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Abstract
In the tutorial SLIDROP is one of a series of tutorials on the practical application of

numerical path-continuation methods for problems in soft matter and pattern formation.
It is part of the “Münsteranian Torturials on Nonlinear Science”. The tutorial explores a
dimensionless thin-film equation closely related to the one in the tutorial SITDROP [1]. Here,
a lateral driving force is included and drops are examined that slide down an incline. You
will calculate stationary states, i.e., steady states in a frame moving at a constant velocity
(that is a nonlinear eigenvalue of the problem). The employed main control parameter
is the inclination angle. The employed code package is auto07p. It is recommended to
consider this tutorial after the tutorial SITDROP [1].

1 Model
The tutorial SLIDROP is part of the “Münsteranian Torturials on Nonlinear Science”, a series of
hands-on tutorials that shall facilitate the practical application of numerical path-continuation
methods [2, 3, 4] for problems in soft matter and pattern formation by lowering the entrance
threshold for systems where side conditions as, e.g., conservation laws and translational invari-
ance have to be taken into account. The present tutorial is based on the code package auto07p
[5]. An overview of all available tutorials in the series and a description of a recommended
sequence of working through them is given in Ref. [6].
SLIDROP illustrates the calculation of stationary sliding drop and surface wave solutions of the
dimensionless thin film equation

∂t h = −∂x {Q(h) ∂x [∂xxh− ∂hf(h)] + χ(h)} (1)

where Q(h) = h3 is the mobility function and χ(h) is the lateral driving. For an inclined
substrate it is χ = αQ(h) with α being the inclination angle. For background information see
[7, 8]. Examples of similar calculations with various f(h) can be found in [9, 10, 11]. The
term in square brackets corresponds to a pressure. The pressure used here is the same as in
the tutorial SITDROP [1] where it is explained in detail. Our aim is to study sliding drops and
surface waves that are steady in some co-moving frame, i.e., the drops slide with constant speed
v and shape. We introduce the coordinate in the frame moving with v by x̃ = x−vt and obtain
from Eq. (1) after dropping the tildes

− v∂x h = −∂x {Q(h) ∂x [∂xxh− ∂hf(h)] + χ(h)} (2)

Eq. (2) is integrated once to obtain

0 = Q(h) ∂x [∂xxh− ∂hf(h)] + χ(h)− vh− C0 (3)

where the constant C0 corresponds to the flux in the co-moving frame and the unknown velocity
v can be seen as a nonlinear eigenvalue of the problem. Note that C0 + vh is the flux in the
laboratory frame.
To use the continuation toolbox auto07p [5, 2, 12], we first write (3) as a system of first-order
autonomous ordinary differential equations on the interval [0, 1]. Therefore, we introduce the
variables u1 = h − h0, u2 = dh/dx and u2 = d2h/dx2, use χ(h) = αQ(h), and obtain from
equation (3) the 3d dynamical system (NDIM = 3)

u̇1 = Lu2
u̇2 = Lu3

u̇3 = L
[
u2f

′′(u1 + h0)− α + v(u1+h0)+C0

Q(u1+h0)

]
.

(4)
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Figure 1: The basic geometry for this problem. The profile is an actual solution to the
equation of this problem.

where L is the physical domain size, and dots and primes denote derivatives with respect to
ξ ≡ x/L and h, respectively. The advantage of the used form is that the fields u1(ξ), u2(ξ) and
u3(ξ) correspond to the correctly scaled physical fields h(Lξ), ∂xh(Lξ) and ∂xxh(Lξ). We use
periodic boundary conditions for all ui (NBC = 3) that take the form

u1(0) = u1(1), (5)
u2(0) = u2(1), (6)
u3(0) = u3(1), (7)

and integral conditions for mass conservation and computational pinning (to break the transla-
tional symmetry that the solutions have on the considered homogeneous substrate) (NINT = 2).
The integral condition for mass conservation takes the form∫ 1

0

u1 dξ = 0. (8)

There are two ways to start the continuation. Either (i) one sets α = 0 and uses as in the
tutorial SITDROP [1] the starting solution consisting of small amplitude harmonic modulation
of wavelength Lc = 2π/kc where kc =

√
−f ′′(h0) is the critical wavenumber for the linear

instability of a flat film of thickness h0 and also sets initially v = 0 and C0 = 0; or (ii) one
starts at some α 6= 0, uses small amplitude harmonic starting solution with Lc = 2π/kc and
initialises v = αQ′(h0) and C0 = αQ(h0) − vh0. In the present tutorial we use the former
option.
The number of free (continuation) parameters is given by NCONT = NBC+NINT−NDIM+1
and is here equal to 3. For more details see [8].
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2 Runs:
The diagrams in Figs. 2 and 3 are determined through the continuation runs presented in the
following table. The white fields describe what the individual runs do and mention important
parameter settings including necessary changes. The grey fields give the auto07 commands on
the left when using the (modern) Python interface and on the right when using the more classic
command line approach.
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Figure 2: An illustration for run 11 of tutorial SLIDROP is given. The L2-norm of
stationary solutions (steady in the frame moving with v) is shown in dependence of the
principal continuation parameter inclination angle α (par(41)) for fixed domain size L =
400 (par(5)) and mean thickness h0 = 5 (par(1)).
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Figure 3: Stationary film thickness profiles corresponding to Fig. (2) at inclination
angles as given in the legend. The profiles are represented by u1(ξ) = h(ξL) − h0 where
h0 = 5.
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Python interface command line Terminal command line

auto

run 1: Determine steady solutions on the horizontal substrate as a function of domain size L,
starting at the critical Lc with a small amplitude sinusoidal solution. Mean thickness is fixed.
Compute the branch of periodic solutions for h0 = 5 continued in L (PAR(5)) up to L = 400.
Remaining true continuation parameters: C0 (PAR(6)) and v (PAR(42));
Parameters: IPS= 4, ISP= 0, ISW= 1, ICP= [5, 6, 42],
Start data from function stpnt (IRS= 0)
save output-files as b.d1, s.d1, d.d1
r1 = run(e = 'slidrop', c = 'slidrop.1', sv =

'slidrop1')
@@R slidrop 1
@sv slidrop1

run 11: Restart at domain size L = 400, keep mean thickness h0 fixed and incline substrate
to observe transition from sliding drops to surface waves.
Continued in inclination α (PAR(41)) for fixed domain size L. Stop at α = 0.01
Remaining true continuation parameters: C0 (PAR(6)) and and v (PAR(42));
Other output: abs. value of minimal slope of h (PAR(46)), i.e., advancing dynamic contact
angle θadv; maximal slope of h (PAR(47)), i.e., receding dynamic contact angle θrec; Parameter:
IPS= 4, ISP= 0, ISW= 1, ICP= [41, 6, 42, 46, 47],
Start at final result of run 1: IRS= 7
save output-files as b.d11, s.d11, d.d11
r11 = run(r1, e = 'slidrop', c = 'slidrop.11',
sv = 'slidrop11')

@@R slidrop 11 slidrop1
@sv slidrop11

clean() @cl

Table 1: Commands for running tutorial SLIDROP.

3 Remarks:
• Beside the NCONT true continuation parameters that have to be given as ICP in the c.*

parameter file, one may list other output parameters as defined in the subroutine PVLS
in the *.f90 file.

• As in the tutorial SITDROP [1] one may define other integral conditions to determine
integral measures one might be interested in

• Screen output and command line commands are provided in README file.

4 Tasks:
After running the examples, you should try to implement your own adaptations, e.g.:

1. Redo runs 1 and 11 for other values of h0.

2. Try to run instead of run 11 a continuation with fixed C0. You need to ’set free’ another
parameter. This will not work if α = 0 initially. Start from a solution of the original run
11.
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3. Include additional integral condition(s), to measure characteristics of interest. These
might be the surface energy, wetting energy, total energy dissipation.

4. Replace the used Derjaguin pressure by a different one that you get from the literature.

5. Replace the used mobility function Q(h) by a different one. An option is Q = h2(h+ls)/3η
that incorporates slip of the liquid at the solid substrate (ls is the slip length).

5 Outlook
Building on the here presented application of continuation techniques to thin-film equations to
determine stationary sliding drops on homogeneous substrates you may advance to the tuto-
rials HETDRIV [13] and ROTFFTW [14] investigating steady droplets on a heterogeneous inclined
substrate and their stick-slip motion beyond depinning, respectively. Furthermore, tutorial
DRIST [15] determines the linear stability of sliding drops by continuing the corresponding
states, their eigenvalues and eigenfunctions in parameter space. This includes the determina-
tion of transversal instabilities of sliding liquid ridges.
In the literature one also finds examples of the continuation of sliding drops in 2d [16].
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