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Continuation: SITDROP Münsteranian Torturials

Abstract

The tutorial SITDROP is one of a series of tutorials on the practical application of
numerical path-continuation methods for problems in soft matter and pattern formation.
It is part of the “Münsteranian Torturials on Nonlinear Science”. The tutorial explores
an equation for steady drop- and hole-states derived from the dimensionless thin-film (or
lubrication) equation. You will calculate steady solution of the equation by continuation
in a number of different control parameters (domain size, liquid volume). The employed
code package is auto07p.

1 Model
The tutorial SITDROP is part of the “Münsteranian Torturials on Nonlinear Science”, a series of
hands-on tutorials that shall facilitate the practical application of numerical path-continuation
methods [1, 2, 3] for problems in soft matter and pattern formation by lowering the entrance
threshold for systems where side conditions as, e.g., resulting from conservation laws and trans-
lational invariance, have to be taken into account. The present tutorial is based on the code
package auto07p [4]. An overview of all available tutorials in the series and a description of a
recommended sequence of working through them is given in Ref. [5].
The tutorial illustrates the calculation of steady drop and hole states of the dimensionless thin-
film (or long-wave, or lubrication) equation [6, 7]. It is recommended to consider the tutorial in
comparison to the tutorial ACCH [8] that investigates the mathematically similar (but simpler)
Cahn-Hilliard equation [9].
The thin-film equation is an evolution equation for the height profile of a film or drop and is ob-
tained by long-wave approximation from the Navier-Stoles equations and boundary conditions
at the solid substrate and the free surface [6, 10, 11]. It reads

∂t h = −∂x {Q(h) ∂x [∂xxh− ∂hf(h)]} (1)

where Q(h) = h3 is the mobility factor (not relevant for steady states). The equation can
be written as a conserved gradient dynamics on an underlying energy functional similar to
the Cahn-Hilliard equation [12, 7, 13]. In Eq. (1), the term in square brackets represents
the negative of a pressure that consists of the Laplace (or curvature) pressure −∂xxh and
an additional contribution ∂hf(h) written as the derivative of a local free energy f(h). The
Laplace pressure is the pressure difference across a curved interface caused by its surface tension.
Here, only the curvature of the free surface of the drop gives a contribution. In long-wave
approximation it corresponds to the second spatial derivative of the height profile. For a sketch
of the considered geometry see Fig. 1 (a).
The local free energy has a particular form for each studied problem. It may contain contri-
butions due to wettability, hydrostatic pressure, electrostatic effects, or liquid-crystal elasticity
For specific examples see, e.g., [14, 15, 16, 17, 18]. In the tutorial we use a simple Derjaguin
(or disjoining/conjoining) pressure Π(h) = −∂hf(h) that describes wettability for a partially
wetting liquid (see reviews [19, 20, 21]). In particular, we employ the combination [16]

∂hf(h) = −Π(h) =
1

h3
− 1

h6
, (2)

as shown in see Fig. 1 (b). To study steady states, i.e., resting droplets or films, we set ∂th = 0
and integrate Eq. (1) twice. This is possible as the first integration constant, the flux C0, is
zero for systems without flow across the boundaries [10]. Then one may divide by the positive
definite Q(h) and integrate a second time.
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One obtains
0 = ∂xxh(x) − ∂hf(h) + C1. (3)

The constant C1 accounts for external conditions like chemical potential, vapor pressure or
mass conservation. Here we consider the latter case where C1 takes the role of a Lagrange
multiplier for mass conservation very similar to the role of µ in the tutorial ACCH [8]. To use
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Figure 1: Panel (a) provides a sketch of the geometry employed in the tutorial SITDROP.
It shows small droplet that coexists with an ultrathin adsorption or wetting layer (pre-
cursor film) in a situation with laterally periodic boundary conditions, as introduced in
Eq. (6). Note that the radius of curvature can be both positiv and negative and competes
with the Derjaguin pressure Π(h). Panel (b) gives typical functional dependencies of the
wetting energy f(h) and Π(h) = −df/dh.

the continuation toolbox auto07p [4], we first write (3) as a system of first-order autonomous
ordinary differential equations on the interval [0, 1]. Therefore, we introduce the variables
u1 = h−h0 and u2 = dh/dx, and obtain from equation (3) the 2d dynamical system (NDIM = 2)

u̇1 = Lu2
u̇2 = L [f ′(h0 + u1) − C1].

(4)

where L is the physical domain size, and dots and primes denote derivatives with respect to
ξ ≡ x/L and h, respectively. The advantage of the used form is that the fields u1(ξ) and u2(ξ)
correspond to the correctly scaled physical fields h(Lξ) and ∂xh(Lξ). We use periodic boundary
conditions for u1 and u2 (NBC = 2) that take the form

u1(0) = u1(1), (5)
u2(0) = u2(1), (6)

and two integral conditions (NINT = 2) that ensure (i) conservation of h and (ii) break the
translation invariance of the states for the considered homogeneous substrate and the periodic
BC. The integral condition for mass conservation (i) takes the form∫ 1

0

u1 dξ = 0. (7)

As starting solution we use a small amplitude harmonic modulation of wavelength Lc = 2π/kc
where kc =

√
−f ′′

0 is the critical wavenumber for the linear instability of a flat film of thickness
h0 and f ′′

0 = d2f/dh2|h0 . This results in C1 = f ′
0 as starting value for C1 where f ′

0 = df/dh|h0 .
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The number of free (continuation) parameters is given by NCONT = NBC+NINT−NDIM+1
and is here equal to 3.
As in the tutorial ACCH [8], there is a further complication as Eq. (4) corresponds to a conser-
vative dynamical system (not a dissipative one). This can be seen when noting that Eq. (3)
corresponds to Newton’s equation of motion when identifying x with time and h with position
in Newton’s law. This implies that there is a hidden constant of motion - the energy - and
trajectories in phase space are not attractors but form a dense one-parameter family of states.
To deal with this one employs an “unfolding parameter” ε that transforms the conservative into
a “virtual” dissipative system (with the same solutions). Different formulations are possible.
Here we use

u̇1 = Lu2 − ε[f ′(h̄+ u1) − C1]
u̇2 = L [f ′(h̄+ u1) − C1].

(8)

The technique is mentioned in the auto07p demo r3b [4] and further explained in Refs. [22,
23, 24]. It corresponds to the introduction of an unfolding term that embeds the conservative
system into a one-parameter family of dissipative systems. Periodic solutions only exist for
ε = 0.

2 Runs
The diagram in Fig. 2 is determined through the continuation runs presented in the following
table. The white fields describe what the individual runs do and mention important param-
eter settings including necessary changes. The grey fields give the auto07 commands on the
left when using the (modern) Python interface and on the right when using the more classic
command line approach.

0

0.5

1

1.5

2

2.5

3

20 30 40 50 60 70 80 90 100

L
2
-N

o
rm

domain size L

LC

Figure 2: An illustration of the result of run 1 is given. The L2-norm of steady states
is shown in dependence of the main continuation parameter domain size L (PAR5) for
a fixed mean film thickness h0 = 3.0. The arrow indicates the direction of the path
continuation.
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Python interface command line Terminal command line

auto

run 1: Determine steady solutions as a function of domain size L, starting at the critical Lc

with a small amplitude sinusoidal solution. Mean thickness h0 = 3 is fixed. One finds that the
primary bifurcation is subcritical, and that the branch turns towards larger L at a saddle-node
bifurcation at some Lsn < Lc.
Compute the branch of periodic solutions for h0 = 3 continued in L (PAR(5)) up to L = 100.
Remaining true continuation parameters: C1 (PAR(6)) and ε (PAR(2));
Other output: amplitude of h (PAR(7)), maximal slope of h. i.e., the mesoscopic contact
angle θmes (PAR(46))
Parameter: IPS= 4, ISP= 0, ISW= 1, ICP= [5, 6, 2, 7, 46],
Start data from function stpnt (IRS= 0)
save output-files as b.d1, s.d1, d.d1
r1 = run(e = 'sitdrop', c = 'sitdrop.1', sv =

'd1')
@@R sitdrop 1
@sv d1

run 11: Restart at domain size L = 100, change mean thickness h0.
Continued in mean thickness h0 (PAR(1)) for fixed domain size L. Stop at h0 = 10
Remaining true continuation parameters: C1 (PAR(6)) and ε (PAR(2))
Other output: as in run 1
Parameters: IPS= 4, ISP= 0, ISW= 1, ICP= [1, 6, 2, 7, 46],
Start at final result of run 1: IRS= 7
save output-files as b.d11, s.d11, d.d11
r11 = run(r1, e = 'sitdrop', c = 'sitdrop.11',
sv = 'd11')

@@R sitdrop 11 d1
@sv d11

run 2: Same as run 1 but continuing to large drops L = 105.
save output-files as b.d2, s.d2, d.d2
r2 = run(e = 'sitdrop', c = 'sitdrop.2', sv =

'd2')
@@R sitdrop 2
@sv d2

Plot the results.
plot('d1')
plot('d11')
plot('d2')

@pp d1
@pp d11
@pp d2

clean() @cl

Table 1: Commands for running tutorial SITDROP.

3 Remarks:
• In context of a nonconserved dynamics, i.e., allowing for evaporation/condensation, the

constant C1 corresponds to the negative of a chemical potential or partial vapour pressure.

• The f90 file provides as FI(3) another integral condition that has up to here not been used
in the tutorial. When switched on by setting NINT to 3 in the c. file and adding PAR9
at the end list of true continuation parameters within the array in ICP it determines the
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energy per length of the obtained states. This facilitates the interpretation of the physical
meaning of the found states.

• Beside the NCONT true continuation parameters that have to be given as ICP in the c.*
parameter file, one may list other output parameters as defined in the subroutine PVLS in
the *.f90 file, for instance, the amplitude PAR7 or the steppest slope PAR46. The latter
corresponds to the slope at the inflection point and is often used as an approximation of
the equilibrium contact angle.

• The command line commands and the resulting screen output are also provided in the
accompanying README file.

4 Tasks:
After running the examples, try to implement your own adaptations, e.g.:

1. Redo run 1 for other values of the mean height h0, e.g., 1.27, 1.5, 2.5, 5.0, 10.0. What do
you observe? Typical results are given in Fig. 3.

2. Redo run 11 allowing the code to go beyond h0 = 10. What do you observe? Typical
results are given in Fig. 4.

3. Run a continuation at fixed C1 (you need to “set free” some other parameter). Compare
your results with [7]. Typical results are given in Fig. 5.

4. Activate the additional integral condition to measure the energy

E =

∫
L

[
u22
2

+ f(h)− f(h0)

]
dξ (9)

of the solutions. Typical results are given in Fig. 6.

5. Replace the used Derjaguin pressure by a different one that you get from the literature.
([17], [25] or [14])

5 Outlook
Building on the here presented application of continuation techniques to thin-film equations
to determine steady sitting drops on homogeneous substrates many other situations may be
investigated. From there, you may advance either to the linear stability of these states with the
tutorial LINDROP [26], or to drops on a heterogeneous substrate with the tutorial HETDROP [27], or
to sliding drops on an incline with the tutorial SLIDROP [28]. Finally, tutorials HETDRIV [29] and
ROTFFTW [30] combine aspects of the latter two, investigating steady droplets on a heterogeneous
inclined substrate and their stick-slipping motion beyond depinning. Furthermore, tutorial
DRIST [31] determines the linear stability of sliding drops by continuing the corresponding states,
their eigenvalues and eigenfunctions in parameter space. This includes the determination of
transversal instabilities of sliding liquid ridges.
Similar concepts can be applied for related thin-film problems. In the literature on finds ex-
amples of the continuation of self-similar states occuring during film rupture [32, 33], the
continuation of square and hexagon patterns of drops on 2d substrates (see [34] and section 3.2
of [35]), as well as the continuation of drop states for two-layer systems or on elastic substrates
[36, 37].
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Figure 3: An illustration for task 1 is given. The L2-norm of steady states is shown in
dependence of the main continuation parameter domain size L (PAR5) for various fixed
mean film thicknesses as given in the legend.
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Figure 4: An illustration for task 2 is given. The L2-norm is shown in dependence of
the mean film height h0 (PAR1) for fixed domain size L = 100. The drop size increases
with h0 up to h0 ≈ 12.5 where a saddle-node bifurcation occurs (the drop fills the entire
domain). The lower branch corresponds to unstable hole (nucleation) solutions. The
arrow indicates the direction of the path continuation run.
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Figure 5: An illustration for task 3 is given. The L2-norm is shown in dependence of
domain size L (PAR5) for fixed chemical potential C1 = df/dh|h=h0=3 (PAR6). Now the
primary bifurcation is supercritical in contrast to the case of Fig. 2.
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Figure 6: An illustration for task 4 is given. The energy (9) is shown in dependence of
domain size L (PAR5) for fixed mean film thickness ho = 3.0.
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