures
which differ in the assumptions on the noise process that corrupts the measurements.
In order to illustrate the trade-off between model complexity and model accuracy when
choosing a model structure, we discuss two model structures in detail: ARX models and
ARMAX models; the latter structure allows to include information about the noise in the
model. In all model structures except ARX the one-step-ahead prediction is nonlinear in
the model parameters, and the estimation problem needs to be solved iteratively. The
gradient-based iterative solution of the estimation problem is discussed in Chapter 4.

Identification of nonlinear dynamic models is considered in Chapter 5; here rather than
providing an overview of existing nonlinear system identification techniques, we will focus
on one particular approach: training a neural network - more specifically a multilayer per-
ceptron network introduced in Chapter 3 - to capture the dynamic behaviour of a nonlinear
system. It is shown how this can be done within the framework of the prediction error
method, and we will see that the same trade-off between model complexity and accuracy
arises that is encountered for linear model structures. Following the discussion of linear
system identification, the neural network based NNARX and NNARMAX structures are
considered.

To motivate the representation of nonlinear systems by neural network models, we give
in Chapter 6 a brief introduction to predictive control. While the presentation of an
approach known as Generalised Predictive Control, which is based on a linear model
structure, should be of interest in its own right, we show how a neural network model
of a nonlinear system together with the so-called instantaneous linearisation technique
can form the basis of a very efficient predictive control scheme for nonlinear systems.
The discussion of nonlinear control is heuristic in the sense that stability of the closed-
loop system is not guaranteed under the proposed scheme. This is however in line with
industrial practice, where in process control predictive schemes have been used for decades
efficiently in spite of a lack of stability guarantees. A more rigorous treatment of nonlinear
control that includes an analysis of closed-loop stability and performance is provided in
the lecture course Advanced Topics in Control.

The model structures considered in the course material outlined so far are restricted
to single-input single-output systems; for linear model structures the identified model
parameters can be seen as polynomial coefficients in transfer function models. Even

CONTENTS 3

though it is possible to extend these model structures to multi-input multi-output systems,
it is usually more convenient to handle MIMO systems in state space form. To complete
this course, Chapter 7 gives a brief introduction to a technique that is not based on the
prediction error method and can be used to identify state space models of linear SISO
and MIMO systems; this approach is known as subspace identification.

Whereas the lecture material emphasizes theoretical concepts involved in system identi-
fication, some practical issues such as experiment design and preprocessing of data are
covered in a series of exercise problems, which are to be solved using Matlab tools includ-
ing the System Identification Toolbox.

Chapter 1

Least-Squares Estimation

All methods for designing and analysing control systems that have been introduced in our
earlier control courses are model based, i.e. it is assumed that a dynamic plant model in the
form of a transfer function or state space realization is available. In practice, obtaining
such a model can take up a significant part of the time required for solving a given control
problem. Physical modelling can become difficult if the plant dynamics are complex and
not well understood. Even when it is possible to obtain a model from first principles,
it may not be suitable for controller design because of its structure or complexity. An
alternative is to obtain a plant model experimentally by measuring the response of the
plant to suitable test signals; this approach is known as system identification. Because
no physical insight into the plant behaviour is utilized, this method is also referred to as
black box modelling. One of the advantages of black-box modeling is that one can impose
a structure and complexity on the model that makes it a suitable basis for controller
design. This chapter shows how parameters of a model with predefined structure and
order can be determined by solving a least squares problem.

Transfer functions and state space models are called parametric models, because the com-
plete information about the dynamic behaviour of the system is contained in a fixed
number of parameters - e.g. the coefficients of the transfer function polynomials or the
entries of the matrices of a state space model. Nonparametric models on the other hand
are representations of plant dynamics that cannot be expressed by a finite number of
parameters, such as the shape of the frequency response or the impulse response of the
system. In this course we will consider the experimental identification of parametric
plant models. Because the input-output data used for system identification are usually
sampled-data sequences, the identified models are discrete-time models. After introducing
the concept of a linear regression model in Section 1, we will discuss the identification of
transfer function models for SISO systems in Section 1.

1. Least-Squares Estimation 5

Least Squares Estimation

Assume that we are observing a process - characterized by a quantity y(t) - at time
instants t = 0, T, 2T, . . . where T is a given sampling time. Assuming for simplicity
T = 1, this observation yields a data sequence y(k), k = 0, 1, 2, . . . We further assume
that the process variable y(k) at time instant k depends linearly on the values of certain
other variables ϕ1(k), ϕ2(k), . . . , ϕn(k) which are known and available at the same time.
A linear process model is then

y(k) = ϕ1(k)θ1 + ϕ2(k)θ2 + . . .+ ϕn(k)θn + ε(k) (1.1)

where the dependence of the quantity y on the measured variables is determined by the
parameters θ1, θ2, . . . , θn. The term

ε(k) = y(k) − ϕ1(k)θ1 − ϕ2(k)θ2 − . . .− ϕn(k)θn

is added to allow for modelling errors, e.g. measurement errors or inaccurate knowledge
of values of the parameters θi. Modelling errors can also arise if the true process depends
on the measured variables in a nonlinear way, or if it depends on additional variables that
are not included in the above model.

The model (1.1) can be written in a more compact form as a linear regression model

y(k) = [ϕ1(k) . . . ϕn(k)]


θ1
...
θn

+ ε(k) = ϕT (k)θ + ε(k) (1.2)

where two column vectors - the vector of regression variables ϕ(k) and the parameter vec-
tor θ - have been introduced. Given a set of measured data y(l) and ϕ(l), l = 1, 2, . . . , N ,
we can now pose the least squares estimation problem: find the parameter vector θ that
best fits the data, in the sense that the sum of the squared errors

V (θ) =
N∑

l=0
e2(l) (1.3)

is minimized.

Example 1.1

Suppose a transfer function model of an unknown system is to be identified which is
thought to be governed by a first order linear difference equation. Assume that a measured
data set {y(l), u(l)}, l = 1, 2, . . . , N is available. The task is then to find parameters a
and b of the transfer function

G(z) = bz−1

1 + az−1

6

that lead to a good fit between measured data and output data predicted by the transfer
function model.

The unknown system can be expressed in time domain in terms of G(z) in the form of a
linear regression model by writing the difference equation of the system as

y(k) = −ay(k − 1) + bu(k − 1) + ε(k)

= [−y(k − 1) u(k − 1)]
[
a

b

]
+ ε(k)

= ϕT (k)θ + ε(k) = ŷ(k) + ε(k)

where ε(k) is the modelling error and ŷ(k) represents the output predicted by the model.

Solving the Least Squares Estimation Problem

If a data set {y(l), u(l)}, l = 0, 1, 2, . . . , N is available, we can arrange it in the form

Y = Φθ + E (1.4)

where we define

Y =


y(0)

...
y(N)

 , Φ =


ϕT (0)

...
ϕT (N)

 , E =


ε(0)

...
ε(N)


Similarly, we introduce the vector

Ŷ = Φθ

of predicted outputs. Assuming initially that the unknown system can indeed be accu-
rately represented by G(z), and that there are no measurement errors, the modelling error
will be zero if the parameter vector θ takes its “true” value: in that case we have Ŷ = Y ,
or

Φθ = Y (1.5)

If we have more measurements available than model parameters, i.e. if N > n, this is an
overdetermined system of equations. Multiplying from left by ΦT yields

ΦT Φθ = ΦTY (1.6)

This equation is called the normal equation associated with the given estimation problem.
If Φ has full column rank, the matrix ΦT Φ ∈ IRn×n is non-singular, and we can compute

θ = (ΦT Φ)−1ΦTY (1.7)

However, a solution to (1.6) will exist and the parameter vector θ obtained from (1.7) will
satisfy (1.5) only if the system is indeed exactly governed by a linear difference equation of
the assumed order, and if there are no measurement errors. In real life problems, neither
condition will be met, so that θ will not satisfy (1.5) but only (1.4) with E 6= 0. The best

1. Least-Squares Estimation 7

we can then achieve is to find the parameter vector θ that is associated with the “smallest
modelling error” - in other words the closest approximation we can get with this model
in the presence of measurement errors. The following result is derived in Exercise 1.1.

Theorem 1.1

The sum of square errors V (θ) (1.3) is minimized if the parameter vector satisfies the
normal equation (1.6).

If the matrix ΦT Φ is nonsingular, the minimizing parameter vector is given by (1.7).

Geometric Interpretation

A geometric interpretation of the normal equation goes as follows. Rewrite (1.4) as

E = Y − Φθ

or 
ε(0)

...
ε(N)

 =


y(0)

...
y(N)

−


ϕ1(0)

...
ϕ1(N)

 θ1 − . . .−


ϕn(0)

...
ϕn(N)

 θn

Introducing the column vectors

ϕi =


ϕi(0)

...
ϕi(N)

 , i = 1, . . . , n

we have
E = Y − ϕ1θ1 − . . .− ϕnθn

If the true system can be accurately described by the assumed linear model and if there are
no measurement errors, then Y would be in the space spanned by the vectors ϕ1 . . . ϕn.
In real life, unmodelled features of the system and measurement errors will in general
lead to a vector Y that is outside the data space. The estimation problem can then be
interpreted as searching for the linear combination of the vectors ϕ1 . . . ϕn that comes
closest to the vector Y , i.e. that minimizes the squared error ETE. This is illustrated in
Fig. 1.1 for the special case n = 2: what we are looking for is the projection Ŷ of the
vector Y onto the space (a plane if n = 2) spanned by the measurement vectors ϕi, and
Ŷ is the vector closest to Y if the error E is orthogonal to this space (plane). But E is
orthogonal to this space if it is orthogonal to each of the measurement vectors, i.e. if it
satisfies

ϕT
i E = 0, i = 1, . . . , n

8

ϕ2

p2

p1

ϕ1

Y

E

Ŷ

Figure 1.1: Geometric interpretation of the least squares estimation problem

This can be written in a more compact form as ΦTE = 0 or

ΦT (Y − Φθ) = 0

which is just the normal equation (1.6).

Estimation of Transfer Function Models

We will now apply the idea of least squares estimation to identify a transfer function model
of a system from measured input and output data. Thus, assume that data sequences
{u(0), . . . , u(N)} and {y(0), . . . , y(N)} are available and that we want to find the pulse
transfer function (with specified order n of numerator and denominator polynomial) that
gives the best fit between input and output data. We will initially assume for simplicity
that the system to be identified can be modelled by the difference equation

ŷ(k) = b1u(k − 1) + b2u(k − 2) + . . .+ bnu(k − n) (1.8)

which means there is no autoregressive component in the output (the ai’s are assumed to
be zero) - we will later remove this assumption. The difference equation can be written
in regressor form as

ŷ(k) = [u(k − 1) u(k − 2) . . . u(k − n)]


b1
...
bn

 = ϕT (k)θ

The measurement matrix Φ takes the form

Φ =


u(n− 1) u(n− 2) . . . u(0)
u(n) u(n− 1) . . . u(1)

... ...
u(N − 1) u(N − 2) . . . u(N − n)



1. Least-Squares Estimation 9

where we take ϕT (n) as the first row, and we have

ΦT Φ =



∑N−1
i=n−1 u

2
i

∑N−1
i=n−1 uiui−1 . . .

∑N−1
i=n−1 uiui−n+1∑N−1

i=n−1 ui−1ui
∑N−1

i=n−1 u
2
i−1 . . .

∑N−1
i=n−1 ui−1ui−n+1

...
∑N−1

i=n−1 ui−n+1ui
∑N−1

i=n−1 ui−n+1ui−1 . . .
∑N−1

i=n−1 u
2
i−n+1


where we used the shorthand notation ui for u(i). For a solution (1.7) to the estimation
problem to be defined, this n× n matrix needs to be invertible. This requirement places
a condition on the input sequence {u(1), . . . , u(k)}. For example, it is obvious that with
a constant input sequence {1, . . . , 1} the rank of ΦT Φ will be one and a solution for a
model with more than one estimated parameter will in general not exist. To explore this
further, we will use the empirical autocorrelation of the data sequence {u(k)}, defined as

cuu(l) = lim
N→∞

1
N

N−1∑
i=0

u(i)u(i− l)

Introducing the matrix

Cuu(n) =


cuu(0) cuu(1) . . . cuu(n− 1)
cuu(1) cuu(0) . . . cuu(n− 2)

...
cuu(n− 1) cuu(n− 2) . . . cuu(0)


we find that

lim
N→∞

1
N

ΦT Φ = Cuu(n)

Thus, for sufficiently long data sequences (when the end effects can be neglected and we
can consider all sums as taken from 1 to N) we may interpret the matrix ΦT Φ as a scaled
version of the empirical covariance matrix Cuu(n) of the input signal.

Persistent Excitation

The condition that the matrix ΦT Φ must have full rank is called an excitation condition -
the input signal must be sufficiently rich to excite all dynamic modes of the system. We
have seen that for long data sequences we can consider the matrix Cuu(n) instead of ΦT Φ.
The following definition provides a measure for the richness of an input signal.

Definition 1.1

A signal u(k) is said to be persistently exciting of order n if the matrix Cuu(n) is positive
definite.

10

The next result is useful for checking whether a signal is persistently exciting of a given
order.

Theorem 1.2

A signal u(k) is persistently exciting of order n if and only if

lim
N→∞

1
N

N−1∑
l=0

(
a(z)u(l)

)2
> 0 ∀a(z) : deg a(z) ≤ n− 1 (1.9)

Here a(z) is a polynomial in the forward shift operator z, i.e.

a(z) = a0 + a1z + a2z
2 + . . .+ an−1z

n−1

Recall that the forward shift operator is defined by

zu(l) = u(l + 1)

With these definitions, multiplying a signal u(l) by a(z) yields

a(z)u(l) = a0u(l) + a1u(l + 1) + a2u(l + 2) + . . .+ an−1u(l + n− 1)

It is straightforward to prove the above Theorem by observing that the sum on the left
hand side of the inequality can be rewritten as

lim
N→∞

1
N

N−1∑
l=0

(a(z)u(l))2 = aTCuu(n)a

where aT = [an−1 an−2 . . . a0]

Theorem 1.2 can be used to determine an upper bound on the order of the persistent
excitation of a given signal: if one can find a polynomial a(z) of order n that does not
satisfy (1.9), then the signal is not persistently exciting (PE) of order n. This idea can
be used to show that

• an impulse δ(k) is PE of order 0

• a step function σ(k) is PE of order 1

• a sine wave is PE of order 2

• white noise is PE of any order

For step functions, sine waves and white noise, this is discussed in Exercises 1.2, 1.3 and
1.4. White noise is commonly used as test input when a linear model is to be identified
experimentally.

1. Least-Squares Estimation 11

ARX Models

The model (1.8) was based on the assumption that the present output does not depend
on past outputs, i.e. there is no autoregressive component in the output. We now remove
this assumption and consider the model

ŷ(k) = −a1y(k − 1) − . . .− any(k − n) + b1u(k − 1) + . . . bnu(k − n) (1.10)

= [−y(k − 1) . . . − y(k − n) u(k − 1) . . . u(k − n)]



a1
...
an

b1
...
bn


(1.11)

which corresponds to the difference equation model introduced for discrete-time systems
in the previous chapter. Such a model is called an ARX model, where ARX stands
for AutoRegressive with eXogenous input. The results discussed in this section can be
extended to ARX models by using the empirical cross-covariance function

cuy(l) = lim
N→∞

1
N

N−1∑
i=1

u(i)y(i− l)

It follows then that
lim

N→∞

1
N

ΦT Φ =
[
Cyy −Cuy

−Cuy Cuu

]
where the matrices Cyy and Cuy are defined in the same way as Cuu.

The least-squares estimation of an ARX model from measured data is illustrated in Ex-
ercise 1.5.

Exercises

Problem 1.1

Consider the sum of squared errors

V (θ) =
N∑

l=0
e2(l) = ETE = (Y − Φθ)T (Y − Φθ)

introduced in (1.3). Show that V (θ) is minimized by the parameter vector θ = θ̂ where

θ̂ = (ΦT Φ)−1ΦTY

Problem 1.2

12 Exercises

a) Show that for the step function σ(k)

(z − 1)σ(k) = 1 at k = −1

and
(z − 1)σ(k) = 0 at k ≥ 0

b) If for a given signal u(k) there is at least one polynomial a(z) of order n such that

lim
N→∞

1
N

N−1∑
l=0

(a(z)u(l))2 = 0

what does this indicate about the order of persistent excitation u(k)?
Hint: Theorem 1.2 can be used to solve this problem.

c) Use the polynomial

a(z) = z − 1

and the results from (a) and (b) to find the greatest possible order of persistent
excitation of a step function.

d) Calculate the empirical covariance matrix Cuu(1) for the step function. Use this
matrix to show that the order of persistent excitation of a step function is 1.

1. Least-Squares Estimation 13

Problem 1.3

a) For the input signal

u(k) = sinωkT

show that

(z2 − 2z cosωT + 1)u(k) = 0

where T is the sampling time.
Hint: Determine (z2 − 2z cosωT + 1)u(k), simplify using trigonometric identities.

b) Find the greatest possible order of persistent excitation of the signal u(k) = sinωkT?

c) The autocorrelation function for any signal x(t) is defined as,

Rx(τ) = lim
N→∞

1
N

N−1∑
k=0

x(kT)x(kT ± τ)

It can be shown that for u(t) = sinωt,

Ru(τ) =1
2 cosωτ

Using these facts show that for the signal u(k)

Cuu(2) = 1
2

[
1 cosωT

cosωT 1

]

Hint: Write the elements of Cuu(2) in terms of the autocorrelation function.

d) What is the order of persistent excitation of the signal u(k) when

i) T = 2π
ω

ii) T 6= 2π
ω

Explain these results.

Problem 1.4 Use the empirical covariance matrices Cuu(1), Cuu(2) . . . Cuu(n) to show

that the order of persistent excitation of sampled white noise is arbitrarily high.

Hint:Use the fact that the correlation between white noise at times T and kT +T is 0 and
limN→∞

1
N

∑N−1
i=0 u2

i = S0, where S0 is the spectral density of the white noise.

14 Exercises

Problem 1.5 Download cs7_LSsysdat.mat. The MAT file contains sampled input

and output signals of a SISO system, where the input signal is a step (input u1, output
y1), a sinusoid (input u2, output y2) or white noise (input u3, output y3). A pulse
transfer function is to be determined that approximates the behaviour of the system from
which the measurements were taken.

a) From N samples of the inputs and N samples of the output create the measurement
matrix Φ for a system of order n. What is the dimension of the matrix Φ produced
from these data?

b) Determine the rank of the matrix ΦT Φ for

i) the sinusoid
ii) the white noise signal

Explain the results.

c) From output data generated from white noise, calculate a least squares estimate of
the model parameters.

d) i) Estimate the models of order 2, 3 and 4 using the white noise input signal.
ii) Validate the model for the step and sinusoidal input signals.
iii) What is the order of the system?

e) Explain the results from (d) with the help of Problems 1.2 and 1.3.b.

Chapter 2

Prediction Error Method

In this chapter we will introduce a framework for identifying linear models of dynamic
systems, that includes the ARX model introduced in the previous chapter as a special
case: the Prediction Error Method. Model structures used in this framework differ in the
way information about noise or disturbances is represented and exploited for improving
the model. In Chapter 5, this framework is extended to nonlinear model structures; it will
be used to train neural networks to learn the behaviour of nonlinear dynamic systems.

Consider the system shown in Figure 2.1, with input signal u(t) and measured output
signal y(t). The signal v(t) represents external factors like disturbances or measurement
noise that are corrupting the measurement of the output signal, but are not measured.
Assume that the input signal u(t) and the output signal y(t) have been sampled with
sampling time T , and that sampled data sequences {u(0), u(T), u(2T), . . . , u(NT)}
and {y(0), y(T), y(2T), . . . , y(kT)} are known. Again, for simplicity of presentation we
assume T = 1 and write u(k) and y(k). The problem we will consider here is: Given the
data sequences {u(0), u(1), . . . , u(N)} and {y(0), y(1), . . . , y(N)}, find a mathematical
model of the system that best fits the data.

The prediction error method solves this problem by minimising the squared sum of pre-
diction errors: given the data set

ZN = {u(k), y(k), k = 0, 1, . . . , N}

and a model structure M(θ) (defined below), the task is to find a mapping

ZN → θ̂;

that maps the data into a parameter vector θ̂ ∈ IRr that best fits the data. “Best fit”
here means that the estimated parameter vector minimizes the performance index

VN(θ, ZN) = 1
2N

N∑
k=p

(y(k) − ŷ(k|k − 1, θ))2 , (2.1)

16

where y(k) is the measured output at time k, p is a small number chosen such that the
first data vectors are filled with non-zero values (see Chapter 1), and ŷ(k|k − 1, θ) is the
one-step-ahead prediction of the output a time k, predicted by the model with parameters
θ. The estimated parameter vector is then

θ̂ = arg min
θ∈DM

VN(θ, ZN) (2.2)

where DM ⊂ IRr is a subset of the parameter space to which the estimates are constrained;
see below.

Linear Model Structures

First we will have to specify the type of model we want to use.

System

v

u y

Figure 2.1: Model for system identification

The structure of a discrete-time linear model that represents the system in Figure 2.1 is
shown in Figure 2.2. The sampled disturbance signal v(k) is modelled by a white noise
sequence {e(0), e(1), . . . , e(k)} which is passed through a filter H. We assume that e(k)
is Gaussian distributed and satisfies

E[e(k)] = 0, E[e2(k)] = σ2
e , E[e(k)e(k − l)] = 0, l 6= 0

The output signal is given by

y(k) = G(z−1)u(k) +H(z−1)e(k) (2.3)

where
G(z−1) = z−d b0 + b1z

−1 + . . .+ bmz
−m

1 + a1z−1 + . . .+ anz−n
= z−d B(z−1)

A(z−1)
is a transfer function model of the system, and

H(z−1) = 1 + c1z
−1 + . . .+ clz

−l

1 + d1z−1 + . . .+ dnz−n
= C(z−1)
D(z−1)

represents a filter - driven by white noise - that is used to generate a model of the
disturbance. We assume that H(z−1) and H−1(z−1) are stable. The symbol z−1 is used to
represent both the inverse of the complex variable of the z-transform and the time delay
operator, i.e.

z−1u(k) = u(k − 1), z−du(k) = u(k − d) etc.

2. Prediction Error Method 17

e(k)

H(z−1)

G(z−1) y(k)u(k)

v(k)

Figure 2.2: Linear model structure

The polynomials A(z−1), C(z−1) and D(z−1) in the above model are monic, i.e. we have
A(0) = C(0) = D(0) = 1. The system is assumed to have a time delay of d sampling
periods, and we assume that d ≥ 1, so that G(z−1) is strictly proper, i.e. G(0) = 0. The
disturbance transfer function is bi-proper, i.e. H(0) 6= 0; because the polynomials C and
D are monic we have H(0) = 1. This assumption can be made without loss of generality,
because the spectral density of the white noise sequence e(k) can be used to express the
strength of the disturbance v(k).

Predictor Model

In order to identify a linear model from given data, we will transform the model (2.3) into
the form of a predictor model. Given input and output data up to time k− 1, a predictor
model provides an estimate of the output signal at time k. We denote the output estimate
based on data up to time k − 1 by ŷ(k|k − 1), and we define the prediction error at time
k as

ε(k) = y(k) − ŷ(k|k − 1).

An example of a linear predictor model is the representation (1.10) of a linear model
introduced in the previous chapter

ŷ(k|k − 1) = −a1y(k − 1) − . . .− any(k − n) + b0u(k − d) + . . . bmu(k − d−m) (2.4)

(here including a time delay d), where an estimate of the output at time k was obtained by
using the linear model parameterized by (a1 . . . an) and (b0 . . . bm); note that the right hand
side depends only on past input and output data (up to time k−1). In order to construct
a predictor model for a general linear model in the form of (2.3), the perturbation term

v(k) = H(z−1)e(k),

which depends on values of e up to time k and is therefore not known at time k−1, needs
to be replaced by an expression that depends only on past input and output data.

18

Predicting the Disturbance

The disturbance is modelled by

v(k) = H(z−1)e(k)

or
D(z−1)v(k) = C(z−1)e(k)

In time domain we have

v(k) + d1v(k − 1) + . . .+ dnv(k − n) = e(k) + c1e(k − 1) + . . .+ cle(k − l)

or
v(k) = e(k) + function of past values of e and v (2.5)

Comparing this with

v(k) = H(z−1)e(k) − e(k) + e(k) = e(k) +
(
H(z−1) − 1

)
e(k)

we see that the term (H(z−1) − 1)e(k) is equal to the past data term in (2.5). Because
E[e(k)] = 0, the best estimate of v(k) at time k is therefore

v̂(k|k − 1) = (H(z−1) − 1)e(k) (2.6)

provided the right hand side can be computed from past data. The white noise sequence
driving the disturbance model H(z−1) is unknown, but it can be expressed in terms of
the disturbance v(k) by inverting the filter transfer function

e(k) = H−1(z−1)v(k)

Substituting in (2.6) yields

v̂(k|k − 1) =
(
1 −H−1(z−1)

)
v(k) (2.7)

Given input and output data, the disturbance can be computed from

v(k) = y(k) −G(z−1)u(k) (2.8)

Since the right hand side of (2.7) depends only on values of v up to time k − 1, it can be
computed from input and output data up to time k − 1.

Example 2.1

Consider a disturbance model
H(z−1) = 1

1 − az−1

2. Prediction Error Method 19

where |a| < 1. From v(k) = H(z−1)e(k) we have

v(k) = e(k) + av(k − 1)

thus the best estimate of v(k) is

v̂(k|k − 1) = av(k − 1)

which is just the estimate provided by (2.7)

v̂(k|k − 1) = (1 − 1 + az−1)v(k)

Predicting the Output

At time k, the best estimate of the output in (2.3) that takes the disturbance into account
is

ŷ(k|k − 1) = G(z−1)u(k) + v̂(k|k − 1)

Substituting from (2.7) gives

ŷ(k|k − 1) = G(z−1)u(k) +
(
1 −H−1(z−1)

)
v(k)

The right hand side involves only values of v up to k − 1; these can be computed from
(2.8), yielding

ŷ(k|k − 1) = G(z−1)u(k) +
(
1 −H−1(z−1)

) (
y(k) −G(z−1)u(k)

)
or

ŷ(k|k − 1) = H−1(z−1)G(z−1)u(k) +
(
1 −H−1(z−1)

)
y(k) (2.9)

Equation (2.9) is called the predictor form of the model (2.3); it is shown in Figure 2.3.
Many system identification techniques - those using the prediction error method - are
based on this type of model. Note that the right hand side of (2.9) involves only past
input and output data, i.e. the predictor model is strictly proper.

u(k)

y(k)
ŷ(k|k − 1)

Figure 2.3: Predictor model

Model Structures

Equation (2.9) represents the predictor form of the linear model given by (2.3). When
estimating a mathematical model of a system from experimental data, it is useful to

20

distinguish between a model structure and a particular model. A model structure is a set
of models that is suitably parameterized, and the task of system identification is to find
the best model within that set, i.e. to find the numerical values of the parameter variables
that best fit the data, in the sense of a performance index to be specified. A particular
model is generated when numerical values are substituted for the parameter variables.

The model structure associated with equation (2.3) is the set

M = {G(z−1, θ), H(z−1, θ) | θ ∈ DM ⊂ IRr} (2.10)

of discrete-time transfer function pairs (G,H) with parameter variables θ1, . . . , θr, which
have been collected in a parameter vector θ. The parameter vector is constrained to be
in a set

DM = {θ ∈ IRr |H−1 and H−1G stable, G(0, θ) = 0, H(0, θ) = 1} (2.11)

These constraints ensure that the predictor model (2.9) is stable and depends only on
past data. Note that defining a model structure implies a decision on the order of the
polynomials of the transfer functions G and H.

We will sometimes use the concept of a true model, by which we mean a linear model
with transfer functions G0(z−1) and H0(z−1). We will then assume that the output data
have been generated using this model and the white noise sequence e0(k).

Process Innovation

From the predictor form (2.9) we obtain

y(k) − ŷ(k|k − 1) = −H−1(z−1, θ)G(z−1, θ)u(k) +H−1(z−1, θ)y(k)

or
ε(k, θ) = H−1(z−1, θ)

(
y(k) −G(z−1, θ)u(k)

)
If the true model (G0(z−1), H0(z−1)) is substituted above and (G0, H0) ∈ M, we have

ε(k, θ0) = H−1
0 (z−1)v0(k) = e0(k) (2.12)

which shows that the prediction error becomes white noise; in other words, the prediction
error at time k is uncorrelated to past data. The term e0(k) is called the innovation at
time k, it represents the part of the output y(k) that cannot be predicted from past data.
On the other hand, if G and H do not represent the true model, the prediction error will
not be white. The aim of parameter estimation is to reduce the prediction error to white
noise by extracting all available information from the data - if the prediction error is not
white there is still correlation to past data, i.e. information that can be extracted and
used to improve the model.

2. Prediction Error Method 21

ARX and ARMAX Models

The linear model structure (2.3) is quite general and allows a variety of model structures
as special cases, corresponding to different assumptions about the disturbance model H.
The simplest (and widely used) model structure is that of the ARX model introduced in
the previous chapter. The transfer functions in this model structure are

G(z−1, θ) = z−d B(z−1, θ)
A(z−1, θ) , H(z−1, θ) = 1

A(z−1, θ) (2.13)

Substituting in the predictor model (2.9) yields

ŷ(k|k − 1, θ) = z−dBu(k) + (1 − A)y(k) (2.14)

(dropping arguments for notational simplicity), or

ŷ(k|k − 1, θ) = b0u(k − d) + . . .+ bmu(k − d−m) − a1y(k − 1) − . . .− any(k − n)

Note that the predictor form (2.14) of the ARX model does not have any poles. Stability
of the predictor is therefore guaranteed without further assumptions. Moreover, the model
assumptions G(0) = 0 and H(0) = 1 are built into this model structure by assuming that
A and C are monic, and that d ≥ 1. Therefore we have DM = IRr.

In the previous chapter it was shown how an ARX model can be expressed in the form
of a linear regressor model

ŷ(k|k − 1, θ) = ϕT (k)θ

by defining the parameter vector

θT = [−a1 . . . − an b0 . . . bm]

and the regressor vector at time k

ϕT (k) = [y(k − 1) . . . y(k − n) u(k − d) . . . u(k − d−m)]

The regressor form can be used to compute an estimate θ̂ that minimizes the sum of
squared prediction errors

N∑
k=p

ε2(k, θ), where ε(k, θ) = y(k) − ŷ(k|k − 1, θ)

where p = max(n, d + m) is the number of initial samples required for filling up the
regressor vector. The minimum can be found by solving a linear, unconstrained least
squares problem. Because of its simplicity, this model structure is widely used; however
the price for this simplicity is a lack of flexibility on the noise model.

A model structure that allows to incorporate more information about the perturbation
signal v(k) is the ARMAX model structure. ARMAX stands for ARX together with a

22

Moving Average of the prediction error, see equation (2.16) below. In an ARMAX model
the plant model G is the same as in an ARX model, but the disturbance model is

H(z−1, θ) = C(z−1, θ)
A(z−1, θ)

The numerator polynomial C allows to include estimated noise properties in the model.
The predictor form of the ARMAX model is

ŷ(k|k − 1, θ) = z−d B

C
u(k) +

(
1 − A

C

)
y(k) (2.15)

To bring this into the form of a difference equation, we multiply by C to get

Cŷ(k|k − 1, θ) = z−dBu(k) + (C − A)y(k)

or
ŷ(k|k − 1, θ) = z−dBu(k) + (1 − A)y(k) + (C − 1)ε(k)

where ε(k) is the prediction error, and we used fact that A and C are monic. We thus
have

ŷ(k|k − 1, θ) = b0u(k − d) + . . .+ bmu(k − d−m)
− a1y(k − 1) − . . .− any(k − n) + c1ε(k − 1) + . . .+ clε(k − l) (2.16)

Note that compared with the ARX model, the right hand side contains a moving average
of past prediction errors. The above model can be expressed in regressor form by defining

θT = [−a1 . . . − an b0 . . . bm c1 . . . cl]

and

ϕT (k, θ) = [y(k − 1) . . . y(k − n) u(k − d) . . . u(k − d−m) ε(k − 1) . . . ε(k − l)]

The regressor vector is now a function of the parameter vector θ, because it contains past
prediction errors. The regressor model is

ŷ(k|k − 1, θ) = ϕT (k, θ)θ

which looks like a linear regressor model but is in fact nonlinear due to the dependence of
ϕ on θ. This form is referred to as pseudolinear regressor form. Unlike the linear regressor
form of the ARX model, it requires an iterative search for the parameter estimate θ̂.

In contrast to ARX models, the predictor form of an ARMAX model has poles - the
roots of the disturbance polynomial C. To guarantee stability of the predictor, we need
to impose the constraint that the polynomial C(z−1) has its roots - the values of z−1 for
which C(z−1) = 0 - outside the unit disc (which implies that the inverse roots z are inside
the unit disc). We will say that C is stable if it satisfies this condition, and for ARMAX
models we define DM as the set of parameter vectors θ such that C is stable.

2. Prediction Error Method 23

Computing the Estimate

For ARX models, the numerical solution of the minimization problem in (2.2) was dis-
cussed in Chapter 1 and is briefly reviewed here. We introduce the vectors

Y =


y(p)

...
y(N)

 , Ŷ =


ŷ(p|p− 1, θ)

...
ŷ(N |N − 1, θ)


Using the regressor form of ARX models, we can then write

Ŷ = Φθ, Φ =


ϕT (p)

...
ϕT (N)


The estimate of the parameter vector can therefore be obtained by solving

θ̂ = arg min
θ

1
2N E(θ)TE(θ),

where E(θ) = Y − Φθ is the vector of prediction errors. The solution is provided by the
normal equation

ΦT Φθ = ΦTY

which can be solved for
θ̂ = (ΦT Φ)−1ΦTY

provided the inverse exists. The existence of the inverse depends on the input signal u(k)
being persistently exciting of sufficient order. In practice, computing the inverse is usually
avoided and a square root algorithm is used instead.

For ARMAX models, the fact that the regressor vector ϕ(k, θ) depends on the parameters
prevents such a straightforward solution. An iterative search for the minimizer of VN(θ)
is required, based on the gradient of the predicted output with respect to the parameters.
Iterative search techniques will be discussed later in the context of neural network training.
Here we will only observe that the gradient vector can be obtained in a straightforward
way from the regressor vector. Define the gradient vector ψ(k, θ) ∈ IRr as

ψ(k, θ) = ∂

∂θ
ŷ(k|k − 1, θ) =

[
∂ŷk

∂a1
. . .

∂ŷk

∂an

∂ŷk

∂b0
. . .

∂ŷk

∂bm

∂ŷk

∂c1
. . .

∂ŷk

∂cl

]T

where the simplified notation ŷk is used for ŷ(k|k − 1, θ). From (2.16) we have

C(z−1, θ) ∂

∂ai

ŷ(k|k − 1, θ) = −y(k − i)

C(z−1, θ) ∂
∂bi

ŷ(k|k − 1, θ) = u(k − d− i)

24

and
ŷ(k − i|k − i− 1, θ) + C(z−1, θ) ∂

∂ci

ŷ(k|k − 1, θ) = y(k − i)

thus
C(z−1, θ) ∂

∂ci

ŷ(k|k − 1, θ) = ε(k − i)

Substituting the above in ψ(k, θ) shows that

C(z−1, θ)ψ(k, θ) = ϕ(k, θ)

In other words, the gradient vector can be obtained by passing the regressor vector through
a filter

ψ(k, θ) = 1
C(z−1, θ) ϕ(k, θ). (2.17)

Neural Network Based Nonlinear Model Structures

The prediction error method can be applied to nonlinear model structures - in this course
it will be used for the training of neural network based models. We will consider models
in a nonlinear regressor form

y(k) = g(ϕ(k), θ) + e(k) (2.18)

where θ is a vector containing the model parameters, ϕ(k) is a regressor vector that can
be constructed from past data, e(k) represents a white noise sequence, and g is a static
nonlinear function. Note that in (2.18) we assume that the perturbation v(k) shown in
Figure 2.1 is again modelled as filtered white noise, and that it has already been brought
into the form

v(k) = e(k) + past values of v

The predictor form of this model is then

ŷ(k|k − 1) = g(ϕ(k), θ)

Figure 2.4 shows how a neural network can be used to represent this predictor model.
The parameter vector θ contains the neural network parameters which can be tuned to
obtain a good approximation of the nonlinear function g.

ϕ2

θ

NN
ŷk

ϕ1

ϕr

...
...

Figure 2.4: A neural network as predictor model

2. Prediction Error Method 25

In analogy to the linear ARX and ARMAX model structures, we will use structures with
similar assumptions on the noise model for neural network based predictors. A neural
network based ARX structure - referred to as NNARX structure - is shown in Figure 2.5.
A structure similar to the linear ARMAX structure - referred to as NNARMAX structure
- is shown in Figure 2.6. Note that because of the feedback involved in this structure,
stability of the predictor is not guaranteed when the data are presented sequentially to
the network. Stability issues for nonlinear predictors are usually treated in a heuristic
fashion. In contrast, the NNARX predictor involves only a static feedforward network
and is guaranteed to be stable.

θ

ŷk

uk−d−m

yk−1

yk−n
uk−d
...

...

...
... NN

Figure 2.5: NNARX model structure

θz−1 εk−1

z−l

-
yk

uk−d−m

yk−1

yk−n
uk−d
...

...

...
...

...
...

εk−l

ŷk

NN

Figure 2.6: NNARMAX model structure

Exercises

Problem 2.1

26 Exercises

From Stud.IP the file armax_ident.mat can be downloaded. It contains vectors u and y
of sampled input and output data, respectively, and a continuous-time transfer function
G that represents the true plant model. The data have been sampled with a sampling
interval T = 0.3. The output data are corrupted by filtered noise.

Use the MATLAB Identification Toolbox to estimate a linear model that fits the data.

a) Estimate an ARMAX model. Start by estimating first order plant and disturbance
models. When estimating, use the simulation option for focus in the polynomial
models window (this option uses a variant of ARMAX estimation that puts more
emphasis on lower frequencies). Use the LTI viewer to display the step response of
the estimated model, and compare it with the step response of the true plant model
G. Increase the order of plant or disturbance model, if necessary, to obtain a better
fit.

b) Try to estimate an ARX model and compare it with the ARMAX model obtained
in (a).

Chapter 3

Multilayer Perception Networks

In this course we will study the use of neural networks for modelling and control of non-
linear systems. A common application of neural networks is the solution of classification
problems (e.g. pattern recognition). In control applications, on the other hand, neural
networks are mainly used to approximate nonlinear functions. Consider a continuous,
nonlinear function g : IRr → IR

y = g(ϕ1, ϕ2, . . . , ϕr)

as illustrated in Figure 3.1 for the case r = 2.

ϕ2

y = g(ϕ1, ϕ2)

ϕ1

Figure 3.1: Nonlinear function y = g(ϕ1, ϕ2)

Assume that at a number of points in the r-dimensional input space the values of g are
known. A problem we will consider in this course is that of finding an approximation of
g that is as close as possible to the known values at the given points.

Figure 3.2 indicates how a neural network can be used to obtain such an approximation.
The neural network - the block labelled NN - represents a static nonlinear function of
the inputs ϕ1, . . . , ϕr. This function itself depends on a number of parameters which
can be tuned. The network output ŷ is taken to be an approximation of the value of

28

g(ϕ1, . . . , ϕr). When the values of the given points in input space are presented to the
network one by one, the network output ŷ is compared with the known value of g at
each point, and the error ε is used by a learning algorithm to tune the parameters of the
network such the best possible fit (in a sense to be specified) is obtained. This process is
referred to as training of a neural network.

ε

Learning
Algorithm

NN
ϕ1

ϕr

...
...

ϕ2 ŷ

y

-

Figure 3.2: Nonlinear approximation using a neural network

Nonlinear Plant Models for Control

In the previous chapter we encountered the ARX model structure

ŷ(k) = −a1y(k − 1) − . . .− any(k − n) + b1u(k − 1) + . . .+ bmu(k −m)

In this course we will consider nonlinear model structures like

ŷ(k) = g (y(k − 1), . . . , y(k − n), u(k − 1), . . . , u(k −m))

where g : IRn+m → IR is a continuous, nonlinear function. This model structure can
be interpreted as a nonlinear version of the linear ARX structure. If a sequence of input
and output data for a given nonlinear system is available, one can at time k apply past
input and output data as inputs to the neural network in Figure 3.2, compare the network
output with the actual value of y(k) and adjust the network parameters accordingly. If
this process is repeated until a satisfactory approximation is obtained, we say that the
network has been trained to learn the nonlinear behaviour of the system that generated
the data.

Once a neural network has been trained, there are several ways of using it for designing a
controller. One possibility is shown in Figure 3.3. The control loop contains the nonlinear
plant and a digital, sampled-data controller. At each sampling instant, input and output
samples are applied to a neural network that has been trained on the nonlinear dynamic
behaviour of the plant, and a linearized model is extracted from the network. This
procedure is called instantaneous linearization. The parameters of the linearized model
are passed to a controller adjustment module that determines the values of the controller

3. Multilayer Perception Networks 29

parameters for the given model, and updates the controller at each sampling instant.
Control schemes that can be implemented in this way include pole placement design,
minimum variance control and predictive control.

linear model parameters

Controller Plant

Controller
Adjustment Linearization

NN

Figure 3.3: Neural network based control using instantaneous linearization

Multilayer Perceptron Networks

The development of artificial neural networks (ANNs) was originally motivated by research
on the human brain. The human brain contains a network of about 1011 neurons or nerve
cells, which are heavily interconnected. Although ANNs are sometimes considered to be
simplified models of the human brain, this interpretation is somewhat misleading since the
function of the brain is very complex and still not well understood. Nevertheless, a sim-
plified view of biological neurons - illustrated in Figure 3.4 - has inspired the construction
of artificial neurons.

In this simplified view, a neuron has four principal components:

• The dendrites represent a highly branching tree of fibres that carry electrical signals
to the cell body. There are typically 103 to 104 dendrites per neuron. The dendrites
can be interpreted as the input channels of a neuron.

• The soma or cell body realizes the logical functions of the neuron. The soma contains
the nucleus and the protein synthesis machinery of the nerve cell.

• The axon is a single long nerve fibre attached to the soma that serves as the output
channel of the neuron. Signals are generally converted into pulse sequences and
propagated along the axon to target cells (i.e. other neurons).

• A synapse is a point of contact between an axon of one cell and a dendrite of another
cell. The strength of a synaptic connection is variable and may increase if frequently

30

axon

synapses

dendrites
soma

Figure 3.4: Biological neurons

stimulated. The storage of information in a neuron is thought to be concentrated
in the pattern and strength of its synaptic connections.

Artificial Neurons

A basic model of an artificial neuron is shown in Figure 3.5. The neuron is modelled as
a multi-input nonlinear device with r inputs ϕ1, ϕ2, . . . , ϕr, one output v and weighted
interconnections wi, representing synaptic weights. Moreover, an extra input with a value
fixed to 1 is provided that can be used to generate a bias w0.

ϕr

...

ϕ2
h

1

ϕ1 w1

w2

w0

vf

wr

Figure 3.5: Artificial Neuron

In this model of an artificial neuron, the sum h of the r weighted inputs and the bias is
passed through a static nonlinear function f(h) according to

v = f(h) = f

(
r∑

i=1
wiϕi + w0

)

3. Multilayer Perception Networks 31

Introducing the column vectors

w =


w1
...
wr

 , ϕ =


ϕ1
...
ϕr


this can be written as

v = f(wTϕ+ w0)

The nonlinear function f is called the activation function of the neuron. Three types
of activation function are commonly used: step functions, linear functions and sigmoid
functions.

Step Activation Function

The step function as activation function is defined by

v(h) = σ(h) =
{

1, h ≥ 0,
0, h < 0.

To illustrate the effect of weights and bias on a neuron, consider the single-input neuron
in Figure 3.6.

1

h
v

ϕ w1

w0

Figure 3.6: Single-input step function neuron

The output is
v = σ(w1ϕ+ w0)

and the values of v as functions of h and ϕ are shown in Figure 3.7.

-w0

w1

h

1

v

ϕ

v

1

00

Figure 3.7: Response of a step function neuron

32

Linear Activation Function

The output of a linear activation function is equal to its input

v(h) = h

1

h
v

ϕ w1

w0

Figure 3.8: Single-input linear function neuron

For a single-input neuron with linear activation function, the output v as a function of h
and ϕ, respectively, is shown in Figure 3.9.

1 h ϕ

v

-w0

w1

v

1
w0

Figure 3.9: Response of a linear function neuron

Sigmoid Activation Function

There are two types of sigmoid activation functions: the log-sigmoid function and the
tanh-sigmoid function.

The log-sigmoid activation function is

v(h) = f(h) = 1
1 + e−h

For a single-input neuron with log-sigmoid activation function, the output v as a function
of h and ϕ, respectively, is shown in Figure 3.11. Note that while the ratio w0/w1 deter-
mines the location of the inflection point of the function v(ϕ), the value of the weight w1

determines the slope at the inflection point.

3. Multilayer Perception Networks 33

1

h
v

ϕ w1

w0

Figure 3.10: Single-input log-sigmoid function neuron

w′
1 > w1

h

1

ϕ-w0

w1

1

vv

Figure 3.11: Response of a log-sigmoid function neuron

The tanh-sigmoid activation function is

v = f(h) = eh − e−h

eh + e−h

For a single-input neuron with tanh-sigmoid activation function, the output v as a function
of h and ϕ, respectively, is shown in Figure 3.13.

Artificial Neural Networks

Having defined a basic neuron model, we can now turn to networks formed by connecting
single neurons. A single-layer network containing s neurons is shown in Figure 3.14. The
network has r inputs ϕ1, . . . , ϕr, a bias and s outputs v1, . . . , vs. All neurons are assumed
to have the same activation function f .

1

h
v

ϕ w1

w0

Figure 3.12: Single-input tanh-sigmoid function neuron

34

ϕh

−1

1

v

−1

1

v

-w0

w1

w′
1 > w1

Figure 3.13: Response of a tanh-sigmoid function neuron

...

ws0

...

h1
f

hs
f vs

v1

w10

1

ϕ2

...

ϕ1

w12

w11

w1r

ϕr
wsr

Figure 3.14: Single layer network

The output of the summing junction of the ith neuron is

hi = [wi1 wi2 . . . wir]


ϕ1
...
ϕr

+ wi0

where wij is the gain from input j to the ith neuron. Defining the weight vector

wT
i = [wi1 wi2 . . . wir]

we have 
h1
...
hs

 =


wT

1
...
wT

s

ϕ+


w10

...
ws0


Introducing the weight matrix W , the bias vector w0 and the vector of summing junction
outputs h, this can be written in a more compact form as

h = Wϕ+ w0

The vector v of network outputs is then

v =


v1
...
vs

 = f(Wϕ+ w0)

3. Multilayer Perception Networks 35

W
h

f

w01

vϕ

Figure 3.15: Perceptron layer

A single-layer network of this form is called a perceptron network. A block diagram
representation of a perceptron network is shown in Figure 3.15.

Multilayer Perceptron Network

Several perceptron layers can be connected in series to form a multilayer perceptron (MLP)
network. As an example, a network with two layers of neurons - three neurons in the first
layer and two in the second layer - is shown in Figure 3.16. This network has r inputs and
two outputs, and a bias in each layer. In a multilayer network, the last layer - the one
that generates the network outputs - is called the output layer, whereas the other layers
are called hidden layers, because they are hidden between inputs and output layer.

w2
11

f 1

f 1

f 1

f 2

f 2

1

2nd layer
︸ ︷︷ ︸

(output layer)

︸ ︷︷ ︸
input 1st layer

︸ ︷︷ ︸
(hidden layer)

h11 v11

h12

h13 v13

v12

h21

h22

ϕ1

ϕ2

w2
12

w2
22

w1
12

w1
32

y2

y1

1

w1
11

w2
20w1

30

Figure 3.16: Multilayer perceptron network

Here the superscript i is used to denote variables or parameters of the ith layer. At the
output of the first layer we have

v1 =


v1

1
v1

2
v1

3

 = f 1(W 1ϕ+ w1
0)

36

The network output - the output of the second layer - is

y =
[
y1

y2

]
= f 2(W 2v1 + w2

0)

or in general
y = f 2

(
W 2f 1(W 1ϕ+ w1

0) + w2
0

)
(3.1)

A block diagram representation of a two-layer perceptron network is shown in Figure 3.17.

W 1 y

f 1

ϕ

w1
01

f 2

w2
01

v1
W 2

Figure 3.17: Multilayer perceptron network - block representation

3. Multilayer Perception Networks 37

Universal Approximation

For control applications, a commonly used network structure is a two-layer perceptron
network with sigmoidal activation functions in the hidden layer, and linear activation
functions in the output layer. An important property of such networks is their universal
approximation capability: Any given real continuous function g : IRr → IR can be
approximated to any desired accuracy by a two-layer sig-lin network (here assuming that
the network has only a single output). The proof of this result gives however no indication
about the number of hidden units required for achieving the desired accuracy; this issue
will be explored in two exercises.

Exercises

Problem 3.1

w1
21

1

ϕ

1

y

w2
11

w1
20

w1
11

w2
12

w2
10

w1
10

Figure 3.18: Single-input MLP

Consider the single-input MLP network in Figure 3.18. Find the weights W 1, W 2 and
bias values w1

0, w
2
0 required to approximate the function shown in Figure 3.19

a) by inspecting the figure and verify by using the nntool of MATLAB,

b) by training the neural network using the Fitting app of MATLAB.
Hint: Download the MATLAB data file approx.mat from Stud.IP, which contains
the input vector phi and the target vector g_phi corresponding to Figure 3.19. See
solutions for more details.

38 Exercises

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

2

3

4

5

6

7

Figure 3.19: Nonlinear function

Problem 3.2

reagent

pH

Fa + Fe

Feeffluent Fa

Figure 3.20: CSTR pH process

A nonlinear Simulink model of a continuous stirred tank reactor (CSTR) pH process can
be downloaded from the web site for this exercise. The CSTR has two input streams: the
effluent stream (with flow rate Fe), and the reagent stream (with flow rate Fa), see Figure
3.20. The effluent is assumed to be a base and the reagent to be an acid. The reagent
stream is used to control the pH value at the outlet. A block diagram of the process

3. Multilayer Perception Networks 39

is shown in Figure 3.21, where the control input is the reagent flow rate, the controlled
output is the pH value at the outlet, and possible changes in the reagent flow rate are
modelled as disturbance.

Tune the PID controller in the control loop provided in the Simulink model such that the
system tracks the given reference step changes with settling time and overshoot as small
as possible.

[∆Fe]

[pH]
u

[Fa]

d

y

Figure 3.21: Block diagram

Chapter 4

Solving the Estimation Problem

In this chapter we will discuss how multilayer perceptron networks can be used to identify
and model the dynamic behaviour of nonlinear systems. We will first review some basic
concepts about nonlinear optimization; these will then be applied to the training of neural
networks. We will finally see how multilayer perceptron networks having the nonlinear
NNARX and NNARMAX model structures discussed in Section 2 can be trained.

Performance Learning

The process of adjusting the weights and bias values in a multilayer perceptron network
like that shown in Figure 3.16 such that a good approximation of a nonlinear function
y = g(ϕ) is achieved, is called training the network, or - seen from the network - as
learning. If the adjustment is carried out such that a performance index - a measure
of the accuracy of the approximation - is minimized, this process is called performance
learning. We will use neural networks for modelling nonlinear dynamic systems, and the
performance index we are interested in is the sum of squared prediction errors (2.1)

V (θ, ZN) = 1
2N

N∑
k=p

(y(k) − ŷ(k|k − 1, θ))2 = 1
2N

N∑
k=p

ε2(k, θ) (4.1)

where ZN = {y(k), ϕ(k); k = 1, . . . , N} represents a set of N samples of measured input
and output data of the system to be modelled, y(k) is the measured output at sampling
instant k, ŷ(k) the output predicted by the network, and the parameter vector θ ∈ IRnp

contains all adjustable network parameters, i.e. weights and bias values. The objective is
then to find the minimizing value

θ̂ = arg min
θ
V (θ, ZN)

In the neighborhood of a given value θ0 of the parameter vector, the performance index
can be developed into a Taylor series

V (θ) = V (θ0) + ∇V T (θ)
∣∣∣
θ0

(θ − θ0) + 1
2 (θ − θ0)T ∇2V (θ)

∣∣∣
θ0

(θ − θ0) + . . .

4. Solving the Estimation Problem 41

(to simplify notation, the argument ZN has been dropped), where

∇V (θ) =
[
∂V

∂θ1
. . .

∂V

∂θ1

]T

denotes the gradient of V (θ) and

∇2V (θ) =



∂2V
∂θ2

1

∂2V
∂θ1∂θ2

. . . ∂2V
∂θ1∂θnp

∂2V
∂θ2∂θ1

∂2V
∂θ2

2
. . . ∂2V

∂θ2∂θnp...
∂2V

∂θnp ∂θ1
∂2V

∂θnp ∂θ2
. . . ∂2V

∂θ2
np


the Hessian of the function V (θ). Starting from an initial guess θ(0), an iterative search
for the best estimate of the parameter vector at iteration step l generally takes the form

θ(l + 1) = θ(l) + αf(l) = θ(l) + ∆θ(l) (4.2)

where f(l) ∈ IRnp is called the search direction at iteration step l and the constant α > 0
is called the learning rate. One can distinguish between methods that use only V and
∇V for updating the estimate (e.g. the steepest descent method), and methods that use
V , ∇V and ∇2V (Newton methods).

Before we discuss steepest descent and Newton methods and their application to the
training of MLP networks, we briefly recall some useful definitions and facts.

Directional Derivative

The elements ∂V/∂θi of the gradient vector and ∂2V/∂θ2
i of the diagonal of the Hessian

are the first and second derivative, respectively, of V along the θi axis. The first and
second derivatives along the direction of an arbitrary vector f - the directional derivatives
along f - are given by

fT ∇V (θ)
‖f‖

and fT ∇2V (θ)f
‖f‖

respectively.

Example 4.1

Consider the function

V (θ) = θ2
1 + 9θ2

2, θ0 =
[
1.5
0.5

]
, f =

[
3

−1

]

The gradient of V (θ) at θ0 is

∇V |θ0 =
[

2θ1

18θ2

]∣∣∣∣∣
θ0

=
[
3
9

]

42

−2

−1

0

1

2

−1

−0.5

0

0.5

1

0

2

4

6

8

10

θ
1

θ
2

V(θ)

Figure 4.1: Surface plot of V (θ)

The directional derivative along f is therefore

1
‖f‖

[3 − 1]
[
3
9

]
= 0

The function V is shown in Figure 4.1 as surface plotted over the θ1 − θ2 plane, and in
Figure 4.2 as a contour plot. The directional derivative along f is zero because f points
in the direction of the tangent of the level curve at θ0 - in this direction the slope is zero.
The slope has its maximum value in the direction of the gradient, and its minimum value
in the opposite direction.

Conditions for Minima

In the present context, the objective of performance learning is to minimize the network
performance index V (θ). A point θ0 is called

• a strong minimum of V (θ) if a scalar β exists such that V (θ0) < V (θ0 + ∆θ) for all
∆θ such that β > ‖∆θ‖ > 0

• a weak minimum of V (θ) if it is not a strong minimum and if a scalar β exists such
that V (θ0) ≤ V (θ0 + ∆θ) for all ∆θ such that β > ‖∆θ‖ > 0

• a global minimum of V (θ) if V (θ0) < V (θ0 + ∆θ) for all ∆θ 6= 0.

4. Solving the Estimation Problem 43

A linear approximation of V (θ) in the neighborhood of θ0 is

V (θ) = V (θ0 + ∆θ) ≈ V (θ0) + ∇V (θ)T |θ0∆θ

A necessary (but not sufficient) condition for θ0 to be a strong minimum is

∇V (θ)|θ0 = 0

Points satisfying this condition are called stationary points of V (θ). Whether or not a
stationary point V (θ) is a minimum depends on the higher order terms of the Taylor series
expansion

V (θ0 + ∆θ) = V (θ0) + 1
2∆θT ∇2V (θ)

∣∣∣∣
θ0

∆θ + . . .

In a small neighborhood of θ0 we may neglect third and higher order terms, and a sufficient
condition for θ0 to be a strong minimum is

∇V 2(θ)|θ0 > 0

i.e. the Hessian at θ0 is positive definite. Note however that this is not a necessary
condition, since θ0 can still be a strong minimum even if the second order term in the
Taylor series is zero (e.g. when the third order term is positive).

Quadratic Functions

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

θ
1

θ
2

9

0

Figure 4.2: Contour plot of V (θ)

44

Quadratic functions are of particular interest when studying the optimization of quadratic
performance indices. A quadratic function has the form

F (x) = 1
2x

TQx+ pTx+ r (4.3)

where F is scalar function of x ∈ IRn, Q = QT ∈ IRn×n and p and r are a column vector
and a scalar, respectively. We have

∇F (x) = Qx+ p and ∇2F (x) = Q

In Exercise 5.1 it is shown that the eigenvalues of the Hessian Q are the second derivatives
of F (x) in the direction of the corresponding eigenvectors. The following three quadratic
functions all have a stationary point at x = 0; they illustrate how the Hessian determines
the character of the stationary point.

Example 4.2

The Hessian of the quadratic function

F (x) = 1
2x

T

[
2 1
1 2

]
x

has eigenvalues 3 and 1 and is positive definite. Thus, the origin is a strong minimum.
This function is shown in Figure 4.3. The eigenvectors of the Hessian point in the direction
of the principal axes of the ellipse-shaped level curves; the second derivatives (curvature)
in theses directions are 3 and 1.

Example 4.3

The Hessian of
F (x) = 1

2x
T

[
−1 −6
−6 −1

]
x

has eigenvalues 5 and -7 and is indefinite. The function is shown in Figure 4.4. The
stationary point θ = 0 is a minimum in the direction of the eigenvector corresponding
to eigenvalue 5, and a maximum in the direction of the eigenvector corresponding to
eigenvalue -7. Such a point is called a saddle point.

Example 4.4

The Hessian of
F (x) = 1

2x
T

[
1 −1

−1 1

]
x

4. Solving the Estimation Problem 45

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0

5

10

15

20

25

30

x
1

x
2

F(x)

Figure 4.3: Strong minimum

−2

−1

0

1

2

−2

−1

0

1

2

−30

−20

−10

0

10

20

x
1

x
2

F(x)

Figure 4.4: Saddle point

46

has eigenvalues 2 and 0 and is positive semidefinite. The function is shown in Figure 4.5,
the origin is a weak minimum. The valley has the direction of the eigenvector correspond-
ing to the zero eigenvalue.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

14

16

18

x
1

x
2

F(x)

Figure 4.5: Weak minimum

Steepest Descent Method

To simplify notation, we let
g(l) = ∇V (θ)|θ(l)

denote the gradient at iteration step l, and

H(l) = ∇2V (θ)|θ(l)

denote the Hessian at iteration step l. A first order approximation of the value of the cost
function at iteration step l + 1 is then

V (θ(l + 1)) = V (θ(l) + ∆θ(l)) ≈ V (θ(l)) + gT (l)∆θ(l) = V (θ(l)) + αgT (l)f(l)

Since α > 0 we need gT (l)f(l) < 0, and a search direction satisfying this condition
is called a descent direction. The steepest descent is obtained in the direction of the
negative gradient, i.e. f(l) = −g(l). With this search direction, the iterative search in
(4.2) turns into the steepest descent method

θ(l + 1) = θ(l) − αg(l) (4.4)

4. Solving the Estimation Problem 47

Example 4.1 (continued)

With
V = θ2

1 + 9θ2
2 and θ(0) =

[
1.5
0.5

]

we have g(0) = [3 9]T . With a learning rate α = 0.02, the first iteration step thus yields
θ(1) = [1.44 0.32]. Figure 4.6 shows the trajectory resulting from 50 iterations of (4.4);
note that the steps become increasingly smaller as the minimum is approached. This is
a consequence of the learning rate being small. The trajectories obtained with learning
rates α = 0.110 and α = 0.112, are shown in Figures 4.7 and 4.8, respectively. With the
last choice of α, the iteration does not converge.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ
1

θ
2

Figure 4.6: Trajectory with α = 0.02

The above example illustrates the following relationship - derived in Exercise 5.2 - between
the maximum eigenvalue of the Hessian of a quadratic function, and an upper bound on the
learning rate: If the cost function is quadratic, the steepest descent algorithm converges
if

α <
2

λmax(H)
where λmax(H) denotes the maximum eigenvalue of the Hessian. In the example we have

∇2V =
[
2 0
0 18

]
⇒ α <

2
18 = 0.111

48

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ
1

θ
2

Figure 4.7: Trajectory with α = 0.110

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ
1

θ
2

Figure 4.8: Trajectory with α = 0.112

4. Solving the Estimation Problem 49

The last example also illustrates that convergence is fast in the direction of eigenvectors
corresponding to large eigenvalues, and small in the direction of eigenvectors correspond-
ing to small eigenvalues. Obviously the convergence properties of the steepest descent
algorithm as in (4.4) are unsatisfactory. Improvements are possible by allowing a variable
learning rate, e.g. by searching along the gradient direction for the minimum of the cost
function (line search), or by modifying the search directions. Here we will however not
discuss improvements of the basic steepest descent method, but we will now turn to a
method that considers not only the gradient but also the Hessian of the cost function.

Newton’s Method

A second order approximation of the value of the cost function at iteration step l + 1 is

V (θ(l + 1)) = V (θ(l) + ∆θ(l)) ≈ V (θ(l)) + gT (l)∆θ(l) + 1
2∆θT (l)H(l)∆θ(l)

Let F (∆θ(l)) denote the right hand side of the above approximation, seen as a quadratic
function of ∆θ(l). To find the stationary point of this function we solve

∂V (∆θ(l))
∂∆θ(l) = g(l) +H(l)∆θ(l) = 0

for
∆θ(l) = −H−1(l)g(l)

This leads to Newton’s method for updating the estimate

θ(l + 1) = θ(l) −H−1(l)g(l) (4.5)

Example 4.1 (continued)

With
g(0) =

[
3
9

]
and H(0) =

[
2 0
0 18

]
we obtain in the first iteration step

θ(1) =
[
1.5
0.5

]
−
[1

2 0
0 1

18

] [
3
9

]
=
[
0
0

]

Thus, Newton’s method converges in one step. This is of course due to the fact that
the cost function in this example is quadratic. The cost functions we encounter when
training neural networks are in general not quadratic in the network parameters. As an
illustration, Figure 4.9 shows the cost function for the multilayer perceptron network in
Exercise 3.1, when only two of the seven network parameters (w1

11 and w2
11) are varied,

while the other parameters are fixed at their optimal values. A typical feature are the

50

long valleys where the gradient is small, and where the steepest descent method would
lead to very slow progress.

In comparison with the steepest descent algorithm, Newton’s method is generally faster
when the search is close to a minimum. On the other hand, far from a minimum Newton’s
method can lead to unpredictable results. Moreover, it is computationally much more
expensive, because it requires the computation of H(l) and of H−1(l) at each step. As a
consequence, one would prefer

• Steepest descent when far from a minimum

• Newton’s method when close to a minimum.

We will see later that this idea is realized in the Levenberg-Marquardt algorithm.

−20

−10

0

10

−20 −15 −10 −5 0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

w
11

1

w
11

2

V(θ)

Figure 4.9: Cost function for MLP from Exercise 3.1 with w1
11 and w1

12 as variables

Chapter 5

Training Neural Networks
Levenberg-Marquardt
Backpropagation

We will now apply the steepest descent method to train the multilayer perceptron network
shown in Figure 5.1. The network output is denoted ŷ to indicate that the network will
be used for nonlinear system identification; we have

ŷ(k|θ) = f 2(W 2f 1(W 1ϕ(k) + w1
0) + w2

0)

W 1 ŷ

f 1

ϕ

w1
01

f 2

w2
01

v1
W 2

Figure 5.1: Multilayer perceptron network

The ith element of the gradient ∇V (θ) of the performance index (4.1) is

∂V (θ)
∂θi

= 1
2N

N∑
k=1

∂(y(k) − ŷ(k|θ))2

∂θi

= − 1
N

N∑
k=1

∂ŷ(k|θ)
∂θi

ε(k|θ) (5.1)

where ε(k|θ) is the prediction error at time k. The gradient of the cost function V is
therefore the negative average of the gradients of the predicted output at all sampling
instants, weighted by the prediction error at each sampling instant.

Output Layer

52

We will now compute the derivative of the predicted output with respect to each weight
and bias parameter, beginning with the output layer. Here we have

ŷ(k|θ) = f 2

 s1∑
j=0

w2
1jv

1
j (k)

 = f 2(h2(k))

Note that the summation begins at j = 0: by defining v1
0(k) = 1 we can treat the bias

term w2
10 as an additional weight parameter. Applying the chain rule, we obtain

∂ŷ(k|θ)
∂w2

1j

= ∂f 2(h2)
∂h2

∣∣∣∣∣
k

v1
j (k)

If we define the sensitivity

δ2
1(k) = ∂f 2(h2)

∂h2

∣∣∣∣∣
k

(5.2)

of the first (and in this case only) output of layer 2 at sampling instant k, we can write

∂ŷ(k|θ)
∂w2

1j

= δ2
1(k)v1

j (k) (5.3)

Hidden Layer

The derivative of the predicted output with respect to the weight and bias parameters in
the hidden layer can be obtained from

ŷ(k|θ) = f 2

 s1∑
j=1

w2
1jf

1
(

r∑
i=0

w1
jiϕi(k)

)
+ w2

0


The index i points to input channels, while the index j points to neurons in the hidden
layer. Note that the inner summation begins at i = 0; we define ϕ0(k) = 1 so that the
bias terms of the hidden layer can be treated as additional weights.

Applying the chain rule yields

∂ŷ(k|θ)
∂w1

ji

= ∂f 2(h2)
∂h2

∣∣∣∣∣
k

∂h2

∂h1

∣∣∣∣∣
k

∂h1

∂w1
ji

∣∣∣∣∣
k

Observing that
∂h1

∂w1
ji

∣∣∣∣∣
k

= ϕi(k)

and
∂h2

∂h1

∣∣∣∣∣
k

= w2
1j

∂f 1(h1)
∂h1

∣∣∣∣∣
k

this can be written as
∂ŷ(k|θ)
∂w1

ji

= δ1
j (k)ϕi(k) (5.4)

5. Training Neural Networks Levenberg-Marquardt Backpropagation 53

where we defined the sensitivity of the jth output in the first layer at time k

δ1
j (k) = δ2

1(k) w2
1j

∂f 1(h1)
∂h1

∣∣∣∣∣
k

(5.5)

Comparing (5.3) with (5.4), we see that the derivatives in each layer are given by the
corresponding sensitivity multiplied with the input of the respective layer. Starting at
the output layer, we can compute its sensitivity from (5.2) and obtain the corresponding
derivatives from (5.3). Having computed the output sensitivity, we can use (5.5) to
calculate the sensitivity of the hidden layer; the derivatives with respect to weights in
that layer are then obtained from (5.4). If we have a network with more than two layers,
we can proceed in the same manner: the sensitivity of layer m can be computed from the
sensitivity of layer m+ 1; the derivatives of the predicted output with respect to weights
in each layer are thus obtained by backpropagating the sensitivities.

Training a Two-Layer Sig-Lin Perceptron Network

We have shown in this section how the gradient of the sum of squared prediction errors
(2.1) with respect to the weights and biases of a multilayer perceptron network can be
computed by backpropagating the sensitivities. To illustrate this approach, we will apply
it to a two-layer sig-lin network, i.e. a network as in Figure 5.1 where f 1 is a sigmoid
and f 2 a linear activation function. Assume that at the lth iteration our estimate of the
parameter vector is θ(l). Using the steepest descent method, the update of the estimate
of the ith parameter is then

θi(l + 1) = θi(l) − α
∂V

∂θi

∣∣∣∣∣
l

(5.6)

Substituting (5.1) for the partial derivative of V , we see that we need the weighted average
of the partial derivatives of the predicted output over all sampling instants. The sensitivity
of the linear output layer at sampling instant k is

δ2
1(k) = ∂f 2(h2)

∂h2

∣∣∣∣∣
k

= 1 (5.7)

and thus
∂ŷ(k|θ)
∂w2

1j

= δ2
1(k)v1

j (k) = v1
j (k)

If we have log-sig activation functions

f 1(h) = 1
1 + e−h

in the hidden layer, where for simplicity we let h denote the weighted sum of inputs h1
j

at the jth hidden neuron, we obtain

∂f 1
j (h)
∂h

= ∂

∂h

1
1 + e−h

= e−h

(1 + e−h)2 =
(

1 − 1
1 + e−h

) 1
1 + e−h

54

The sensitivity at the jth hidden neuron is therefore

δ1
j (k) = w2

1j

(
1 − v1

j (k)
)
v1

j (k) (5.8)

where w2
1j refers to elements of W 2(l) obtained at the previous iteration step.

Updating the Weights

The weight matrices Wm (where m = 1 represents the hidden layer and m = 2 the output
layer) are updated at iteration step l according to

Wm(l + 1)m = Wm(l) − α∆Wm(l)

For the output layer we have, using (5.7)

∆W 2(l) = − 1
N

N∑
k=1

v1T (k)ε(k)

Note that because v1
0 = 1 the bias update is equal to the negative average of prediction

errors
∆w2

0(l) = − 1
N

N∑
k=1

ε(k)

Using (5.8), we obtain for the hidden layer update

∆W 1(l) = − 1
N

N∑
k=1

δ1(k)ϕT (k)ε(k)

and the bias update

∆w1
0(l) = − 1

N

N∑
k=1

δ1(k)ε(k)

Levenberg-Marquardt Backpropagation

In the previous section it was shown how a multilayer perceptron network can in principle
be trained by steepest descent backpropagation. In practice it turns out, unfortunately,
that steepest descent backpropagation is far too slow to be of practical value. Recall
that close to minimum Newton methods are much more efficient than steepest descent.
The most widely used method for training MLP networks is the Levenberg-Marquardt
backpropagating technique, a clever combination of steepest descent and an approximate
Newton method.

A Newton update of the parameter estimate is given by

θ(l + 1) = θ(l) −H−1(l)g(l) (5.9)

5. Training Neural Networks Levenberg-Marquardt Backpropagation 55

where as before H(l) denotes the Hessian and g(l) the gradient at iteration step l of the
cost

V (θ) = 1
2N

∑
ε2(k, θ) = 1

2NET (θ)E(θ)

where
E(θ) = [ε(1) ε(2) . . . ε(N)]T

is a column vector containing all prediction errors obtained with parameter vector θ.
Recalling that the ith element of the gradient vector is

∂V

∂θi

= 1
N

N∑
k=1

ε(k, θ)∂ε(k, θ)
∂θi

we observe that the gradient can be written as

∇V (θ) = 1
N


∂ε1
∂θ1

. . . ∂εN

∂θ1...
∂ε1

∂θnp
. . . ∂εN

∂θnp



ε1
...
εN

 = 1
N
JT (θ)E(θ) (5.10)

where we introduced the Jacobian J(θ) of the prediction error vector E(θ). To obtain a
similar representation of the Hessian, consider the (i, j) element

(
∇2V

)
ij

= ∂2V

∂θi∂θj

= 1
N

N∑
k=1

1
2
∂2ε2(k)
∂θi∂θj

For the term under the sum we have (suppressing dependence on θ in notation)

1
2
∂2ε2(k)
∂θi∂θj

= ∂

∂θj

(
1
2

∂

∂θi

ε2(k)
)

= ∂

∂θj

(
ε(k)∂ε(k)

∂θi

)
= ∂ε(k)

∂θj

∂ε(k)
∂θi

+ ε(k)∂
2ε(k)
∂θi∂θj

The Hessian of V (θ) can therefore be written as

∇2V (θ) = 1
N

(
JT (θ)J(θ) + S(θ)

)
(5.11)

where

S(θ) =
N∑

k=1
ε(k)∇2ε(k)

Gauss-Newton Method

Based on (5.11), a frequently used approximation of the Hessian is

∇2V ≈ 1
N
JT (θ)J(θ)

56

This approximation is known as the Gauss-Newton Hessian. It has the advantage that it
does not require the computation of second derivatives. To justify the use of the Gauss-
Newton Hessian, consider a linear approximation of the prediction error around a given
value θ0 of the parameter vector

ε̃(k, θ) = ε(k, θ0) + ∇T ε(k, θ)(θ − θ0)

leading to an approximate cost function

Ṽ (θ) = 1
2N

N∑
k=1

ε̃2(k, θ)

It is straightforward to check that

∇Ṽ (θ)
∣∣∣
θ=θ0

= 1
N
JT (θ0)E(θ0)

and
∇2Ṽ (θ)

∣∣∣
θ=θ0

= 1
N
JT (θ0)J(θ0)

Thus, while the gradient of the approximate cost is equal to the true gradient at θ0 (not
surprisingly since we use a linear approximation), the Hessian of the approximate cost
turns out to be just the Gauss-Newton Hessian.

Replacing the Hessian in (5.9) by the Gauss-Newton Hessian and using (5.10) and (5.11)
yields

θ(l + 1) = θ(l) − (JT
l Jl)−1JT

l El

where we use the shorthand notation Jl = J(θ(l)) and El = E(θ(l)). The resulting search
direction is called a Gauss-Newton direction.

Levenberg-Marquardt Algorithm

Note that at each iteration step we have JT
l Jl ≥ 0. If the Gauss-Newton Hessian is near

singular, one can improve its numerical condition by replacing it with JT
l Jl + µI to get

θ(l + 1) = θ(l) − (JT
l Jl + µlI)−1JT

l El (5.12)

where µ is a small positive constant. Moreover, one can replace µ by a time-varying
parameter µl that can be used for tuning the search direction to be either close to the
steepest descent direction or close to the Gauss-Newton direction at a given iteration step:
if µl is large we have

θ(l + 1) ≈ θ(l) − 1
µl

JT
l El = θ(l) − N

µl

g(l)

In this case the search direction is close to the steepest descent direction. On the other
hand, if µl is small the search direction in (5.12) turns into the Gauss-Newton direction.
This observation is the basis of the Levenberg-Marquardt algorithm: choose a positive
constant ρ > 1 (e.g. ρ = 10) and a small positive value µ0 (e.g. µ0 = 0.01), and repeat
the following:

5. Training Neural Networks Levenberg-Marquardt Backpropagation 57

• At iteration step l update θ according to (5.12), compute V (θl+1)

• If V (θl+1) ≥ V (θl), reject update and replace µl by ρµl, repeat iteration step l

• If V (θl+1) < V (θl), accept update, set µl+1 = µl/ρ, go to iteration step l + 1.

This algorithm tries to use a Gauss-Newton direction when possible but returns to steep-
est descent when the Gauss-Newton direction would give no improvement. The search
directions are illustrated in Figure 5.2.

Gauss-Newtonθ(l)

Gradient

µ = 0
µ =∞

Figure 5.2: Search direction in Levenberg-Marquardt algorithm

Backpropagation

The efficiency of the steepest descent backpropagation discussed in the previous section
can be improved when the steepest descent direction in (5.6) is replaced by a search
direction determined by the Levenberg-Marquardt algorithm. Computationally all that
is needed is the Jacobian J(θ), which in turn requires to compute

∂ε(k, θ)
∂θi

= −∂ŷ(k, θ)
∂θi

for k = 1, . . . , N and i = 1, . . . , np. These quantities can be computed from (5.2) and
(5.5) using backpropagation.

Nonlinear System Identification Using MLP

Having discussed how multilayer perceptron networks can be trained to approximate a
nonlinear function y = g(ϕ) based on a set of data pairs ZN = {y(k), ϕ(k); k = 1, . . . , N},
where the regressor vector ϕ(k) contains past input and output data, we now return to
the problem of identifying a model for a nonlinear dynamic system. Recall that we are
looking for a nonlinear regressor model of the form (2.18)

y(k) = g(ϕ(k), θ) + e(k)

58

Here y(k) represents measured system outputs, the regressor vector ϕ(k) ∈ IRr contains
samples of measured input and output signals taken prior to sampling instant k, and
θ ∈ IRnp is a vector whose elements are the weights and biases of the MLP network to
be trained. The nonlinear function g(·) describes the mapping of neural network inputs
into outputs; this mapping depends on the weights in θ. Recall also that in the above
regressor model we have already transformed the perturbation v(k) in Figure 2.1 into the
form

v(k) = e(k) + past values of v

where e(k) is a white noise process. In other words, the disturbance acting on the measured
plant output may be non-white, but a noise model taking account of this is absorbed into
the function g(·) and is represented together with the plant dynamics by the parameter
vector θ. As a consequence, the prediction error is white when θ takes its optimal value,
compare (2.12). This leads to the predictor model

ŷ(k) = g(ϕ(k), θ) (5.13)

NNARX Model Structure

The simplest neural network based model structure that can be used to represent the
predictor model (5.13) is the NNARX structure, where

ϕ(k) = [yk−1 . . . yk−n uk−d . . . uk−d−m]T

This structure was introduced in Section 2 and is shown again in Figure 5.3. Note that a
static feedforward network is used to represent a dynamic nonlinear system as predictor
model. In training mode, such a predictor model is used to find the weights and biases that
give the best fit between predicted and measured output: at iteration step l, regression
vectors ϕ(k) are constructed for k = p, . . . , N from measured data, applied to the network,
and the network outputs ŷ(k) obtained with weights and biases according to θ(l) are
compared with the measured outputs y(k). The resulting values of ŷ(k) and ε(k) are used
in Levenberg-Marquardt backpropagation to compute a search direction and an update
∆θ(l), which provides the weights for iteration step l + 1.

In recall mode, when a trained network is used to simulate system behaviour, the past
values of y(k) which are used as network inputs in ε(k), are previous network outputs.
This implies feedback from network output to input and enables the network to represent
dynamic behaviour.

NNARMAX Model Structure

As discussed earlier, the NNARMAX model structure allows a more flexible disturbance
model, which can lead to a more accurate model of the system to be identified when

5. Training Neural Networks Levenberg-Marquardt Backpropagation 59

...
θ

NN
... -

ŷ(k)

y(k)

ε(k)

ϕ1(k)

ϕr(k)

Figure 5.3: NNARX model structure

measurements are corrupted by colored noise. The regressor vector for an NNARMAX
model is

ϕ(k, θ) = [yk−1 . . . yk−n uk−d . . . uk−d−m εk−1 . . . εk−n]T

Note that here even in training mode the predictor model includes feedback from network
output to inputs, as shown in Figure 5.4.

εk−1

z−1

z−1

...

NN...

...
θ

ŷ(k)

y(k)

ε(k)

-

ϕ̄(k)

εk−n

Figure 5.4: NNARMAX model structure

As a consequence, the regressor vector depends - in contrast to NNARX models - on the
network parameters θ, thus instead of ŷ(k) = g(ϕ(k), θ) we have

ŷ(k) = g(ϕ(k, θ), θ)

Since the predicted output is in this case not a function of independent variables, the
gradient of the cost is determined by the total derivative

dŷ(k)
dθ

= ∂ŷ(k)
∂θ

+ ∂ŷ(k)
∂ε(k − 1)

dε(k − 1)
dθ

+ . . .+ ∂ŷ(k)
∂ε(k − n)

dε(k − n)
dθ

(5.14)

Introducing the notation

ψk = dŷ(k)
dθ

and φk = ∂ŷ(k)
∂θ

60

(5.14) can be written as

ψk = φk − ∂ŷ(k)
∂ε(k − 1) ψk−1 − . . .− ∂ŷ(k)

∂ε(k − n) ψk−n

The backpropagation technique discussed in the previous section can be used to compute
φk. Computing ψk however requires also the partial derivatives of predicted outputs with
respect to past prediction errors. The problem simplifies if the NNARMAX structure is
modified such that the disturbance model is linear. Such a regressor model is

ŷ(k) = g
(
ϕ̄(k), θ̄

)
+
(
C(z−1) − 1

)
ε(k) (5.15)

where ϕ̄ and θ̄ represent the regressor vector and the network parameters, respectively,
when prediction errors are removed as network inputs. The polynomial

C(z−1) = 1 + c1z
−1 + . . .+ cnz

−n

describes the noise characteristics as in linear ARMAX models. The modified NNARMAX
model is shown in Figure 5.5.

εk

ŷk

yk

-

ϕ̄k

C(z−1)− 1

θ̄

NN

Figure 5.5: Modified NNARMAX model structure

With this modification, (5.14) becomes

ψk = φk − c1ψk−1 − . . .− cnψk−n

or
ψk = 1

C(z−1) φk

where

θ =


θ̄

c1
...
cn

 and φk =


∂ŷk

∂θ̄

εk−1
...

εk−n


Backpropagation can be used to compute ∂ŷk/∂θ̄; ψk is then computed by forming φk

and filtering it through 1/C(z−1). The coefficients of C(z−1) are contained in θ and

5. Training Neural Networks Levenberg-Marquardt Backpropagation 61

updated in each Levenberg-Marquardt iteration together with the network parameters θ̄.
Not that stability of 1/C(z−1) must be checked at each step; if C is unstable the spectral
factorization theorem can be used to replace it with a stable polynomial.

Practical Issues

Before a two-layer MLP network is to be trained for a control application, the following
choices have to be made

• Sampling time

• Dynamic system order

• Number of hidden neurons

• Training signal

These choices depend on the control objectives and are explored in an exercise in the
following section.

Exercises

Problem 5.1

Show that the eigenvalues of the Hessian of a quadratic function are equal to the second
derivatives of that function in the direction of the corresponding Hessian eigenvectors.

Problem 5.2

Show that for a quadratic cost function V (θ), the steepest descent method according to
(4.4) will be stable if the learning rate satisfies

α <
2

λmax(∇2V)

where λmax(·) denotes the maximum eigenvalue of a symmetric matrix.

Chapter 6

Predictive Control Using Neural
Networks

In this chapter we discuss the use of neural networks in nonlinear control applications.
Neural networks can be used in two ways for controller design, referred to as direct design
and indirect design, respectively. In direct neural network based design, the controller itself
is a neural network. This means that instead of training a network to learn the behaviour
of the plant to be controlled, a network is trained to learn the desired behaviour of the
controller. Such techniques have been proposed in the literature, however they have at
least two major drawbacks. One is that such control loops are difficult to tune: each
re-tuning of the controller requires re-training a neural network. A second disadvantage
is due to the fact that direct design usually requires the controller network to learn some
form of inverse plant dynamics, which is difficult for plants with unstable or lightly damped
inverses.

In indirect design, the controller is not a neural network itself, but has access to a neural
network as plant model. This approach avoids the difficulties associated with direct
design; typical neural network based indirect design techniques are minimum variance
control or predictive control. In this section we illustrate the use of neural networks for
control with a particular predictive control technique referred to as approximate predictive
control. However, before we discuss the details of this approach, we will briefly review the
idea of predictive control in more general terms.

Predictive Control

It is frequently pointed out that predictive control is the most widely used advanced
control scheme in industrial applications (“advanced" here meaning “more sophisticated
than PID control"). Applications are mainly in process control, one reason being that
predictive control laws may require extensive calculations between two sampling instants,

6. Predictive Control Using Neural Networks 63

and in process control sampling is usually sufficiently slow. It can however be expected
that the continuing improvement of computational power will lead in the future to the
use of predictive control also for “fast applications" like mechatronic systems.

yPlantPredictive
Controller

r u

Figure 6.1: Control loop with predictive controller

A control loop with a predictive controller is shown in Figure 6.1. The principal idea
of predictive control is to predict plant responses to different control inputs, and use
these predictions to optimize the control input at any given sampling instant. Usually a
quadratic cost function

Jk =
N2∑

i=N1

(rk+i − ŷk+i)2 + ρ
Nu∑
i=1

∆u2
k+i−1 (6.1)

is minimized, where control error and control effort are penalized within given time win-
dows - referred to as prediction horizon and control horizon, respectively.

Typical prediction and control horizons are shown in Figure 6.2. At sampling instant kT
the output is predicted for k + N1 ≤ t/T ≤ k + N2 as a function of the control input.
The changes ∆uk+i at 1 ≤ i ≤ Nu − 1 of the control input compared to its most recent
value uk−1 are considered as decision variables in the problem of minimizing (6.1). The
prediction horizon N2 is usually larger than the control horizon Nu, and in this case the
assumption

∆uk+i = 0, i ≥ Nu

is made, i.e. the control input is assumed constant beyond the control horizon. Output
predictions begin at k = N2, this value is usually taken to be the estimated dead time of
the plant.

Receding Horizon

The problem to be solved at time t = kT is

Ũ∗
k = min

Ũk

Jk

where we introduced the column vector

Ũk = [∆uk ∆uk+1 . . . ∆uk+Nu−1]T

64

��
��
��
��

������
������
������

������
������
������

��������������

∆uk+1

kk − 1 k + 1

r(t) ŷ(t)

prediction horizonk +N1

y(t)

t
T

k t
Tk +Nu − 1

control horizon

u(t)

k +N2

∆uk

Figure 6.2: Prediction and control horizon

Of the optimal control sequence defined by Ũ∗
k , only the first value uk = uk−1 + ∆u∗

k is
applied to the plant. At time t = kT + T the problem

Ũ∗
k+1 = min

Ũk+1
Jk+1

is solved again, and uk+1 is applied. The procedure is repeated at each sampling instant;
this technique of using only the first value of a sequence of future control inputs is called
a receding horizon strategy.

There is a variety of predictive control laws that are used in practice. The plant model
used for predicting outputs can be linear or nonlinear; plants can be represented as state
space or transfer function models. For nonlinear plants neural network models can be
used. One of the strongest features of predictive control is its capability of taking input
and output constraints into account when optimizing the control input.

Linear Plant Model - Generalized Predictive Control

Of course the complexity of a predictive control strategy and the required computational
effort depend strongly on the choice of model type: nonlinear models require a non-linear
optimization problem to be solved on-line in each sampling interval. In particular for
“fast applications" only predictive controllers based on linear models are realistic. In this
section we introduce a widely used linear predictive control law - known as generalized
predictive control (GPC) - and in the following section we will see how this control law

6. Predictive Control Using Neural Networks 65

can be combined with a nonlinear neural network model by extracting a linearized plant
model from the network at each sampling instant.

GPC is used with a slight modification of either the ARX or the ARMAX model structure.
For simplicity we consider ARX models

A(z−1)y(k) = B(z−1)u(k − 1) + e(k) + ζ(k) (6.2)

where d = 1 is assumed for plant dead time. The term e(k) represents zero mean white
noise as before, and an extra term ζ(k) has been added to model step disturbances or (as
will become clear in the following section) offset values resulting from linearization. Both
white noise and offset together are often represented by a single signal that is generated
by integrating white noise, leading to the ARIX model structure

A(z−1)y(k) = B(z−1)u(k − 1) + 1
1 − z−1 e(k) (6.3)

Introducing the differencing operator

∆ = 1 − z−1

and omitting the polynomial arguments, this can be written as

y(k) = B

A
u(k − 1) + 1

A∆ e(k) (6.4)

Predicting Future Outputs

The predictive control law requires i-step-ahead predictions ŷ(k+ i|k) of the plant output
as a function of future control inputs. Whereas the future values of the control input u(k)
are decision variables, the future values of e(k) are unknown. To separate the effects of
past and future noise, we write

1
A∆ = Ei + z−i Fi

A∆ (6.5)

where Ei(z−1) and Fi(z−1) are polynomials that satisfy the equation for a given A(z−1)
and prediction interval i, and the degree of Ei(z−1) is i − 1. The above can then be
interpreted as polynomial division where Fi is the reminder; as an example, consider

1
2 − z−1 = 1 + 2z−1 + 4z−2

1 − 2z−1 = E2 + z−2 F2

1 − 2z−1

where i = 2, E2 = 1 + 2z−1 and F2 = 4.

Multiplying (6.5) by A∆ yields

EiA∆ + z−iFi = 1 (6.6)

66

This is a special case of a Diophantine equation, which has the form

A(z−1)X(z−1) +B(z−1)Y (z−1) = C(z−1)

where the polynomials A, B and C are given and the polynomials X and Y are unknown.
There are infinitely many solutions X, Y to this equation: if (X0,Y0) is a solution pair,
then clearly so is (X0 +BQ, Y0 −AQ), where Q is an arbitrary polynomial. However if we
impose the constraint that the degree of X is less than that of B, the solution is unique.
Referring to (6.6), if we impose the constraint that the degree of Ei(z−1) is i− 1, there is
a unique solution and the degree of Fi(z−1) is less than the degree of A∆.

The special case of a Diophantine equation - as in (6.6) - where C(z−1) = 1 is called a
Bezout identity.

The Bezout identity (6.6) can be used to derive an i-step ahead predictor as follows.
Multiply both sides by yk+i to get

yk+i = EiA∆yk+i + Fiyk

Substitute from (6.4) for A∆ to obtain

yk+i = EiB∆uk+i−1︸ ︷︷ ︸
past and future controls

+ Fi yk︸ ︷︷ ︸
free response

+ Ei ek+i︸ ︷︷ ︸
future noise

(6.7)

In this form, the future output value yk+i has been broken up into three components:
one depending on past and future control inputs, one depending only on the output at
sampling instant k (the “free response"), and one depending on future noise. Since e(k)
is zero mean white noise, the best estimate at time k is

ŷ(k + i|k) = EiB∆uk+i−1 + Fiyk

or
ŷ(k + i|k) = Gi∆uk+i−1 + Fiyk (6.8)

where we introduced the polynomial

Gi(z−1) = Ei(z−1)B(z−1) = g0 + g1z
−1 + . . .+ gngz

−ng

Note that the first i coefficients of Gi are the first i values of the step response of the
system (6.4) when e(k) = 0. To see this, recall that the step response is

B

A
· 1

1 − z−1 = B

A∆ = B
(
Ei + z−i Fi

A∆

)
= BEi + z−iB

Fi

A∆

and observe that the second term on the right hand side represents only values of the step
response that are delayed by at least i steps.

Optimal Control Input

6. Predictive Control Using Neural Networks 67

The predicted outputs are needed at time k to find the control sequence that minimizes
the cost (6.1). The term Gi∆uk+i−1 in (6.8) depends on both past and future control
values. For i = 1 we have

G1∆uk = g1
0∆uk + g1

1∆uk−1 + g1
2∆uk−2 + . . .+ g1

ng
∆uk−ng

where only the first term on the right hand side involves future controls. For i = 2

G2∆uk+1 = g2
0∆uk+1 + g2

1∆uk + g2
2∆uk−1 + . . .+ g2

ng
∆uk−ng+1

the first two terms involve future controls, etc. Note that we use the notation gj
l for the

lth coefficient of Gj. However, if i is the prediction interval, the first i coefficients are
the values of the step response - they are identical for all Gj. If we let fk+i denote the
component of yk+i that is known at time k, we can therefore write

fk+1 = (G1 − g0)∆uk + F1yk

fk+2 = (G2 − g0 − g1z
−1)∆uk+1 + F2yk

...

All predicted outputs (6.8) within the prediction horizon are then determined by

ŷk+1

ŷk+2
...

ŷk+Nu

...
ŷk+N2


=



g0 0 . . . 0
g1 g0 . . . 0
...

gNu−1 gNu−2 . . . g0
... ...

gN2−1 gN2−2 . . . gN2−Nu




∆uk

∆uk+1
...

∆uk+Nu−1

+



fk+1

fk+2
...

fk+Nu

...
fk+N2


(6.9)

where we assumed N1 = 1 and Nu < N2. Introducing the notation Ŷ , Ũ , and Φ for the
signal vectors and Γ ∈ IRN2×Nu for the impulse response matrix in (6.9), we have

Ŷ = ΓŨ + Φ

Introducing also a reference input vector

R = [rk+1 rk+2 . . . rk+N2]T

the cost function (6.1) can be written as

Jk = (R − Ŷ)T (R − Ŷ) + ρŨT Ũ = (R − ΓŨ − Φ)T (R − ΓŨ − Φ) + ρŨT Ũ

Setting the derivative dJk/dŨ to zero and solving for Ũ yields the minimizing vector of
controls

Ũ∗ = (ΓT Γ + ρI)−1ΓT (R − Φ) (6.10)

68

Implementation

For a receding horizon strategy only the first entry of Ũ is needed. If we let gT denote
the first row of the matrix (ΓT Γ + ρI)−1ΓT , the control input to be applied at time k is
computed from

uk = uk−1 + gT (R − Φ) (6.11)

If the plant model (6.4) is time-invariant, one can solve the Bezout identity (6.6) for Ei and
Fi, i = 1, . . . , N2, and pre-compute g off-line. If the plant model is however time-varying,
the following calculations are required in each sampling interval:

• solve (6.6) for Ei and Fi (for i = 1, . . . , N2, this can be done recursively),
compute Gi

• compute Φ

• compute g

• compute ∆uk = gT (R − Φ)

Integral Action

The form of the control law (6.11) suggests that the controller includes integral action.
To verify that error-free tracking is indeed achieved in steady state, assume that at time
k all signals are constant, i.e.

yk =yk+1 = yk+2 = . . . = ȳ

uk =uk+1 = uk+2 = . . . = ū

rk =rk+1 = rk+2 = . . . = r̄

This implies
Ũ = 0 = (ΓT Γ + ρI)−1ΓT (R̄ − Φ̄)

and therefore
R̄ = Φ̄ ⇒ f̄ = r̄

On the other hand, in steady state the Bezout identity (6.6) becomes

Ei(1)A(1)∆(1) + Fi(1) = 1

and because ∆(1) = 0, we have
Fi(1) = 1

and thus
fk+i = Fiyk = yk ⇒ f̄ = ȳ ⇒ ȳ = r̄

6. Predictive Control Using Neural Networks 69

Nonlinear Plant Model - Approximate Predictive Control

u
GPC Plant

GPC
linearization

NN

r
y

Nu, N1, N2, ρ
Tuning parameters

A(z−1), B(z−1)

synthesis

Figure 6.3: Approximate predictive control

The predictive control law discussed in the previous section assumes a - possibly time-
varying - linear plant model. If a nonlinear plant is to be controlled and an MLP network
model of the plant is available, then it is possible to extract a linearized plant model from
the network at each sampling instant, and use the GPC approach based on these linearized
models. This way of modelling is called instantaneous linearization, and the resulting
control law is referred to as approximate predictive control (APC). The term “approximate"
indicates that the optimization of the control input does not use the available nonlinear
model directly when predicting outputs, but a linear approximation instead. Algorithms
for on-line nonlinear optimization that use the neural network model directly have also
been proposed; they use a Levenberg-Marquardt approach similar to that used for training
a network. This approach is however computationally expensive, and because the current
control input is computed iteratively, there is no guarantee that the algorithm converges
to a solution within a sampling interval. On the other hand, the APC approach does not
involve iteration, and upper bounds on the computation time can be given.

The idea of APC is shown in Figure 6.3. The bottom half shows the feedback loop
with plant and GPC controller. A neural network that has been trained to capture the
nonlinear dynamic behaviour of the plant is provided on-line with plant input and output
data, and at each sampling instant a linearized ARX or ARMAX model is extracted
and passed to the GPC synthesis block, which solves the required Bezout identities and
computes the next control input. Here we will discuss only the ARX model structure.

Instantaneous Linearization

We will now derive a linearized ARX model from a nonlinear NNARX model. Thus,

70

consider an MLP network that represents the nonlinear function

ŷk = g(ϕk) (6.12)

To simplify the discussion, assume initially that

ŷk = g(yk−1, uk−1)

At sampling instant k, we wish to linearize the model about

ϕk =
[
yk−1

uk−1

]

Developing the model into a Taylor series gives

ŷl = yk + ∂g(ϕl)
∂yl−1

∣∣∣∣∣
ϕl=ϕk

(yl−1 − yk−1) + ∂g(ϕl)
∂ul−1

∣∣∣∣∣
ϕl=ϕk

(ul−1 − uk−1)

+ higher order terms

A linear approximation is

ŷl ≈ yk + ∂g(ϕl)
∂yl−1

∣∣∣∣∣
ϕl=ϕk

(yl−1 − yk−1) + ∂g(ϕl)
∂ul−1

∣∣∣∣∣
ϕl=ϕk

(ul−1 − uk−1)

= yk − a1(yl−1 − yk−1) + b0(ul−1 − uk−1)

Rearranging yields the linear model

ŷl = −a1yl−1 + b0ul−1 + ζk

which has the form of an ARX model with an offset term

ζk = yk + a1yk−1 − b0uk−1

as in (6.2).

Applying this idea to the model (6.12) with

ϕk = [yk−1 . . . yk−n uk−d . . . uk−d−m]T

yields a linear model
ŷk = (1 − A(z−1))yk +B(z−1)uk + ζk (6.13)

where

A(z−1) = 1 + a1z
−1 + . . .+ anz

−n

B(z−1) = b0 + b1z
−1 + . . .+ bmz

−m

6. Predictive Control Using Neural Networks 71

The polynomial coefficients are given by

aj = − ∂g(ϕl)
∂yl−j

∣∣∣∣∣
ϕl=ϕk

, j = 1, . . . , n (6.14)

bj = ∂g(ϕl)
∂ul−j

∣∣∣∣∣
ϕl=ϕk

, j = 0, . . . ,m (6.15)

and the offset term is
ζk = A(z−1)yk −B(z−1)uk−d (6.16)

Linearizing a Two-Layer Sig-Lin Perceptron Network

From (6.12), the partial derivatives in (6.14) and (6.15) are obtained by computing

∂ŷ(l)
∂ϕi(l)

∣∣∣∣∣
l=k

For a two-layer sig-lin perceptron network, the output at time l is

ŷl =
s1∑

j=1
w2

1j tanh
(

r∑
i=1

w1
jiϕi(l) + w1

j0

)
+ w2

0

and applying the chain rule yields

∂ŷ(l)
∂ϕi(l)

∣∣∣∣∣
l=k

=
s1∑

j=1
w2

1jw
1
ji

[
1 − tanh2

(
r∑

i=1
w1

jiϕi(l) + w1
j0

)]
(6.17)

Computing the right hand side gives −a1, . . . ,−an when i = 1, . . . , n and b0, . . . , bm when
i = n+ 1, . . . , n+m+ 1.

Exercises

Problem 6.1

Train a neural network to capture the behaviour of the CSTR pH process given in Exercise
3.2, and design an approximate predictive controller based on instantaneous linearization.
Use the MATLAB tools provided in the NNSYSID and NNCONTROL toolbox (a link to
the download site is provided on the web page of this course). Tune the controller for the
reference trajectory given in Exercise 3.2, and compare the achievable performance and
the design effort with that of the PID controller.

Chapter 7

Linear Subspace Identification

The discussion in the previous chapters was limited to SISO transfer function models.
The approach presented there can be extended to cover MIMO models , but working with
multivariable systems is usually more convenient in a state space framework. In this and
the following section we present a recently developed approach to estimating linear SISO
and MIMO state space models.

To introduce the idea, we begin with a SISO state space model

x(k + 1) = Φx(k) + Γu(k), x(0) = 0
y(k) = cx(k) + du(k)

(Note that we use the same symbol Γ in discrete-time SISO and MIMO models.) Now
assume that x(0) = 0, and consider the impulse response of the above model, i.e. the
response to the input u(k) = δ(k). Observing that for k > 0 we have x(k) = Φk−1Γ, we
find that the impulse response g(k) is given by

g(k) =


0, k < 0
d, k = 0
cΦk−1Γ, k > 0

The values {d, cΓ, cΦΓ, . . .} of the impulse response sequence are called the Markov
parameters of the system.

Turning now to multivariable systems, we first need to clarify what we mean by the
impulse response of a MIMO model

x(k + 1) = Φx(k) + Γu(k), x(0) = 0
y(k) = Cx(k) +Du(k) (7.1)

We can apply a unit impulse to one input channel at a time and observe the resulting

7. Linear Subspace Identification 73

response at each output channel

uδi(k) =



0
...
0

δ(k)
0
...
0


→ yδi(k) =


g1i(k)

...
gli(k)



Here δ(k) is placed in the ith entry of the input vector, while all other inputs are zero.
An entry gji(k) in the output vector represents the response at output channel j to a unit
impulse applied at input channel i. The complete information about the impulse responses
from each input to each output can then be represented by the impulse response matrix

g(k) =


g11(k) . . . g1m(k)

... ...
gl1(k) . . . glm(k)


Introducing the notation

Γ = [Γ1 Γ2 . . . Γm], D = [d1 d2 . . . dm]

where Γi and di denote the ith column of the matrices Γ and D, respectively, we find that
with input uδi(k) we have xδi(k) = Φk−1Γi for k > 0, and at k = 0 we have yδi(k) = di.
Combining the responses to impulses at all input channels, we obtain

g(k) = [yδ1(k) . . . yδm(k)] =


0, k < 0
D, k = 0
CΦk−1Γ, k > 0

(7.2)

The impulse response describes input-output properties of a system, and we would expect
it to be independent of a particular coordinate basis that has been chosen for a given
state space model. This seems to contradict the fact that the impulse response in (7.2)
is given in terms of the matrices (Φ,Γ, C) of a state space model, which clearly depend
on the choice of coordinate basis. However, it is easily checked that applying a similarity
transformation T - which yields a realization (T−1ΦT, T−1Γ, CT) - will not change the
impulse response.

Constructing a Model from the Impulse Response

Assume that measured impulse response data of a system are available and have been

74

arranged in the form of a matrix

Hk =



g(1) g(2) g(3) . . . g(k)
g(2) g(3) . . . g(k + 1)
g(3) ...

... ...
g(k) g(k + 1) . . . g(2k − 1)


A matrix with this structure is called a Hankel matrix if the g(l) are scalar, and a block-
Hankel matrix if the g(l) are matrices. Using (7.2) in the above we obtain

Hk =



CΓ CΦΓ CΦ2Γ . . . CΦk−1Γ
CΦΓ CΦ2Γ . . . CΦkΓ
CΦ2Γ ...

... ...
CΦk−1Γ CΦkΓ . . . CΦ2k−2Γ


(7.3)

Assume the number of samples is sufficiently large so that k > n, where n is the order
of the state space model. Note that at this point we know nothing about the system
apart from its impulse response. In particular, we do not know the order n of the system.
Important in this context is the rank of the matrix Hk. To investigate this, we first observe
that we can factor Hk as

Hk =


C

CΦ
...

CΦk−1

 [Γ ΦΓ . . .Φk−1Γ] = OkCk

Here Ok and Ck are the extended observability and controllability matrices, respectively,
of the model (7.1), where the term “extended” is added because the number of samples
k is greater than the expected order n of the system. Assuming that we are interested in
estimating a model (7.1) that represents a minimal realization of a system, i.e. if (Φ,Γ)
is controllable and (C,Φ) is observable, then we have

rank Ok = rank Ck = n

which implies
rank Hk = n (7.4)

Thus, we can obtain the order from the measured data by computing the rank of Hk.

The Ideal Case

Assume that for a given system with m inputs and l outputs the measured discrete-time
impulse response g(k) is available, and that we want to identify a discrete-time state

7. Linear Subspace Identification 75

space model (Φ,Γ, C). For systems where D 6= 0, the feedthrough matrix is given by
g(0). Initially we do not know the dynamic order of this model, but we assume that we
have a sufficient number of samples of the impulse response, so that we can form the
mk× lk matrix Hk for a value of k that is larger than the expected order of the model. If
the impulse response data were indeed generated by a linear state space model of the form
(7.1) with n state variables, and if no measurement errors are present in the data, then
the order n of the model can be easily determined by checking the rank of Hk. Knowing
n we can then factor Hk as

Hk = ML, M ∈ IRlk×n, L ∈ IRn×mk

such that
rank M = rank L = n

This can be done using singular value decomposition as explained below. Note that this
factorization is not unique. Finally, we define the matrices M and L to be the extended
observability and controllability matrices

Ok = M, Ck = L

The first l rows of M therefore represent the measurement matrix C, and the first m
columns of L form the input matrix Γ. To find the state matrix Φ, define

Ōk =


CΦ

...
CΦk

 = OkΦ

Note that we can generate Ōk from measured data by factorizing the larger Hankel matrix
Hk+1 and removing the first l rows from Ok+1. Multiplying the above from the left by
OT

k we obtain
OT

k OkΦ = OT
k Ōk

Since Ok has full row rank, we can compute Φ from

Φ = (OT
k Ok)−1OT

k Ōk

The above describes a procedure for constructing the matrices Φ, Γ and C from measured
impulse response data. At this point a question arises: we know that a state space model
of a given system is not unique but depends on the coordinate basis chosen for the state
space. One could therefore ask where this choice was made in the above construction.
The answer is that the factorization Hk = ML is not unique, in fact if M and L are
factors of rank n and if T is an arbitrary nonsingular n× n matrix, then it is easy to see
that MT and T−1L are also rank n factors of Hk. With this latter choice we obtain

Õk = OkT, C̃k = T−1Ck

76

We know however that these are the observability and controllability matrices, respec-
tively, of the model obtained by applying the similarity transformation T to (Φ,Γ, C).
This shows that a choice of coordinate basis is made implicitly when Hk is factored into
ML.

Modelling Errors and Measurement Noise

The above procedure for identifying a state space model relies on the assumption that
the measured data were indeed generated by a linear system and are not corrupted by
measurement noise. In practice, neither assumption will be true. One consequence of
this is that no matter how large k is chosen, the matrix Hk will usually have full rank.
To extract information about the model order in spite of data being corrupted, one can
use the technique of singular value decomposition, a brief review of which is given in the
Appendix.

Singular Value Decomposition

Consider a singular value decomposition of the data matrix Hk ∈ IRkl×km

Hk = QΣV T (7.5)

where Σ is a diagonal matrix with nonnegative diagonal entries, and Q and V are orthog-
onal, i.e. they satisfy

QQT = Ikl, V V T = Ikm

Assume that the singular values are arranged in decreasing order such that

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . σp = 0

where p = min(kl, km). In this case we have rank Hk = r, because an important fact
about singular value decomposition is that the rank of a matrix is equal to the number
of its nonzero singular values. Here σr+1 and all the following singular values are zero.
On the other hand, if the singular values σr+1, . . . , σp are very small - much smaller than
σr - but nonzero, the matrix Hk has full rank but is “close to being singular”. This
is precisely the situation we encounter when a block-Hankel matrix is constructed from
impulse response data that are corrupted by measurement noise. One of the powerful
features of the singular value decomposition is that it allows us to distinguish significant
information from noise effects by inspection of the singular values. An example is shown in
Fig. 7.1, where the singular values of a matrix are shown in decreasing order. If these were
the singular values of a Hankel matrix constructed from a measured impulse response, we
would conclude that the system dynamics can be described reasonably well by a 4th order
model and that the remaining nonzero but small singular values represent noise effects.

If σr+1 is much smaller than σr, we say that the numerical rank of Hk is r. Another way

7. Linear Subspace Identification 77

σi

21 3 4 5 6 i

Figure 7.1: Determining the numerical rank

of looking at this is to write (7.5) as

Hk =

q1 q2 . . . qkl



σ1 0 0 . . . 0

. . . 0 . . . 0
0 σp 0 . . . 0




vT
1
vT

2
...
vT

km


where qi and vi represent the ith column of Q and V , respectively. Expanding the right
hand side column by column, we obtain

Hk =
p∑

i=1
σiqiv

T
i =

r∑
i=1

σiqiv
T
i +

p∑
i=r+1

σiqiv
T
i = QsΣsV

T
s +QnΣnV

T
n

where Qs ∈ IRkl×r and Vs ∈ IRkm×r are the matrices formed by the first r columns of Q
and V , respectively. The matrices Qn ∈ IRkl×(kl−r) and Vn ∈ IRkm×(km−r) are similarly
formed by the remaining columns. If the singular values σr+1, . . . , σp are much smaller
than σr, the last term on the right hand side can be neglected and we have

Hk ≈ QsΣsV
T

s

or

Hk ≈

q1 q2 . . . qr



σ1 0 0 . . . 0

. . . 0 . . . 0
0 σr 0 . . . 0




vT
1
vT

2
...
vT

r

 = QsΣ1/2
s Σ1/2

s V T
s

where r is the numerical rank of Hk. Now taking r as the estimated model order n̂, we can
define the extended observability and controllability matrices Or ∈ IRkl×r and Cr ∈ IRkm×r

as
Or = QsΣ1/2

s , Cr = Σ1/2
s V T

s

A state space model (Φ,Γ, C) of order n̂ can then be obtained as in the case of ideal
measurements.

78

The identification of a state space model from the impulse response is illustrated in Ex-
ercise 7.1.

Direct Subspace Identification

The method outlined in the previous section assumes that the measured impulse response
is available. In practice it is usually better to use more general data, obtained for example
by applying a white noise input signal. We will now present a technique for identifying
state space models without using the measured impulse response, referred to as direct
subspace identification.

Consider again the model (7.1). Beginning at time k, the output at successive time
instants is given by

y(k) = Cx(k) +Du(k)
y(k + 1) = CΦx(k) + CΓu(k) +Du(k + 1)
y(k + 2) = CΦ2x(k) + CΦΓu(k) + CΓu(k + 1) +Du(k + 2)

...

Introducing the vectors

Yk =


y(k)

y(k + 1)
...

y(k + α− 1)

 , Uk =


u(k)

u(k + 1)
...

u(k + α− 1)


of input and output data, we can write

Yk = Oαx(k) + ΨαUk (7.6)

where

Oα =



C

CΦ
CΦ2

...
CΦα−1


, Ψα =



D 0 0 . . . 0
CΓ D 0 . . . 0
CΦΓ CΓ D 0

...
CΦα−2Γ CΦα−1Γ . . . CΓ D


Assume that a sufficient number of measurements has been collected so that we can form
the input and output data matrices

Y = [Y1 Y2 . . . YN], U = [U1 U2 . . . UN],

Define also the matrix of state variables

X = [x(1) x(2) . . . x(N)]

7. Linear Subspace Identification 79

From (7.6), these data matrices satisfy

Y = OαX + Ψα U (7.7)

In this equation only U and Y are known; note that U ∈ IRmα×N . We assume that the
number (N + α − 1) of measurements - which is required to fill the above matrices - is
large enough such that α can be chosen greater than the expected model order, and N

such that N > mα. To identify a state space model, we need to estimate the matrices
Oα (from which C and Φ can be extracted) and Ψα (from which we get D and Γ).

Estimating the Term OαX

As a first step, we will eliminate the effect of the input data on the output data in (7.7)
and estimate the product OαX. This can be achieved by projecting the output data onto
the nullspace of the input data matrix U . The nullspace N (U) is defined as the space of
all vectors q that are made zero when multiplied from the left by U :

N (U) = {q : Uq = 0}

Now define the matrix Π as
Π = I − UT (UUT)−1U

All columns of Π are orthogonal to U , this can be seen from

UΠ = U − UUT (UUT)−1U = 0

Note that Π is constructed from measured data only. Here we assumed that (UUT) is
invertible, a condition for this is that the input is persistently exciting of order mα.
Multiplying equation (7.7) from the right by Π then yields

YΠ = (OαX + ΨαU)Π = OαXΠ

The left hand side is known (because it is constructed from measured data), thus the
product OαXΠ is known. Observing that Oα ∈ IRlα×n and XΠ ∈ IRn×N , we can obtain
an estimate of the extended observability matrix by determining the numerical rank n̂

of the matrix YΠ and by factoring it into a left factor with n̂ columns and full column
rank, and a right factor with n̂ rows. This can be done by computing the singular value
decomposition

YΠ = QsΣsV
T

s +QnΣnV
T

n ≈ QsΣ1/2
s Σ1/2

s V T
s

and by taking
Oα = QsΣ1/2

s

Here again the order of the system is estimated by inspection of the singular values - this
time of the data matrix YΠ. From Oα the matrices C and Φ can be obtained as described
in the previous section.

80 Exercises

Estimating the Term ΨαU

We can now use the estimate of Oα to eliminate the first term on the right hand side of
(7.7). For this purpose, observe that from

QQT =
[
QT

s

QT
n

]
[Qs Qn] =

[
I 0
0 I

]

we have QT
nQs = 0 and therefore QT

n Oα ≈ 0. Thus, from (7.7) we obtain

QT
n YU−R = QT

n Ψα

where U−R = UT (UUT)−1 denotes the right inverse of U . The left hand side of this
equation and Qn are known, so that Ψα is the only unknown term. The matrices Γ and
D can then be obtained by solving a linear system of equations, details are omitted.

Exercises

Problem 7.1

Download the Matlab script cs7_mkdata.m. This script generates the impulse responses
g(k) and gn(k) of a system with 2 inputs and 2 outputs. The sequence g(k) is noise free,
whereas gn(k) is corrupted by measurement noise.

a) Generate from the sequence g(k) the block Hankel matrix of the impulse response.
Estimate upper and lower limits for the order n of the system and determine by
factorization of the block Hankel matrix linear state space models of the system for
different values of the order n. Compare the impulse responses of the estimated
models with the output sequence g(k).
Hint: You can use the function mkhankel.m to generate the Hankel matrix.

b) Repeat the estimation for the noisy impulse response gn(k).

Problem 7.2

This exercise uses the Matlab Identification toolbox GUI ident to identify a state space
model from sets of data with two inputs and two outputs. The data is in the file
cs9_identGUI.mat.

Two sets data are contained in the file,iodata1 and iodata2. They are in the Matlab
format iddata that can be directly imported into ident.

7. Linear Subspace Identification 81

a) Import the data set iodata1 and generate direct subspace identified models of
different orders using the command n4sid.

b) validate the models generated against the data set iodata2. What is the model
order that most effectively describes the plant behaviour?

Bibliography

[1] L. Ljung, System Identification - Theory for the User. Amsterdam: Pearson Educa-
tion, 1998, isbn: 978-0-132-44053-0.

[2] M. Norgaard, O. Ravn, N. Poulsen, and L. Hansen, Neural Networks for Modelling
and Control of Dynamic Systems - A Practitioners Handbook. London: Springer Lon-
don, 2003, isbn: 978-1-852-33227-3.

[3] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design. Brooks/Cole,
1996, isbn: 978-0-534-95259-4.

[4] G. Strang, Linear Algebra and Its Applications. Stanford: Elsevier Science, 2014,
isbn: 978-1-483-26511-7.

[5] T. Mathworks, System identification overview - matlab & simulink, 2016. [Online].
Available: https://de.mathworks.com/help/ident/gs/about-system-identification.
html.

https://de.mathworks.com/help/ident/gs/about-system-identification.html
https://de.mathworks.com/help/ident/gs/about-system-identification.html

Appendix A

APPENDICES

Appendix A

Solutions to Exercises

Chapter 1

Solution to Problem q:LSident Proof of least squares optimality

We calculate the θ which makes the first derivative of V (θ) zero, to find the θ which
minimizes V (θ). We have

V (θ) = (Y − Φθ)T (Y − Φθ)
= Y TY − θT ΦTY − Y T Φθ + θT ΦT Φθ

So
dV (θ)
dθ

= −ΦTY − ΦTY + 2ΦT Φθ = 0

0 = −ΦTY + ΦT Φθ
θ = (ΦT Φ)−1ΦTY

Another way of finding the θ which minimizes V (θ) is by using the approach of completion
of squares. Let

V (θ) = (Y − Φθ)T (Y − Φθ)
= Y TY − θT ΦTY − Y T Φθ + θT ΦT Φθ

or

V (θ) − Y TY = θT ΦT Φθ − θT ΦTY − Y T Φθ

Adding a constant term Y T Φ(ΦT Φ)−1ΦTY to both side will yield

V (θ) − Y TY + Y T Φ(ΦT Φ)−1ΦTY = θT ΦT Φθ − θT ΦTY − Y T Φθ
+Y T Φ(ΦT Φ)−1ΦTY

= (θ − (ΦT Φ)−1ΦTY)T ΦT Φ(θ − (ΦT Φ)−1ΦTY)

A. Solutions to Exercises 85

Thus

V (θ) = (θ − (ΦT Φ)−1ΦTY)T ΦT Φ(θ − (ΦT Φ)−1ΦTY) + Y TY − Y T Φ(ΦT Φ)−1ΦTY

Which shows that V (θ) is minimum if the first term on right hand side is minimum or
equal to zero. Then

θ − (ΦT Φ)−1ΦTY = 0

or
θ = (ΦT Φ)−1ΦTY

Solution to Problem q:PEcalc Persistent excitation of step functions

a)
(z − 1)u(kT) = u(kT + T) − u(kT)

For the step function u(t+ T) − u(t) is only 1 at k = −1.

b) If, for all polynomials a(z) of order n (anz
n + . . .):

lim
k→∞

1
k

k∑
l=0

(a(z)u(l))2 > 0

the PE order is n+ 1.

This means that if any polynomial a(z) can be found such that

lim
k→∞

1
k

k∑
l=0

(a(z)u(l))2 = 0

then the PE order must be ≤ n.

c) With the polynomial a(z) = z− 1 (order n = 1) and u(l) a step function, then from
a).

a(z)u(l) = 0, l = 0, 1, . . .∞

so

lim
k→∞

1
k

k∑
l=0

(a(z)u(l))2 = 0

so the PE order is either 1 or 0.

d) Next, we will find the exact order by analyzing the auto correlation Cuu(1) = cuu(0).
Since, it is a scaler hence it has rank of 1 or PE order is 1.

Solution to Problem q:PEsin Persistent excitation of sinusoid

86 Appendices

a)

(z2 − 2z cosωT + 1)u(kT) = sin(ωkT + 2ωT) − 2 cosωT sin(ωkT + ωT) + sin(ωkT)

Since,

sinA+ sinB = 2 sin A+B

2 cos A−B

2

sin(ωkT + 2ωT) + sin(ωkT) = 2 sin(ωkT + ωT) cosωT
(z2 − 2z cosωT + 1)u(kT) = 0

b) If we can find any polynomial a(z) of order n, such that

lim
k→∞

1
k

k∑
l=0

(a(z)u(l))2 = 0

Then, the PE order must be ≤ n

With a(z) = (z2 − 2z cosωT + 1), i.e. n = 2. As shown in a),

a(z)u(l) = 0, ∀l = 0, 1, . . .∞

Then,

lim
k→∞

1
k

k∑
l=0

(a(z)u(l))2 = 0

So the PE order must be ≤ 2.

c) For the input signal u(kT)

Ru(τ) = lim
N→∞

1
N

N∑
k=0

u(kT)u(kT ± τ)

At times 0 and T

Ru(0) = lim
N→∞

1
N

N∑
k=0

u(kT)u(kT)

Ru(T) = lim
N→∞

1
N

N∑
k=0

u(kT)u
(
(k + 1)T

)
These are the elements (1, 1) and (1, 2) of Cuu(2), so

Cuu(2) =
[
Ru(0) Ru(T)
Ru(T) Ru(0)

]

Cuu(2) =
[1

2 cos 0 1
2 cosωT

1
2 cosωT 1

2 cos 0

]

Cuu(2) = 1
2

[
1 cosωT

cosωT 1

]

A. Solutions to Exercises 87

d) At T = 2π
ω

Cuu(2) =
[1

2 cos 0 1
2 cosωT

1
2 cosωT 1

2 cos 0

]
=
[
0.5 0.5
0.5 0.5

]

rankCuu(2) = 1

So PE order is 1. All the samples are at the same position in the sine wave so it
looks like a step.

At ω 6= 2π
T

, the samples are at different positions in the sine wave, so it has more
information: PE order =2.

Solution to Problem q:PEwn Persistent excitation of white noise

For white noise,

Cuu(1) = cuu(0) = lim
k→∞

1
k

k∑
i=0

u2
i = S0

Cuu(2) =
[
cuu(0) cuu(1)
cuu(1) cuu(0)

]

Using, the property of white noise that cuu(i) = 0,∀i = 1, 2 . . . ,

Cuu(2) =
[
cuu(0) 0

0 cuu(0)

]
= S0I2

...
Cuu(n) = S0In

so Cuu(n) has rank n or PE condition is satisfied for all n.

Solution to Problem q:identex Least Squares identification

a) Let us have N samples and let n = 2 then,

y0 = −a1y−1 − a2y−2 + b1u−1 + b2u−2 + e0

y1 = −a1y0 − a2y−1 + b1u0 + b2u−1 + e1

y2 = −a1y1 − a2y0 + b1u1 + b2u0 + e2

y3 = −a1y2 − a2y1 + b1u2 + b2u1 + e3

...
yN−1 = −a1yN−2 − a2yN−3 + b1uN−2 + b2uN−3 + eN−1

88 Appendices

or 
y0

y1
...

yN−1

 =


−y−1 −y−2 u−1 u−2

−y0 −y−1 u0 u−1
...

−yN−2 −yN−3 uN−2 uN−3



a1

a2

b1

b2

+


e2

e3
...

eN−1



However, the values of input sequence u(−1), u(−2), ...u(−n), and y(−1), y(−2),
...y(−n) is not available in measurement data. This means that first n-rows will be
0, hence to make ΦT Φ full rank these rows should be eliminated. This results in,

Φ =


−y1 −y0 u1 u0

−y2 −y1 u2 u1
...

−yN−2 −yN−3 uN−2 uN−3


which has the dimensions of N − n× 2n:

b) See cs7_LSrankM.m.
For the sinusoid: rank = 4 (singular values confirm this).
For the white noise: rank = arbitrary
As the sequence becomes longer, the matrix ΦT Φ approaches a scaled version of
the empirical covariance matrix; thus the rank of ΦT Φ for a long sequence can be
expected to have the same rank as the PE order.

c) See Matlab solution in cs7_LSparest.m. 3rd and 4th order models generated are
identical. A pole and zero cancel in the 4th order model.

d) Exact validation achieved with these models: the model order is clearly 3.

e) Inconsistent results when attempt to generate models from sinusoidal or step input.
A true inverse is only possible when rank ΦT Φ = 2n: with a PE order of 2 it is only
possible to accurately estimate a system of order 1 (which has 2 parameters).

A. Solutions to Exercises 89

Chapter 3

Solution to Problem q:mlp Single-Input MLP Network

a)

y = w2
11

1 + e−(ϕw1
11+w1

10) + w2
12

1 + e−(ϕw1
21+w1

20) + w2
10

The first inflection point is at (−7, 0) and the second at (5, 3). For the steepness
the relation of w′

1 and w1 as seen in Figure 3.13 can be used. One solution would
be

w2
11 = −2, w2

12 = 8, w2
10 = 1, w1

11 = 3, w1
10 = 21, w1

21 = 0.5, w1
20 = −2.5.

For using the nntool from MATLAB to verify the weights, follow these steps:

– Type nntool in the MATLAB command window.
– Import the vector ϕ as InputData and the vector g_phi as TargetData.
– Click New and choose Feed-forward backprop as network type and ϕ and g_phi

as the input and target data, respectively.
– Click on your network in the Networks field of the Network/Data Manager.

V iew the network. Set the weights as chosen above.
– Choose Simulate, specify ϕ as your input and simulate the network.
– Export the output to the workspace and compare it with the given function .

b) – Type nnstart in the MATLAB command window.
– Start the Fitting app.
– Import the vector ϕ as InputData and the vector g_phi as TargetData.
– Choose the appropriate Number of Hidden Neurons.
– Train the network.
– Click on Plot Fit. Retrain to reduce the error between the Target and Output

is small.

90 Appendices

Chapter 7

Solution to Problem q:subspaceID Subspace identification

a) Clear cut-off, 9 non-zero singular values in Hankel matrix. Reasonable model
achieved with model order 4. The model can be estimated using cs7_parest.m

b) The cut-off is not so clear for the noisy signal. Since after the 4th singular value of
Hn the others are relative small one can chose 4th or 5th order model. Because the
difference between the 3rd and the 4th singular values is also large one can try also
identifying a 3rd order model of the system.

A. Solutions to Exercises 91

Solution to Problem q:IDtoolbox Subspace identification using ident GUI

1. Open the toolbox with the command ident.

2. Import the data: Import data → Data object → Object: iodata1. Repeat for the
second data set.

3. The signals then appear in the left panel Data Views.

4. Drag and drop the first signal set to Working model. Remove the means from all
signals using the Preprocess drop-down list → Remove means. Repeat for the second
signal set. One of the new set of signals should be used as Working data and the
other one as Validation data.

5. Estimate models of 2nd, 3rd, 4th and 5th order using N4SID (subspace identifica-
tion). For the purpose choose Linear parametric models from the Estimate drop-
down box. Select State-space as Structure and repeat the identification for the
different orders.

6. Validate the identified models using the second data set. Use the Model Views
check-boxes in the lower-right corner of the GUI.

The model used to create the data was 4th order with noise. The identified models of
order 2-4 all very accurately reproduce the original data.

	Introduction
	1 Least-Squares Estimation
	2 Prediction Error Method
	3 Multilayer Perception Networks
	4 Solving the Estimation Problem
	5 Training Neural Networks – Levenberg-Marquardt Backpropagation
	6 Predictive Control Using Neural Networks
	7 Linear Subspace Identification
	Bibliography
	A APPENDICES
	A Solutions to Exercises

