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Abstract—In this paper, we study the problem of part-of-speech
(POS) tagging for security vulnerability descriptions (SVD). In
contrast to newswire articles, SVD often contains a high-level
natural language description of the text composed of mixed
language studded with codes, domain-specific jargon, vague
language, and abbreviations. Moreover, training data dedicated
to security vulnerability research is not widely available. Existing
neural network-based POS tagging has often relied on manually
annotated training data or applying natural language processing
(NLP) techniques, suffering from two significant drawbacks. The
former is extremely time-consuming and requires labor-intensive
feature engineering and expertise. The latter is inadequate to
identify linguistically-informed words specific to the SVD domain.
In this paper, we propose an automatic approach to assign POS
tags to tokens in SVD. Our approach uses the character-level
representation to automatically extract orthographic features and
unsupervised word embeddings to capture meaningful syntactic
and semantic regularities from SVD. The character level repre-
sentations are then concatenated with the word embedding as
a combined feature, which is then learned and used to predict
the POS tagging. To deal with the issue of the poor availability
of annotated security vulnerability data, we implement a fine-
tuning approach. Our approach provides public access to a POS
annotated corpus of ∼8M tokens, which serves as a training
dataset in this domain. Our evaluation results show a significant
improvement in accuracy (17.72%-28.22%) of POS tagging in
SVD over the current approaches.

Index Terms—Fine-Tuning, Part-of-Speech tagging, Unsuper-
vised word embedding, Security vulnerability descriptions

I. INTRODUCTION

Security vulnerability descriptions (SVD) can be found
from semi-structured (eg., National Vulnerability Databases
(NVD)) and unstructured text sources, such as security bul-
letins, cybersecurity blogs, etc [1], [2]. Parts-of-speech (POS)
tagging, assigning POS tags (e.g., verb, noun, etc.) to tokens
in SVD, is challenging due to its content includes high-level
natural language descriptions of the text composed of a mixed
language studded with codes, domain-specific jargon, vague
language, and averviations [1]. In reality, identifying a tokens

functional role within a SVD and annotating each of the tokens
with POS tags is useful for a wide scope of downstream
applications ranging from domain-specific NER [3], [4] to
more sophisticated uses such as security vulnerability sys-
tems [5]–[7]. Hence, POS tagging is the foundation of many
downstream applications and a prerequisite for a wide range
of systems [8].

The current methods for POS tagging SVD have often
relied on manually annotated training data or applying natural
language processing (NLP) approaches [9]. For annotating nat-
ural language documents, NLP approaches, such as [10]–[12]
propose a POS tagger using machine learning techniques, and
[13], [14] propose a BiLSTM-based POS tagger. However,
as proven by [15]–[18], NLP approaches trained on natural
language documents (e.g., Penn Treebank (PTB) [19] are
inadequate for annotating security vulnerability-related texts
because these approaches do not use any domain-specific train-
ing data, which results in the trained models’ lack of domain
knowledge to identify the POS of security vulnerability tokens
critical for the task of security analyses. These approaches
work well for annotating tokens in news articles and related
artifacts [15]; however, their accuracy decreases as the input
moves to the SVD.

On the other hand, in the software engineering domain,
there has been an attempt to develop POS tagging tools by
relying on manually annotated training data; for example, Ye et
al. [20] apply supervised learning techniques to annotate Stack
Overflows, [21], [22] propose a rule-based POS tagger for
source code annotation. Such approaches can achieve the best
performance; however, annotating data requires much human
effort, time-consuming, and labor-intensive feature engineer-
ing, which becomes quite costly as datasets grow. Overall,
both NLP and software engineering approaches cannot be
directly applied on SVD; moreover, human annotations for
neural models often require a considerable time and effort.

Our idea is to construct a neural network architecture that



trains the source model on a large newswire corpus (high-
resource out-of-domain-data) and then use the learned knowl-
edge (parameters, weights) of this model as prior knowledge
for the target model, which is further fine-tuned (trained) on a
security vulnerability data (low-resource in-domain-data). The
source model captures common features found in the security
vulnerability corpus. However, there are significant words spe-
cific to the vulnerability domain of different lexical structures
than regular English words and punctuation. The source model
lacks domain knowledge and fails to investigate the unique
characteristics of SVD. We empirically prove that the accuracy
decreases as the input moves to the SVD. Thus, a fine-tuning
approach [23]–[25] is applied to address the need for annotated
data for POS tagging of security vulnerability texts. This
approach intends to add the domain knowledge to the pre-
trained source model (i.e., target model) that identifies the
POS of tokens specific to the SVD domain. However, a large
number of POS annotated security vulnerabilities are required
for effective supervised learning techniques. Unfortunately,
training data dedicated to security vulnerability research is
not widely available, results in identifying POS of linguistic-
informed SVD more challenging.

In this paper, we propose an automatic approach to assign
POS tags to tokens in SVD. We first build a “webScraper” tool
to crawl an extensive collection of unstructured descriptions
of vulnerabilities from NVD and its associated components
and automatically build an unannotated vulnerability corpus
(Table I). In the POS tagging task, the way how we segment
texts into tokens has an impact. Thus, we design a custom
tokenizer that handles the security vulnerability jargon. We
construct an unsupervised word embedding model to extract
domain-specific features. Our embedding computes vector
representations of words as they are tokenized. The resulting
word vector file is then concatenated with character-level
representations as a combined feature, which is then learned
and used to predict the POS tagging. In the framework of
our fine-tuning approach, we first train a model for a source
task and use the learned parameters to initialize the model
parameters for training the target task. Our approach provides a
POS annotated corpus of∼8M tokens, which serves as training
data in this domain, and supports downstream applications. We
make the following contributions:
• We propose an automatic approach to assign POS tags to

tokens in SVD. We construct an neural architecture that
trains the source model on a large out-of-domain-data,
and then use the learned knowledge of this model to the
target model, which is further fine-tuned on in-domain-
data. In our approach, character-level representation and
unsupervised word embeddings are concatenated as a
combined feature, which is then learned and used to
predict the POS tagging.

• We present an unsupervised word embedding model
based on CBOW with a negative sampling approach
to extract syntactic and semantic features from security
vulnerability text. Besides, we present a custom tokenizer
designed to handle security vulnerability-specific vocabu-

laries. These features empower the approach to assigning
proper tags to a sequence of security vulnerability tokens.

• We introduce a new security vulnerability POS annotated
corpus of ∼8M tokens, which serves as training data
for supervised learning that correctly identifies other text
reports in this domain. Experiments on the security vul-
nerability datasets demonstrate that our approach achieves
the best performance in accuracy (93.22%) and precision
(93.16%). We provide all our implementations; https:
//bitbucket.org/MerejaKuat/supp material/src/master/

II. BACKGROUND AND MOTIVATION

A. Background of Security Vulnerabilities

Online security vulnerability databases, such as NVD and its
associated components, accumulate track of historical security
vulnerability-related issues in semi-structured and unstructured
text formats [1], [2]. They give crucial supports and are
extensively used by software developers and security ana-
lysts. Usually, online users (contributors) report the newly-
discovered vulnerability information to these vulnerability
databases or security blogs. When the vulnerability report
is confirmed, a CVE-ID is assigned, and an issue report to
describe the vulnerability situation is created. Security analysts
refer to these vulnerability situations for the newly discovered
vulnerabilities and manually analyze the textual descriptions
of vulnerability issues. The security analyst must first carefully
read the vulnerability report (e.g., description), and elicit the
keywords such as systems that are likely to be affected, the
operating systems environment for which the attack can occur,
the versions of products affected, and review the weakness in
source code files to find the patch and fix the vulnerable parts.

The above activity is labor-intensive, tedious, and time-
consuming, especially for massive textual information with
thousands of vulnerability reports. Manual analysis of security
vulnerabilities demands high expertise and imposes a huge
burden on security analysts, which inevitably limits productiv-
ity. Thus, it is extremely useful to automate this process and
recommend potentially vulnerable source files to security ex-
perts and developers with a given vulnerability description [4].
Hence, POS tagging is one of the early phases to be automated.
In fact, to understand the meaning of the vulnerability reports,
each word’s POS in the description is of particular importance.
Thus, we extract all the available vulnerability issues, and POS
annotate each token, and provides public access to support the
downstream applications, such as security systems.

B. Motivation by Example

We consider known security vulnerabilities reported to NVD
(Fig. 1) and demonstrate the critical challenges of state-of-the-
art POS tagging in security vulnerability domain.

Fig. 1. Motivating Example: Reported Security vulnerabilities

https://bitbucket.org/MerejaKuat/supp_material/src/master/
https://bitbucket.org/MerejaKuat/supp_material/src/master/


Fig. 1 describes a vulnerability situation where the
token’s functional role or POS of each token in the
description is of particular importance. For example,
“TmxControl :: user info()” function gives essential in-
formation to the security analysts and developers about
which functions of product “V 2I Hub 3.0” is vulnerable to
SQL injection. Current approaches split and identified “()”
as punctuations and “TmxControl :: user info” as nouns;
however, it refers to a programming APIs function, which
is identified as a proper noun in a security vulnerability.
Moreover, decimal numbers “3.0” and “6.5” that respectively
follow a product “V 2I Hub” and “WebAccess” provide
critical information about which versions of a product are
vulnerable to SQL injection or XSS vulnerabilities. The
NLP approaches identify “3.0” and “6.5” as cardinal numbers;
however, decimal numbers that follow a software product are
expected to be versions of that product and not quantities of
it [4]. Hence, in the security vulnerability domain, they are
identified as proper nouns. Besides, a string of words starting
with capital letters is expected to be a vendor (e.g., Battelle)
or product name (e.g., V 2IHub), not a company name.
Hence, they are identified as proper nouns. The examples show
that current approaches fail to accurately capture the lexical
structure of domain-specific jargon. They treat the report as
well-formatted English texts [1] and assign incorrect POS tags,
results in misleading downstream applications. Hence, it is
strongly suggested that the SVD should be treated differently
from well-formatted documents and needed specialized meth-
ods trained using security vulnerability data [1], [15].

III. OVERVIEW OF PROPOSED FRAMEWORK

In this section, we describe an overview of the workflow of
our approach (see Fig. 2). Our approach consists of four main
components: (1) Corpus Preparation, (2) Word tokenization,
(3) Unsupervised Word Embedding, and (4) POS tagging.

1) Corpus Preparation: The first step in the approach is
identifying textual resources that describe security vulnerabil-
ities and threats. Using our “WebScraper” tool, we automati-
cally extract security vulnerabilities reported in NVD and its
associated components and build an unannotated corpus.

2) Word Tokenization: We present a custom tokenizer de-
signed to handle security vulnerability-specific vocabularies.
The tokenizer component splits the vulnerability corpus into
sentences and identifies vulnerability specific tokens. Ultimate-
ly the tokenizer produces a “list of tokens”.

3) Unsupervised Word Embedding: Our embedding is
trained from scratch to extract features from an unannotated
corpus. The embedding model is trained over the combined
corpus of the PTB and vulnerability corpora. The trained
model is then used as a component of the POS tagger.

4) POS Tagging: We follow a two-stage process: we ini-
tially train the POS tagger with PennTreebank (PTB) training
data and evaluate the performance in tagging vulnerability
tokens, resulting in the accuracy drops. Using gold set data, we
fine-tune the POS tagger to accurately annotate tokens in the
security vulnerability text. The outcome is a fine-tuned model

that can induce a POS tag for new vulnerability tokens with
much improvement in accuracy than state-of-the-art methods.
Lastly, we feed the unannotated corpus to the fine-tuned tagger
to produce (predict) a POS annotated corpus of ∼8M tokens.

IV. OUR APPROACH

This section describes our proposed approach for POS
tagging SVD (see Fig. 2).

A. Corpus Preparation
1) Unannotated Corpus Preparation: Unlike traditional

POS taggers, e.g., the PTB Project [19], a corpus dedicated
to security vulnerability research is not widely available [4].
Thus, we begin our work by preparing a corpus of security
vulnerabilities from online data sources. To do so, we develop
an automatic “WebScraper” tool that scrapes unstructured
vulnerability descriptions from NVD, Common Attack Pattern
Enumeration and Classification (CAPEC), Common Weakness
Enumeration (CWE), Product Dictionary (CPE), Common
Vulnerabilities and Exposures (CVE), and Twitter webserver-
s 1. Our tool is automatic and generic. It scraps the specified
website for all available links; it locates the “URL” of the
webservers, downloads all XML and JSON vulnerability feeds
from 1999 to 2019, extract vulnerability information from
all tags, collects the contents of specified tags, and built an
unannotated corpus, as shown in Table I.

TABLE I
SCRAPED SECURITY VULNERABILITY DESCRIPTIONS

Security Vulnerability Data Sources Sample Size Number of Tokens Time Period Covered
NVD (CVE and CPE) 32.04MB 5,342,280 1999-2019

CWE 17.98MB 2,288,095 1999-2019
CAPEC 6.09MB 491,927 1999-2019
Twitter 4.95MB 400,000 - Recent
Total 61.06MB 8,622,302 1999-2019

To keep the vulnerability data correct, we only collect the
vulnerabilities that have CVE-ID. We extract the unstructured
content of specified tags such as vulnerability descriptions,
modification comment, impacts, notes, and so on. The pre-
processing is performed by employing the Natural Language
Toolkit (NLTK) [11]. However, some non-natural language
contents extracted from the description tag of security vul-
nerabilities are hard to be preprocessed directly using the
conventional NLP toolkits. To alleviate this issue, we write
a script to preprocess domain-specific contents. Besides, we
programmatically remove code segments from the vulnera-
bility data dump. After text cleaning, we obtain a security
vulnerability corpus from the vulnerability data dump, which
has about 1,000,000 most frequently used words, usually
greater than 3 (205,610 unique terms) and about 400,914
vulnerability sentences (8,622,302 tokens).

2) Gold Set Annotation: To the best of our knowledge,
there are no publicly available POS annotated training data on
the security vulnerability domain. Thus, we create a gold set (a
small, high-quality set of POS annotated vulnerability tokens)
to fine-tune our POS tagger and evaluate the performance of
other approaches. Given the fact that it is hard to manually

1https://nvd.nist.gov/, https://capec.mitre.org/, https://cwe.mitre.org/, http-
s://twitter.com/CVEnew?lang=en, https://cve.mitre.org/



Fig. 2. The overview framework of our approach

annotate all tokens in vulnerability descriptions, we randomly
draw 2% (8,018 sentences or 172,446 tokens) samples from
the total vulnerability sentences (Table I), and manually POS
annotated them with a total of 47 tags from PTB [19] tag sets.

We hire 10 participants, 4 are from the security domain (a
Ph.D. student at Tianjin University and 3 are from Information
Network Security Agency), and 6 are experts in English
(Ph.D. in linguistics and assistant professors in Addis Ababa
University), to assign POS tags to tokens in the sampled
vulnerability descriptions. We request participants to use all
POS tags in a PTB tag set. Before annotation, we give all
annotators a 6h tutorial on annotating the tokens to reach a
consensus. We assign each vulnerability description to two
separate participants to resolve disagreements between anno-
tators and ensure the annotation quality. These two participants
discuss and make a final judgment on the POS tag of a token.
However, we have an annotator with expertise in security and
a second annotator with linguistics knowledge sit together,
discuss and annotate the most challenging jargon and domain-
specific vocabularies.

Furthermore, we randomly select 40 sentences (862 tokens)
from the gold set and re-annotated them from scratch. The
purpose is to estimate the inter-agreement of the annotations a-
mong different annotators. We compare these 862 re-annotated
tokens with their annotation results. Only 25 tokens are tagged
differently, which results in an inter-agreement rate [26] of
97.09%.

B. Custom Tokenizer

In the POS annotation task, the first issue that we must
address is how to segment the text into tokens. Tokenizers
designed for well-formatted documents cannot handle SVD,
which contain domain-specific jargon [27]. Thus, we design
a custom tokenizer that can handle SVD-related vocabular-
ies. Our tokenizer uses regular expressions to match the
“parameter”: “pattern” of the function “(text, pattern)” to
enable it suitable for the security vulnerability jargon. Our tok-
enization delimits word tokens in vulnerability descriptions by
a preceding and the following space. A compound is tokenized
as a single lexical unit if it appears as one orthographic word
with a hyphen (Cross − site), underscore (user info()),

dot (PluginStatus.cpp), or a string of words starting with a
capital letter (WebAccess) or two and more morpho-syntactic
tokens if tokens are separated with white space (see Table II).

TABLE II
OUR TOKENIZATION COMPARED TO THE EXISTING.

Input Vulnerability Tokens Existing Tokenizer Our Tokenizer
TmxControl::user info() Tmx,Control,:,:,user, ,info,(,) TmxControl::user info()

WebAccess 6.5 Web,Access, 6,.,5, WebAccess, 6.5
Cross-site scripting Cross,site, scripting Cross-site, scripting

The existing tokenizer split colored text into 9 separate tokens, which does not have meaning

As shown in Table II, our tokenizer preserves the integrity
of security vulnerability tokens and the sentence structure.
Hence, the file name (file.name), (token token), or (token-
token) is a single word. For example, it treats “TmxControl ::
user info()” as a single token, instead of a sequence of 9
tokens. Moreover, our tokenizer does not split method names
from parentheses; parentheses and dots that appear in a method
are regarded as part of the method. However, it studies separate
parentheses, i.e., “(” and “)”, as punctuations.

C. Unsupervised Word Embedding

According to [28]–[30], popular word embedding algo-
rithms like word2vec [31] and GloVe [32], which are initially
developed for text, cannot be directly applied to a domain-
specific task. Security vulnerability data available in a vari-
ety of forms and includes domain-specific vocabularies and
jargon [15]. Thus, we present unsupervised word embedding
for security vulnerability notions learned using an unannotated
vulnerability text and then used as a component of our POS
models. Our embedding is based on CBOW [31], described
as follows: Let W be a vulnerability corpus, a sequence of
words wT

1 , a window by the parameter c, c words at the left
and right of the target word; thus we use the c context vectors
to predict the target word. The probability of a Softmax is
defined by [31], and described in [33] as:

p (wt|wc) =
exp(vT

wt
uwc)∑W

w=1 exp(vT
wuwc )

(1)

where uw is a target vector, and vw is a context vector. Since
Softmax is too expensive, negative sampling approaches [31],
[34] is used, which samples k context words that do not appear
in the current window. As shown in Fig. 3 (a), the context



words are embedded, followed by a dot product is computed.
We compare how similar the embeddings for the context (c)
and target (t) words are by computing the cosine similarity of
their corresponding vectors, and use this similarity to assess.

D. Parts-of-Speech Tagging

Existing POS taggers trained on well-formatted documents
are inadequate to identify linguistic-informed words specific
to the security vulnerability domain [15]. Thus, we present an
automated approach for POS tagging of vulnerability text.

1) Problem: Given a description of security vulnerabilities,
we define the problem of POS tagging as a task of assigning
POS tags (eg., nouns, verbs, and so on) to each sequence
of tokens in the description. Formally, let a sequence of n
untagged security vulnerability tokens as wn

1 and a finite set
of m tags (eg., nouns, verbs, and so on) tm1 . Thus, for any
given sequence of n tokens, it holds wn

1 ∈ Wn and for any
given sequence of tags we have tm1 ∈ T m, where W and T
are the number of possible tokens and tags respectively. Our
goal is to construct a model that predict an optimal sequence
of POS tags t̂m1 that corresponds to an input token sequence
ŵn

1 such that the posterior probability P
(
t̂m1 |ŵn

1

)
is optimal.

2) BiLSTM Model Architecture: We construct a neural
architecture based on BiLSTM [35] that performs both a
forward and backward pass over the input sequence [36],
[37]. The output vector hn is then computed by concatenat-
ing the corresponding forward and backward passes: hn =

LSTMf (x1:n) ⊕ LSTMb (xn:1). For the POS-tagging task [38],
[39], this has an impact on lessening the vanishing gradient
for long sentences. Fig. 3 shows our proposed architecture.

Fig. 3. Example of a neural architecture in our POS tagger

Fig. 3 shows that we feed the raw data corpus as it
spelled. To preserve both semantic and syntactic information
of words [40], we join character-level and word-level em-
bedding to get a combined embedding feature. Hence, each
word from the input SVD is represented by a combination of
two vectors. We pre-trained word-level embedding from an
unannotated security vulnerability corpus. To deal with out-
of-vocabulary(OOV) words, we represent each word with a
vector that contains morphological information generated by
character-based BiLSTM. In general, character embeddings
(c1, ..., cr) are learned by passing a BiLSTM over characters:

hl,forward
i = LSTM

(
ci, h

l,forward
i−1

)
hl,forward
i = LSTM

(
ci, h

l,forward
i−1

)

Then, we utilize the last hidden vectors from each of the
LSTM components, concatenate them together, and pass the
result through a separate non-linear BiLSTM layer.

ht =
[
hl,forward
i ;hl,backward

i

]
Now, we have two feature representations for each word,

where w(t) is an embedding learned on the word-level, and
c(t) is a representation created from individual characters at
the tth word of the input text. Our approach is to concatenate
the two vectors (~w ⊕ ~c) and use this as the new word-level
representation for the sequence labeling task: wconcat = [w; c].
Thus, we pass a sequence of vectors D ∈ Rn×d via a separate
BiLSTM, where n is the length of the sequence and d is
the dimensionality of the word vectors corresponding to the
sequence’s tokens. At each time step t, the output of the
LSTM ht is passed to a softmax output layer, which generates
a probability distribution over the tag vocabulary V. This
technique enables for the optimal tag to be chosen using
ŷt = argmaxy∈V P (y | wt)

3) Fine-tuning: Let Ds =
(
Xs

i , Y
s
i

)
, where i = 1 to K be

the training set of K samples from the source dataset and Dt =(
Xt

j , Y
t
j

)
, where j = 1 to N be the training set of N samples

from the target domain. Our goal is to improve tag prediction
accuracy on the target domain Dt by using the knowledge
learned from the source domain Ds, as shown in Fig. 4.

Fig. 4. Fine-tuning Architecture

In Fig. 4, we have a source neural model Ms for a source
problem with a set of parameters θs, where θs =

(
θ1s , θ

2
s

)
;

and a target model Mt for the target problem with a set of
parameters θt where θt =

(
θ1t , θ

2
t

)
.

a) Source Model: We learn the source model on annotat-
ed data from the source problem on a large newswire dataset
Ds. This model, because it does not use any domain-specific
training data, can identify natural language texts; however, it
does not identify security vulnerability jargon. For example,
the software versions such as “3.0” and “6.0” and APIs such
as “TmxControl :: user info()” are identified as cardinal
numbers and nouns; however, they are all proper nouns.

b) Transform: We transfer the learned knowledge in the
form of features or weights learned from the source model Ms

for training newer models for the target task: Mt : θ
1
t = θ1s .

c) Target Model: The target model is fine-tuned by
training the target model on the manually POS annotated
security vulnerability dataset (gold set) Dt. Fine-tuning has
proven effective in low-resource in-domain-data [23]–[25]. It
can be performed either the last [41] or several of the last
layers of a pre-trained model and leaving the remaining layers
frozen [42]. We fine-tune the last layers of the target model
by minimizing the remaining layers’ training rate to 0.001.



The target model can learn from the small annotated gold sets
examples, and identify the software versions such as 3.0 and
6.0, and API (‘TmxControl :: userinfo()’) as proper noun.

We adapt the collections of POS tags, such as nouns, verbs,
adjectives, and so on, from the PTB [19] tagset, and we follow
their guidelines. We refer the reader to PTB [19] extended POS
tagset. We use the morphological rules to assign all possible
POS tags to each token. However, the gold sets provide the
most critical ground truth for the model to learn how POS
tags are assigned to each security vulnerability tokens. For
each token in the SVD, a tagger returns all possible POS tags.
We use “()” to represent one token with POS tags. The tagger
takes SVD (see Fig. 1) and provides (prediction output) a POS
annotated corpus of ∼8M tokens, as shown in Fig. 5.

Fig. 5. An annotated security vulnerability descriptions by our tagger

Fig. 5 shows that SVD tokens are identified as proper
noun, for example, “Battelle” and “Novell” are vendors
and identified as “NNP” (i.e., proper noun). Likewise,
“TmxControl :: user info()” function is identified as
“NNP”, while it was incorrectly identified as noun. Natural
language techniques identify “3.0” and “6.5” as “CD” (i.e.,
cardinal numbers); however, decimal numbers that follow a
software product are versions of that product and not quantities
of it. Hence, in the SVD domain, they are identified as
“NNP”. Moreover, our tagger identifies the difference be-
tween a decimal number and the version number. For example,
“11”, “2005” are tagged as “CD”.

V. EXPERIMENTS AND EVALUATIONS

In this section, we construct four main sets of experiments
to evaluate our approach to automatically annotating likely
POS tags to a sequence of security vulnerability tokens by
investigating the following research questions:
RQ1: How effective is our POS tagger on assigning POS tags
to each token in SVD?
RQ2: How effective are the POS tagging approaches on SVD,
compared with their performance on well-formatted texts?
RQ3: To what extent domain-specific word embedding fea-
tures impact the performance of our POS tagger.
RQ4: To what extent the particular features affect the accuracy
of our POS tagger.

A. Experimental Setup

1) Model configurations: Our POS tagger is implement-
ed based-on TensorFlow [43], Keras [44] and SGD [45].
A BiLSTMs with 256 units are used and optimized using
ADAM [46] with minibatch size 32 for a total of epochs
for embedding 75 and 185 for POS tagging. We chose the

parameters that show the best accuracy on the development
set, and we report the score on the test set. A grid search
is employed to select appropriate hyperparameter values. In
all cases, a 10-fold cross-validation methodology is applied.
Then, the 10-fold results are averaged and used to select the
best models and variants for comparison.

2) Training Procedure: Fig. 6 describes the implementation
framework that we use to build and train word embedding and
POS tagger models.

Fig. 6. An implementation framework within BiLSTM architecture

In Fig. 6, the input system reads texts from the file—we
scrap from online data sources (see Table I). Then, it applies
text processing and partitions the data into training, validation,
and test dataset. For every dataset, we define an object called
presenter, which prepares the dataset as the model expects.
The presenter object defines the tensor as a batch, and it feeds
to the model as a continuous subsequence. The training needs
Keras embedding layer as an input feature, unique words that
are converted to an integer, dictionary size, types of input
dimension, and embedded vector dimension. In all cases, the
data is partitioned into training (70%), validation (10%), and
test dataset (20%). The training data is given, and the model
is identified through backpropagation. Likewise, the validation
data set is given, and we capture the statistics. Lastly, we get
the required model by assembling those software components.
Our framework is like a library, similar to Keras and tensor
flow. We develop a library for our purpose of using Keras and
other python libraries.

3) Evaluation Metrics: We use the standard evaluation
metrics, i.e., accuracy, precision, recall, and F1, to measure
the effectiveness of our POS tagger. Accuracy measures the
percentage of word tokens in a corpus which are correctly
tagged. For each category of POS tags, precision measures
what percentage the output tags are correct. The recall mea-
sures the extent to which all correct annotations are found in
the output of the tagger. F1-score is the harmonic mean of
precision and recall. The evaluation metrics are calculated as:

P = TP
TP+FP , R = TP

TP+FN , and F1 = 2×P×R
P+R (2)

4) Dataset: We perform experiments on two datasets:
(a) PTB [19]: It is a POS annotated well-formatted doc-

uments collected from the Wall Street Journal (WSJ) and
publicly available. It contains 3,914 text sentences consisting
of 100,676 tokens, which is only used as a training data for
the source model.

(b) Security vulnerability descriptions (see Table I): It is
an unannotated SVD extracted from online data sources. It
contains 400,914 sentences consisting of 8,622,302 security
vulnerability tokens. A portion of unannotated SVD, 2%(8,018
sentences or 172,446 tokens), is manually POS annotated (see



gold set annotation). We use 7,000 sentences or 150,546 tokens
for fine-tuning; the rest 1,000 sentences or 21,506 tokens are
used for comparisons with other approaches.
B. Evaluating Parts-of-Speech Tagger (RQ1)

In this section, we perform two subsets of experiments to
investigate the effectiveness of our POS tagger on assigning
POS tags to a sequence of security vulnerability tokens. Since
we do not have POS annotated training data, we conduct a two-
step experiment by implementing the fine-tuning approach.

Experiment 1: In the first experiment, we train the POS
tagger (source model) using the POS annotated training data
from PTB. We then evaluate the tagger’s performance with
SVD (we use 1k sentences or 21,506 tokens of gold sets). The
evaluation is performed automatically in Keras; It evaluates the
performance by comparing the tags assigned by the tagger and
our gold test set. However, while our goal is to build a tagger
that automatically annotates the security vulnerability tokens
with high precision and recall, as shown in (Table III row2),
the performance drops to 65%. The result indicates that the
taggers trained on well-formatted documents are ineffective at
annotating vulnerability tokens.

Experiment 2: In the second experiment, we train the fine-
tune tagger (target model) on security vulnerability training
data (gold set). Fine-tuning requires a small amount of training
data; thus, we leverage a manually POS annotated gold set
(7k sentences or 150,546 tokens) and fine-tune the tagger
with a minimal training rate. We re-train the last layer of the
model by keeping the rest layers of the architecture’s training
rate 0.0001. We then evaluate the tagger’s performance when
applying it to the security vulnerability tokens (we use the
same gold set (1k sentences or 21,506 tokens) that we used
in the first experiment). As shown in (Table III row3), the
fine-tuned POS taggers performance rises to 93.16%.

TABLE III
THE PERFORMANCE OF OUR POS TAGGER WHEN TRAIN IT WITH PTB

AND SECURITY VULNERABILITY DATASETS.

System Training Data Prec. Recall F1 Acc
POS tagger (source model) Well-formatted text 65% 54.98% 59.57% 95.01%

POS tagger + Fine-tune Gold set data 93.16% 91.06% 92.18% 93.22%
Improvement 28.16% 36.08% 32.61% 1.79%

Table III shows the achievement of our POS tagger (source
model) when trained it with well-formatted text (PTB), and the
target model—fine-tune the source model with a security vul-
nerability gold set. Overall, the PTB trained tagger correctly
identify 95.01% of the well-formatted English texts, while the
fine-tuned tagger achieved an accuracy of 93.22%. Our results
indicate that the fine-tuned POS taggers accuracy declines by
1.79% compared to the PTB trained POS tagger. However,
the recall is important, and it rises from 54.98% to 91.06%.
Moreover, the precision drastically up from 65% to 93.16%.
Similarly, the F1 climbs from 59.57% to 92.18%.

The result shows that the POS tagger (source model)
trained with PTB data cannot achieve a recall above 59.57%,
indicating that it will fail to annotate nearly three-fifth of
vulnerability tokens. However, a fine-tuned tagger has an F1
score of 92.18%. Based on the results, we can verify that

our approach is useful and adequate to annotate vulnerability-
specific vocabularies and jargon. The fine-tuned POS tagger
can be useful for annotating other vulnerability tokens in this
domain. In comparison, PTB trained tagger gives poor results
as the input moves to the SVD.

Furthermore, as the evaluation gold set is small (1k), we
manually analyze why two experiments provide two different
results. Our manual investigation shows that the PTB trained
POS tagger can identify only those well-formatted natural
language texts and failed to identify that domain-specific
jargon. In comparison, the fine-tuned POS tagger can identify
the vulnerability tokens as well as the well-formatted texts.

Thus, we verify that the tagger trained with general English
text can not be directly used in the security vulnerability
domain. However, we can verify that we can initially train the
POS tagger (source model) with the publicly available well-
formatted general texts and fine-tune the tagger by re-training
only some layers of the architecture with a small amount of
gold set rather than manually preparing the training data.

To sum up, we show that our fine-tuning approach is
effective, a gold set is too sensitive, and errors in the gold set
annotation affect the taggers overall performance. Thus, the
gold set can be small, but it should be a high-quality set of
POS annotated vulnerability tokens. This gold set specifies for
each example what the correct output of the tagger should be.
Our tagger can learn from these examples, and the correctness
of its performance can be measured on annotated examples
that are not seen during training. The other important task is
our custom tokenization; it treats the vulnerability or software
engineering data such as functions, methods, and codes as a
token rather than splitting them as NLP tokenizers do. We can
verify that the custom tokenization affects the performance of
the tagger; without this, it performs only 84.5%.

C. The Comparison with Other Approaches (RQ2)
1) Compare Against Pre-trained Taggers: In this subsec-

tion, we compare the performance of our POS tagger with oth-
er pre-trained POS tagging approaches to assigning likely POS
tags to a sequence of tokens. Due to the lack of SVD taggers
to perform straight comparisons, we choose two popular “off-
the-shelf” taggers; namely, Stanford2 and NLTK3, that are pre-
rained with well-formatted documents (PTB) collected from
WSJ. First, we evaluate both pre-trained POS taggers with
the gold evaluation set, 1k sentences, or 21,506 SVD tokens.
Second, we evaluate those taggers with PTB POS annotated
evaluation set (1k sentences), a well-formatted English text.
For all experiments comparing pre-trained taggers with our
tagger, the evaluation set used by all the taggers is always the
same. Besides, all pre-trained taggers and our tagger use the
same PTB tagset.

We investigate the effectiveness of those “off-the-shelf”
POS taggers on SVD, compared with their performance on
a well-formatted document (see Fig. 7). We apply the POS
taggers on the gold set and evaluate their performance by

2https://nlp.stanford.edu/software/tagger.shtml
3https://www.nltk.org/api/nltk.html



comparing the tags assigned by these POS taggers and our gold
set. The tagger is regarded as correct if the tag it guesses for a
given token is the same as the gold set tag. To assure impartial
comparison, we only compare the POS tagging accuracy to
measure the achievement of POS taggers on SVD.

Fig. 7. (a) is the performance of our POS tagger, (b) is the loss, and (c) is
performance comparison of all the three taggers with 1k evaluation gold set.

Table IV shows the accuracy of POS taggers on gold
evaluation set and their accuracy on a well-formatted text.

TABLE IV
PERFORMANCE OF THE POS TAGGERS ON SECURITY VULNERABILITY

DESCRIPTIONS, COMPARED WITH THEIR PERFORMANCE ON A
WELL-FORMATTED ENGLISH LANGUAGE TEXTS.

System Vulnerability Descriptions English Text Error
Stanford Tagger v3.9.2 (2018) 75.5% 97.32% 21.82%
NLTK Tagger v3.4.5 (2019) 65% 97% 32.00%
Fine-tune POS Tagger (Our) 93.22% 95.01% 1.79%

From Table IV, we note that the POS taggers achieve an
accuracy of 65% to 93.22% on the sample gold set data. The
fine-tune POS tagger performs the best, 93.22%, which outper-
forms that of the Stanford Tagger (75.5%) and NLTK (65%).
Stanford and NLTK Taggers perform poorly in recognizing
SVD, and accuracy drops from 97.32% to 75.5% in Stanford
Tagger and 97% to 65% in NLTK Tagger. The last column in
Table IV shows the ratio of the accuracy of POS taggers on
SVD and their accuracy on the well-formatted English text.
The error reduction is as significant as 32.00% in NLTK and
21.82% in Stanford Tagger. Although the accuracy of our
POS Tagger reduces comparatively, the difference between
its performance on security vulnerability texts and the well-
formatted document is, only 1.79%.

2) Compare Against Re-trained Taggers: Stanford and
NLTK tagger provide a set of features and optimization
options for users to configure. Thus, we re-train both Stanford
and NLTK taggers using the SVD training set. For a fair
comparison, we use the same training set (7k gold set) and
evaluation set (1k gold set) that we used for fine-tuning. Hence,
all taggers, including our fine-tuned tagger, are trained and
evaluated with the same gold set. Similar to our POS tagger,
we partition the 7k gold set into training (70%), validation
(10%), and testing (20%). We also use the same evaluation
methods as our fine-tuned POS tagger. We apply the POS
taggers on the evaluation set and determine their performance
by comparing the tags assigned by those POS taggers and our
gold set annotation. The tagger is regarded as correct if the
tag it guesses for a given token is the same as the gold set
tag. Then, we report the accuracy, precision, recall, and F1 to
measure POS taggers’ performance on SVD (see Table V).

Table V shows the evaluation results for all the three
POS tagging approaches on the security vulnerability dataset.
Overall, 93.22% of the security vulnerability tokens are cor-
rectly tagged by our POS tagger, while Stanford and NLTK

taggers achieve an accuracy of 90.8% and 87.1%, respectively.
Results from our evaluation show that the NLTK tagger gives
comparatively lower precision and recall. While its precision
is 85.5%, the recall drops to 80%. Compared with NLTK,
Stanford tagger improves both precision and recall by 3.5%
and 5.5%, respectively. Among the three compared approach-
es, our POS tagger achieves the best precision and recall.
While the precision is 93.16%, the recall reaches to 91.06%.
Thus, our tagger achieves 7.66% higher precision and 11.06%
higher recall compared to the NLTK tagger and 4.16% higher
precision and 5.56% higher recall than the Stanford tagger.
Moreover, our tagger has the highest F1 score (92.18%), while
Stanford achieved (88.3%) and the lowest NLTK (84%). The
results indicate that our POS tagger is successful in annotating
vulnerability tokens than Stanford and NLTK taggers. For
example, our tagger has precision (93.16%), which indicates
that when tokens are annotated, in more than 93.16% of the
cases, they are indeed annotated with the correct POS tags.

TABLE V
PERFORMANCE COMPARISONS OF THE POS TAGGERS ON SECURITY

VULNERABILITY DESCRIPTIONS

System Acc. Prec. Recall F1
Stanford Tagger v3.9.2 (2018) 90.8% 89.00% 85.5% 88.3%
NLTK Tagger v3.4.5 (2019) 87.1% 85.5% 80.00% 84.00%
Fine-tune POS Tagger (Our) 93.22% 93.16% 91.06% 92.18

Furthermore, we draw samples randomly from the POS
annotated results, 100 samples from each tagger’s output, and
manually re-annotated them from scratch. We compare those
re-annotated tokens with the taggers’ annotation results. We
see that the most common incorrect tag classes made by re-
trained taggers are proper nouns. For example, 8 proper nouns
are annotated differently, results in error rates of re-trained
taggers on the proper noun 92%.

D. Evaluating Word Embedding (RQ3.)
In this subsection, we perform three subsets of unsupervised

word embedding experiments to investigate the effect of
embedding features on the performance of our POS tagger.
In all experiments, the effectiveness of embedding models is
evaluated by the performance of the tagger when the pre-
trained embedding model is used as a component in a pre-
trained fashion. Except for the first experiments, others are
based on CBOW with a negative sampling approach. Our
CBOW is trained to predict whether or not the predicted from
input context words, and the target is the same by computing
their dot products. Labels are of value 0 and 1 depending on
the input context words are negative or positive samples.

Experiment 1: We use the pre-trained word2vec4 tool to ex-
tract features from unannotated security vulnerability corpus.
Word2Vec is pre-trained on the Google News dataset. We give
the vulnerability corpus as input, and the tool returns the word
vector as output. We let the resulting word vector file be used
as a feature to our POS tagger. Table VI raw2 shows that the
tagger achieves an accuracy of 87%.

4Repository:https://code.google.com/archive/p/word2vec/



Experiment 2: We train a word embedding using well-
formatted English texts (PTB) from scratch. We feed the
vulnerability corpus to the pre-trained model and compute
vector representations of words. The resulting word vector file
is then used as a component of the POS tagger. Table VI row3
shows that the POS tagger achieve an accuracy of 90.8%.

Experiment 3: We further investigate by training the word
embedding model using the merged corpus of PTB and
security vulnerability text. We first construct a vocabulary from
the training data and then learns the vector representation of
words. We experiment with different embedding vector and
context window sizes, and our model works the best with
an embedding dimension size of 100 and a context window
size of 3. To evaluate the quality of word embeddings, we
compute the cosine similarity of the context and the target
words. Our focus is to improve the embedding model to cluster
the vector representations of security vulnerability words so
that similar words be clustered in the same category. Similar
to the previous experiments, the resulting embeddings, vector
representations of the merged text corpus, are used as a
component of our POS tagger. Table VI row4 shows that the
POS tagger achieves an accuracy of 93.22%.

TABLE VI
THE EFFECT OF EMBEDDING FEATURE ON THE PERFORMANCE OF OUR

POS TAGGER, WHEN TRAINED WITH DIFFERENT DATASETS.

Embedding Description Training Data Embedding (Acc.) Tagger (Acc)
Word2vec-toolkit Pre-trained Well-formatted Text - 87%
Our Embedding Trained Well-formatted (PTB) 98% 90.8%
Our Embedding Trained Combined corpus 97.8% 93.22%
“word2vec−toolkit”−pre−trainedvectorstrainedonpartofGoogleNewsdataset(about100billionwords)

Table VI shows our POS tagger’s achievement when the
pre-trained word embedding model is used as a component.
Overall, we find that training the word embedding by combin-
ing the PTB dataset and security vulnerability text can boost
tagging accuracy by 6.33% and 2.53%, respectively. When
word2vec embedding is used as a feature, our tagger achieves
relatively lower accuracy (87%). However, using the PTB-
trained word embedding, the tagger achieves 90.8% accuracy
while on the combined corpus, the tagger’s accuracy climbs
to 93.22%. From the table, it can be inferred that word2vec
pre-trained on general corpora is poorly capture domain-
specific features; the POS tagger’s accuracy drops to 87%.
The problem of pre-trained word2vec is that, when the trained
model gets something the model does not know during model
training, it categorizes all in one class called ‘unknown’. Those
words classified into unknown are not similar to each other.
As a result, their semantic meaning is lost. We also report
the achievement of the unsupervised word embedding trained
using the combined corpus, which provides an accuracy of
97.8%, while the loss is 0.06, in 75 epoch, shown in Fig. 8.

Fig. 8. Performance of our word Embedding model when trained with PTB
plus security vulnerability texts, (a) is the performance, (b) is the model loss

We only measure the training accuracy and loss of the
embedding model, since the training is unsupervised, the
evaluation needs domain knowledge. We verify that training a
domain-specific word embedding has a significant impact on
the performance of POS tagging.

E. Feature Ablation (RQ4)
We perform feature ablation experiments to investigate the

effect of a particular feature on the accuracy of our POS tagger,
as shown in Table VII.

TABLE VII
THE EFFECTS OF INDIVIDUAL FEATURES ON TAGGER’S PERFORMANCE

Features Accuracy
Our POS tagger with all features 93.22%

Without punctuation POS tag dictionary/with 36 basic PTB POS tags 91%
Without Character-Based BiLSTM (Orthographic) 89.8%

Without contextual features 92.2%
Without our custom tokenizer/with Stanford Tokenizer 84.5%

Without our Word embedding/with pre-trained word2vec Embedding 87%%

As illustrated in Table VII, we ablate one feature at a time
and test the resulting accuracy. Overall, our custom tokenizer
and word embedding features are essential in tagging security
vulnerability texts; without these, the tagging accuracy drops
to 84.5% and 87.7%, respectively. Our results also show that
using a character-based BiLSTM feature can boost tagging
accuracy by 3.42%, which indicates that extracting features
that depend on writing has a significant impact on the tagger’s
performance. Our tagger performs the best accuracy (93.22%)
by combining all its features. Contextual and tag dictionary
features have relatively less impact on the tagger’s accuracy,
increases by 1.02%, and 2.20%, respectively. Overall, we ob-
serve that the lack of one particular feature impacts the tagger’s
accuracy. Despite this, domain-specific word embedding and
tokenization significantly impact the tagger’s accuracy.

F. Error Analysis

Despite having the best results of the experiments, our
approach generates an incorrectly annotated security vulner-
ability tokens, which is discussed in this section.

First, our approach processes unstructured descriptions of
vulnerabilities, which are initially reported by online users
(contributors). These descriptions contain mixed language
studied with codes, and some are vague (see Fig. 1). Due to
the noisy characteristics of online data feeds, the POS tagger
sometimes gives an error result when annotating grammat-
ically incorrect sentences, which results in an accuracy de-
cline. We cannot avoid mistakes due to human characterizing
(ungrammatical sentences) at the source data. However, we
believe that we minimize these problems by using character-
level and word representations as a combined feature.

Second, some tokens in the end or beginning of method
names are incorrectly identified as verbs by our tagger. For
example, the method names “mostActiveCommitters.do”
and “append()” where “do” and “append” are isolated
from the method names and are annotated as verbs. As we
mentioned earlier, our custom tokenizer keeps only spaces
between tokens, and it treats as one token otherwise. Hence,
‘‘mostActiveCommitters.do” and “append()” are treated



as one token, and annotators identified them as proper nouns.
However, in some cases, the annotators give a space between
the method name “append” and left parenthesis “(, ” resulting
in “append” is incorrectly annotated as a verb; similarly,
they give space before the token “do, ” and it is incorrectly
annotated as a verb. This error indicates how the gold set
examples are too sensitive. Our tagger learns from these exam-
ples. The tagger’s correctness is measured on those annotated
examples (gold set) that were not seen during training. To
investigate how big the problem is, we write a script and run
on the samples. We identified very few differences between
human annotations. The problem is not a lack of knowledge
by expertise; rather, manual works can not be error-free.

G. Threats to Validity

1) Internal Validity: In our approach, the first threat to
internal validity may begin when SVDs are reported by
online users (contributors). The natural characteristics of these
online data feeds are noisy and ungrammatical. Although
we automatically scrape those online data feeds, we cannot
avoid mistakes due to human characterizing at the source
data reporting, which may affect our approach in assigning
POS tags to grammatically incorrect sentences. The popular
security vulnerability advisor sources such as NVD have
analysts who manually fix such errors before vulnerability
reports are publicly accessible in their repository. In the future,
we will extend our approach to minimize the threat related to
underreporting vulnerability information from the contributors.

The other threat to internal validity is that of gold set
annotation, POS tags being challenging to determine in some
cases. We invite 10 participants to annotate the gold set. This
document is regarded as a ground truth data to evaluate our
models only if all the ten annotators agree with it. As of
any hand-operated annotations, there might be some cases
where the participants may not have accurately annotated the
POS tag. For example, the annotators’ inter agreement rate
is 97.09%), indicating some errors (2.91%). We attempted to
mitigate this threat by double-checking at the most challenging
jargon and domain-specific vocabularies. To limit this threat,
we have an annotator with expertise in security vulnerability
and a second annotator with linguistics (particularly in the POS
tagging task) knowledge sit together, discuss and annotate the
most challenging jargon, and domain-specific vocabularies.

2) External validity: It is concerned with whether the
experimental results can be generalized to our datasets. To
maximize the validity to some extent, we crawl security
vulnerability reports from NVD and its associated compo-
nents such as CWE, CAPEC, and CVE databases. Moreover,
using the universal characteristics of CVE-ID, we extract
vulnerability information from cybersecurity blogs such as
Twitter vulnerability web services. Although these vulnerabil-
ity reports contain 8,622,302 tokens, there are other security
vulnerability advisory sources such as OSVDB that keep track
of vulnerability information that is not included in this study.
Still, we believed that the general structure of vulnerability
descriptions and reporting formats are similar due to the

universal characteristics of CVE-ID. However, there may be
insignificant differences in characterizations of security vul-
nerabilities in other advisory sources. Accordingly, the results
can be generalized to vulnerability reports in this domain.

VI. RELATED WORK

POS tagging in the security vulnerability domain has not
been investigated. However, in the software engineering do-
main, recently, there has been growing concern in developing
POS tagging tools, including software-specific POS tagger for
Stack Overflow [20], heuristics-based POS tagging of source
code [18], [21], [22], [47], and machine learning approach [3].
On the other hand, POS taggers are built for software doc-
umentation and bug reports. For example, [48], [49] study
the POS tagging of bug reports. Tian et al. [50] compared
POS tagging techniques on bug reports and show that the
news-trained taggers’ performance drop on bug reports. More
recently, Pârtachi et al. [51] devise an approach called, POST-
to do POS tagging on text which contains both natural lan-
guage and source code. Compared to StORMeD [52], POSIT,
which is based on BiLSTM neural network, advances the
state-of-the-art on mixed text tagging. However, except POST,
those works are based on heuristics and supervised learning
techniques, which require much expensive human effort. In
contrast, our POS tagger processes SVD rather than source
code, Stack Overflow, and bug reports. We apply state-of-the-
art deep learning approaches instead of traditional machine
learning and hand-crafted rule-based approach. Comparing to
those works, we provide a POS tagger designed for processing
security vulnerability information from online data sources.

VII. CONCLUSION
In this paper, we present a fine-tuning approach that trains

a source model on a large newswire corpus and then uses the
learned knowledge as prior knowledge for training the target
model on a small amount of security vulnerability data. Our
evaluation shows that our tagger correctly identifies a broad set
of security vulnerability tokens and natural language contents,
which are extremely useful to downstream applications such
as security systems, and support cybersecurity analysts and
developers to gain accurate vulnerability information as quick-
ly as possible. We believe that the findings from this work,
including the published resources, such as POS annotated
corpus (∼8M tokens), web scraper tool, and trained models
will be at the forefront of other future studies, which will add
insight in this domain and allow for automated processing
and enhanced research. In the future, we plan to introduce
new POS tags and extend our work for POS tagging of
software engineering discussion forums, which can support
many downstream applications.
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