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The toolbox allows performing robust correlation analyses along with various 
assumption checks and data visualization. 

If you use the toolbox for your research, please cite: 

Pernet, C.R., Wilcox, R. & Rousselet, G.A. (2013). Robust correlation 
analyses: false positive and power validation using a new open source Matlab 
toolbox. Front. in Psychology, 3, 606. doi: 10.3389/fpsyg.2012.00606

If you use the skipped-correlation, which depends on an estimation of the robust 
centre of the data, then please also cite: 

Rousseeuw, P.J. (1984), "Least Median of Squares Regression," Journal of 
the American Statistical Association, Vol. 79, pp. 871-881.

Rousseeuw, P.J. and Van Driessen, K. (1999), "A Fast Algorithm for the 
Minimum Covariance Determinant Estimator," Technometrics, 41, pp. 212-223.

Verboten, S., & Hubert, M. (2005). LIBRA: a MATLAB Library for Robust 
Analysis, Chemometrics and Intelligent Laboratory Systems(75), 127–136.

If you report the test of multivariate normality, please cite: 
Trujillo-Ortiz, A., R. Hernandez-Walls, K. Barba-Rojo and L. Cupul-Magana. 

(2007). HZmvntest:Henze-Zirkler's Multivariate Normality Test. A MATLAB file.

A description of the usefulness of such methods can also be found in
Rousselet, G. A., and Pernet, C. R. (2012). Improving standards in brain-

behavior correlation analyses. Front. Hum. Neurosci. 6:119.
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1 – Before starting

If you are not familiar with Matlab, all you need to do to get the toolbox to work 
is to set the path. That means that you tell Matlab where the toolbox is located. 
The easiest way to do so is to click at the top of the Matlab window on File →Set 
Path, then click on Add with Subfolders and select the Corr_toolbox.

2 – Importing data in Matlab

For a Matlab novice it might seem complicated to import data. This is however as 
easy as with any other software. Here is how to load the Anscombe's quartet 
data, which can be found in the toolbox folder as an Excel file (Anscombe.xls), a 
text file (Anscombe.txt) and a Matlab file (Anscombe.mat).

Import excel file data: in Malab's 'Current Folder' drop down menu, navigate to 
the  toolbox  folder,  open  the  folder,  then  double  click  on  Anscombe.xls.  The 
import wizard is now open and the data are already selected (figure 1). At the 
top left of the wizard, you have the choice about how to import: select 'Column 
vectors' and then click on 'Import'. You should now have in the 'Workspace' 8 
variables called X1, X2, X3, X4, Y1, Y2, Y3, Y4.

Figure 1. Matlab import wizard for the excel file 'Anscombe.xls'.



Import text file data: in Malab's 'Current Folder' drop down menu, navigate to 
the toolbox folder, open the folder, then right click on Anscombe.txt, and select 
Import Data. The import wizard is now open (figure 2). Click next and you're 
finished. You should now have all the variables loaded in the 'Workspace' as a 
single matrix called Anscombe. 

Figure 2. Matlab import wizard for the text file 'Anscombe.txt'.

Load data already in Matlab format: once the data have been imported, it is 
easier to save them in Matlab format to be used later (type help save in the 
command window). In that case the data can be accessed by double clicking on 
Anscombe.mat from the Malab 'Current Folder' window.



3 – One-step analysis between 2 variables 

When only 2 variables are tested, all the tests and plots available in the toolbox 
can be performed in one step, by calling the robust_correlation.m function. Load 
the data Anscombe.mat (section 2) and in the Matlab command window, type:

>> correlation_results = robust_correlation(Anscombe(:,1),Anscombe(:,2))

The function performs the following operations:

(1)plots the data with (i) a scatter plot, (ii) the marginal (normalized) 
histograms with the corresponding Gaussian curves, and (iii) the bivariate 
histogram (corr_normplot.m);

(2)plots the joint density as a mesh and its isocontour (joint_density.m).
(3)tests bivariate normality (Hzmvntest.m); 
(4)tests heteroscedasticity (variance_honogeneity.m);
(5)looks for outliers (detect_outliers.m);
(6)performs 4 types of correlations (Pearson.m, Spearman.m, bendcorr.m, 

skipped-correlation.m).

As the different tests are performed, outputs appear in the Matlab command 
window and as graphics (figures 3 and 4). In addition, there is now a structure 
called  correlation_results in the workspace: it contains all the results. For instance, 
typing  correlation_results.Pearson returns  the  r,  t,  and  p  values,  the 
bootstrap confidence intervals and a message telling you if it is significant or not, 
based on the bootstrap confidence intervals.



Figure  3.  Graphical  outputs  returned  by  the  correlation  toolbox  for  the  1st 

Anscombe's  quartet.  Top  left  (Figure  1)  =  scatter  plots  and  histograms.  Top 
middle (Figure 2) = mesh and isocontours of the joint density. Top right (Figure 3
) = histogram of  the differences in the conditional  variances of bootstrapped 
data. Bottom row (Figures 4-6) = univariate and bivariate outliers detected using 
the boxplot rule, the MAD-median rule, or an S-estimator. 



Figure  4.  Graphical  outputs  returned  by  the  correlation  toolbox  for  the  1st 

Anscombe's quartet. Top left (Figure 7) = Pearson correlation with 95% CI and 
the histogram of correlations for bootstrapped data. Top right (Figure 8) = 20% 
bend correlation with 95% CI and the histogram of correlations for bootstrapped 
data.  Bottom  left  (Figure  9)  =  Spearman  correlation  with  95%  CI  and  the 
histogram of  correlations  for  bootstrapped  data.  Bottom right  (Figure  10)  = 
Skipped  correlation  with  95%  CI  and  the  histograms  of  Pearson's  and 
Spearman's correlations for bootstrapped data.  



4 -  Calling specific functions

Data visualization

To get the scatter plot with histograms type: 
corr_normplot(Anscombe(:,1), Anscombe(:,2));

To get the joint density type:
density = joint_density(Anscombe(:,1), Anscombe(:,2));

It will not only plots the joint density, but also returns it as output variable. For 
instance in the above example you will get  density = 

    0.0221    0.0221         0         0
    0.0442    0.0221         0         0
         0        0.0221    0.0663    0.0221
         0         0                 0        0.0221

It is also possible to only plot the isocontours by typing
density = joint_density(Anscombe(:,1), Anscombe(:,2),0);

Assumption checking

To test for multivariate normality, type: 
HZmvntest([Anscombe(:,1), Anscombe(:,2)]);
Note the square brackets [ ] as the function needs a single matrix as input.

Variance homogeneity can be tested  by typing:
[h,CI] = variance_homogeneity(Anscombe(:,1),Anscombe(:,2));

h=1 if data have different variances, and h=0 if data have the same variances. CI 
is the percentile bootstrap 95% confidence interval of the difference between 
variances.

By default the function normalizes the data and uses conditional variances (see 
conditional.m). It is however possible to force the function to use the original 
variances by typing: 
[h,CI] = variance_homogeneity(Anscombe(:,1),Anscombe(:,2),0);

To detect outliers using robust estimators  type:
outliers = detect_outliers(Anscombe(:,1),Anscombe(:,2));

The output  outliers is a structure in which the field  outliers.univariate.X contains 
indices  of  univariate  outliers  in  X,   outliers.univariate.Y contains  indices  of 
univariate outliers in Y,  and  outliers.bivariate returns bivariate outliers.  In each 
case, outliers are marked by 1s, and other points as 0s. 



Correlations

Pearson
[r,t,p] = Pearson(Anscombe(:,1),Anscombe(:,2))
returns the correlation (r) value along with the t and p values and makes a plot of 
the data with a line representing the best linear fit.

[r,t,p] = Pearson(Anscombe(:,1),Anscombe(:,2),0)
does the same thing but without making a figure.

[r,t,p,hboot,CI] = Pearson(Anscombe(:,1),Anscombe(:,2),1,10/100)         
returns a decision about significance (hboot) based on the bootstrap confidence 
intervals (CI) at the desired type 1 level (here 10% – default is 5%). Note the 
difference  in  graphical  outputs:  because the  bootstrap was  used,  CI  and the 
histogram of bootstrapped correlations are also plotted.

Spearman
[r,t,p] = Spearman(Anscombe(:,1),Anscombe(:,2))
returns the correlation (r) value along with the t and p values and makes a plot of 
the data with a line representing the best linear fit. Note the difference with 
Pearson: with Sperman the scatter plot is for the ranked data.

[r,t,p] = Spearman(Anscombe(:,1),Anscombe(:,2),0)
does the same thing but without making a figure.

[r,t,p,hboot,CI] = Spearman(Anscombe(:,1),Anscombe(:,2),1,10/100)         
returns a decision about significance (hboot) based on the bootstrap confidence 
intervals (CI) at the desired type 1 level (here 10% -  default is 5%). Note the 
difference  in  graphical  outputs:  because the  bootstrap was  used,  CI  and the 
histogram of bootstrapped correlations are also plotted.

Percentage bend correlation
[r,t,p] = bendcorr(Anscombe(:,1),Anscombe(:,2))
returns the correlation (r) value along with the t and p values and makes a plot of 
the  data with  a  line  representing the  best  linear  fit.  In  the  graphical  output 
different colors are used to indicate which data points were weighted down: red 
for data in X, green for data in Y and black for data both in X and in Y). The 
percentage bend correlation is not an estimate of Pearson's correlation – it is 
however a measure of the linear relationship between X and Y.

[r,t,p,hboot,CI] = bendcorr(Anscombe(:,1),Anscombe(:,2),0,40)
returns  a  decision  about  significance  (hboot)  based  on  the  bootstrap  95% 
confidence intervals (CI) – additional arguments indicate not to plot the data (0) 
and use 40% bending rather than the default 20%.

Skipped-correlation
[r,t,h] = skipped_correlation(Anscombe(:,1),Anscombe(:,2))
[r,t,h] = skipped_correlation(Anscombe(:,1),Anscombe(:,2),0)
returns  the  correlation  (r)  values,  along  with  the  t  values  of  Pearson  and 



Spearman tests performed on data after removing bivariate outliers. No p value 
is  computed,  but  the  T  value  is  thresholded  such  that  a  decision  h  can  be 
returned for  alpha = 5%.  This  is  performed with  adjustments  related to  the 
sample size to maintain the type 1 error rate at the nominal level. By default, the 
function also makes a plot of the data with an ellipse containing non outlying 
data and a line representing the best linear fit to the remaining data points. It is 
essential to understand that outlier removal is based on normality, since we use 
the MCD. Spearman is computed on the same data as Pearson,  and thus is not 
optimized for non-linear relationships. 

[r,t,h,outid,hboot,CI] = skipped_correlation(Anscombe(:,1),Anscombe(:,2))

also returns outlier data in outid, which is the same as using  outlier_detect. It 
also adds 95% bootstrap confidence intervals (CI) and a decision about statistical 
significance (hboot). 

5 – Multiple testing solutions 

If you perform multiple tests, you increase the chances to make a false positive 
error. This is only true for families of tests that are related  to each other, for 
instance if you try to look at the relationship between age and scores in different 
cognitive  tests,  all  obtained  from  the  same  subjects.  If  you  do  2  tests  on 
unrelated pairs of variables, then you do not need to control for multiple tests. If 
on the other hand variables are related, the risk of false positives increases with 
the number of tests. We illustrate how to correct for multiple tests using data 
from the Anscombe's quartet, which form a family of tests.

Pearson and Spearman
[r,t,p,hboot,CI] = Pearson(Anscombe(:,1),Anscombe(:,[2 4 6])) 
[r,t,p,hboot,CI] = Pearson(Anscombe(:,[1 3 5]),Anscombe(:,[2 4 6])) 
[r,t,p,hboot,CI] = Spearman(Anscombe(:,1),Anscombe(:,[2 4 6])) 
[r,t,p,hboot,CI] = Spearman(Anscombe(:,[1 3 5]),Anscombe(:,[2 4 6])) 

Here either one vector and a matrix or two matrices of data were input, and 
correlations are always computed column-wise (the function  repeats the vector 
Anscombe(:,1) for 1 vector and a matrix as inputs).

Multiple comparison correction is performed using a Bonferroni correction: for 3 
tests,  only  p  values  below  1.67%  (5%  /  3  )  are  considered  significant,  and 
confidence intervals are adjusted to 98.33% accordingly.
 
Percentage bend correlation
[r,t,p,hboot,CI,H,pH] = bendcorr(Anscombe(:,1),Anscombe(:,[2 4 6])) 
[r,t,p,hboot,CI,H,pH] = bendcorr(Anscombe(:,[1 3 5]),Anscombe(:,[2 4 
6])) 

As for Pearson and Spearman, a vector and a matrix or 2 matrices can be input 
and correlations are computed column-wise. Also, hboot and CI are adjusted 



using a Bonferroni correction.

In  output,  H  and  pH  can  also  be  added  to  compute  an  omnibus  test  of 
independence between all pairs, by testing if the correlation matrix  is equal to 
the identify matrix (0 everywhere expect 1s in the diagonal).  H is the measure of 
association between all pairs (as r is the measure of association between two 
variables for 1 pair) and pH is the associated p value. 

Skipped-correlation
[r,t,h,outid,hboot,CI] = skipped_correlation(Anscombe(:,1
),Anscombe(:,[2 4 6])) 
A vector and a matrix are used as inputs, and h returns the significance with a  n 
adjustment for multiple comparisons

[r,t,h,outid,hboot,CI] = skipped_correlation(Anscombe(:,[1 3 5]
),Anscombe(:,[2 4 6])) 
Two matrices are used as inputs, and h returns the significance with a 
adjustment for multiple comparisons, testing that all correlations are 0.

In both cases, r and t are only computed for Spearman, because only Spearman 
provides a good type 1 error rate in the context of multiple comparisons – hboot 
and CI are adjusted using a Bonferroni correction. 
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