
Supplementary Materials for  

“Graph Contextualized Attention Network for Predicting Synthetic Lethality in 

Human Cancers” 

1. Feature extraction for genes 

For genes, we extracted 8 pair-wise features from different genres of biological data and 10 node-wise 

network features from PPI network. Specifically, we first downloaded the ontology and annotation files 

from http://geneontology.org/. Then we calculated three semantic similarity matrices for genes based 

on the sub-ontologies “biological process (BP)”, “molecular function” and “cellular component (CC)", 

using the method proposed by Wang et al. (2007). We further downloaded the PPI data from BioGrid 

to construct a PPI network. Note that we removed all the SL pairs curated in this PPI network 

constructed from BioGrid (Oughtred et al., 2019). Besides, we also constructed 4 features for each SL 

pair, derived from four sources: Pathway Co-membership, using the Canonical pathway database from 

Broad Institute’s Molecular Signatures Database (MSigDB) (Subramanian et al., 2005); Protein 

Complex Co-membership, using the CORUM protein complex database (Giurgiu et al., 2018); Protein 

interaction scores, using human protein-protein interaction database (Hippie) (Gregorio et al., 2017); 

Protein top similarity, using human protein reference database (HPRD) (Prasad et al., 2009). 

Node-wise network features were calculated based on the PPI network constructed from BioGrid. They 

included degree, closeness, betweenness, eigenvector centrality and clustering. Table S1 shows the 

name and description for each network feature.  

Table S1. Names and descriptions of node-wise network features.  

Name Type Description 

BP Pairwise 
The number of biological process GO annotations shared between the 

source and target node. 

MF Pairwise 
The number of molecular function GO annotations shared between the 

source and target node. 

CC Pairwise 
The number of cellular component GO annotations shared between the 

source and target node. 

Co-pathway Pairwise 
The number of protein pathways shared between the source and target 

node. 

Co-complex Pairwise 
The number of protein complexes shared between the source and target 

node. 

Protein score Pairwise 
A value to measure how well associated a given node is with the other 

node.  

Protein top 

similarity 
Pairwise 

A value to measure the structure similarity between the source and 

target node.  

PPI Pairwise 
A binary matrix recording whether a give node is confirmed to be 

associated with the other node.  

Degree Node-wise The number of edges coming in to or out of the node. 

Closeness Node-wise 
The number of steps required to reach all other nodes from a given 

node. 

Betweenness Node-wise 
The number of shortest paths in the entire graph that pass through the 

node. 

Eigenvector  Node-wise 
A measure of how well connected a given node is to other well-

connected nodes. 

Clustering Node-wise The clustering coefficient of the node. 

   



2. Comparison performance between our model with 14 state-of-the-art methods 

2.1 Results on SynLethDB and SynLethDB-v2.0 

In this work, for better comparison, in addition to AUC and AUPR, we also evaluate the performance 

of various methods using metric Recall@k. This metric is frequently used in other fields, such as 

recommendation systems (Wu et al., 2019).  Table S2 shows the results of Recall@k (k=1000 and 

k=5000) on SynLethDB and SynLethDB-v2.0 under “1:1 setting”, which keeps almost consistent with 

that of AUC and AUPR recorded in Table 2 in the manuscript. It should be noted that “1:1 setting” 

refers to the setting of using the same numbers of positive and negative samples for model training and 

testing. Negative SL pairs are randomly sampled from unknown pairs except for special instructions.   

Representation learning methods (e.g., CMF and GRSMF) use all unknown pairs as negatives. For a 

fair comparison, we also conducted experiments to compare our proposed GCATSL model with four 

representation learning-based baseline methods under “All unknown setting”. “All unknown setting” 

refers to the setting of using all unknown pairs as negatives. The results on SyLethDB and SyLethDB-

v2.0 have been shown in Table S3. We can observe that our proposed model performs better than 

baseline methods on both datasets in terms of most of metrics.  

In datasest SynLethDB and SynLethDB-v2.0, unknown SL pairs may include a gene that can be a SL 

partner or may have two genes that are not involved in any known SL pairs. To test both cases, we 

define negative SL pairs from DepMap (https://depmap.org/). In total, we extracted 275,557 gene pairs 

for 6375 genes in SynLethDB according to co-dependency coefficients between genes. Table S4 

displays the performance of various methods under two different settings. Our model consistently 

outperforms five baseline methods. Meanwhile, we note that negative SL pairs extracted from DepMap 

can improve the performance of various methods including GRSMF, MetaSL and our GCATSL, 

demonstrating that DepMap can provide valuable genetic co-dependency information to define high-

quality negative SL data. 

Table S2. Comparison performance between our model and baseline methods on datasets SynLethDB 

and SynLethDB-v2.0 in terms of Recall@1000 and Recall@5000 under “1:1 setting”. 

Method 
SynLethDB SynLethDB-v2.0 

R@1000 R@5000 R@1000 R@5000 

CMF 0.2336 0.7997 0.1096 0.5121 

SL2MF 0.2512 0.8549 0.1360 0.6401 

GRSMF 0.2508 0.9229 0.1361 0.6745 

DDGCN 0.2499 0.8296 0.1161 0.5325 

RF 0.2511 0.8627 0.1327 0.6087 

DT 0.2247 0.8458 0.1264 0.5978 

NB 0.2239 0.7697 0.1225 0.5120 

SVM 0.2393 0.7927 0.1279 0.5324 

KNN 0.2250 0.7896 0.1153 0.5115 

Bagging 0.2498 0.8674 0.1314 0.6073 

AdaBoost 0.2515 0.8194 0.1346 0.5480 

GradientBoost 0.2530 0.8474 0.1351 0.5732 

MNMC 0.2515 0.8560 0.1345 0.5731 

MetaSL 0.2528 0.8736 0.1352 0.6067 

GCATSL 0.2568 0.9329 0.1422 0.6886 

https://depmap.org/


 

Table S3. Comparison performance between our model and baseline methods on datasets SynLethDB 

and SynLethDB-v2.0 under “All unknown setting”. 

Method 
SynLethDB SynLethDB-v2.0 

AUC AUPR R@1000 R@5000 AUC AUPR R@1000 R@5000 

CMF 0.7240 0.0556 0.0605 0.1716 0.6921 0.0354 0.0216 0.1867 

SL2MF 0.8429 0.4369 0.2277 0.5011 0.7861 0.2970 0.0972 0.3339 

GRSMF 0.9243 0.5351 0.2449 0.5580 0.9065 0.3260 0.1327 0.3469 

DDGCN 0.8753  0.4883 0.1695 0.5693 0.8514 0.2776 0.0787 0.3176 

GCATSL 0.9129 0.5657 0.2517 0.5719 0.9136 0.3487 0.1285 0.3542 

 

Table S4. Comparison performance between our model and baseline methods on dataset SynLethDB 

with negative SL pairs defined by DepMap. 

Method 
1:1 setting All unknown setting 

AUC AUPR R@1000 R@5000 AUC AUPR R@1000 R@5000 

CMF 0.8215 0.8441 0.2435 0.8691 0.9147 0.7125 0.2239 0.5854 

SL2MF 0.8432 0.8976 0.2540 0.8536 0.8448 0.7160 0.2512 0.6807 

GRSMF 0.9284 0.9434 0.2536 0.9188 0.9302 0.5614 0.2510 0.5629 

DDGCN 0.8782 0.9152 0.2358 0.8326 0.8775 0.7621 0.2444 0.5835 

MetaSL 0.9092 0.9173 0.2529 0.9185 - - - - 

GCATSL 0.9535 0.9556 0.2594 0.9576 0.9506 0.8000 0.2580 0.7948 

 

2.2 Results on Breast Cancer data 

In this paper, to demonstrate the validity of our proposed model on specific cancer data, we perform 

GCATSL and four representation learning-based methods and the best feature-based method, i.e., 

MetaSL, on breast cancer data. Table S5 displays the comparison results of different methods under 

two different settings, from which we can find that our proposed model achieves better performance in 

most cases, demonstrating that GCATSL can be successfully applied for specific cancer type. 

Table S5. Comparison performance between our model and five baseline methods on breast cancer-

specific dataset under two different settings. 

Method 
1:1 setting All unknown setting 

AUC AUPR R@100 R@200 AUC AUPR R@1000 R@5000 

CMF 0.7287 0.7284 0.2702 0.8474 0.6076 0.0242 0.1540 0.2398 

SL2MF 0.6203 0.6838 0.5135 0.7933 0.5670 0.0090 0.1113 0.3132 

GRSMF 0.8702 0.9119 0.7504 0.9031 0.8600 0.0549 0.5060 0.7214 

DDGCN 0.7975 0.8150 0.4586 0.8494 0.5745 0.0403 0.1026 0.1082 

MetaSL 0.9103 0.9151 0.7650 0.9602 - - - - 

GCATSL 0.9250 0.9226 0.7593 0.9730 0.9020 0.0472 0.5772 0.7351 

 



3. Case study  

In this work, we conducted case study to further validate the effectiveness of our model. In the 

experiment, we utilized all known SL pairs as positive samples to train our model, and prioritized all 

SL pairs according to their scores. We evaluate our model by checking how many unknown SL pairs 

among the top 1000 pairs are reported in SynLethDB-v2.0 and supported by biomedical literature. Table 

S6 displays the 36 SL pairs which are supported by previous literature.  

 

Table S6. 36 confirmed SL pairs by SynLethDB-v2.0 among the top-1000 predicted SL pairs.  

No. Gene1 Gene2 Pubmed ID Source 

1 BCR KRAS 27655641 in-silico prediction 

2 DDR1 KRAS 24104479 shRNA screening 

3 KRAS RET 27655641 in-silico prediction 

4 CMPK1 KRAS 24104479 shRNA screening 

5 MYC NTRK1 22623531 siRNA screening 

6 BRCA1 KRAS 24104479 shRNA screening 

7 KRAS PIK3CA 26627737 CRISPR-Cas9 

8 CHEK1 KRAS 27655641 in-silico prediction 

9 KRAS TBL1XR1 28700943 CRISPR screening 

10 CYP1B1 KRAS 22613949 siRNA screening 

11 KRAS SSBP1 28700943 CRISPR 

12 KRAS MAPK1 26627737 CRISPR-Cas9 

13 E2F1 KRAS 22613949 siRNA screening 

14 EZH2 KRAS 25407795 RNAi screening 

15 KRAS WRAP53 28700943 CRISPR screening 

16 KRAS RPL13A 22613949 siRNA screening 

17 CDC7 KRAS 27655641 in-silico prediction 

18 ABL1 PDGFRB 26637171 siRNA screening 

19 KRAS POLR2A 22613949 siRNA screening 

20 KIT PDGFRB 26637171 siRNA screening 

21 BID KRAS 24104479 shRNA screening 

22 KRAS NHP2 28700943 CRISPR screening 

23 KRAS SSH3 24104479 shRNA screening 

24 ABL1 KIT 26637171 siRNA screening 

25 NTRK1 PDGFRB 26637171 siRNA screening 

26 KIT PDGFRA 31300006 in-silico prediction 

27 KRAS MSH2 27655641 in-silico prediction 

28 KRAS SRP9 28700943 CRISPR screening 

29 KRAS MCM2 24104479 shRNA screening 

30 KRAS SKP2 27655641 in-silico prediction 

31 KRAS LUC7L2 28700943 CRISPR screening 

32 KRAS TMED2 28700943 CRISPR screening 

33 KRAS RPS6KB1 27655641 in-silico prediction 

34 KRAS MAPRE1 24104479 shRNA screening 



35 CDK1 KRAS 26881434 siRNA screening 

36 ATP6V1C1 KRAS 24104479 shRNA screening 

 

Besides, we compared our model with 5 state-of-the-art methods by observing the number of SL pairs 

supported by SynLethDB-v2.0 among top-𝑟 predicted SL pairs. We selected 𝑟 from 1000 to 20000 with 

a step size of 1000. Fig. S1 shows our model performs better than baseline methods. In particular, our 

model outperforms significantly baseline methods from top 6000 to 20000. Therefore, we can 

conclusion that our model is an effective and promising tool in identifying potential SL pairs. 

 

 
Fig. S1. Performance comparison between our model with 5 state-of-the-art methods in identifying 

potential SL pairs. 

 

In addition, we conducted the second case study to further validate the effectiveness of our proposed 

model. More specifically, following Deng et al. (2019), we selected 10 genes as study objects, including 

BRCA1, BRCA2, TP53, PTEN, ATM, ATR, KRAS, HRAS and BRAF. We used all known SL pairs 

in SynLethDB to train our model. For each selected gene, we prioritized all its unknown pairs according 

to their prediction scores and calculated how many pairs among the top-100 and -500 predicted SL pairs 

can be validated by DepMap data and SynLethDBv2.0. As shown in Table S7 and S8, a total of 82 and 

332 SL pairs could be successfully confirmed by DepMap and SynLethDB-v2.0 among the top-100 and 

-500 predicted SL pairs for these 10 genes. Note that the fourth column in Table S8 displays the number 

of SL pairs simultaneously validated by both DepMap and SynLethDB-v2.0.  

Table S7. 78 confirmed SL pairs by database DepMap and SynLethDB-v2.0 among the top-100 

predicted SL pairs for 10 selected genes. 

No. Gene1 Gene2 Source No. Gene1 Gene2 Source 

1 ATM SLC29A2 DepMap 40 EGFR CCND1 
SynLethDB-

v2.0 

2 ATM MDM4 DepMap 41 HRAS IRF7 DepMap 

3 ATM USP7 DepMap 42 KRAS PLEK2 DepMap 

4 ATM MYBL2 DepMap 43 KRAS TEX10 
SynLethDB-

v2.0 

5 ATM CD63 DepMap 44 KRAS NFYB 
SynLethDB-

v2.0 



6 ATR TAF9 DepMap 45 KRAS CEP57 
SynLethDB-

v2.0 

7 ATR PSMD12 DepMap 46 KRAS ITGA3 
SynLethDB-

v2.0 

8 ATR RANBP3 DepMap 47 KRAS VRK3 
SynLethDB-

v2.0 

9 ATR TOPBP1 DepMap 48 KRAS ZNF83 
SynLethDB-

v2.0 

10 ATR LIG1 
SynLethDB-

v2.0 
49 KRAS PSMB3 

SynLethDB-

v2.0 

11 ATR SKP2 
SynLethDB-

v2.0 
50 KRAS BCAS2 

SynLethDB-

v2.0 

12 BRAF TP53 

DepMap;  

SynLethDB-

v2.0 

51 PTEN MAPK1 DepMap 

13 BRAF CYP3A4 DepMap 52 PTEN DSCC1 DepMap 

14 BRAF LUC7L2 DepMap 53 PTEN AKT1 DepMap 

15 BRAF MAPK1 

DepMap;  

SynLethDB-

v2.0 

54 PTEN UBE2H 

DepMap;  

SynLethDB-

v2.0 

16 BRAF EGFR 
SynLethDB-

v2.0 
55 PTEN THBS1 DepMap 

17 BRAF PIK3CA 
SynLethDB-

v2.0 
56 PTEN RNF146 DepMap 

18 BRAF CHEK1 
SynLethDB-

v2.0 
57 PTEN MRPL13 DepMap 

19 BRAF BRCA2 
SynLethDB-

v2.0 
58 PTEN SLC22A2 

SynLethDB-

v2.0 

20 BRCA1 TOPBP1 DepMap 59 PTEN RNF126 
SynLethDB-

v2.0 

21 BRCA1 CCT2 DepMap 60 PTEN HRAS 
SynLethDB-

v2.0 

22 BRCA1 BRCA2 

DepMap;  

SynLethDB-

v2.0 

61 PTEN CHEK1 
SynLethDB-

v2.0 

23 BRCA1 DSCC1 

DepMap;  

SynLethDB-

v2.0 

62 PTEN PSMD12 
SynLethDB-

v2.0 

24 BRCA1 CD63 DepMap 63 PTEN TACSTD2 
SynLethDB-

v2.0 

25 BRCA1 BRAF DepMap 64 PTEN LIG1 
SynLethDB-

v2.0 

26 BRCA1 PDGFRA 
SynLethDB-

v2.0 
65 TP53 GPX8 DepMap 

27 BRCA1 RIDA 
SynLethDB-

v2.0 
66 TP53 ATAD5 DepMap 

28 BRCA1 PIK3CA 
SynLethDB-

v2.0 
67 TP53 MCM2 DepMap 

29 BRCA1 MRPL13 
SynLethDB-

v2.0 
68 TP53 PPM1D DepMap 

30 BRCA2 PTGS1 DepMap 69 TP53 RBM15 DepMap 

31 BRCA2 CYP3A5 DepMap 70 TP53 NTRK1 
SynLethDB-

v2.0 



 

Table S8. The number of SL pairs confirmed by database DepMap and SynLethDB-v2.0 among the 

top-500 predicted SL pairs for 10 selected genes, respectively. 
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