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Arctic sea ice prediction:
an emerging area of research
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Arctic sea ice prediction
1. From days to centuries

2. What are the ways forward?
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Persistence

Autocorrelation of 1979-2015 sea ice
thickness (model output, one grid point)
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Persistence: a primary source
of sea ice predictability on a |
Spectrum of time scales Sea ice speed (one point) mm
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June 20th — July 12th 2015, LANCE-MODIS, 2 images per day
https://forum.arctic-sea-ice.net/index.php?action=dlattach;topic=176.0;attach=18238;image
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June 20th — July 12th 2015, LANCE-MODIS, 2 images per day
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Sources of
predictability
-Persistence

Jue 20th — July 12th 2015, LANCEMODIS, 2 images per day | 14
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June 20th — July 12th 2010, LANCE-MODIS, 2 images per day
https://forum.arctic-sea-ice.net/index.php?action=dlattach;topic=176.0;attach=18238;image
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Sources of
predictability
-Persistence

-Mechanical forcing
by wind

-Current ice state
(deformation, age,
thickness ,
compactness)
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Weekly sea ice extent predictability stems from

persistence

Departure of summer 2012 Arctic
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Weekly sea ice extent predictability stems from
persistence but can be affected by synoptic events
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[Simmonds and Rudeva, Geophys. Res. Lett, 2012, Zhang et al., Geophys. Res. Lett., 2013; Parkinson and Comiso, Geophys. Res. Lett., 2013 ]
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Example of reemergence: melt to freeze up

Auto-correlation from
May sea ice extent anomalies
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Observed September extent with July SIO median & IQR 2008-2015
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Predictions are unfortunately not
skillful in « operational » mode.

Possible reasons:

» Technical issues (e.q., fields not
available at time of forecast) imply that
groups cannot perform as well as on
retrospective predictions

* Predicting sea ice is tougher today
than it used to be
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Interannual time scales: « grey
zone » of sea ice predictability
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Interannual time scales: « grey
zone » of sea ice predictability

Distribution of all possible 7-yr trends
(1979-2013) in September sea ice extent

a — CMIP5 — CESM1LE —Obs.

7 year trends
0.8
> 067 .
[7)]
S -
o 0.4
=i
- i 4‘7 ] M\
OO T T T T
-3.0 -1.5 0.0 1.5 3.0
Trend (106 km?2 dec.™) 26

Swart et al.,, Nature Clim. Change, 2014



27



S S 5 .
NG $ S 5 <X S
%) & & & AQ’@& & &
@ @ @ @ @ @ @
e e. | Atlantic-Arctic JFM sea ice extent
) CORE
s P DP
. ——e——oss Decadal predictions are
: Obs™ WV | .
-0-80—llllllllllllllllllllllllllllllllllllllllllll|llllllllllllllllllllllll mOStly S|<|||fU|
1950 1960 1970 1980 1990 2000 2010 2020 —|ﬂ Wiﬂter
-In the Atlantic Sector
d Arctic sea ice extent (10% km?)
T H H 1 tEsEsiEEEE AEEEEY EEE EiEE SN EEEEEEE !
200 Doserved || 200 Skill stems from poleward
_202_ Forecast 'I‘ITI?QOO oceanic heat transport
r=0e8P<o0t o R and from radiative forcing
1960 1970 1980 1990 2000 2010 2017 2020

Yeager et al,, Geophys. Res. Lett., 2015; Arthun et al., Nat. Comm., 2017

(trend)

28



29



NG 5 S
P & & & & & &
o @ o o o @
Actual values
10
A
ol Arctic sea ice area is slaved
to the forcing
E
5 °
E.
3
8 4
3
¢
2L
00 560 1600 15|00 2600 25|00 3600
cumulative CO, emissions
since 1850 [Gt CO, ]
Notz and Stroeve, Science, 2016 30



o Ng ¢ §
5 X & O © i~ N
g ¥ ® &0 v N &
@ o @ @ @ o o
Actual values
10 : ) CMIP5 models
-0.5 + r=-0.82
. . . o4
ol Arctic sea ice area is slaved  _ ® "0
: > -1.0 ¢
to the forcing 2 168402
t 6l ISE 50 21
kel S
—= : 012
% 5..5 ~207 « 15 '238.97
g 4 but thinning rate depends £ o
@ A . 0 -25 -
3 on initial thickness > ol
B 307 | T T T T T T
10 15 20 25 30 35 40
Control volume [1000 kma]

0 1 . L L L L
0 500 1000 1500 2000 2500 3000

cumulative CO, emissions
since 1850 [Gt CO, ]

Notz and Stroeve, Science, 2016; Bitz and Roe, J. Clim., 2004; van der Linden et al., J Clim., 2015 31



Arctic sea ice prediction

1. From days to centuries

There is in general predictability beyond
persistence, but predictive capacity depends on
- Time scale considered
- Season considered
- Region considered
- Parameter considered
«  Knowledge of baseline sea ice+ocean state is key
to perform skillful predictions



Arctic sea ice prediction

2. What are the ways forward?



What Is a Good Forecast?
An Essay on the Nature of Goodness in Weather Forecasting

ALLAN H. MURPHY
College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

(Manuscript received 11 August 1992, in final form 20 January 1993)

ABSTRACT

Differences of opinion exist among forecasters—and between forecasters and users—regarding the meaning
of the phrase “good (bad) weather forecasts.” These differences of opinion are fueled by a lack of clarity and/
or understanding concerning the nature of goodness in weather forecasting. This lack of clarity and understanding
complicates the processes of formulating and evaluating weather forecasts and undermines their ultimate use-
fulness.

Three distinct types of goodness are identified in this paper: 1) the correspondence between forecasters’
judgments and their forecasts (type 1 goodness, or consistency), 2) the correspondence between the forecasts
and the matching observations (type 2 goodness, or quality), and 3) the incremental economic and/or cther
benefits realized by decision makers through the use of the forecasts (type 3 goodness, or value). Each type of
goodness is defined and described in some detail. In addition, issues related to the measurement of consistency,
quality, and value are discussed.

Relationships among the three types of goodness are also considered. It is shown by example that the level
of consistency directly impacts the levels of both quality and value. Moreover, recent studies of quality/value
relattonships have revealed that these relationships are inherently nonlinear and may not be monotonic unless
the multifaceted nature of quality is respected. Some implications of these considerations for various practices
related to operational forecasting are discussed. Changes in these practices that could enhance the goodness of
weather forecasts in one or more respects are identified.
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Reanalyzed thickness: all over the place

September 1993-2007

mean sea ice March 1993-2007 mean sea ice
concentration bias thickness bias (wrt IceSat)
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Need for new metrics
and diagnostics
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Concluding thoughts

 Arctic sea ice prediction is « in the making »

« A seamless polar prediction community is building
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Advanced prediction in Polar regions and beyond
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Concluding thoughts

 Arctic sea ice prediction is « in the making »
« A seamless polar prediction community is building

« We are chasing a moving target

— 0
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Thank you!

W @FMassonnet

@ francois.massonnet@uclouvain.be
www www.climate.be/u/fmasson
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