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Context 
 

Anthropogenic pressures on marine ecosystems have increased exponentially in the last century.  

Measuring and monitoring the resulting environmental change are challenging tasks. Remote 

sensing provides a tool for constant, consistent and coherent observation of the global oceans, with 

sensors and data streams being continuously developed for better resolution and accuracy.  

To facilitate the exploitation of the wide range of remote sensing data available, the NERC Earth 

Observation Data Acquisition and Analysis Service (NEODAAS) has developed a suite of ocean 

indicators from key biogeochemical variables representative of the status of the marine ecosystem. 

These indicators can inform regional analysis, add context to short-term trends and specific events, 

and highlight potential correlations between biogeochemical and physical variables. While these 

products can be valuable to industry, governmental agencies, policymakers and the general public, 

our ocean indicators are targeted to researchers planning to incorporate remote sensing data in their 

studies to support models and/or in situ measurements, increasing the impact of their work. 

The NEODAAS ocean indicator products can be derived from current and historical remote 

sensing records at temporal and spatial resolutions optimal for user requirements. Among others, 

we currently source data from the Copernicus Sentinel missions, the Copernicus Marine 

Environment Monitoring Service (CMEMS), and the ESA Climate Change Initiative (CCI). Our 

production systems are prepared to ingest any high-quality, climate-grade data stream. The ocean 

indicators suite is currently composed of: 

• Time series 

Time series can be assembled at different temporal and spatial resolutions that are suitable for 

different applications: while temporal aggregation increases the coverage, it has a smoothing effect 

which might lead to information loss on short-term and point events. Data can be extracted at 

specific locations or for extended regions. In this case, regional mean values are calculated by 

performing the average, weighted by pixel area if needed, over the region of interest. For variables 

that present a distinct seasonality, such as chlorophyll concentration, annual cycles can be 

extracted from the original signal. A deseasonalised time series can then be derived by subtracting 

the seasonal cycle from the original time series, and then fitted to a linear regression to obtain a 

linear trend.  



   
 

   
 

• Anomalies 

Anomalies are computed by subtracting a reference value from the observations. In the case of 

chlorophyll anomaly maps, this is done on a pixel-by-pixel basis and in log10 space, but a similar 

operation can be performed on time series and linear space. The reference value is typically 

extracted from a climatology: a temporal average over a certain period of time. Different temporal 

windows can be chosen depending on the application, for example, by computing an annual 

anomaly, we effectively remove the seasonal signal at each grid point, while retaining information 

on non-seasonal events during the year (Gregg and Rousseaux, 2014). Daily climatologies provide 

a measure of the typical annual cycle and can be used to derive daily anomaly time series that 

reveal changes in the timing and amplitude of seasonal peaks. 

• Trends 

The detection of long-term climate change trends and trend-change points relies on the existence 

of long, continuous records; these allow us to tease the footprint of climate change out from the 

seasonal and interannual components of the signal. It has been argued that the existing remote 

sensing records are already mature enough to detect the climate change signature in sea surface 

temperature, chlorophyll and primary productivity time series for some regions (Henson et al., 

2016; et al., 2019). Our current trend detection method for chlorophyll concentration is based on 

the Census-I algorithm, where the time series is decomposed as a fixed seasonal cycle plus a linear 

trend component plus a residual component. Similarly, we have implemented a sea surface 

temperature trend detection algorithm based on ordinary least squares regressions corrected to 

account for serial autocorrelation, in accordance with IOCCP recommendations. 

 

Applications 
 

Phytoplankton phenology in the Western English Channel 

Phytoplankton – and chlorophyll concentration as their proxy – respond rapidly to changes in their 

physical environment. In the North Atlantic, these changes present a distinct seasonality and are 

mostly determined by light and nutrient availability (González-Taboada et al., 2014). The 

following examples showcase chlorophyll concentration time series from late 1997 to the present 

for different locations within the Western English Channel. In particular, data was extracted from 

the OC-CCI v4 dataset for two Western English Channel Observatory stations, E1 (open-shelf) 

and L4 (coastal), located in the Plymouth Sound, and for a wider box located in the English 

Channel, as summarised in Figure 1. 

 



   
 

   
 

 

Figure 1: Geographical extent of the L4, E1 and Channel boxes. 

The time series in Figure 2 provide a general view of the Western English Channel dynamics in 

the last 22 years. The cycle is dominated by the seasonal transition between mixing and 

stratification, with all three regions showcasing phytoplankton blooms in spring and autumn. The 

intensity of both blooms is broadly comparable at L4, while the autumn bloom tends to dominate 

at the open-shelf station E1. This can be connected to E1 developing the summer thermocline 

earlier than L4. L4 is influenced by river inputs, which can cause high nutrient events that 

compensate for the nutrient depletion after the spring bloom (Smyth et al., 2010). Both stations 

can be subject to strong mixing due to tidal currents and weather conditions. The second half of 

the 20th century has seen an overall 0.32°C/decade in sea surface temperature in the Western 

English Channel (L'Heveder et al., 2016), which can account for changes in the duration of the 

spring phytoplankton bloom. 

 

 

 



   
 

   
 

 

Figure 2: 1997-2020 chlorophyll-a time series of daily and 30-day rolling averages for the L4 (top), E1 (centre) and 

Channel (bottom) areas. 

 

 



   
 

   
 

Chlorophyll correlation with climate indexes 

Chlorophyll anomalies can be correlated to climate indexes in particular regions, such as the El 

Niño–Southern Oscillation (ENSO) index in the equatorial Pacific (Racault et al., 2012) and the 

Indian Ocean Dipole (IOD) index in the Indian Ocean (Brewin et al., 2012). The study of 

chlorophyll anomalies in consonance with sea surface temperature and sea level anomalies reveal 

decreases in SST decreases in SST and sea level anomalies are generally followed by an increase 

in mixing and vertical nutrient transport, resulting in positive chlorophyll anomalies. 

 

Figure 3: 1997-2020 time series of daily chlorophyll anomaly () and Multivariate ENSO Index (MEI, blue) 

 

Figure 3 shows the 1997-2020 time series of monthly chlorophyll anomalies with respect to the 

1997-201 climatology in the equatorial Pacific (ENSO 3.4 region), both computed using data from 

the OC-CCI v4 release. The monthly multivariate ENSO Index (MEI) was obtained from the 

NOAA PSL MEIv2 dataset (https://psl.noaa.gov/enso/mei ). 

Observations show that ocean chlorophyll is a precursor of sea surface temperature responses to 

ENSO in the equatorial Pacific. The correspondence between chlorophyll anomalies and the 

multivariate ENSO index is remarkable, with the strongest ENSO events of 1997 and 2016 

inducing a considerable decrease in chlorophyll. Monitoring these chlorophyll interannual 

variability patterns associated with ENSO events can help us anticipate the effect that climate 

change will have in phytoplankton. 

 

https://psl.noaa.gov/enso/mei


   
 

   
 

Arctic anomalies 

Chlorophyll concentration is highly seasonal in the Arctic Ocean region due to a strong 

dependency on light and nutrient availability, which in turn are driven by seasonal sunlight and 

sea ice cover dynamics. The analysis of chlorophyll anomalies is critical in the context of Arctic 

amplification: negative anomalies are associated with a delay in ice breakup and, inversely, 

positive anomalies are detected in areas with early ice breakup event (Frey et al., 2017), although 

some studies have suggested increasing cloudiness over the region could dampen this effect 

(Bélanger et al., 2013). 

Figure 4 shows the 2019 Arctic Sea annual chlorophyll anomaly with respect to the 1997-2019 

climatology, both computed using the CMEMS 20-year reprocessed dataset based on the OC-CCI 

v4 release. Positive anomalies are shown in red, and negative anomalies are shown in blue. 

 

 

Figure 4: 2019 Arctic Ocean chlorophyll anomalies with respect to the 1997-2019 climatology. Positive anomalies 

are shown in red, and negative anomalies are shown in blue. 
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