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1. Feature extraction for genes

For genes, we extracted 8 pair-wise features from different genres of biological data and 10 node-wise
network features from PPI network. Specifically, we first downloaded the ontology and annotation files
from http://geneontology.org/. Then we calculated three semantic similarity matrices for genes based
on the sub-ontologies “biological process (BP)”, “molecular function” and “cellular component (CC)",
using the method proposed by Wang et al. (2007). We further downloaded the PPI data from BioGrid
to construct a PPl network. Note that we removed all the SL pairs curated in this PPl network
constructed from BioGrid (Oughtred et al., 2019). Besides, we also constructed 4 features for each SL
pair, derived from four sources: Pathway Co-membership, using the Canonical pathway database from
Broad Institute’s Molecular Signatures Database (MSigDB) (Subramanian et al., 2005); Protein
Complex Co-membership, using the CORUM protein complex database (Giurgiu et al., 2018); Protein
interaction scores, using human protein-protein interaction database (Hippie) (Gregorio et al., 2017);
Protein top similarity, using human protein reference database (HPRD) (Prasad et al., 2009).

Node-wise network features were calculated based on the PPI network constructed from BioGrid. They
included degree, closeness, betweenness, eigenvector centrality and clustering. Table S1 shows the
name and description for each network feature.

Table S1. Names and descriptions of node-wise network features.

Name Type Description
The number of biological process GO annotations shared between the

BP Pairwise
source and target node.
L The number of molecular function GO annotations shared between the
MF Pairwise
source and target node.
- The number of cellular component GO annotations shared between the
CcC Pairwise

source and target node.
The number of protein pathways shared between the source and target

Co-pathway Pairwise

node.
- The number of protein complexes shared between the source and target
Co-complex Pairwise node
. N A value to measure how well associated a given node is with the other
Protein score | Pairwise node
Protein  top Pairwi A value to measure the structure similarity between the source and
Lo airwise
similarity target node.
A A binary matrix recording whether a give node is confirmed to be
PPI Pairwise . .
associated with the other node.
Degree Node-wise | The number of edges coming in to or out of the node.
. | The number of steps required to reach all other nodes from a given
Closeness Node-wise node
Betweenness | Node-wise :]'Qgenumber of shortest paths in the entire graph that pass through the

A measure of how well connected a given node is to other well-

Eigenvector | Node-wise connected nodes.

Clustering Node-wise | The clustering coefficient of the node.




2. Comparison performance between our model with 14 state-of-the-art methods
2.1 Results on SynLethDB and SynLethDB-v2.0

In this work, for better comparison, in addition to AUC and AUPR, we also evaluate the performance
of various methods using metric Recall@k. This metric is frequently used in other fields, such as
recommendation systems (Wu et al., 2019). Table S2 shows the results of Recall@k (k=1000 and
k=5000) on SynLethDB and SynLethDB-v2.0 under “1:1 setting”, which keeps almost consistent with
that of AUC and AUPR recorded in Table 2 in the manuscript. It should be noted that “1:1 setting”
refers to the setting of using the same numbers of positive and negative samples for model training and
testing. Negative SL pairs are randomly sampled from unknown pairs except for special instructions.

Representation learning methods (e.g., CMF and GRSMF) use all unknown pairs as negatives. For a
fair comparison, we also conducted experiments to compare our proposed GCATSL model with four
representation learning-based baseline methods under “All unknown setting”. “All unknown setting”
refers to the setting of using all unknown pairs as negatives. The results on SyLethDB and SyLethDB-
v2.0 have been shown in Table S3. We can observe that our proposed model performs better than
baseline methods on both datasets in terms of most of metrics.

In datasest SynLethDB and SynLethDB-v2.0, unknown SL pairs may include a gene that can be a SL
partner or may have two genes that are not involved in any known SL pairs. To test both cases, we
define negative SL pairs from DepMap (https://depmap.org/). In total, we extracted 275,557 gene pairs
for 6375 genes in SynLethDB according to co-dependency coefficients between genes. Table S4
displays the performance of various methods under two different settings. Our model consistently
outperforms five baseline methods. Meanwhile, we note that negative SL pairs extracted from DepMap
can improve the performance of various methods including GRSMF, MetaSL and our GCATSL,
demonstrating that DepMap can provide valuable genetic co-dependency information to define high-
quality negative SL data.

Table S2. Comparison performance between our model and baseline methods on datasets SynLethDB
and SynLethDB-v2.0 in terms of Recall@ 1000 and Recall@5000 under “1:1 setting”.

Method SynLethDB SynLethDB-v2.0
R@1000 R@5000 R@1000 R@5000

CMF 0.2336 0.7997 0.1096 0.5121
SL*MF 0.2512 0.8549 0.1360 0.6401
GRSMF 0.2508 0.9229 0.1361 0.6745
DDGCN 0.2499 0.8296 0.1161 0.5325
RF 0.2511 0.8627 0.1327 0.6087
DT 0.2247 0.8458 0.1264 0.5978
NB 0.2239 0.7697 0.1225 0.5120
SVM 0.2393 0.7927 0.1279 0.5324
KNN 0.2250 0.7896 0.1153 0.5115
Bagging 0.2498 0.8674 0.1314 0.6073
AdaBoost 0.2515 0.8194 0.1346 0.5480
GradientBoost 0.2530 0.8474 0.1351 0.5732
MNMC 0.2515 0.8560 0.1345 0.5731
MetaSL 0.2528 0.8736 0.1352 0.6067
GCATSL 0.2568 0.9329 0.1422 0.6886



https://depmap.org/

Table S3. Comparison performance between our model and baseline methods on datasets SynLethDB
and SynLethDB-v2.0 under “All unknown setting”.

SynLethDB SynLethDB-v2.0
Method AUC AUPR R@1000 R@5000 AUC AUPR R@1000 R@5000
CMF 0.7240  0.0556 0.0605 0.1716  0.6921 0.0354  0.0216 0.1867
SLMF | 0.8429  0.4369 0.2277 0.5011  0.7861 0.2970  0.0972 0.3339
GRSMF | 0.9243 0.5351 0.2449 0.5580  0.9065 0.3260  0.1327 0.3469
DDGCN | 0.8753 0.4883 0.1695 0.5693  0.8514 0.2776  0.0787 0.3176
GCATSL | 0.9129  0.5657 0.2517 0.5719 09136 0.3487 0.1285 0.3542

Table S4. Comparison performance between our model and baseline methods on dataset SynLethDB
with negative SL pairs defined by DepMap.

Method 1:1 setting All unknown setting
AUC AUPR R@1000 R@5000 AUC AUPR R@1000 R@5000
CMF 0.8215 0.8441 0.2435 0.8691 0.9147 0.7125 0.2239 0.5854
SL2MF | 0.8432 0.8976 0.2540 0.8536  0.8448 0.7160 0.2512 0.6807
GRSMF | 0.9284 0.9434 0.2536  0.9188 0.9302 0.5614 0.2510 0.5629
DDGCN | 0.8782 0.9152 0.2358  0.8326  0.8775 0.7621 0.2444 0.5835
MetaSL | 0.9092 0.9173 0.2529  0.9185 - - - -
GCATSL | 09535 0.9556 0.2594  0.9576  0.9506 0.8000 0.2580 0.7948

2.2 Results on Breast Cancer data

In this paper, to demonstrate the validity of our proposed model on specific cancer data, we perform
GCATSL and four representation learning-based methods and the best feature-based method, i.e.,
MetaSL, on breast cancer data. Table S5 displays the comparison results of different methods under
two different settings, from which we can find that our proposed model achieves better performance in
most cases, demonstrating that GCATSL can be successfully applied for specific cancer type.

Table S5. Comparison performance between our model and five baseline methods on breast cancer-
specific dataset under two different settings.

Method 1:1 setting All unknown setting
AUC AUPR R@100 R@200 AUC AUPR R@1000 R@5000
CMF 0.7287 0.7284 0.2702 0.8474 0.6076 0.0242  0.1540 0.2398
SL’MF | 0.6203 0.6838 05135 0.7933 0.5670 0.0090 0.1113 0.3132
GRSMF | 0.8702 0.9119 0.7504 0.9031 0.8600 0.0549 0.5060 0.7214
DDGCN | 0.7975 0.8150 0.4586 0.8494 0.5745 0.0403 0.1026 0.1082
MetaSL | 0.9103 0.9151 0.7650 0.9602 - - - -
GCATSL | 0.9250 0.9226 0.7593 0.9730 0.9020 0.0472  0.5772 0.7351




3. Case study

In this work, we conducted case study to further validate the effectiveness of our model. In the
experiment, we utilized all known SL pairs as positive samples to train our model, and prioritized all
SL pairs according to their scores. We evaluate our model by checking how many unknown SL pairs
among the top 1000 pairs are reported in SynLethDB-v2.0 and supported by biomedical literature. Table
S6 displays the 36 SL pairs which are supported by previous literature.

Table S6. 36 confirmed SL pairs by SynLethDB-v2.0 among the top-1000 predicted SL pairs.

No. Genel Gene2 Pubmed ID Source
1 BCR KRAS 27655641 in-silico prediction
2 DDR1 KRAS 24104479 shRNA screening
3 KRAS RET 27655641 in-silico prediction
4 CMPK1 KRAS 24104479 shRNA screening
5 MYC NTRK1 22623531 siRNA screening
6 BRCAl KRAS 24104479 shRNA screening
7 KRAS PIK3CA 26627737 CRISPR-Cas9
8 CHEK1 KRAS 27655641 in-silico prediction
9 KRAS TBL1XR1 28700943 CRISPR screening
10 CYP1B1 KRAS 22613949 siRNA screening
11 KRAS SSBP1 28700943 CRISPR
12 KRAS MAPK1 26627737 CRISPR-Cas9
13 E2F1 KRAS 22613949 SiRNA screening
14 EZH2 KRAS 25407795 RNA.I screening
15 KRAS WRAP53 28700943 CRISPR screening
16 KRAS RPL13A 22613949 siRNA screening
17 CDC7 KRAS 27655641 in-silico prediction
18 ABL1 PDGFRB 26637171 siRNA screening
19 KRAS POLR2A 22613949 siRNA screening
20 KIT PDGFRB 26637171 siRNA screening
21 BID KRAS 24104479 SshRNA screening
22 KRAS NHP2 28700943 CRISPR screening
23 KRAS SSH3 24104479 shRNA screening
24 ABL1 KIT 26637171 SiIRNA screening
25 NTRK1 PDGFRB 26637171 siRNA screening
26 KIT PDGFRA 31300006 in-silico prediction
27 KRAS MSH2 27655641 in-silico prediction
28 KRAS SRP9 28700943 CRISPR screening
29 KRAS MCM2 24104479 shRNA screening
30 KRAS SKP2 27655641 in-silico prediction
31 KRAS LUCT7L2 28700943 CRISPR screening
32 KRAS TMED2 28700943 CRISPR screening
33 KRAS RPS6KB1 27655641 in-silico prediction
34 KRAS MAPRE1 24104479 shRNA screening




35 CDK1 KRAS 26881434 SiRNA screening

36 ATP6V1C1 KRAS 24104479 shRNA screening

Besides, we compared our model with 5 state-of-the-art methods by observing the number of SL pairs
supported by SynLethDB-v2.0 among top-r predicted SL pairs. We selected r from 1000 to 20000 with
a step size of 1000. Fig. S1 shows our model performs better than baseline methods. In particular, our
model outperforms significantly baseline methods from top 6000 to 20000. Therefore, we can
conclusion that our model is an effective and promising tool in identifying potential SL pairs.

Number of SL pairs supported by SylLethDB-v2.0

sl
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Fig. S1. Performance comparison between our model with 5 state-of-the-art methods in identifying
potential SL pairs.

In addition, we conducted the second case study to further validate the effectiveness of our proposed
model. More specifically, following Deng et al. (2019), we selected 10 genes as study objects, including
BRCAL, BRCA2, TP53, PTEN, ATM, ATR, KRAS, HRAS and BRAF. We used all known SL pairs
in SynLethDB to train our model. For each selected gene, we prioritized all its unknown pairs according
to their prediction scores and calculated how many pairs among the top-100 and -500 predicted SL pairs
can be validated by DepMap data and SynLethDBv2.0. As shown in Table S7 and S8, a total of 82 and
332 SL pairs could be successfully confirmed by DepMap and SynLethDB-v2.0 among the top-100 and
-500 predicted SL pairs for these 10 genes. Note that the fourth column in Table S8 displays the number
of SL pairs simultaneously validated by both DepMap and SynLethDB-v2.0.

Table S7. 78 confirmed SL pairs by database DepMap and SynLethDB-v2.0 among the top-100
predicted SL pairs for 10 selected genes.

No. | Genel Gene?2 Source No. | Genel Gene?2 Source
1 | ATM |SLC20A2|  DepMap % | EGFR | ccnpy | SYMLEmDE-
2 | ATM | MDM4 DepMap 41 | HRAS | IRFY DepMap
3 ATM USP7 DepMap 42 KRAS PLEK?2 DepMap
4 | ATM | MYBL2 |  DepMap 43 |KRAs |TExio | SYMLemDE-
5| ATM | CD63 DepMap 44 | KRAS | NFYB | SYNLemDE-




SynLethDB-

6 | ATR TAF9 DepMap 45 | KRAS | CEP57 0
7 | ATR | PSMD12 DepMap 46 | KRAS | ITGA3 Sy”\L/;tBDB'
8 | ATR | RANBP3 DepMap 47 | KRAS | VRK3 Sy”'\‘/gthB'
9 | ATR | TOPBPL DepMap 48 | KRAS | ZNF83 Sy”\L/;tBDB'
10 | ATR LIG1 SynLethDB- | 49 | kras | psmps | SYNLetDB-
v2.0 v2.0
11 | ATR skpp | SYNLEhDB- g, | kRpas | BcAsz | SYnLethbB-
v2.0 v2.0
DepMap;
12 | BRAF TP53 SynLethDB- | 51 | PTEN | MAPK1 DepMap
v2.0
13 | BRAF | CYP3A4 DepMap 52 | PTEN | DsccCl DepMap
14 | BRAF | LUCTL2 DepMap 53 | PTEN | AKTL DepMap
DepMap; DepMap;
15 | BRAF | MAPKL | SynLethDB- | 54 | PTEN | UBE2H | SynLethDB-
v2.0 v2.0
16 | BRAF EGFR Sy”'\-;thB' 55 | PTEN | THBSL DepMap
17 | BRAF | PIK3CA Sy”\L/gtBDB' 56 | PTEN | RNF146 DepMap
18 | BRAF | CHEK1 Sy”'\‘lgthB' 57 | PTEN | MRPL13 DepMap
19 | BRAF | BRCA2 | SYNLEDB- 1 oo | preN | sLc2oaz | SYnLethDEB-
v2.0 v2.0
20 | BRCAl | TOPBP1 DepMap 59 | PTEN | RNF126 Sy”'\‘/gthB'
21 | BRCAL | CCT2 DepMap 60 | PTEN | HRAS Sy”'\‘/gthB'
DepMap;
22 | BRCAL | BRCA2 | SynLethDB- | 61 | PTEN | CHEKL Sy”'\-/gthB'
v2.0 '
DepMap;
23 | BRCAL | DSCCL | SynLethDB- | 62 | PTEN | PSMD12 Sy”\L/gtBDB'
v2.0 '
24 | BRCAL | cCD63 DepMap 63 | PTEN | TACSTD2 Sy”'\-/gthB'
25 | BRCAl | BRAF DepMap 64 | PTEN | LIGL Sy”'\‘lgthB'
26 | BRCAL | PDGFRA Sy”'\-/‘;thB' 65 | TP53 | GPX8 DepMap
27 | BRCAL | RIDA Sy”'\-/‘;thB' 66 | TP53 | ATADS DepMap
28 | BRCAL | PIK3CA Sy”'\-/‘;thB' 67 | TP53 | MCM2 DepMap
29 | BRCAL | MRPL13 Sy”'\-/‘;thB' 68 | TP53 | PPMLD DepMap
30 | BRCA2 | PTGSL DepMap 69 | TP53 | RBMI5 DepMap
31 | BRCA2 | CYP3AS5 DepMap 70 | TPs3 | NTRk1 | SynkethbDe-

v2.0




32 | BRCA2 | DCK SynLethDB- | 27 | 1psg | ALy | SyniethDB-
v2.0 v2.0

33 | BRCA2 | skpz | YNLENDB- 2, | 1ps3 | ppgRRA | SYNLEtDB-
v2.0 v2.0

34 | BRCA2 | EzHz | SYNLEDB- 1 o5 ) gpg3 | pryp | SYNLEtDB-
v2.0 v2.0

35 | EGFR | TSPANL |  DepMap 74 | TPS3 | ABCBL Sy”\L/;tBDB'

36 | EGFR | EPHA2 DepMap 75 | TP53 | RADS1 Synl\-/gthB—

37 | EGFR | SL00A14 |  DepMap 76 | TPs3 | PCNA | SYNLEIDE-

38 | EGFR LAD1 DepMap 77 | TP53 | PIK3CA Synl\-/gthB—

30 | EGFR |PDGFRA | SYMEUDB- | 75 | qpsg | Hmemy | SYNLEMDE-

Table S8. The number of SL pairs confirmed by database DepMap and SynLethDB-v2.0 among the
top-500 predicted SL pairs for 10 selected genes, respectively.

Genes DepMap SynLethDB-v2.0 | DepMap & SynLethDB-v2.0
BRCA1 18 29 2
BRCA2 14 20 2

TP53 16 36 4

PTEN 15 28 1

ATM 23 4 2

ATR 21 6 0

KRAS 17 40 1

HRAS 6 1 0

BRAF 8 8 2

EGFR 32 4 0
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