
Münsteranian Torturials on Nonlinear Science
edited by Uwe Thiele, Oliver Kamps, Svetlana Gurevich

Continuation

DRIST: linear stability of sliding drops on
an inclined homogeneous substrate

Uwe Thiele1

Version 3, Jan 2022

For updates see 10.5281/zenodo.4546407

1with support of Frank Ehebrecht, Frank Lengers, Meshari Alesemi, Dimitri Tseluiko, Thomas Seidel, Simon
Hartmann

http://dx.doi.org/10.5281/zenodo.4546407

Continuation: DRIST Münsteranian Torturials

Abstract

The tutorial DRIST is one of a series of tutorials on the practical application of numerical
path-continuation methods for problems in soft matter and pattern formation. It is part
of the “Münsteranian Torturials on Nonlinear Science”. The tutorial employs continuation
techniques to calculate selected stationary states of a driven thin-film equation together
with their linear stability, i.e., steady profiles, their eigenvalues and eigenfunctions are
continued in parallel. Retracing the various steps for this particular problem, you will be
able to apply the technique to any equation of this form. Beside auto07p you will need
MatLab to be able to use this tutorial. It is recommended to consider this tutorial after
the tutorials CCH [1] and/or SLIDROP [2].

1 Model
The tutorial DRIST is part of the “Münsteranian Torturials on Nonlinear Science”, a series of
hands-on tutorials that shall facilitate the practical application of numerical path-continuation
methods [3, 4, 5] for problems in soft matter and pattern formation by lowering the entrance
threshold for systems where side conditions as, e.g., conservation laws and translational in-
variance have to be taken into account. The present tutorial is based on the code package
auto07p [6] and also employs MatLab [7]. An overview of all available tutorials in the series
and a description of a recommended sequence of working through them is given in Ref. [8].
It shows how to determine the linear stability of one-dimensional (1d) stationary solutions of
equations like the driven thin-film equation (as in tutorial SLIDROP [2], or Refs. [9, 10]),

∂t h = −∂x
{
Q(h) ∂x

[
∂xxh

Bo
− ∂hf(h)

]
+ χ(h)

}
(1)

together with their linear stability employing continuation. A special case is the driven Cahn
Hilliard equation (see tutorial CCH [1], or Refs. [11, 12, 13, 14]). We have included the so called
Bond number Bo in order to have a general form of the thin-film equation (Bo is used, e.g., in
[10]. As it is always possible to include Bo in the x-scale in this tutorial we set Bo = 1 in the
following even though all provided codes use the general eq. (1).
As for such an equation with lateral driving, in general, eigenvalues and eigenfunctions are
complex, one is not able to detect all eigenvalues as branching points. This is only possible for
real eigenvalues (see tutorial LINDROP [15]). In consequence, the presented technique is based on
a combination of auto07p [6, 3, 16] and Matlab [7] steps and may easily be adapted to related
equations. Auto07p is employed for all continuation steps and MatLab for the solution of the
eigenvalue problem. The general procedure was first employed in the context of transversal
(front) instabilities in [17, 9] and for sliding drops on heated substrates in [10].
The example in the tutorial utilizes Q(h) = 1, χ(h) = D

2
h2 and f ′′(h) = 3h2−1, i.e., the driven

Cahn Hilliard equation. Corresponding results are published in [14].
We now introduce the coordinate frame moving with v by x̃ = x − vt (cf. tutorial SLIDROP
[2]) and determine the steady state solutions h0(x̃) in the comoving frame. After dropping the
tildes we obtain:

− v∂x h0 = −∂x {Q(h0) ∂x [∂xxh0 − ∂hf(h0)] + χ(h0)} . (2)

Integrating eq. (2) once gives the equation for the steady states in the comoving frame, i.e.,
stationary travelling states in the laboratory frame

0 = Q(h0) ∂x [∂xxh0 − ∂h0f(h0)] + χ(h0)− vh0 − C0. (3)

1

Continuation: DRIST Münsteranian Torturials

To calculate the linear stability, one employs eq. (1) in the comoving frame, introduces the
ansatz h(x̃, t) = h0(x̃) + εh1(x̃) eβt, and linearizes in ε � 1. After dropping the tildes the
linearised problem can be written as a linear eigenvalue problem of the form

βh1(x) = L[h0]h1(x), (4)

with the complex growth rate β as eigenvalue, the complex perturbation mode h1(x) as eigen-
function and L[h0] as a linear operator acting on h1(x). In expanded form this equation is

βh1(x) = −Q0∂xxxxh1 +Q0∂xx ((∂hhf0)h1) + v∂xh1 − ∂x ((∂hχ0)h1)

− (∂hQ0) [∂x (h1∂xxxh0 − 2 (∂hhf0) (∂xh0)h1) + ∂xh0∂xxxh1 + (∂hhf0) (∂xh0)h1]

− (∂hhQ0) [∂x (∂xxh0 − ∂hf0) (∂xh0)h1] , (5)

where Q0 := Q(h0), ∂hQ0 := ∂hQ(h0) etc. and

∂xx(h1∂hhf0) = h1xxfhh(h0) + 2h1xh0xfhhh(h0) + h1h0xxfhhh(h0) + h1h
2
0xfhhhh(h0).

∂x ((∂hχ0)h1) = ∂hhχ0h0xh1 + (∂hχ0)h1x (6)

The eigenvalues and eigenfunctions of eq. (5) (i.e., of the operator L[h0]) are calculated by the
MatLab code get_eigen.m. It determines the eigenvalues and eigenfunctions for a certain solu-
tion h0 obtained, e.g., with the tutorial SLIDROP [2]. The eigenvalues/eigenfunctions are then
separated into real and imaginary cases which are then handled separately with continuation
codes linslidrop_real.f90 and linslidrop.f90, respectively.
To that end, we introduce in eq. (5) the real quantities βr, βi, h

(r)
1 , h

(i)
1 by writing β = βr + iβi

and h1(x) = h
(r)
1 (x) + ih

(i)
1 (x). This results in the two equations

Q0∂xxxxh
(r)
1 = −βrh(r)1 + βih

(i)
1 +

[
L[h0]h

(r)
1 −Q0∂xxxxh

(r)
1

]
Q0∂xxxxh

(i)
1 = −βrh(i)1 − βih

(r)
1 +

[
L[h0]h

(i)
1 −Q0∂xxxxh

(i)
1

]
(7)

To use auto07p, we write eq. (7) as a system of first-order autonomous ordinary differential
equations on the interval [0,1]. Therefore, we introduce for the steady state u1 = h0 − h̄0,

u2 = dh0
dx

and u3 = d2h0
dx2

, for the real part of the eigenfunction u4+j =
djh

(r)
1

dxj
(j = 0, 1, 2, 3) and,

analogously, for the imaginary part of the eigenfunction u8+j =
djh

(i)
1

dxj
(j = 0, 1, 2, 3).

In total, this results in a system of 3 + 4 + 4 = 11 ordinary differential equations. For the sake
of brevity, here we only give the 7 equations for the case βi = h

(i)
1 = 0 and the case Q = 1 of

the example studied here (see Appendix for the full set of equations).

u̇1 = Lu2

u̇2 = Lu3

u̇3 = L
(
∂hhf(u1 + h̄0)u2 − χ(u1 + h̄0) + v(u1 + h̄0) + C0

)
u̇4 = Lu5

u̇5 = Lu6

u̇6 = Lu7

u̇7 = L
[(
−βr + f ′′′(u1 + h̄0)u3 + f ′′′′(u1 + h̄0)u

2
2 − χ′′(u1 + h̄0)u2

)
u4+(

2u2f
′′′(u1 + h̄0) + v − χ′(u1 + h̄0)

)
u5 + f ′′(u1 + h̄0)u6

]
(8)

2

Continuation: DRIST Münsteranian Torturials

where L is the physical domain size and dots and primes denote derivatives with respect to
ξ = x/L and h respectively.
eq. (8) are the equations used in linslidrop_real.f90 for the continuation of real eigenvalues
in the case of Q = 1. The full set of equations for the continuation of complex eigenvalues with
linslidrop.f90 is listed in the Appendix.
The whole procedure is the following:

1. A continuation run of tutorial SLIDROP with auto07p determines stationary solutions of
eq. (1) and writes solutions at particular parameter values into solution files.
Run 1 follows sitting drop solutions, in particular, for two identical drops that sit beside
each other (ANZ=2 in slidrop.f90).
Then, Run 11 increases the inclination of the substrate from zero, and continues the
sliding drops that still have the L/2 translational symmetry as the drops in run 1. Two
branching points are detected that correspond to pitchfork bifurcations that break this
symmetry.
Run 111 then switches to one of these side branches with the broken symmetry.

2. The solution files are read into the MatLab code get_eigen.m that determines eigenvalues
and eigenfunctions at those parameter values. The code then generates the respective c.-
files for further continuation.

3. The obtained eigenvalues/eigenfunctions are then continued together with the stationary
solutions via the auto07p codes linslidrop_real.f90 (real eigenvalues) and linslidrop.f90
(complex eigenvalues).

3

Continuation: DRIST Münsteranian Torturials

2 Runs:
The diagrams in Figs. 1-4 are determined through the continuation runs presented in the
following table. The white fields describe what the individual runs do and mention important
parameter settings including necessary changes. The grey fields give the auto07 commands on
the left when using the (modern) Python interface and on the right when using the more classic
command line approach.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.5 1 1.5 2 2.5 3 3.5 4

β
r

D

Figure 1: Shown is the real part of eigenvalues of eq. (4) as obtained by continuation
runs 2 to 41. Full lines correspond to real eigenvalues, dashed lines to complex ones.
Vertical black lines mark the positions on which the explicit calculation of eigenvalues by
the matlab code is performed. The right one corresponds to the first calculation in run
ML1 and the left one serves to validate the continuation in run ML2.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.5 1 1.5 2 2.5 3 3.5 4

β
i

D

Figure 2: Shown is the imaginary part of eigenvalues of eq. (4) as obtained by continu-
ation runs 2 to 41. The colors correspond to the real parts in Fig.(1).

4

Continuation: DRIST Münsteranian Torturials

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

h(
ξ)

ξ

Figure 3: Stationary state h0 that is used in get_eigen.m. The solution in red cor-
responds to LAB28 of run 1 used in runML1 and the blue solution to LAB35 used in
runML2.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

h(
ξ)

ξ

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

h(
ξ)

ξ

Figure 4: Left: Stationary state and real part of two complex eigenfunctions. The
stationary state of run 1 is marked in full lines black. The dashed red line corresponds
to the unstable complex eigenvalue used inrun 4 and the dotted blue line to the stable
one used in run3.
Right: Imaginary part of the calculated eigenfunctions in runML1. The full lines corre-
spond to negative imaginary part of the eigenvalue, the dashed lines to the positive. The
colors match to the corresponding real part in the left panel.

5

Continuation: DRIST Münsteranian Torturials

Python interface command line Terminal command line

auto

run 1 Determine steady solutions without driving (PAR(41)= D = 0) as a function of domain
size L, starting at the critical Lc with a small amplitude sinusoidal solution. Mean thickness is
fixed. Compute the branch of periodic solutions for h̄0 = 0.4.
Continuation parameters: L (PAR(5)), C0 (PAR(6)) and v (PAR(42))
Parameters: IPS= 4, ISP= 0, ISW= 1, ICP= [5, 6, 42];
Starting from function STPNT;
Save output-files as b.slidrop1, s.slidrop1, d.slidrop1
r1=run(e='slidrop',c='slidrop.1',sv='slidrop1') @@R slidrop 1

@sv slidrop1

run 11 Restart at domain size L = 22, keep mean thickness h̄0 fixed and perform a continu-
ation in driving strength D.
Continuation parameters: D (PAR(41)), C0 (PAR(6)), v (PAR(42))
Parameters: IPS= 4, ISP= 2, ISW= −1, ICP= [41, 6, 42];
Starting from LAB2 of run 1;
Save output-files as b.slidrop11, s.slidrop11, d.slidrop11
r11=run('slidrop1',e='slidrop',c='slidrop.11',sv='slidrop11')@@R slidrop 11 slidrop1

@sv slidrop11

run 111 Restart at a branching point from run 11 (LAB4), switch branches (ISW= −1)
and continue in D (PAR(41)). One writes down every 5th solution (NPR= 5) to be able to
calculate the linear stability at those points;
Continuation parameters: D (PAR(41)), C0 (PAR(6)), v (PAR(42))
Parameters: IPS= 4, ISP= 2, ISW= −1, ICP= [41, 6, 42];
Starting from LAB4 of run 11;
Save output-files as b.drist1, s.drist1, d.drist1
r111=run('slidrop11',e='slidrop',c='slidrop.111',
sv='drist1')

@@R slidrop 111 slidrop11
@sv drist1

run ML1:MatLab
Compute eigenfunctions and eigenvalues at PAR(41)= D ≈ 0.97 (LAB28 of run111) by using
MatLab (sol_nbr=28 in line 27 of get_eigen.m). This code will calculate the 7 biggest eigen-
values and the corresponding eigenfunctions;
Starting from *.drist1;
Save output-files as ml_real_outX.dat or ml_cplx_outX.dat depending on the number of the
eigenvalue X and whether the eigenvalue ist real or complex.

matlab -nodesktop -nosplash -nojvm -r
get_eigen

run 2 Follow the real eigenvalue (ml_real_out5.dat) extracted by the matlab code in pa-
rameter D (PAR(41)), v (PAR(42)), βr (PAR(7)) and C0 (PAR(6)).;
Continuation parameters: D (PAR(41)), v (PAR(42)), C0 (PAR(6)), βr (PAR(7));
Parameters: IPS= 4, ISP= 0, ISW= 1, ICP= [41, 42, 6, 7];
Starting from ml_real_out5.dat;
Save output-files as b.linslidrop2, s.linslidrop2, d.linslidrop2

6

Continuation: DRIST Münsteranian Torturials

r2=run(e='linslidrop_real',c='linslidrop_real.5',
sv='linslidrop2')

@@R linslidrop_real 5
@sv linslidrop2

run 3 Follow the negative complex eigenvalue (ml_cplx_out7.dat) extracted by the matlab
code in parameter D (PAR(41)), v (PAR(42)), βr (PAR(7)), βi (PAR(8)) and C0 (PAR(6)).;
Continuation parameters: D (PAR(41)), v (PAR(42)), C0 (PAR(6)), βr (PAR(7)), βi
(PAR(8));
Parameters: IPS= 4, ISP= 0, ISW= 1, ICP= [41, 42, 6, 7, 8];
Starting from ml_cplx_out7.dat;
Save output-files as b.linslidrop3, s.linslidrop3, d.linslidrop3
r3=run(e='linslidrop',c='linslidrop.7',sv='linslidrop3')@@R linslidrop 7

@sv linslidrop3

run 31 Restart at a fold (LAB4) (marked by L in auto07p). Treating the fold as a bifurcation,
we try to switch branches (ISW= −1) and indeed go onto the branch of purely real eigenvalues.
Note that branch switching is possible even though no BR point was detected.
Continuation parameters: D (PAR(41)), v (PAR(42)), C0 (PAR(6)), βr (PAR(7)), βi
(PAR(8));
Parameters: IPS= 4, ISP= 0, ISW= −1, ICP= [41, 42, 6, 7, 8];
Starting from LAB4 of run 3;
Save output-files as b.linslidrop31, s.linslidrop31, d.linslidrop31
r31=run('linslidrop3',e='linslidrop',c='linslidrop.31',
sv='linslidrop31')

@@R linslidrop 31 linslidrop3
@sv linslidrop31

run 4 As in run 3, but now follow the unstable complex eigenvalue (ml_cplx_out1.dat). ;
Continuation parameters: D (PAR(41)), v (PAR(42)), C0 (PAR(6)), βr (PAR(7)), βi
(PAR(8));
Parameters: IPS= 4, ISP= 0, ISW= 1, ICP= [41, 42, 6, 7, 8];
Starting from ml_cplx_out1.dat;
Save output-files as b.linslidrop4, s.linslidrop4, d.linslidrop4
r4=run(e='linslidrop',c='linslidrop.1',sv='linslidrop4')@@R linslidrop 1

@sv linslidrop4

run 41 Restart at L Point (LAB2) of run 4 and proceed as in run 31.
Continuation parameters: D (PAR(41)), v (PAR(42)), C0 (PAR(6)), βr (PAR(7)), βi
(PAR(8));
Parameters: IPS= 4, ISP= 0, ISW= −1, ICP= [41, 42, 6, 7, 8];
Starting from LAB2 of run 4;
Save output-files as b.linslidrop41, s.linslidrop41, d.linslidrop41
r41=run('linslidrop4',e='linslidrop',c='linslidrop.41',
sv='linslidrop41')

@@R linslidrop 41 linslidrop4
@sv linslidrop41

7

Continuation: DRIST Münsteranian Torturials

run ML2:MatLab
Compute eigenfunctions and eigenvalues at PAR(41)= D ≈ 0.3 (LAB21 of run1) by using
MatLab. LAB21 corresponds to the 14th solution in run1 as it starts with LAB8, so change line
6 of get_eigen.m to sol_nbr=14. This code will calculate the 7 biggest eigenvalues and the
corresponding eigenfunctions. This run should serve as a validation of the previous procedure.
Compare the calculated eigenvalues with those calculated by continuation (see Fig.1);
Starting from *.drist1;
Save output-files as ml_real_outX.dat or ml_cplx_outX.dat depending on the number of the
eigenvalue X

matlab -nodesktop -nosplash -nojvm -r
get_eigen

clean() @cl

Table 1: Commands for running tutorial DRIST.

3 Remarks:
• We can switch to branches of real eigenvalues in run 31 and run 41 by using the equation

file for complex eigenvalues, thereby we would be able to analyze the whole parameter
space just by using the equation file linslidrop.f90.

• Adaptation of the codes to other χ, Q and f are, in general, possible. To do so one
has to define χ, Q and f in the .f90-files (lines 43-48 in slidrop.f90, lines 50-64 in
linslidrop_real.f90 and lines 60-74 in linslidrop.f90) and in the Matlab-code in
lines 382-442. One must also have in mind that the parameter indices in lines 34-53 may
have to be changed.

4 Tasks:
1. Use the code get_eigen.m somewhere else in parameter space, e.g. for D > 3 as one will

get some eigenvalues not visible in Fig.1.

2. Increase the number of eigenvalues calculated by get_eigen.m by increasing MaxEVs (line
35).

3. Follow the same procedure for the main branch of periodic steady states in the comov-
ing frame of run 11. One should observe eigenvalues crossing 0 at least at the detected
branching points.

4. Adapt the procedure for another kind of thin-film equation, e.g. the for the case of sliding
drops on a heated substrate in [10].

8

Continuation: DRIST Münsteranian Torturials

Appendix

The full set of equations incorporated in linslidrop.f90 are:

u̇1 = Lu2

u̇2 = Lu3

u̇3 = Bo·L
Q0

(
∂hhf(u1 + h̄0)u2 − χ(u1 + h̄0) + v(u1 + h̄0) + C0

)
u̇4 = Lu5

u̇5 = Lu6

u̇6 = Lu7

u̇7 = Bo·L
Q0

[(
Q0f

′′′(u1 + h̄0)u3 +Q0f
′′′′(u1 + h̄0)u

2
2 − χ′′(u1 + h̄0)u2

)
u4+(

2Q0u2f
′′′(u1 + h̄0) + v − χ′(u1 + h̄0)

)
u5 +Q0f

′′(u1 + h̄0)u6 − βru4 + βiu8
]

−Bo·L
Q0

(Q′0)
[
u2u7
Bo
− 2f ′′′

(
u1 + h̄0

)
u22u4 −2f ′′

(
u1 + h̄0

)
u2u5 − χ(u1 + h̄0)u5

−χ′(u1 + h̄0)u2u4 + v · (u1 + h̄0)u5 + vu2u4 + C0u5

+f ′′(u1 + h̄0)(u2u5 − u3u4) + u4(f
′′′(u1 + h̄0)u

2
2 + f ′′(u1 + h̄0)u3))

]
−Bo·L

Q0
(Q′′0)

[(
v(u1 + h̄0) + C0 − χ(u1 + h̄0)

)
u2u4

]
u̇8 = Lu9

u̇9 = Lu10

u̇10 = Lu11

u̇11 = Bo·L
Q0

[(
Q0f

′′′(u1 + h̄0)u3 +Q0f
′′′′(u1 + h̄0)u

2
2 − χ′′(u1 + h̄0)u2

)
u8+(

2Q0u2f
′′′(u1 + h̄0) + v − χ′(u1 + h̄0)

)
u9 +Q0f

′′(u1 + h̄0)u10− βru8 − βiu4
]

−Bo·L
Q0

(Q′0)
[
u2u11
Bo
− 2f ′′′

(
u1 + h̄0

)
u22u8 −2f ′′

(
u1 + h̄0

)
u2u9 − χ(u1 + h̄0)u9

−χ′(u1 + h̄0)u2u8 + v · (u1 + h̄0)u9 + vu2u4 + C0u9

+f ′′(u1 + h̄0)(u2u9 − u3u8) + u8(f
′′′(u1 + h̄0)u

2
2 + f ′′(u1 + h̄0)u3))

]
−Bo·L

Q0
(Q′′0)

[(
v(u1 + h̄0) + C0 − χ(u1 + h̄0)

)
u2u8

]

References
[1] U. Thiele. Münsteranian Torturials on Nonlinear Science: CCH - sliding clusters and

travelling waves in the convective Cahn-Hilliard equation. Ed. by U. Thiele, O. Kamps,
and S. V. Gurevich. 2021. doi: 10.5281/zenodo.4546352.

[2] U. Thiele. Münsteranian Torturials on Nonlinear Science: SLIDROP - sliding drops on
an inclined homogeneous substrate. Ed. by U. Thiele, O. Kamps, and S. V. Gurevich.
2021. doi: 10.5281/zenodo.4546381.

[3] E. Doedel, H. B. Keller, and J. P. Kernevez. “Numerical analysis and control of bifurcation
problems (I) Bifurcation in finite dimensions”. In: Int. J. Bifurcation Chaos 1 (1991),
pp. 493–520. doi: 10.1142/S0218127491000397.

[4] B. Krauskopf, H. M. Osinga, and J Galan-Vioque, eds. Numerical Continuation Methods
for Dynamical Systems. Dordrecht: Springer, 2007. doi: 10.1007/978-1-4020-6356-5.

9

https://doi.org/10.5281/zenodo.4546352
https://doi.org/10.5281/zenodo.4546381
https://doi.org/10.1142/S0218127491000397
https://doi.org/10.1007/978-1-4020-6356-5

Continuation: DRIST Münsteranian Torturials

[5] H. A. Dijkstra et al. “Numerical bifurcation methods and their application to fluid dy-
namics: Analysis beyond simulation”. In: Commun. Comput. Phys. 15 (2014), pp. 1–45.
doi: 10.4208/cicp.240912.180613a.

[6] E. J. Doedel and B. E. Oldeman. AUTO07p: Continuation and bifurcation software for
ordinary differential equations. Montreal: Concordia University, 2009. url: http://indy.
cs.concordia.ca/auto.

[7] MATLAB. Version 9.9.0.1570001 (R2020b) Update 4. 2020.

[8] U. Thiele. Münsteranian Torturials on Nonlinear Science: Overview of available tutorials
on path continuation. Ed. by U. Thiele, O. Kamps, and S. V. Gurevich. 2021. doi: 10.
5281/zenodo.4548111.

[9] U. Thiele and E. Knobloch. “Front and back instability of a liquid film on a slightly
inclined plate”. In: Phys. Fluids 15 (2003), pp. 892–907. doi: 10.1063/1.1545443.

[10] U. Thiele and E. Knobloch. “Thin liquid films on a slightly inclined heated plate”. In:
Physica D 190 (2004), pp. 213–248. doi: 10.1016/j.physd.2003.09.048.

[11] C. L. Emmott and A. J. Bray. “Coarsening dynamics of a one-dimensional driven Cahn-
Hilliard system”. In: Phys. Rev. E 54 (1996), pp. 4568–4575. doi: 10.1103/PhysRevE.
54.4568.

[12] A. A. Golovin et al. “Convective Cahn-Hilliard models: From coarsening to roughening”.
In: Phys. Rev. Lett. 86 (2001), pp. 1550–1553. doi: 10.1103/PhysRevLett.86.1550.

[13] M. D. Korzec et al. “Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-
type equations”. In: SIAM J. Appl. Math. 69 (2008), pp. 348–374. doi: 10 . 1137 /
070710949.

[14] D. Tseluiko et al. “Effect of driving on coarsening dynamics in phase-separating systems”.
In: Nonlinearity 33 (2020), pp. 4449–4483. doi: 10.1088/1361-6544/ab8bb0.

[15] U. Thiele. Münsteranian Torturials on Nonlinear Science: LINDROP - linear stability of
steady states on a horizontal homogeneous substrate. Ed. by U. Thiele, O. Kamps, and
S. V. Gurevich. 2021. doi: 10.5281/zenodo.4546375.

[16] E. Doedel, H. B. Keller, and J. P. Kernevez. “Numerical analysis and control of bifurcation
problems (II) Bifurcation in infinite dimensions”. In: Int. J. Bifurcation Chaos 1 (1991),
pp. 745–72. doi: 10.1142/S0218127491000555.

[17] J. M. Skotheim, U. Thiele, and B. Scheid. “On the instability of a falling film due to local-
ized heating”. In: J. Fluid Mech. 475 (2003), pp. 1–19. doi: 10.1017/s0022112002001957.

10

https://doi.org/10.4208/cicp.240912.180613a
http://indy.cs.concordia.ca/auto
http://indy.cs.concordia.ca/auto
https://doi.org/10.5281/zenodo.4548111
https://doi.org/10.5281/zenodo.4548111
https://doi.org/10.1063/1.1545443
https://doi.org/10.1016/j.physd.2003.09.048
https://doi.org/10.1103/PhysRevE.54.4568
https://doi.org/10.1103/PhysRevE.54.4568
https://doi.org/10.1103/PhysRevLett.86.1550
https://doi.org/10.1137/070710949
https://doi.org/10.1137/070710949
https://doi.org/10.1088/1361-6544/ab8bb0
https://doi.org/10.5281/zenodo.4546375
https://doi.org/10.1142/S0218127491000555
https://doi.org/10.1017/s0022112002001957

	1 Model
	2 Runs:
	3 Remarks:
	4 Tasks:

