Technische Universitdt Hamburg Institute of Control Systems

CONTROL LAB
ATC 2

LPV Control of a (Gyroscope with
Inverted Pendulum Attachment

26" January, 2021

Room: Online | N-1.077 Winter Semester 2020/21




Contents

1 PLANT 3
1.1 Plant Description . . . . . . . . . . . .. ... 4
1.2 Linearization and LPV Modeling . . . . . ... ... ... ... ..... )
1.3 Imitial Scaling . . . . . . . . .. 11

2 CONTROLLER DESIGN—STATE FEEDBACK 13
2.1 Overview . . ..o 13
2.2 Emergy Based Regulator . . . . . .. . ... ... .. L. 14
2.3 Swing-up Controller . . . . . . . .. ... o 16

2.3.1 Four-Block Design . . . . ... .. ... ... . 16
2.3.2 Synthesis . . . . . ... 19
2.3.3 Controller Post-Processing . . . . . . . ... ... ... .. .... 21
234 Design Task . . . . ..o 22
2.4 Stabilizing Controller . . . . . . . . . ... 23
2.4.1 Four-Block Design with Velocity Feedback . . . . . .. ... ... 23
2.4.2 Switching Logic . . . . . .. .. ..o 23
243 Design Task . . . . . . . ..o 25

3 LINEAR EVALUATION OVER THE GRID 26
3.1 Frequency Response Analysis . . . . . ... ... ... ... ... ... . 26
3.2 Time Domain Analysis . . . . . . . .. .. ... 26
3.3 Robustness . . . . ... 27

4 NONLINEAR SIMULATION AND IMPLEMENTATION 27
4.1 Simulation Environment . . . . . ... ..o 28
4.2 Lookup Table Implementation . . . . . . .. ... .. ... ... ... .. 29
4.3 Goals . . ... 30

5 EXPERIMENT 30

About this Document

This document is intended to help you with the design task ATC 2—Gain-Scheduled
Control of a Gyroscope with inverted pendulum of the Control Lab practical course. It is
written mainly in the style of a tutorial and should provide you with all the necessary
tools and Matlab commands to solve the task. There are several Matlab files that you
need to modify and execute in order to develop your own design. You are also encouraged

to write your own code!



design_CMG_swing.m This file deals with the synthesis of an LPV controller designed

for swing-up of the pendulum.

design_CMG_stab.m This file deals with the synthesis of a separate high performance

LPV controller for stabilization of the pendulum at upright position.

These m.files are meant to provide a structure very similar to the tutorial given in

this document.

! You need to complete the code on your own and submit the file.
simCMG_full.slx This file contains the nonlinear simulation model.

simScriptCMG.m This file load data of both swingup and stabilizing controller and

simulate the entire model.

! You may need to modify the block diagram to suite your own design.

There are also several other auxiliary files provided. The code is guaranteed to work
with Matlab 2016b 64bit, other versions might not be supported. You can get the latest
Matlab version from http://www.tuhh.de/rzt/usc/matlab/index.html or use the pool
computers. In addition to these files, we will provide you with a Pre-Release version of
the LPVTools toolbox.

In this document, you will encounter blocks that indicate Matlab code:

[MATLAB COMMANDS] = USEFUL (TOOLS)

These are meant to get you started. You can (and should) use the help command within

Matlab to find out more about a particular command.




Another thing that you will encounter are preparation tasks:

Preparation: Think about the benefits of gain-scheduling when compared to a single

robust controller.

These are meant to prepare you for the question session that will take place prior to

conducting the experiment.

Task

Design an LPV controller for the control moment gyroscope with an inverted pendulum
attached to it and evaluate it in nonlinear simulation. Attach all necessary MATLAB and
SIMULINK files that were provided to you no later than one week before the experiment
via email to the responsible Tutor and Supervisor. You will get an email when your

preparation is not sufficient to pass the Lab and will get time to revise your design.

Checklist

(1 I read this whole document carefully.

(1 I did all preparation tasks and can explain them.
(] I completed “design_CMG_swing.m'.

[J I completed “design_CMG_stab.m'.

O I submitted all MATLAB files.

1 PLANT

Control moment gyroscopes (CMGs) are used in various applications from attitude control
in spacecrafts to stabilization of ship motion to only mention a few examples. Gyroscopes
in general also fulfill prominent roles in motion sensing and navigation. From a dynamical
aspect, CMGs correspond to coupled nonlinear systems with challenging rotational
dynamics affected by friction and pose dependent disturbances due to manufacturing

imperfections. Hence, they can be used as a test-bed for nonlinear controller design.



Attaching an inverted pendulum to one of the gimbals makes the already nonlinear coupled
CMG even more complex. In this lab, the complex task of swing-up and stabilization
of a CMG-actuated inverted pendulum is divided into simpler tasks to enable design
of simpler controllers, thereby improving tractability of the synthesis conditions and
achieving better performance for this complex system. One LPV controller is designed
for swing-up with an energy based computation of its reference trajectory. While for

stabilization, a separate high-performance LPV controller is synthesized.

Fa._l::.c._d._y A -

Figure 1: Schematics of the CMG with the inverted pendulum attachment

1.1 Plant Description

The plant is modelled in terms of bodies A, B, C, D, X and Y, see Fig. 1. Body D is a
disk (flywheel) with rotation angle ¢; around the y-axis in frame F,;. This disk is actuated
by a motor with an applied torque 7; aligned with the positive direction of ¢;. Body
C with a rotation angle ¢, around the z-axis in frame F, is the gimbal encompassing
the disk. Body C is also actuated in terms of a motor with generated torque 7 applied

in the positive direction of ¢o. Body B is the gimbal encompassing gimbal C which is



locked in the position shown in Fig. 1 (i.e. g3 = 0) for this setup; this is necessary, since
the encoder of the pendulum replaces the encoder of the body B. Body A is the gimbal
encompassing body B with rotation ¢4 in the positive direction around the z-axis in
frame F,. Body Y is the attached plate of the inverted pendulum and is modelled as
an inertia attached to body A. The frames of references for bodies A, B, C, D and Y
are all centred at the middle of body A, but attached to their respective body. Finally,
body X is the inverted pendulum attached to body A with rotation ¢, in the positive
direction around the y-axis in frame F,. Frame F, is attached to the pendulum and
centred at the rotation point of the pendulum (see Fig. 1). The angular velocities of the
disk, gimbals and pendulum are denoted by wy, ws, wy and w, respectively. The friction
can be assumed to be viscous between all the different connected axis in the form of f,,

w. All rotational angles are measured by incremental encoders.

1.2 Linearization and LPV Modeling

Due to complex dynamics of both the CMG and the inverted pendulum, Neweul-M?
software package for matlab is used to model the system. The system is nonlinear, but it
can be approximated by a Jacobian linearization about an operation point given by a
fixed flywheel rotation speed ¢; o and fixed angular positions gz (recall that g3 = 0 in
this setup and as such not considered). This yields a collection of linear time invariant
(LTT) state space model:

& = A(q1,0,42,0) © + B(q1,0, q20) v, (1)
y = C(q10,q20) T .

This is not an equivalent representation of the nonlinear system, because we are neglecting
first and second order derivatives of ¢; o and g2 ¢ in Taylor series expansion during Jacobian
linearization that would result from a true “linearization about a time-varying operating
point”. What we have here is rather a continuous parameterization of a family of Jacobi
linearizations, i.e., for a given value of p , the LPV model coincides with the LTT model
obtained from linearization at that operating point. Since we use states of the system to

define this operating point, we are generating a quasi-LPV model.

Prep. 1.1: Make sure you understand why this is not an equivalent representation of the

nonlinear plant and hence why we have no a priori guarantees that the controller



works on the nonlinear plant. Compare the approach to what is discussed in

Expl. 1.1 of the Advanced Topics in Control lecture notes.

Here in the case of pendulum attached with the gyroscope, two different LPV models of
the plant are considered; one used for the synthesis of a swing-up controller and one for
the stabilizing controller. Because the states corresponding to the angles ¢; and ¢y do

not influence the IO map, they can be truncated from the system.

Both LPV models are of the following form

#(t) = Alp(t)) x(t) + B(p(t)) u(t) ,
y(t) = Cu(t)

where in case of the stabilizing controller,

T =[0s ¢ w1 wo wy wgl,
u=|[n "

pst =2 wi]”, (3)
I3 0 0
Cst = ’ )
0 0 I
and for the swing-up controller,

Tow =[qs w1 wo wi]”,

u = [7'1 TQ]T s

Psw = [Q2 WI]T )

00 0O

0100
Cst =

00 00

0001

In order to use the synthesis techniques for gain-scheduled controllers that were discussed
in class, we first need to define a grid representation of the parameter-space (P) and the
rate bounds (V). In order to do this, we can use the following matlab commands:

In case of Swing-up controller,



qldot = pgrid(° qldot',linspace(30,60,5),[-10 10]);
q2 = pgrid(°q2',linspace(-60%pi/180,60%pi/180,21), [-2 21);
dom = rgrid(qldot, q2);

To load the linearized model into the matlab workspace you can use the provided function

G_ = lin_CMG_swing(qldot.griddata,q2.griddata);

And in case of stabilizing controller,

qldot = pgrid( qldot',linspace(30,60,5),[-10 10]);
q2 pgrid("q2',linspace (-60%pi/180,60%pi/180,7), [-2 21);
dom rgrid(qldot, q2);

To load the linearized model into the matlab workspace you can use the provided function

G_ = lin_CMG_stab(qgldot.griddata,q2.griddata);

which contains a parameterization of the linearization at different operating points. We
can then form a parameter-dependent state space object in both Swing-up and stabilizing

case by calling

Gp = pss(G_,dom)




This object can be used very similar to the ss objects that you are familiar with. We

can for example use

bodemag (Gp,b)
sigma(Gp,w)

to bring up a bode magnitude plot and a sigma plot of the plant for each of the cases as

shown in Figure 2 and Figure 3.

Prep. 1.2: From Figure 2 and Figure 3, are the parameter variations large? What appear

to be the most dominant effects?

Note that we can access a variety of different properties of pss objects i.e.,

properties (Gp) % shows available properties
Gp.Data % returns underlying array of ss objects
Gp.Parameter % returns scheduling parameters of the model

Prep. 1.3: Which representation of the frequency response, Bode plot or sigma plot, is

more useful for design purposes? Why?




100
50

I
o
S

—100
—150

—200
100

20
0

To: w4 Magnitude (dB>T0: wl

—100
—150
—200

10721072107 10° 10! 10?

—30 §

From: T1

Bode Diagram

From: T2

103 10721072107 10° 10!

10* 10°

Frequency (rad/s)

(a) Bode magnitude plot

80 T

I

40

DO
=)
T

. Singular Values (dB)
S
T

W
(@)
T

e}




From: T1 Bode Diagram From: T2
100 T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTT T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTT

_200 I O 1 N 111 N 11 N A W 1

_200 i Hum\ O O T T B W11 N 11 N A W 1
100 T T 1T T 1T T 1T T T TTTTO T T T T T T VT 1 TTTIT

—100 - M

_200 I O 1 N 111 N 11 N A W 1
10231072107 10° 10* 10% 10® 107*107210°' 10° 10! 10%* 10°
Frequency (rad/s)

(a) Bode magnitude plot

Singular Values
100 T T TTTTTT T T TTTTTT T T TTTTIT0 T TTTTIT T T TTTTTT

(@4
@] (a]

Singulfftr Values (dB)
ot

—100

_150 Ll RN Ll Ll Ll I
1073 1072 107! 10Y 10! 102 103
Frequency (rad/s)

(b) siglla plot

Figure 3: Stabilization: Frequency response



1.3 Initial Scaling

Scalings are of dire importance when working with frequency domain synthesis techniques.
The following (very simple) scaling just normalizes the input and output values of the
plant, such that the magnitude one corresponds both to the maximum expected change

in the reference signal D, .« and the maximum actuator capacity Dy max, i. €.

U = D;Ilnax Ureal (5)
Yy = D;gﬂax Yreal (6)

1

Just think of a rescaled input vector By = B unay and a rescaled output vector Cy = ——
for the SISO case and keep in mind that since we are dealing with MIMO systems, we
need to use diagonal matrices Dy max and D, max instead. The usefulness of this scaling
becomes apparent when we realize that a unit step reference now corresponds to the
maximum input that we expect and that the available control signal is now also 1. Thus,
if a unit step results in a control signal less than 1, the actuators are likely not to saturate.
In terms of frequency domain indicators, this means that we can look at the transfer
function K S and try to achieve || K S||o < 1. Once a controller for the synthesis model
is designed, the scalings have to be reversed when the controller is applied to the original

model:

u= Ky (7)
Upreal = Du,max K D;’rlnax Yreal (8)

Kical

Figure 4 illustrates the procedure.

In the case of Swing-up, reasonable assumptions on the largest allowed input signals is
Tomax = 2.44 Nm |
The outputs can be scaled for instance with

q1,max - 45 (rad/s) ) q.4’malx - 1.5 (I‘ad/S) 3

11



And in the case of Stabilization, reasonable assumptions on the largest allowed input

signals are (in Nm)
T1,max = 0.666 Nm, Tomax = 2.44 Nm

due to the different gearing mechanisms of the two motors. The outputs can be scaled

for instance with

T T i
Q4 max = 45@ (rad), Qumax = 10@(rad) ., (1max = 10 (rad/s) .

r
G
............................. \
1
_1 .
Du,max e Greal > Dr,max >0
:
1
K <
u Y

(a) Scaling the actual plant to obtain a synthesis model

T'real
Yreal l

A
@
3
=3

(b) Scaling the controller for implementation on the actual
plant

Figure 4: Scaling for controller design based on frequency responses

12



2 CONTROLLER DESIGN—STATE FEEDBACK

2.1 Overview

The control structure used to achieve swing-up and stabilization consist of two separate
control loops, one for swing-up and one for stabilization, in order to achieve better

performance, especially for stabilization.

The control structure is as follows:

e Swing-up is achieved using a cascaded structure. The outer loop is based on an
energy-based regulator C, which computes the necessary angular acceleration w, to
swing-up the pendulum. This reference signal is integrated to compute a reference
angular velocity (wyq) which is fed to the inner velocity LPV controller Cq, . An
LPV controller is needed for this loop because these dynamics still heavily depend
on the gimbal angle ¢; and the angular velocity of the disk w;.

e Near the unstable equilibrium position, ¢, = 0, a switching logic S switches control

authority to a stabilizing controller Cy; whose task it is to stabilize the pendulum.

Linear switching strategies similar to the one used here have been used for a long time and
have become a standard method for swing-up and stabilization of inverted pendulums.
However, due to the complex nature of the CMG, a more advanced LPV extension
of these control strategies is necessary for swing-up and stabilization. The controller
structure implemented here can be seen in Fig. 5, where G represent the plant, S the
switching logic, Cg the stabilizing LPV Controller, Cy,, the swing-up controller, and C,

the energy based regulator.

Prep. 2.1: Make sure you understand the idea behind the cascaded structure. Why is it

not a good idea to implement this using a single controller?

13



;1}4_(—1 1 Wq.d
C.— & B %
’ swW

[ox  w] |_> l[ga w1 wyl

Figure 5: Control Structure

W

2.2 Energy Based Regulator

As mentioned, in order to do the swing-up of the inverted pendulum, a cascaded structure
is used which consisting of an outer energy-based regulator C, and an inner velocity LPV
controller Cg,, . The energy-based regulator computes the required angular acceleration,
Wy , to increase the total energy of the pendulum subsystem (i.e. to swing up the
pendulum), this signal is then integrated to obtain a reference for wy for the swing-up
LPV controller to track.

Using Lagrange equations of the second kind the equations of motion of the pendulum

subsystem can be derived to be
M, L2, — M,LRw, cos ¢, — M,gLsing, =0, (9)

where My denotes the mass of the pendulum, L the length of the pendulum arm, R the
radius from the pendulum to the centre of the CMG, and g the gravitational acceleration.

The total energy of the pendulum is given by

1
E= 5M1L2w§ + M,gL(cosq, — 1), (10)

14



differentiating with respect to time and using Eqn. 9 we get

E = w,M,LRw,cosq, . (11)
To control the energy, the Lyapunov function candidate
1 2
V=3 (E - Ey) (12)

is chosen, where Eg is the total energy in the upright position. Using Eqn. 11, we can

compute the time derivative of the Lyapunov function:

V = (B — Eg)w,M, LRy cos g, (13)

which should be negative so that V — 0 and E — Ej. Assuming we can control w, and

choosing it equal to

wy = k1 (E — Eg)w, cos g, , (14)
where k; is a tuning parameter, Eqn. 13 becomes

V = kM, LR((E — Eg)w, cos ¢;)? | (15)

which is always negative for k; < 0. The energy in the upright position of the pendulum
is equal to zero, therefore Eq = 0.

Due to limited bandwidth of Cg,, the output of the energy-based regulator is not tracked
perfectly. The energy of the pendulum subsystem is, in reality, not exactly described
by Eqn. 10. This causes the pendulum to not swing up completely using the described
structure. In order to compensate for this discrepancy a tuning parameter ks was added

to the calculation of the kinetic energy in Eqn. 10 resulting in
1 2 2
E = k'giMxL w4+ MygL(cosq, — 1), (16)

where ky (in combination with k1) was then used to fine tune how fast and how far the
pendulum would swing up, making sure it would not overshoot but also that it would get

sufficiently close to the upright position. For the simulation studies, you can start with

15



tuning parameters as k; = —2.5 and k; = 1.5 and tune the values to have a satisfactory
behaviour. The matlab function that implements the energy based regulator can be

found in the ‘Reference’ - Swing up block in the simulink file.

Prep. 2.2: Make sure you understand the basic idea of energy-based regulator. Why
were the tuning parameters k; and ks added. How does different values of k; and

ko affect the system.

2.3 Swing-up Controller

In the previous control lab ATC 1, we used both state feedback control and output
feedback control. However usually not all states of a system are available for feedback.
Even if they can be estimated, it might not be desirable to use state feedback control.
State feedback assumes perfect knowledge of all states, that is, the effects of measurement
noise, uncertainty, etc. are inherently ignored. The correct way to address feedback
problem is to consider output feedback with possible imperfect measurements. In this
section, we will design a gain-scheduled output feedback controller to swing up the

pendulum.

2.3.1 Four-Block Design

Swing-up LPV controller, Cg,, is designed using the four-block mixed-sensitivity loop
shaping technique. In a four-block design, we seek to minimize the weighted norms of the
transfer functions S, KS, SG and Tj, see Frercise 17.2 in the ‘Optimal and Robust Control’
lecture notes and the ‘Control Lab — ORC' 2’ documentation. In the Control Lab ORC 2
experiment, it becomes apparent that while disturbance rejection and robustness are
generally good with this design approach, simultaneously achieving satisfactory tracking
performance requires the use of what is called a two-degrees-of-freedom controller. Such
a controller receives the available measurements and the reference as two independent
signals (instead of a single error signal) and consequently decouples the tracking problem

from other requirements such as disturbance rejection. We consider the same modification
of the four-block problem that was used in the Control Labs ORC 2 and ATC 1.

16



The generalized plant for an output feedback problem is of the form

i Alp) | Bulp) Bul(p)

z | = | Cup) | Daw(p) D:ulp) w | (17)
v Co(p) | Dow(p) Duu(p) | | v

where w to z is used as performance channel, v is the feedback signal consisting of a
linear map of the states and external inputs, u the control input, x the state vector and
p the scheduling variable.

The generalized plant that we are using is depicted in Fig. 6 and has three different
performance inputs: 7 is the reference signal for y, d; is an input disturbance acting on
the plant and d, can be thought of as measurement noise or disturbances on all available
feedback signals. The performance outputs z; and 2, reflect the design objectives and
the available outputs are v; and vy. The signal v is used for feedback while vy is actually
the reference signal and hence used in a feed-forward fashion.

Selecting the weights for this problem is not trivial and it is important to understand
what we actually want to achieve. From the synthesis, we get a two-degrees-of-freedom

controller, i.e. a controller with two independent inputs:

V2 r

u=[K, K| H K, Kl [do - y] (18)

We can separate these two independent controllers and draw the resulting closed-loop
system as in Fig. 7.

The transfer functions that appear in our design problem can thus seen to be

5

The transfer functions from the first two inputs, i.e. d; and d, form the classical four

SG S I-SCK,
T, K,S5 SK,

d;
d, (19)
.

block design problem. We can verify, that the transfer function from r to y is SGK,
and hence the term I - SGK, in Eqn. 19 represents the tracking error (r — y). What we
are mainly interested in are disturbance rejection (SG) and tracking (I - SGK,.) for low

frequencies and a roll-off in the controller (K,S and S;K;) for high frequencies. Thus, the

17



A4

WK —>

Figure 6: Open-loop generalized Plant P for the four block mixed sensitivity design with two
degree of freedom

standard choice of Wy = diag(W,,,, W,,,), as a low pass and Wy =diag(W,,, W., ) as a
high pass make also sense with this setup. The trade-off between tracking, disturbance

rejection and control effort is handled via the input weights Wy, and Wy, .
Prep. 2.3: Understand the weighting structure and how to use it for tuning.
Prep. 2.4: Why is two-degree-of-freedom control helpful for tracking ?

In order to specify weights, we could use the parameterization from the ORC lecture
(possibly with pgrid objects for parameter-dependent weights) to define weighting filters

manually. A built-in command of the Robust Control Toolbox that we can use instead is

W_1 = makeweight (dcgainl, bandwidthl, feedthroughgainl)

W_2 = makeweight (dcgain2, bandwidth2, feedthroughgain2);
mdiag(W_1,W_2);

where dcgain specifies the low frequency gain, bandwidth specifies the frequency at
which the gain is one and feedthroughgain specifies the high frequency gain.

Designing filters using makeweight command, for example S(jw), the area below 1 (0 db)
and above | S(jw) | is equal to the area above 1 and below | S(jw) |, when | S(jw) | is

plotted on a logarithmic scale. In simple words, the filter needs to cross the 0 db. For

18




1
|
!
!
i
;

A

Ky

Figure 7: Open-loop generalized Plant P for the four block mixed sensitivity design with two
degree of freedom

details see chapter 16 of ORC Lecture notes. However using the ‘makeW’ command,
we have the flexibility to design first order shaping filter that is independent of this

restriction.

W_1 = makeW(dcgainl, bandwidthl, feedthroughgainl, "h')

For our synthesis tools to work, we need to first assemble the generalized plant that
includes the desired performance inputs and outputs. The generalized plant for the
four-block formulation is depicted in Figure 6.

In order to assemble it, use the sysic command. You should look up the help in Matlab,

but to get you started, consider the following code:

systemnames = "G WS WK Wdi Wdo';
inputvar = “[r(2);di(2);do(2);u(2)]"';
outputvar = "[WS; WK; Wdo-G; r]l';
input_to_G = "~ [u+Wdil]';

input_to_Wdi = ~[di]‘';

input_to_Wdo = ~[do]l';

input_to_WS = ~[r+Wdo-G]';
input_to_WK = “[ul';

cleanupsysic = “yes';

P = sysic;

2.3.2 Synthesis

Stability and the induced Ls-norm constraints can be expressed as linear matrix inequal-
ities (LMIs), see Theorem 3.2 of the Advanced Topics in Control lecture notes for LMI

19




condition regarding output feedback. Besides stabilizability of (A,B,,) and detectability
of (A,C,), we require that D, has full column rank and that D,,, has full row rank. If

these conditions hold, the generalized plant can be transformed into:

Z =] cp) | Dalo) ?‘ | (20)

Colp) | 10 1] 0

We already defined the gridded parameter space and the rate bounds, so all that is left,
is to define basis functions that represent the functional dependence of the candidate

Lyapunov matrix P on the scheduling parameters, i.e. ,

P(p)=>_ filp) ;. (21)

Prep. 2.5: Why do we need to assign basis functions? What are the decision variables

when solving the optimization problem?

We can do this in Matlab by using

Pbasis = [];
Pbasis (1) = basis(1,0);

The first argument of basis is the function and the second argument is the partial
derivative. Thus, the example above defines a parameter-independent Lyapunov matrix
P = P, and the partial derivative of this constant is zero. If we want to add parameter-

dependent terms, the pgrid objects can be used:

Pbasis(2) = basis(qldot, ~qldot', 1);
Pbasis(3) = basis(q2, "q2', 1);

As such the Lyapunov matrix is P = P + P ¢; + P3 qo. Other arbitrary complex
expression can be added too. However, we need to pay close attention to defining the
partial derivatives correctly. How to choose a “good” set of basis functions is to a large
extend still not clear, see also exercise 3.2 in the Advanced Topics in Control lecture
notes. After defining basis function for two candidate Lyapunov matrices X and Y, the

controller can be obtained by the command

[K,gam,INFO] = lpvsyn(P, nmeas, ncont, Xbasis, Ybasis);

20




Depending on the dynamic order of the system, the number of basis functions for the
Lyapunov matrices and especially the number of grid points, this synthesis may take
very long . Tuning the controller can thus become a really time-consuming task, and as
we all know: time is money. Thus, it is usually a better idea to use either parameter
independent Lyapunov matrices while trying to find weights or to simply perform a
number of LTI synthesis steps with a common weighting structure. The main conceptual
difference is the following: The first approach gives an upper bound during tuning,
since the use of a common constant Lyapunov matrix is conservative. Our responses
will usually look better when using the actual parameter-dependent synthesis once a
satisfactory tuning was found. The second approach, on the other hand, gives a lower
bound. We cannot exceed the performance of an LTI controller at a single grid point,
even if we used infinitely many basis functions for the Lyapunov matrices. Our results
will thus usually look worse with the LPV controller and we can add basis functions in

order to try to make the deterioration small.

Transformation of the generalized plant into the form represented by Eqn.20, as well
as balancing and scaling to reduce sensitivity to numerical issues are automatically
performed within the LPVTools” ‘Ipvsyn’ command. Further, just as in regular Hoo
control it is usually desirable to use a suboptimal, rather a truly optimal synthesis.
Since LPV synthesis is even more prone to numerical issues than the Hoo synthesis a
suboptimal synthesis is invoked. The default suboptimality factor is 1.2, i.e. , 20%. For
further insight on how the synthesis tool work, see Chapter 3 of Control Lab -ATC' 1

Manual.

Prep. 2.6: Experiment with different choices of basis functions. How do they affect

synthesis complexity and achievable performance?

2.3.3 Controller Post-Processing

If a parameter-dependent Lyapunov matrix X is used, the controller also depends on
scheduling rates. Often, this dependence can simply be ignored, although again, any
theoretical guarantees are lost in doing so. For the swing-up, we would require w; to be
available online. It’s your decision whether you want to implement the rate dependence
with differentiation filters or ignore it. In order to neglect it, we can interpolate the

controller for zero rates:

21



K = lpvelimiv(lpvinterp(K_rate, ~qldotDot', 0));

2.3.4 Design Task

Design a gain-scheduled output feedback controller to achieve the following design

specifications:

» make sure the bandwidth of the velocity controller should be 5-10 times faster than

the natural frequency of the pendulum
o at least 2dB gain and 14.5 degree phase multiloop disk margin at every grid point
« that disturbances lead to outputs of less than 3 in magnitude at every grid point

« that disturbances are compensated after 3 seconds on all channels at every grid

point
o that the control input magnitude never exceeds 1 at any time

« a controller with a fastest pole < 2000 rad/s when evaluated at a grid point.

22




2.4 Stabilizing Controller
2.4.1 Four-Block Design with Velocity Feedback

Just like the Swing-up controller, Cq,, the stabilizing controller, Cg, is also designed using
the four-block mixed sensitivity loop shaping techniques using the two-degrees-of-freedom
approach. Again the main motivation behind it is to simultaneously achieve satisfactory
tracking performance along with required disturbance rejection and robustness. As such
again, at low frequency we aim to achieve disturbance rejection and tracking while a
roll-off at high frequencies. Thus, a suitable choice would be Wy = diag( W,,, W,., W)
as a low pass filter and Wy =diag(W,,, W.,) as high pass filter.

Moreover, in addition to the outputs q4, ¢.,and wy, we will also consider angular velocities
w4 and w, as available feedback signals. In practice, we still need to estimate these by
implementing differentiation filters, which cause phase loss and amplifies measurement
noise. We neglect the phase loss that is introduced by these filters in our model and rely
on the robustness of the controller to deal with it . Experiments show that with these
extra measurements, the controller is able to increase damping much better in the closed
loop response than with just the angles. However it must be noted that these signals are
not part of the performance channel and are therefore not considered for the tracking
objective. Thus, r is a vector with 3 entries while y is a vector with 5 entries. The error
(y — r) thus is not well defined unless we are more precise and write (in Matlab notation)

r —y(1:3). We can add the additional output to the plant using

Gv = pss(G.a, G.b, [G.c;zeros(2,4) eye(2)], [G.d;zeros(2,size(G.b, 2))]1);

Similar to the swing-up controller, in order for the synthesis tools to work we will again
need to assemble the generalized plant using the sysic command. The generalized plant
for the four block design is depicted in Figure 6. Afterwards we will need to define the
basis function. Once both the generalized plant and the basis function are defined, we

can solve the state feedback gain using the command ‘Ipvsfsyn’

2.4.2 Switching Logic

In order to stabilize the pendulum in the upright position, control authority needs
to switch from the cascaded loop (using the energy-based regulator and LPV velocity
controller) to the stabilizing LPV controller. To accomplish this, several different switch-

ing logics can be implemented which smoothly switches the system to the stabilizing

23




controller when the angle of the pendulum is close to zero. The angle at which the switch
happens, | ¢, |[< 0.15 rad, was found by heuristically tuning the switching angle until a

desired response was achieved.

Smooth transition can be achieved by using a ramp weighting of the output of both
controllers. This can be done by taking a convex combination of control input of both

the swing-up and the stabilizing LPV controller during the transition, i.e.:
U= QUgy + (1 — @)ug ,

where ug,, denotes the control input generated by Cgy, ug the control input generated
by Cq and « is a ramp from 1 to 0 with slope 10 when switching from swing-up to
stabilization and a ramp from 1 to 0 when switching from stabilization to swing-up.

However, experimentally it was found that implementing even a hard switch gave
satisfactory results in which case when the absolute value of angle ¢, is greater than 0.15
rad, Swing-up controller is activated else the Stabilizing controller is activated. To avoid
wind-up effects in the controller states, the integrators are reset when the controller is
switched off, e.g. when switching from the swing-up LPV controller to the stabilizing

LPV controller the integrators in the swing-up controller are reset.

24



2.4.3 Design Task

Design a gain-scheduled state feedback controller to achieve the following design specific-

ations:

a controller with a fastest pole < 2000 rad/s when evaluated at a grid point

the input and output disturbances should be attenuated within 5 seconds on all

channels at every grid point
that disturbances lead to outputs of less than 5 in magnitude at every grid point
that the control input magnitude never exceeds 1 at any time

at least 0.5 dB gain and 3.5 degree phase multiloop disk margin at every grid point

25



3 LINEAR EVALUATION OVER THE GRID

We can only assess whether our controller performs well in nonlinear simulation and on
the actual experiment. Nevertheless, linear analysis for individual grid points can be
very helpful during the design. If the linear responses are not satisfactory, for sure, the

nonlinear ones won’t be either.

3.1 Frequency Response Analysis

A first step in evaluating our controller can be a frequency response analysis. We can
calculate all the six different transfer functions of interest using loopsens. The structure

loops then contains all closed-loop transfer functions which are accessible as

loops = loopsens(G,K);

lpvgetfield(loops, ) h S
lpvgetfield(loops, ) % Ssi
lpvgetfield(loops, ) h T
lpvgetfield(loops, ) b Ti
lpvgetfield(loops, ) % KS
lpvgetfield(loops, ) % SG
lpvgetfield(loops, ) % verifies that the closed loop is stable

Matlab uses a different convention than we do and labels the plant with P instead
of our usual G, and the controller with C' instead of K. Sticking to our notation, the
transfer functions that we obtain are in the order of appearance S = (I +GK) ™",
S;=(I+ KG)_l, T=1-S5,T,=1-S5;as well as KS and G S;, which are the same
as S; K and S G, respectively. Since we are considering nonsquare plants for the output
feedback case, make sure that you look at the correct input/output pairs. For example,
when looking at step responses, we are interested in just y and not g, so only the first

three channels are of interest.

3.2 Time Domain Analysis

You can perform step response simulations on the linear models at all grid points

simultaneously with the step command.

26




3.3 Robustness

Linear robustness margins cannot guarantee anything for LPV systems. Nevertheless,
the same argument as for the step responses remains true: the parameter varying nature
will just make things worse and hence linear margins at a grid point are a first indicator
whether a design can succeed. Just as in Control Lab—ORC 2 and ATC 1, we only
consider the multiloop disk margin and are further just interested in a worst case analysis,
i.e. the lowest margins across the grid. Note that this is a VERY conservative measure,
so we can’t expect too much. Still, try to aim for something like 3dB gain and 15 degree

phase margin.

[~,~,~,~,~,~,MMI0]= loopmargin(Gv,Ky);
GM = lpvgetfield(MMIO, )
PM = lpvgetfield (MMIO, );
lpvmin (GM(2))

minGM = db(lpvmin(GM(2)))
minPM = min(lpvmin(PM(2)))

Note that the analysis for the state feedback controller would require to break the loops

for every state in addition to the outputs. You can try this on your own if you like.

4 NONLINEAR SIMULATION AND
IMPLEMENTATION

Once you complete and run design CMG_swing.m file, save the data from workspace

using the following command in Command Window:

save ("LPVswing.mat ')

Also do the same after completing and running design CMG_stab.m file using the

command

save ("LPVstab.mat ')

27




4.1 Simulation Environment

The file simCMG_full.slx provides a nonlinear simulation environment resembling the

control moment gyroscope. The structure of the model is depicted in Figure 8.

The Red Block represents the control moment gyroscope and contains the equations of
motion implemented as a mex-file/C-code. It takes the control signal u = [r; 7]
as an input (in Nm). The outputs of the block are the physical available output
Y=l @ q)" [rad], the estimated velocities § = [¢i 2 G4 G| [rad/s] used
for feedback, the saturated (i.e. actually applied) inputs [Nm] and a signal bus

that contains all states of the simulation model.

The Orange Block represents the controllers. It also contains the reverse scalings that

we used during the design.

The Blue Block is the signal generator for the reference trajectory. The reference block
generate reference signal for both swing-up controller, ¢ ref, Garer , and Stabilizing

controller, 41,ref7 Qarefs Qeref-

The Green blocks are associated with the user interface.

Enable or disable logging

B o)

Ground

»states

| scheduling vector

Figure 8: Simulink Simulation: Plant, Controller and interface-related blocks

Prep. 4.1: Familiarize yourself with the simulation. You should be able to explain the

purpose of every single block.

28



4.2 Lookup Table Implementation

The default method of implementing gridded LPV controllers is in terms of lookup tables
with element-wise linear interpolation. Simulink provides a block called n-D Lookup
Table for this purpose.

We need to specify the number of dimensions, the table data and breakpoints. An
example implementation for the state feedback gain dependent on the two parameters ¢,

and ¢o, and looks as follows:

Table data: reshape(F.Data, [size(F,1)*size(F,2), size(F.Domain)])
Breakpoints 1: 1:size(F,1)*size(F,2)

Breakpoints 2: F.Parameter.qldot.GridData

Breakpoints 3: F.Parameter.q2.GridData

As inputs, a vector containing the linear indices 1:size(F,1)*size(F,2) and the two
parameters are required. The output is a vector containing all entries of the matrix F.
It can be transformed into the correct dimensions using the reshape block.

A dynamic controller is implemented analogously: The three state space matrices A,
B, and C' can all be stored as lookup tables in the form described above and then the

dynamic system is formed by including an integrator of compatible dimension.

Prep. 4.2: Verify the implementation in the Simulink model. You can use the display

block or scopes to actually see the varying entries in the matrices during simulation.

Alternatively, a complete nonlinear implementation is possible that calculates the
controller directly from the Lyapunov matrices in every sampling instant, see Exercise
3.2 of the Advanced Topics in Control lecture notes. In this case, memory requirement
is usually lower, since only the coefficients of the Lyapunov matrices need to be stored.
Computational complexity is on the other hand larger, since several matrix multiplications
and inversions need to be performed. While this is in general more accurate and
computationally indeed tractable, the implementation requires extreme care to include
all scalings and transformations performed during synthesis. As these quantities are not
accessible when using commercial tools such as the LPVTools, we will not address this

possibility further.

29




4.3 Goals

To run the simulation (simScriptCMG.m), load the swing up and stabilizing controllers

into the workspace and achieve the following tasks:

e Tune the values of k; and ks such that a balance is achieved between how fast and

how far the pendulum would swing-up
o Swing up should be achieved within 30 seconds meaning ¢, = 0 or 2.
e ¢4 should be tracked to the desired angle

o wj should be tracked to 45 rad/sec and wy to the speed specified by the energy

regulator

5 EXPERIMENT

During the lab, the file full model.slx will be provided to interface the control moment
gyroscope. Its structure is depicted in Figure 9. As you can see, it is very similar to the

nonlinear simulation.

The blue block represents the control moment gyroscope and contains interfaces to the
Digital/Analog and Analog/Digital converters of the physical plant. The inputs
and outputs of the block are the same as in simulation except that differentiation

filters are used to estimate the states.
The orange block are identical to that used in the simulation.

The green blocks are identical to that used in the simulation except that the output

structure is now named expdata. Code for plotting this data will also be provided.

The yellow blocks are associated with a dedicated “start-up” controller and the switch-
ing logic necessary to switch to the LPV controller. The start-up controller is
used to bring the plant to a certain operating point. It consists of a simple PI
controller acting on ¢; and ¢o. The first yellow switch on the upper left is used to
activate/deactivate the start-up controller. The second can be used to reset g3 and

¢4 in order to define an operating point.

30



-
kd

‘Signal Sorting far Plot

Controller

e O

Toe = O ==

i
:

=i

Figure 9: Simulink model: Plant, Controller, and interface-related blocks
Prep. 5.1: Make sure your design file produces all the files necessary to run the nonlinear
simulation by simply executing it.

! Bring this files with you to the experiment as you may need to retune your controller.

Goal

Implement your controller in the Simulink real-time interface and try it out on the actual

plant. You should be able to achieve
e Swing up within 30 seconds

e That the pendulum should stabilize at the upright position rather then over swing

and reject any disturbances which can cause it to deviate from the said position.

o cross coupling should not exceed 2.5° per 45° command (i. e. should be less than

6%)
« that the control input magnitude never exceeds 10 V at any time

 that the control input is smooth and does not result in mechanical wear (you’ll

hear what we mean if you fail to achieve this).

31



If necessary, retune your controller and try again.

! Be careful and obey all safety requirements when working on the experimental
device. An unstable controller can cause fast and unpredictable motion of the

gimbals which can cause severe injuries.

32



	PLANT
	Plant Description
	Linearization and LPV Modeling
	Initial Scaling

	CONTROLLER DESIGN—STATE FEEDBACK
	Overview
	Energy Based Regulator
	Swing-up Controller
	Four-Block Design
	Synthesis
	Controller Post-Processing
	Design Task

	Stabilizing Controller
	Four-Block Design with Velocity Feedback
	Switching Logic
	Design Task


	LINEAR EVALUATION OVER THE GRID
	Frequency Response Analysis
	Time Domain Analysis
	Robustness

	NONLINEAR SIMULATION AND IMPLEMENTATION
	Simulation Environment
	Lookup Table Implementation
	Goals

	EXPERIMENT

