Immersed boundary method for high-order flux reconstruction based on
volume penalization

Jiaqing Kou®"* Saumitra Joshi®?, Aurelio Hurtado-de-Mendoza®®, Kunal Puri®, Charles Hirsch?,
Esteban Ferrer®®

CNUMECA International S.A., Chaussee de la Hulpe 187, Brussels, B-1170, Belgium
bETSIAE-UPM-School of Aeronautics, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 8, E-28040 Madrid,
Spain
¢Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte,
28660 Madrid, Spain

Abstract

In the last decade, there has been a lot of interest in developing high-order methods as viable option for
unsteady scale-resolving-simulations which are increasingly important in the industrial design process. High-
order methods offer the advantage of low numerical dissipation, high efficiency on modern architectures and
quasi mesh-independence. Despite significant advances in high-order solution methods, the general CFD
workflow (geometry, CAD preparation, meshing, solution, post-processing) has largely remained unchanged,
with mesh generation being a significant bottleneck and often determining the overall quality of the solution.
In this work, we aim to combine the numerical advantages of the high-order Flux-Reconstruction (FR)
method and the simplicity of the mesh generation (or lack thereof) of the Immersed Boundary Method
(IBM) for steady and unsteady problems over moving geometries. The volume-penalization (penalty-IBM)
method is selected for its ease of implementation and robustness. Detailed discussions about numerical
implementation, including the boundary representation, mask function, data reconstruction, and selection
of the penalization parameter are given. Advantages of combining volume penalization in the high-order
framework are shown by various numerical test cases. The approach is firstly demonstrated for the linear
advection-diffusion equation by investigating the numerical convergence for the coupled FR-IBM approach.
Thereafter, the accuracy of the approach is demonstrated for canonical (static) test cases in 2D and 3D when
compared to a standard body-fitted unstructured simulation. Finally, the efficiency of the method to handle

moving geometries is demonstrated for the flow around an airfoil with pitching and plunging motions.

Keywords: volume penalization, flux reconstruction, immersed boundary method, high-order method,

moving boundary

Contents
(1__Introductionl 2
|2 The Governing Equations| 4

*Corresponding author.
Email address: jiaqing.kou@numeca.be, jiaqing.kou@alumnos.upm.es (Jiaging Kou)

Preprint submitted to Journal of BTpX Templates January 18, 2021

10

12

14

16

n
15}

22

24

26

28

30

32

34

36

38

3 The Flux Reconstruction Method| 5

[4 Immersed Boundary Method]|

4.1 The volume Penalization method o000 o 8
4.2 Boundary representation and mask function| oo oo 11
4.3 Treatment for moving boundaries|o Lo 12
4.4 Surface data reconstruction | Lo L 13
4.5 Overview of the algorithm| 15
4.6 Discussions on error estimate and selection of penalization parameter{. 16
[6_Test Cases 17
b.1 One-dimensional advection-diffusion equation| 18
b.2 Flow past a cylinder| o 20
b.3 Flow past a NACAOO12 airfoill.o o o o 23
b.4 Flow past a sphere| 25
b.5 Flow past a pitching and plunging airfoil{. oL 26
6 Conclusions| 29
| Appendix A Analytical mask function for different geometries| 29
| Appendix B Smoothing the mask function| 30
| Appendix C Comparison of data reconstruction methods| 31

1. Introduction

Despite significant advantages, the general CFD workflow used in the industrial design process has largely
remained unchanged. The typical workflow consists of geometry definition, CAD preparation, meshing,
numerical solution, post-processing and subsequent design optimization. Of these, meshing is often the most
time consuming and can have a significant impact on the overall quality of solution. The bottleneck associated
with mesh generation could be eased with the development of mesh independent schemes or alternatively,
by developing methods designed for simple Cartesian grids via the Immersed Boundary Method (IBM). The
desire to achieve the former has been a motivating factor for the development of high-order schemes on
unstructured grids over the last decade. High-order methods are known to be more efficient for a given
level of accuracy, highly scalable on modern architectures and display a level of quasi mesh independence
for industrially relevant problems [Il 2]. Examples of high-order methods include Discontinuous Galerkin
(DG) [3], Flux Reconstruction (FR) [4] and Spectral Difference (SD) [5] [6].

By contrast, the development of high-order methods on Cartesian grids for complex moving geometries
using IBM or related approaches has been relatively unexplored. One of the earliest proponents of exploring
this idea was Adrian Lew and his coworkers [7), [§] where the advantages and optimal order of convergence of
using the DG method over standard finite-differences for a 2D Poisson problem was reported. The method
was subsequently applied to problems in elasticity [9]. The solution of the Poisson problem with IBM and
DG was also considered in [I0] [I1] and in [I2] for the Hybridized Discontinuous Galerkin (HDG) method.

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

The HDG method on irregular domains was also developed for the Navier-Stokes equations in [13]. Fidkowski
and Darmofal [I4] were the first to report the use of cut-cell method to solve steady compressible flows over
two-dimensional geometries based on the DG and Finite Element Method (FEM). The high-order cut-cell
approach was also studied in [I5] [16] [I7] and more recently in [18] where stable discretizations on degenerate
meshes are presented for high-order finite-difference methods. While the cut-cell approaches are undoubtedly
superior on static grids, the extension to moving grids is far from straightforward.

The challenge to use high-order DG type methods for industrially relevant problems lies in the efficient
handling of complex geometries which on Cartesian grids can be combined with efficient Adaptive Mesh
Refinement (AMR) and highly optimized for GPU architectures [19, 20, 2I]. Here, the IBM is a natural
choice and in this work we present an approach that combines the flexibility and ease of implementation
of the high-order FR method [, 22, 23] on Cartesian grids with the IBM for moving geometries. The
approach utilizes the compact stencil of the high-order operators and offers the possibility of locally varying
the polynomial order for a more accurate representation of the boundary conditions than traditional finite
difference or finite volume methods. The flexibility of handling complex moving geometries stems from the
use of the IBM approach. Indeed, since it’s introduction [24], the IBM approach has been shown to be
versatile and applicable to a variety of problems ranging from flow over complex geometries [25], multiphase
flows [26] to Fluid Structure Interaction (FSI) [27,28]. In an IBM based approach the governing equations
(compressible or incompressible flow) are solved on a simple background Cartesian grid. The methods can
be differentiated by the way in which the influence of the immersed boundary on the fluid is taken into
account. This can be either through a cut-cell approach [29] [30] [31], ghost-fluid method [32] B3], direct
forcing [34, [35, [36] or by the introduction of source terms [37] to take into account the presence of the
geometry. Alternatively, IBM approaches can be classified as sharp interface or diffuse interface methods.
It is worth noting that there are additional methods that are specific to a certain class of problems. These
are the immersed interface method [38] and family of embedded boundary method [39] for viscous flow and
FSI. The interested reader is referred to [40, 4T, [42] [43] and the references cited therein for comprehensive
reviews of the IBM method and their applications. Recently, a comprehensive convergence analysis with
regard to the spatial and temporal resolution is presented by Zhou and Balachandar [44]. A systematic study
on convergence of IBM and an overset grid method is performed by Vreman [45].

In recent years, the volume penalization method [37,[46] has attracted a lot of attention due to its robust-
ness, simplicity and proofs of convergence [37, [42]. It follows a basic physical intuition that the solid wall can
be modelled as a porous medium with vanishing diffusivity [47]. A characteristic or mask function y is intro-
duced that is 1 in the solid domain and 0 elsewhere. A source or penalty function is introduced and is active
in the solid domain. The source term is designed to impose the desired boundary condition. When compared
with the other IBM approaches, the reconstruction procedure and the distribution of the source term are
not needed, thus largely reducing the computational cost. The extension to moving boundary problems is
also straightforward. The penalization method can be traced back to the works of Courant [48] who intro-
duced such an approach to transform constrained optimization problems into problems free of constraints.
The volume penalization method for the Navier-Stokes was first proposed by Arquis and Caltagirone [49] to
simulate the natural convection flow inside a fluid—porous cavity where a Brinkman type penalization was
introduced to the momentum equation. Rigorous proofs of the convergence is given by Angot et al. [37] and
Carbou and Fabrie [50] where it was proven that, as the penalization parameter 7 approaches 0, the solution

of the penalized Navier-Stokes equations will converge to the solution of the Navier-Stokes equations with

82

84

86

88

90

92

94

96

98

100

102

104

106

108

no-slip boundary conditions. The extension of volume penalization method to general Robin type boundary
conditions method was investigated by Ramictre et al. [5I] and Kadoch et al. [47] and Sakurai et al. [52]
for the finite-volume method a pseudo-spectral method respectively. The volume penalization method has
also been applied to compressible flows by Liu and Vasilyev [53], Brown-Dymkoski et al. [54] and Abgrall et
al. [46). The method has been successfully used for complex problems such as flapping wings [55], two-phase
flow [50], FSI [57], thermal flows [58], and turbulent rotating flows [59]. The comparison between direct
forcing method and the penalization method is studied in by Piquet et al. [60], where it was found that the
volume-penalization method is a suitable and a possibly competitive IBM method for viscous flows in terms
of predictive performance, accuracy and computational cost. A review of volume penalization method for
numerical simulation of complex flows is given by Schneider [42].

Despite the amount of publication devoted to volume penalization, this technique has not been studied
with the high-order methods. It does not need to treat complicated cell cuts, and is easy to be extended
to moving boundaries. Therefore, it is worth investigating the performance of high-order methods with
volume penalization method, which is the aim and novelty of the present work. The high-order method
adopted in the current study is based on the FR approach [4, 22| 23]. It provides a differential framework
for discontinuous finite element schemes, which is a unifying framework for high-order methods and can
recover existing high-order schemes. Volume penalization is used to impose the no-slip boundary condition
within the solid body. The present approach allows locally refining the solution near the wall to improve
both the accuracy and the smoothness of the solution, using local p-refinement of the FR scheme. Increasing
the polynomial order also leads to improved solution for moving boundary simulation. To the authors’
knowledge, these advantages have not been reported in previous works about IBM.

This paper is organized as follows. Section 2 gives an introduction of the Navier-Stokes equations. Section
3 presents the high-order FR method for general conservation law. Section 4 details the penalty IBM method
used in the present study, along with the method for surface data reconstruction and the handling of moving
boundary. The proposed method is tested in Section 5, where cases with increasing complexity are shown.

Finally, conclusions are drawn in Section 6.

2. The Governing Equations

The governing equations for a compressible viscous fluid are written as

oU oU OF, OF, OF
F== T LY Z — 1
ar TV o " ow T oy o (1)

where U denotes the vector of conserved variables U = (p, pu, pv, pw, E)T. pis the density, u,vand w are the

velocity components and F is the total energy. The equations are closed by the ideal gas equation-of-state:

P 1
E:ﬁ+§p(u2+v2+w2), (2)

110

112

114

116

118

120

where P is the static pressure and «y is the ratio of specific heats. The flux vectors F,, F,, F, contain the

inviscid and viscous fluxes and are written as

pu 0
pu? + P Tax
F, = puv — Tay =Fy inv + Fy pse (3)
puw Tas
u(E + P) UTgy + VTay + WTpz + (o
pU 0
puv Tyx
F,=]| p?+P | — Tyy = Fyinv + Fysc (4)
pow Tyz
v(E + P) UTyg + VTyy + WTyz + gy
pw 0
puw Tog
F, = pow - Tay =F. inv + F. ysc. (5)
pw? + P Tzz
w(E + P) UTsy + UTay + WTaz + 2

In these equations, 7;; = u(g;’? + % — %(5”- g;i) is the viscous stress tensor with p denoting the dynamic
J T J

viscosity. The heat flux vector Vgq is given by

dq _)\8T

axi B 8;&-’ (6)

where A is the thermal conductivity and T is the static temperature. The equations are solved in non-
dimensional form with the introduction of the Prandtl number Pr = u%, the Reynolds number Re =
PretVrefLref [thre ¢ and the Mach number M = V,.f/ \/m , with C}, being the specific heat capacity
at constant pressure and Ry,s being the gas constant. Finally, Vic¢, Lrcs, Trcr are reference velocity, length
and temperature, respectively. The discretization of these equations with the Flux-Reconstruction method

is described next.

3. The Flux Reconstruction Method

Flux reconstruction is a high-order framework which unifies a number of other high-order methods like
the SD method and the nodal DG method. FR was first introduced by Hyunh for advection [4] and diffusion

[22] equations. This method is detailed below. Consider the following hyperbolic system of conservation law:

8£+v'(Evc+Fvsc) =S
ot (7)

Q-VU=0

where Fiyc, Fisc, S refer to the inviscid flux, viscous flux and the source term. These vectors are functions

of solution U and its gradient Q = VU. The space dimension is defined as D. After space discretization,

122

124

126

128

130

132

134

136

138

140

the computational domain (Q is divided into IV, distinct cells. In each cell, the discrete solution Uf is locally
approximated by a polynomial of degree P, defined at N, solution points. In addition, the flux at each
interface of an element is approximate by a polynomial of degree P + 1, defined at N; flux points on the
element interface. An isoparametric spatial mapping M : & — & is defined to transform physical coordinates
of the solution and flux points to reference coordinates [61], 62]. In the present study, we utilize a standard
tensor-product formulation with a Legendre polynomial basis to define the polynomial interpolation. The
solution and flux points are located at the Gaussian quadrature points. The standard flux reconstruction
process for the general conservation law can include seven stages [63] as follows:

1. Getting the interpolated solution at flux points. The interpolated solution at the flux point £°F is

given by the following polynomial interpolation:

NP
U =) UPII(¢) (8)
=1

where T} refers to the nodal basis function defined at each solution point with polynomials of degree P, and
U/SP is the solution at the ith solution point.

2. Obtaining common solution at the flux point, computed from the left and right interpolated solutions.

The Local Discontinuous Galerkin (LDG) is chosen for the common solution:

Uy, = (U} - 8- [Up]] 9)

where (refers to an upwinding parameter, 6F and JI refers to the interpolated flux at flux points and the
common flux, respectively. {-} and [] compute the mean and jump values of the interpolated solution. The

correction solution is subsequently given as:
6C _ 7761 SF
Uj; =Us; —Us;: (10)
3. Computing the gradient of solution @ from the correction solution U®C and the discrete solution U°P:

Q" =vU =VvU°® + VU°’© (11)

where the discrete gradient VU®P in the reference space is computed from the gradient of the discrete

solution U°P:

NP
VUP(€) = Y UPVIL(§) (12)
i=1
The corrected gradient VUC is computed by transforming the correction solution from the flux points

to the solution points. This is achieved by the correction function:

Nyace Ny
VUe) = 3. 2 Ve @) Ul (13)
f=1 j=1
where the function C]ICD j’l is the correction function, which is of polynomial order P + 1. Then gradient is

transformed to physical space.

142

144

146

148

150

152

154

156

158

160

162

4. Computing the discrete flux at each solution point from the solution and gradient values. The inviscid

and viscous flux at each solution point is defined by the same polynomial interpolation with degree P:

F6D ZF5D IP F§D ZF(SD IP (14)

1wvc 1VC,17 1 VSC VSC,17 1

The interpolated fluxes F2Y and FOF at flux points are obtained from the above formulation.
5. Obtaining the interactlon flux F at the flux point. This flux is approximated by a Riemann solver
R(U f P Qf - f it Qf i, +)- For the inviscid flux, the Rusanov flux is used. The viscous flux is obtained

by the LDG approach, where the interaction flux is computed as:

Fvsc f.i = Lvsc, f] + 7 [[Uf]+6 [[vsc fﬂ]] (15)

where the 7 is the parameter controling the jump of the solution, and S is the upwinding parameter defined
previously. For LDG approach, a combination of 8 = 0.5 and 7 = 0.1 is used here, in order to promotes
compactness of the FR scheme in multiple dimensions [63].

6. Computing the flux correction term. This term is constructed from the interaction flux, the interpo-
lated flux and the correction function. The correction flux is the difference between the interaction and the

interpolated fluxes:

6C __ o1 OF
F;;=Fp; — Ff; (16)

The corrected divergence of flux correction term is transformed from the flux difference at the boundary

to the solution points through the correction function:

V- PO => > Z@ Crie) - Fi9, (17)

where k refers to the spatial direction index.

7. Calculating divergence of the continuous flux from the local discrete flux divergence and the corrected

divergence:
R R R R D N, ~ D Nyfgce Ny
UP =-V-F=-V-FP-V-FC°=-3"N"VIl @) -FP - > > Y i€ F}, (18)
k=1 i=1 k=1 f=1 j=1

Finally, the flux divergence needs to be transformed into the physical space. Once the divergence of
continuous flux is obtained, the equation can be advanced in time by any explicit or implicit time-marching
method. The governing equation can be discretized as

dUu
e =R(U) (19)

where R(U) refers to the residual of the equation, which is a function of U. For the time marching method,

164

166

168

170

172

174

176

178

180

182

184

186

188

190

we use the classic TVD Runge-Kutta method. Equations of time integration are

U*=U"+ AtR(U™) (20)
1
U™ = 13U + U" + AtR(U”)] (21)
1
Ut = U™ +2U™ + 20R(U™)] (22)

where At denotes the time step, and n is the present time index. Note that when IBM source term is present,
a splitting approach can be used to handle the stiffness of the source term. It should also be pointed out that
the performance of flux reconstruction depends on six factors [63], including the location of solution and flux
point, the Riemann solvers used for computing the common solution values and the interaction fluxes, and
the form of the correction functions for solution and flux values. The boundary conditions, like the far-field
characteristic boundary condition, are imposed in a weak-Riemann formulation following Mengaldo et al.
[64]. The ghost state from the boundary side of the face is given from the boundary condition, while the

flux is calculated by a Riemann solver.

4. Immersed Boundary Method

The basic idea of IBM is to impose boundary conditions to the non body-fitted mesh with proper
numerical treatment. Volume penalization is a particular method, which imposes boundary condition through
penalizing the velocity of solution points in the solid body. This method is easy to understand with rigorous

theoretical foundation, therefore it is selected for the present study.

4.1. The volume Penalization method

The volume penalization method imposes boundary conditions by introducing penalization source terms
to the governing equations. In this approach, a mask function which distinguishes between the fluid region

1y and solid region €, is firstly defined:

X(%t):{l, if x € Q, (23)

0, otherwise

This mask function is used to determine whether the IBM force should be imposed to the current
solution point [46] [54]. For moving boundaries, x(z,t) is time-dependent. It should be noted that this
usual definition of mask function will lead to a sharp jump of source term between the solid and fluid points
near the boundary, which may lead to spurious oscillations (or Gibbs phenomena) of the hydrodynamic
forces on moving obstacles [55]. In addition, for static obstacle, this sharp mask function may also lead
to oscillations of flow variables near the wall. These oscillations can be reduced by smoothing the mask
function, which will smooth the transition between the solid and fluid points, thus allowing smaller penalty
force for solution points near the wall. This strategy is also tested and will be discussed in The
volume penalization method for a high-order, Cartesian mesh is illustrated in Fig. All solution points,

covered by the solid region, need to be penalized to impose the boundary condition.

192

194

196

198

200

fluid point, |*]
[]
mask y =0

solid point,

mask y =1

Figure 1: Schematic illustration of volume penalization for high-order method. The computational domain is discretized by the
Cartesian grid. Solution points defining the high-order polynomial are represented by black circles. The polynomial order for
the Cartesian grid is P = 2. The solid body s is highlighted in the red region.

The Navier-Stokes equations with IBM is written as:

%—lj = RHS + xS(U) (24)

where S refers to the IBM forcing term. RHS refers to the right hand side term of the Navier-Stokes

equation

oF 0G O0H

RHS:—(%-Fa—y"rg).

(25)

For the Dirichlet boundary condition for velocity us = (us,vs,ws)T of the solid body, the source term is

considered as:

0
pus — pu
sw) =1« v — p (26)
! pws — pw

S(uf + i +wd) — §(u® + 0+ w?)

where 7 denotes the penalization parameter for IBM. The penalization terms proposed were used in [46] for
compressible Navier-Stokes equations. Generally, the penalization parameter 1 should be sufficiently small
to ensure accuracy. The stiffness of the equations depends on 7, where small 7 value leads to very stiff source
terms. In practice, the explicit time step At is suggested to be the penalization parameter [57]. Discussion
on this argument is given in Sec. [f.6l The above equation can be used for moving bodies, where the solid
velocity is updated based on the equations of motion. When no-slip boundary condition is considered, the
condition u, = (0,0,0)7 will be imposed.

The governing equation Eq[24] is marched in time by efficient time integration methods. Due to the
stiffness of the source term, we use the second-order Strang splitting [65] approach to add the source term.
As discussed by Piquet et al. [60], with Strang splitting, penalization terms are computed exactly for the

momentum and energy equations. At time step n, the following sequence of operations is performed:

vu,-u"

step1 : AL S(U1), Aty = At/2,Ur o =U, (27)
step2 : U2A;t2U1 =RHS(U,), Aty = At, Uz g =U; (28)
step3 - U"Zt; Y2 _ snt), Aty = At/2,UT = U, (29)
202 Currently, in step 2, we use the third-order TVD Runge-Kutta method to perform explicit time marching.

In step 1 and step 3, when adding the source term, both implicit or explicit forcing methods can be considered.
20 The implicit forcing method leads to better numerical stability, which is especially beneficial for penalty
method due to a very stiff source term. The approaches are as follows:

Explicit forcing : The explicit formulation is simply given as:

u,-u" "
GV swm, (30)
U =U" 4+ Aty - S(Un) (31)

Implicit forcing : For implicit implementation of the penalty method, the backward Euler method with
first-order Taylor expansion leads to the following formulation

U -U"

ny , 9S(U")
A SO+

T(Ul - Un) (32)

After some manipulation, the following equation is obtained:

(I - Atlng](U”)> U =U"+ At (S(U”) - %(U”)U”) (33)

where I is the identity matrix. From Eq. [26] the Jacobian matrix of the IBM force term, is then derived as

0 0O 0 0 O

95) 0 1 0 0 O
oY 34
3= 5" 0 010 0 (34)

0 0 0 1 0

—%(u2+v2+w2) v v w 0

10

206

208

210

212

214

216

218

220

222

o)

Therefore, the inversion of matrix I — At %(U") can be derived analytically

—1
(1-au2am) -
1 0 0 0 0
0 e 0 0 0 (35)
0 0 P 0 0
0 0 0 s 0
%(UQ +o+w?) - AAtilfn - AAtflan - ﬁt?fn 1

By Substituting Eq[34 and Eq35]into Eq[33] the first and third step of time integration can be efficiently

solved.

4.2. Boundary representation and mask function

Representation of solid boundaries is a crucial aspect of IBM approaches. It serves for two main purposes:
1) the definition of mask function. For general geometries where a simple shape function cannot be found,
the mask function y should be determined by effective methods to identify whether the present solution
point is inside or outside the solid body. 2) the computation of aerodynamic coefficients. This depends on
how the surface of obstacle is discretized, since the flow quantities on the surface need to be interpolated
from data of its surrounding solution points, and we also need to get the surface normal and area for force
computation.

The discretization of immersed boundary should be flexible enough to handle complex geometries. In the
present study, we choose to use a set of Lagrangian marker points to represent the solid boundary, defined
as immersed boundary (IB) points. The marker points are connected by linear elements, i.e., line segments
in two dimensions and triangular elements in three dimensions. Calculations of the geometrical quantities,
including the surface normal, the interpolation stencil for data reconstruction, and the surface distance, can
be performed efficiently with this representation [66, B6]. The development of algorithm to compute the

mask function also depends on such discretization.

RadHEay B #
N PN By P e S TS R R v G R
e PO R e S A e MO R SR A
N (P A N ey
N M R N A Pl PR P o Pt S
A S S SO S S N N .
........‘.\ ®le o O/ o o e © ©O|lg o (9 o © 9 o O 9 o oo o o

Figure 2: Determination of mask function for general geometries, based on (a) ray casting and (b) the simplified approach used
in the present study. The polynomial order for the Cartesian grid is P = 2.

For simple geometries like a cylinder, a sphere or an airfoil, analytical shape functions exist and can be

11

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

254

256

258

260

262

used to define the mask function, as listed in[Appendix_A] However, in order to handle other geometries whose
shape function is difficult to obtain, we still need an algorithm to compute the mask function. Therefore,
in the present work, a method to get mask function for general shapes, rather than using the analytical
function, has been developed. This method takes an algorithm to identify whether the present solution point
is inside or outside the solid body. This forms a typical 'point in polygon’ (PIP) E| problem in computational
geometry [67]. PIP problem refers to a set of problems, which determine whether a given point in the plane
lies inside, outside, or on the boundary of a polygon. One common approach is the ray casting method.
Ray casting approach generates a ray starting from the point and going in any fixed direction, and tests
how many times a ray intersects the edges of the polygon. If the point is outside the polygon, the ray will
intersect the edges an even number of times. On the contrary, if the point is inside the polygon, the ray will
intersect the edges an odd number of times. Schematic illustration of the ray casting method is shown in
fig.

In practice, the ray casting method can be implemented in multiple ways. We take a simplified method
to achieve this. For any solution point in the computation domain, we will first define those points that
lie outside the bounding box of the surface (i.e., the box formed by coordinates of the rectangular border
that fully encloses the solid body) to be the fluid points. For other solution points lie inside the bounding
box, we will draw a line along y-axis direction (in 2D) or z-axis (in 3D), as shown in Fig. After that,
the maximum and minimum intercepts in y coordinate (2D) or in z coordinate (3D) are identified. If the
corresponding coordinate of the solution point lies in between the maximum and minimum values, then
this point lies in the solid and its mask is set to 1. From an implementation point of view, this can be
achieved by firstly looking for the nearest IB points along x direction (2D) or x-y plane (3D). After that the
minimum and maximum values of these points in y coordinate or z coordinate are easily obtained, and the
comparison is subsequently performed. Therefore, the boundary should be sufficiently resolved by the IB
points, in order to make sure the the neighboring search involved in getting the mask function is accurate.
A limitation of this method is that it is only applicable to convex geometry. For non-convex geometry, more
than two intercepts exist. The ray tracing method can be applied to such cases to check how may times the
ray intersect the edges along the y or z direction. However, the present approach still works well for the test

cases considered in this work.

4.8. Treatment for moving boundaries

This subsection introduces the treatment of moving boundaries (with rigid motion) for penalty IBM
method. When the boundary moves, the mask function and the velocity at each solution point should be
updated accordingly. The basic idea of updating the mask for each solution point is to first recover the
position of this point relative to the static solid body (in the non-inertial reference frame), then determine
the mask value based on the recovered position and the mask function defined for the static solid body
x(z,0). The velocity is updated based on the rigid motion equation of the obstacle.

For the cases considered in this study, i.e., a two-dimensional solid body with rigid motion, the translation
in x-axis and y-axis, and the rotation motions are included [55]. These displacements are defined respectively
as a, b, and 0, following positive x and y direction, and clockwise rotation direction. The initial rotation

axis at t = 0 is given as (2., y,). Although the present treatment of moving boundaries is not limited to any

Thttps://en.wikipedia.org/wiki/Point_in_polygon

12

264

266

268

270

272

274

276

278

280

282

284

Figure 3: Schematic illustration of an airfoil free to move in translation and rotation directions, with chord length c. a, b and
6 are displacements in x and y directions, and the pitching angle, respectively. This definition is applicable to any rigid body.

specific geometry, the schematic illustration of a moving airfoil is shown in Fig. [3| as an example. When the
boundary is moving, as the first step, the coordinates are translated into the reference coordinates in the

non-inertial reference frame:

T\ [cos(f) —sin(0)\ [x—a(t) -z, T,
<y) i <sm<e> cos(6)) <y—b<t> —yr> : <y> o

The mask for any solution point placed in (z,y) is determined based on the transformed coordinates in
the non-inertial reference frame, through substituting £ and g into the original mask functions at ¢ = 0. The

solid velocity at each solution point is subsequently updated as follows:

&= a(t) +0(t)(y — b(t) — yr) (37)

§=b(t) = 0(t)(x — a(t) — z,) (38)

It should be pointed out that this method is not applicable to flexible structures, e.g., when the boundary
shape changes with time. In such cases, recovering the position of solution point in the non-inertial reference
frame becomes difficult. A solution is to redefine the mask function at each time step based on the updated
position of surface points. The velocity of solution points immersed in the solid should also be approximated
numerically [57]. In addition, if the movement is too big in one time step, there can be a loss of mass due to
the fast transition between fluid and solid state. Some strategies can be considered to handle such problems
[36, [68], which will be explored in the future.

4.4. Surface data reconstruction

The reconstruction of data on the solid surface is an important aspect to get the distribution of quantities
of interest (e.g., pressure and friction force). The integrated aerodynamic coefficients, like lift and drag, are
computed from these quantities. The basic idea to get the surface quantity for each surface point (i.e., IB
point) is to perform interpolation based on data of surrounding solution points.

In the high-order framework, it is straightforward to consider using the high-order polynomial defined in
each element to perform data reconstruction. Procedures in such cases is very simple: 1) find the element
where the current IB point lies; 2) compute the reference coordinate of this IB point in the present element;
3) apply the polynomial interpolation scheme at this reference coordinate. This method, however, has some

potential drawbacks that lead to inaccuracy. This is mainly due to the fact that in most of cases, such

13

286

288

290

292

294

296

298

300

302

304

306

308

310

- - .

(a) (b) () (d)

Figure 4: Different locations of solid surface point within a numerical element with polynomial order P = 2. Blue circle is the
surface marker point. Red region is the solid region. Black points are solution points inside the element.

interpolation formula will involve solution points immersed in the solid, which usually have nonphysical
values. The schematic illustration for such problem is given in Fig. [where in all cases, nonphysical values
at the solid solution point will be involved in interpolation. A comparison between polynomial interpolation
and the data reconstruction method used in the present study is shown in illustrating the
failure of directly using high-order polynomial for data reconstruction.

Other than polynomial interpolation, an alternative method is to interpolate the data from several nearest
solution points. Compared with interpolation based on high-order polynomial, an advantage is that it has
more flexibility to select the interpolation points, without involving the solid solution points with nonphysical
values. Here, the interpolation methods described in [69] are followed, and are adapted to the high-order
framework. In general, the interpolation framework in [69] is based on the inverse distance between the
IB point and the interpolation point. Candidate interpolation points are chosen from the nearest fluid
points around the IB point. The value and gradient of conservative variables are interpolated. To compute
aerodynamic coefficients, the pressure and shear stress are subsequently obtained from the interpolated
variables. In particular, the Inverse Distance Weight at Interpolation Point (IDW-IP) method is used for
interpolation in the present study.

For standard IDW method, the inverse distance between each surface point and the solution point is used

as a weight to compute the value of any variable, as shown below

Ui /d;
U p=——— 39
5= s1/d (39)
where U; and d; refer to the solution vector and distance to surface point of the ith. For IDW-IP method,
following [70], we first define the interpolation point (IP) as a virtual point close to a specific IB point
that lies along the normal of that point. Here the normal can be computed efficiently based on the surface

representation method described in Sec. The distance of IP to the IB point is defined as

. Yidai/di

dip = 4
TN dy (40)

where d; is the perpendicular distance from any solution point to the surface normal of the IB point, while
ds is the projection of the distance from the solution point to the IB point along the surface normal. These
points and distances are illustrated in Fig. [f]

Like IDW method, the data is interpolated from the surrounding solution points but with d; as the

distance. From the above equation, the interpolation formulation is given as [69):

_ NU;/dy

— 41
Urp Sil/dy (41)

14

312

314

316

318

320

322

324

326

328

330

332

334

A - Immersed Boundary Point
B - Stencil Solution Point
C - Interpolation Point

surface normal of A

Figure 5: Schematic illustration of data reconstruction method on a Cartesian grid with polynomial order P = 2.

Interested readers can refer to [69] for more details. After extensive testing, we found a good balance
between accuracy and efficiency is to choose the nearest 2N, ~ 3N, flow points, where N, refers to the
number of solution points for near-wall elements. The integrated aerodynamic loads, including the lift and
drag coeflicients, is obtained from the reconstructed data at IB points. In particular, the reconstructed
surface pressure P and shear stress 7;; are used. The boundary representation discussed in Sec. @ allows
getting the surface normal and area efficiently. The distribution of surface points for force calculation is

sufficiently dense to guarantee the accuracy of integration. The lift and drag coefficients are given as:

1

Cl = m /as(TyI’l — Py)dS (42)
1

Cd = m /C{)S(Tml’l — Px)dS (43)

where [is the characteristic length.

The implementation of data reconstruction (IDW-IP method) in the high-order framework is as follows:
1) locate the element where the current IB point lies; 2) find neighboring elements of this element (and
neighbors of the neighboring element) and get the coordinates and masks for all the solution points in these
elements; 3) compute the distance of all candidate solution points to the IB point, and rank the points
based on the distance in increasing order; 4) select the points according to the rank, and discard the points
immersed in the solid, until the preset number of stencil points is reached; 5) compute the distance d; for

all candidate stencil points, and compute the weighting coefficients for each stencil point based on Eq.

4.5. Overview of the algorithm

The proposed IBM approach based on volume penalization and high-order FR can be summarized in
Fig. [6] Overall, the following procedures are needed:

(1) Import the background mesh and IBM geometry. The geometrical information is extracted from
the IBM marker points, including the surface normal and surface area. The distance to the surface is also
needed when using smooth strategy for the mask The reconstruction stencil is computed
for each marker point, respectively. For static boundary, these operations are only performed once in the

simulation.

15

336

338

340

342

344

346

348

P
start background mesh / Treatment for \
and IBM surface moving boundaries

update stencil for surface
' data reconstruction
Splitting Step 1

|
I
|)
(volume penalization with At/2) | update the surface points for
v I
I
I
I
I
I
I
I
I

|

I

I

I

I

I
defining the geometry |

Solve the Navier-Stokes equation A |
(flux reconstruction with Runge Kutta |
time integration) update mask and velocity I

I

I

I

I

I

I

/

for each solution points

A

update current solid
displacement

Splitting Step 2 No
(volume penalization with At/2)

update
motion?

Yes

Figure 6: Flow chart of the proposed method.

(2) At each time step, perform the first splitting step, Runge-Kutta explicit time integration, and the
second splitting step accordingly.

(3) When the solid body is moving, additional update operations are required after every time step (or
every several time steps). The solid displacement is first updated based on the prescribed motion function.
This displacement is used to update the mask and the velocity for each solution point, based on the method
in Sec. To evaluate the aerodynamic coefficients under moving boundaries, the surface IB points are
updated, along with its normal vector. With the updated position of IB points, data reconstruction also

needs to be reset.

4.6. Discussions on error estimate and selection of penalization parameter

One of the advantages of penalization method over other IBM approaches is that rigorous proofs of the
convergence have been given [37, [50]. Therefore, the numerical error introduced from the penalization term
can be controlled a-priori [54]. The error of the numerical solution of the penalized problem corresponding
to the original problem includes two parts [57], the penalization error and the discretization error:

Huexact _ Urj;[H < Huemact _ “nH + H“n — “1]7\]H (44)

exact

where u is the exact analytical solution of the governing equations, u, and uév are the exact and

numerical solution of the penalized equations. ||| is the norm used for quantifying the error, e.g., Ly, Lo or

Lo norm. The first part of error is the penalization error depending on the penalization parameter [42]:
||uewact _ UUH o na (45)

It should be emphasized again that the physical interpretation of volume penalization is that the solid

obstacle is assumed to be a porous medium with sufficiently small permeability n, thus the velocity of the

16

350

352

354

356

358

360

362

364

366

368

370

372

374

376

378

380

382

384

386

surrounding fluid tends to be zero and vanishes at the interface. Therefore, the convergence for the solution
of penalization method to the exact solution requires the error norm to approach zero for small penalization
parameter limit, i.e., lim, o [|u®®** — u,| — 0. In order to achieve this, we need o > 0. Fortunately,
theories based on rigorous mathematics have been proposed to validate that volume penalization method

satisfies this requirement. From Angot et al. [37] and Carbou and Fabrie [50], the volume penalization gives
1

2
Neumann boundary condition, O(n) can be obtained [71].

a = 3, indicating the penalization error has a decay rate of O(/7) for Dirichlet boundary condition. For
The discretization error refers to the error between the exact solution and the numerical solution of the
penalized equations. With consistent discretization and a stable numerical scheme, the discretization error

usually follows (8 > 0):

Hunfuf]VH x N78. (46)

However, as pointed out by Schneider et al. [47] [42], the discretization error is not only determined
by the numerical scheme, but also limited by the regularity of the solution. Regularity is characterized by
the smoothness of the exact solution u, at the boundary of the penalized problem. Therefore, the order of
convergence 3 becomes the minimum order between the numerical scheme and the regularity of the exact
penalized solution. For high-order method, the error of the numerical scheme can be reduced by performing
mesh refinement (h-refinement) or increasing polynomial order (p-refinement). However, the low regularity
of the solution near the wall for the penalized equation still remains a limitation to the present method.

From the error estimate, it is suggested to use a very small penalization parameter 7 to minimize the
penalization error. However, small n will lead to very stiff source term, thus causing stability issues. This is
the motivation of using splitting approach, as discussed in Sec. In practice, the penalization parameter
is dependent on the numerical resolution, where smaller penalization parameter requires a smaller time step
and finer resolution near the wall. When the penalization parameter is treated explicitly, from the linear
stability analysis [55], the time step for explicit time integration must be smaller than the penalization
parameter At < 7. This condition can be relaxed by using the Strang splitting method in the present
study, and can be further relaxed with the implicit forcing approach mentioned in Sec. Also in [72],
the intimate coupling between At and 7 is observed, indicating the error will saturate when At = 7. This
explains why it is usually suggested to use At = 7 in the volume penalization method. An interpretation is
that the penalty term acts as a strong damping term with order 7 on the velocity, which has to be resolved
by the time discretization scheme [57]. From a practical point of view, one can select the maximum At which
allows At = 1 to maintain both computational efficiency and accuracy. Note that in high-order methods,
the time step At is determined by the Courant-Friedrichs-Levy (CFL) condition, which scales as the inverse
of the spatial order squared [73]. Therefore a practical guideline is to fix At = n first and determine At

according to stability criterion.

5. Test Cases

In this section, the proposed IBM based on volume penalization for high-order flux reconstruction frame-
work is validated by different test cases with increasing complexity. Analysis of one-dimensional equation

is firstly performed to study the convergence of the method. Simulation of flow past static obstacles in

17

388

390

392

394

396

398

400

402

404

406

408

410

412

414

416

two-dimension and three-dimension is then shown. Finally, the capability of treating moving boundaries is
validated.

5.1. One-dimensional advection-diffusion equation

The convergence behavior of the proposed method is tested in this subsection. A one-dimensional
advection-diffusion is considered as the test case:
ou ou 0%u

gu O Y X o —) =
8t+65‘x V8x2+77(u up) =0,z € [0,1] (47)

The advection speed and diffusivity coefficient are chosen as ¢ = 0.1 and v = 0.01, respectively. The

initial condition and the homogeneous Dirichlet boundary conditions to be imposed are shown as follow:

u(z,0) = exp(5ax)sin(mz), u(0,t) = 0,u(1,t) = 0. (48)

The analytical solution of this problem is given by:
u(z,t) = exp(5z — £(0.0172 + 0.25))sin(7z) (49)

We choose a constant time step le — 7 to ensure time accuracy. The penalization parameter n = At.
For the diffusion term, the § and 7 used for LDG scheme are 0.5 and 0.1. We march the solution in
time to 4. = 0.01, based on the third-order TVD Runge-Kutta scheme. The convergence with respect
to penalization parameter is firstly tested, as shown in[7] The computational domain is discretized by 80
elements, and 2 additional elements are extended to both sides to impose the penalized boundary conditions.
The solution points in the solid are penalized by the values at two boundaries, i.e., homogeneous boundary
conditions u = 0, which are known to be the exact boundary condition we want to impose at the interface.
The error of the simulation is quantified by the Lo error norm between the analytical solution u and the
approximated solution vV within the whole fluid region. The convergence plot is given in Fig. [7} It can be
seen that as the penalization parameter n approaches zero, the accuracy limit of the penalization method
will be reached. The convergence rate of O(,/7) is recovered at large 1, which agrees with the theory of
penalization method for Dirichlet problem in the continuous setting [37] [50]. In addition, as P increases,
a smaller 7 is required to get the best accuracy. When P is larger than 1, a super-convergence larger than
the theoretical limit is also observed, where the convergence rate becomes O(n~!). This is different from
numerical tests of low-order scheme, where O(n~%?) is observed [74] [57].

The convergence with respect to the spatial resolution is then studied. To test the numerical convergence
in detail, we consider two situations: 1) when the analytical solution in the solid is known (e.g., Eq.
is known a-priori), solutions at each solution point are penalized by its analytical solution respectively; 2)
when the analytical solution inside the solid is not known, but only the values at the boundary are known
(e.g., imposing the homogeneous Dirichlet boundary condition in Eq. for all solid solution points). In
this latter case, we penalize all the solution points immersed in the solid with « = 0. The Ly error norm in
the fluid is used to quantify the error of numerical scheme. It is obvious that the latter case is more realistic
since in practice the behavior of the solutions inside the solid is unpredictable, therefore they should also

adopt the boundary condition at the interface.

18

10°
_ 107
o
o
N
- -3
107 ¢ -—P1
P2
P3
- P4
10-4- v |
108 10 10 102

Figure 7: Convergence with penalization parameter n for penalized advection-diffusion equation. P is the polynomial order.

S
o
o~
- ~P1

~Pp2

P3 ~<
10-10’_._p4 ‘\\\
- -reference
10t 102

Figure 8: Convergence with the number of elements for penalized advection-diffusion equation. Solid solution points are
penalized by the analytical solution. P is the polynomial order. Reference lines give the expected convergence rate of flux

reconstruction scheme N—(P+1)

19

418

420

422

424

426

428

430

432

434

436

438

440

442

The convergence plot of the first case is shown in Fig. As shown in the figure, when the analytical
solutions for all solid points are used in the volume penalization method, an order of convergence N~ (P+1)
is recovered. This is the exact convergence rate of standard FR scheme. This indicates that the volume
penalization method itself does not deteriorate the high-order convergence from high-order schemes. Con-
vergence plot of the second case, which is more realistic, is shown in Fig. [0] From Fig. 0a] in the flow region
far from the wall 2 € [0.2,0.8], the theoretical convergence rate N~(F+1) can still be recovered. However,
for the global fluid domain x € [0, 1], the convergence rate is reduced to approximately O(N~!) across all
polynomial orders, as indicated in Fig. [9b] This is because when homogeneous Dirichlet boundary conditions
are imposed for all solution points, the smoothness (or regularity) of the gradient across boundary cannot be
guaranteed. As explained in Section this low regularity of the solution near the wall will limit the overall
convergence [47] [60]. Such limitation of convergence rate was also observed [54] [55] and discussed [42] [57]
in previous works. The regularity can be improved by using larger penalization parameter, but this will
affect the accuracy near the wall [47]. In addition, due to the fact that in the flow region far from the wall,
high-order accuracy can be recovered, it is preferable to perform local refinement near the wall to increase
the accuracy, without costing to many additional degrees of freedom. Compared with the first case, it can be
concluded that once the exact solution of the original equations in the solid is known, the regularity near the
wall is well kept, thus better global convergence rate is recovered. Therefore, the error will only come from
the numerical scheme, where the convergence of standard flux reconstruction method in the global region is
retained. This case helps to investigate only the influence of spatial and temporal discretizations, and can
also be used to test the correctness of code implementation with penalization method. This also directs the
future development of the present method, where some strategies can be sought to improve the regularity

near the wall, thus improving the overall convergence.

10° ‘ 10° ‘
-—P1 -P1
P2 P2
P3 P3
P4 P4 |
- - -reference - - -NL
S S
5 ;
N N
- -
-10 S -6 .
10 10
10" 10° 10" 10°
N N
(a) Order of convergence for the computational domain far from (b) Order of convergence for the whole computational domain in-
boundary z € [0.2,0.8] cluding boundary z € [0, 1]

Figure 9: Convergence with number of elements for penalized advection-diffusion equation. Solid solution points are penalized
by the homogeneous Dirichlet condition. P is the polynomial order. Reference lines give the expected convergence rate of flux
reconstruction scheme N~ (P+1),

5.2. Flow past a cylinder

The flow past a cylinder is a standard test case for IBM simulation. Therefore, in the present study,
it is chosen as the first test case to investigate the proposed method for the Navier-Stokes equations. The

Reynolds and Mach numbers are set to 40 and 0.2, where the flow remains steady. The no-slip adiabatic

20

444

446

448

450

452

454

456

458

wall boundary condition is considered for the wall, therefore we impose us; = 0 and v = 0 in the solid. Here
three sets of mesh are considered. The size of rectangular computational domain is z € [-30D,50D] and
y € [-30D,30D], where D is the diameter of the cylinder and is set to 1. In the square region x € [—D, D]
and y € [—D, D], uniform grid is used. The uniform mesh size h is chosen as 0.03D (Mesh 1), 0.015D
(Mesh 2) and 0.01D (Mesh 3), respectively. Mesh 1 is illustrated in Fig. The number of grid points are
187 x 178, 325 x 313 and 410 x 400. Thanks to the inner degree of freedom given by high-order methods, the
mesh size is relatively coarse compared with existing works based on low-order methods. For example, in a
recent IBM work based on finite difference method [75], grid with size 800 x 320 is used for the same case.
With a decent mesh, the present method allows to increase the resolution based on high-order polynomial
approximation. We choose the polynomial order P = 3 for Mesh 1, P = 2 for Mesh 2 and Mesh 3. The
explicit time steps used for these cases are 7e — 5, 1le — 4, and 5e — 5, respectively. The penalty parameter is
chosen to be equal to the time step. The characteristic boundary conditions are imposed to all the far field

boundaries.

30

Y O

Il Il I Il Il
10 15 20 25 30 35 40 45 5
X

(a) Global view. (b) Zoom-in view.

Figure 10: The computational mesh (Mesh 1, locally uniform grid size h = 0.03)

¢ h=0.03, P3

* h=0.015, P2

* h=0.01, P2
body-fitted

-1 : : : : : : -15 : : : : : :
0 3 60 90 120 150 180 0O 30 60 90 120 150 180

0 0
(a) Pressure coefficient (b) Wall spanwise vorticity in z direction

Figure 11: Comparison of variables for flow past a cylinder at Re = 40 and M = 0.2. h and P are locally uniform grid size and
the polynomial order, respectively.

The pressure coefficient C}, and wall spanwise vorticity w, are compared in Fig. The results are also

compared with those from body-fitted simulation with the same solver. A detailed comparison of quantity

21

460

462

464

466

468

470

472

474

476

478

480

Table 1: comparison of reattachment length, separation angle and drag coefficient for flow past a cylinder

Case L/D 0 Cy

Dennis and Chang [76] 2.35 53.8 1.52
Fornberg [77] 2.24 55.6 1.50
Choi et al. [70] 2.21 53.6 1.49
body-fitted 2.24 51.0 1.53
Mesh 1 2.30 51.2 1.50
Mesh 2 2.30 52.0 1.51
Mesh 3 2.27 52.0 1.52

of interest is given in Table [[} All results give good agreement for the pressure coefficient distribution.
However, the prediction of spanwise vorticity is not as good as Cp. This is mainly due to the difficulty in
predicting the gradient values on the surface, since the present method only impose the constraint to the
surface velocity. To solve this, better refined resolution or other treatment to impose the gradient condition
can be a good choice for future works. But from Table [I} good agreement with the literature is shown, and
as we increase the resolution, the results also become closer to the reference data. A typical flow snapshot
is shown in Fig.

Figure 12: The z-momentum field and the streamlines for flow past a cylinder at Re = 40 and M = 0.2.

In addition, we also want to highlight the advantage of high-order method in performing local p-refinement
near the wall. Local refinement of the polynomial order comes from the flexibility of high-order framework,
where the mesh remains unchanged but the resolution inside the element can be improved. This will keep
good accuracy with a much reduced degree of freedom, thus reducing the overall computational cost. Al-
though it is not the main focus of the present work, we also investigated the efficacy of local p-refinement
near the wall. The p-refinement is implemented based on the mortar method [78], where a mortar element is
introduced to the element interface. The common and interaction fluxes are computed on the mortar element
and are projected back to each neighboring face. We tested this approach based on the first mesh, where
the global order P =1 is used for elements in the farfield. Local p-refinement near the wall is performed to
improve the polynomial order locally to P = 3. The distribution of polynomial order across each element is
shown in Fig. To implement local p-refinement, we firstly measure the distance between each cell center
and the surface. When this distance is smaller than 0.25D, the polynomial order of that element is increased
to P = 3. A buffer layer with P = 2 is also included between P = 1 and P = 3 cells. From the results in
Fig. [I3B] it is clear that with local p-refinement, we can produce very close results compared with globally

high-order computation. The total degree of freedom, defined by the total number of solution points, is

22

482

484

486

488

490

492

496

498

500

502

504

506

¢ h=0.03, P3
* h=0.03, P1P3
1r — body-fitted
0.5
a
]
O L
-0.5
1 w w : w w w
0 30 60 90 120 150 180
(a) Distribution of polynomial order 2]

(b) Pressure distribution

Figure 13: Comparison of variables for flow past a cylinder at Re = 40 and M = 0.2. The local p-refinement is considered
near the wall. The white curve represents the solid boundary. h and P are locally uniform grid size and the polynomial order,
respectively. P1P3 refers to the local p-refinement case with global order 1 and local order 3 near the wall.

148296 for the p-refinement case. This is nearly one quarter of the degree of freedom 532576 required for
the test case with P = 3 cells globally. This indicates the advantage of combining high-order methods with
IBM. The p-adaptation framework [79] [80] with proper adaptation strategy can be further considered to

increase the resolution on any flow region of interest.

5.8. Flow past a NACA0012 airfoil

The flow over an airfoil is tested to evaluate the present method for a configuration with higher Reynolds
number and a non-zero angle of attack. The benchmark of NACA0012 airfoil at Mach number 0.5 and
Reynolds number 5000 is chosen, with an angle of attack 2 degree. The size of rectangular computational
domain is & € [—30¢, 50c] and y € [—30c¢, 30c]|, where ¢ is the chord length of the airfoil. In the square region
x € [—e¢,c] and y € [—c,], uniform and square grid with mesh size 0.004c is used. The number of mesh
elements are 897 x 697. The characteristic boundary conditions are imposed to all the far field boundaries.
The reference data is obtained from a body-fitted simulation of the same solver.

The influence of penalization parameter, is firstly studied for this case, as shown in Fig. Here for all
the cases, the polynomial order is selected as P = 2 with a constant time step le — 4. As the penalization
parameter decreases, the results become more accurate. This is consistent with the error estimate that the
penalization parameter should be small enough to ensure good accuracy. In addition, the smoothness of
the solution becomes worse as penalization parameter decreases. It can be seen that when the penalization
parameter is smaller than A = 1e —4, the solution accuracy does not seem to improve anymore, but becomes
slightly more oscillation, as sown in the n = 1le—5 case. This highlights the argument that the error saturates
around n ~ At [(2] [57].

To compare the solution with refined resolution, two more test cases are simulated. For the same mesh
used, the polynomial order is increased to P = 4, with time step and penalization parameter set as 2e —5. In
addition, a locally refined mesh with size 0.001c is also generated, with mesh size 1341 x 365. The simulation
with P =2, dt = 1le—5 and n = le—5 is also added. As shown in the Fig. all simulations give very good
prediction on Cp. The prediction of surface skin friction coefficient is more difficult, since it involves the

reconstruction of gradient. From Fig. we can also see that as the resolution near the wall increases, C

23

--1le-1

-0.6 —b5e-2

le-2

0.9 —=5e-3
—body-fitted

_12 L L

0 0.2 0.4 0.6 0.8 1
X

(a) Larger penalization parameter

0.55

0.45+¢

0.15¢

0 005 01 015 02 025 0.3
X

0.05

(c) Larger penalization parameter, zoom-in view

--5e-3

-0.6 —1e-3

le-4

-0.9 —-1e-5
—body-fitted

1.2 L L L I

0 0.2 0.4 0.6 0.8 1
X

(b) Smaller penalization parameter

0.55
0.45+
0.35¢
o
O

0.25¢ --5e-3

Y —1e-3
0.15¢ ‘1 le-4

' —=1le-5

! —body-fitted
0.05 4L : : : :

0 0.05 01 015 0.2 025 03

X

(d) Smaller penalization parameter, zoom-in view

Figure 14: Influence of penalization parameter n for flow past a NACA0012 airfoil at Re = 5000 and M = 0.5, illustrated by
Cp distribution. h and P are locally uniform grid size and the polynomial order, respectively.

24

508

510

512

514

516

518

0.2

—h =0.004, P2

—h = 0.004, P4
0.16 h =0.001, P2||

—body-fitted

-0.6 —h =0.004, P2]]
—h =0.004, P4

-0.9 h =0.001, P2||
—body-fitted

-1.2 : : : : : :

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
(a) Pressure coefficient distribution (b) Friction coefficient distribution

Figure 15: Comparison of pressure and friction coefficients with different h and p resolutions, for flow past a NACA0012 airfoil
at Re = 5000 and M = 0.5. h and P are locally uniform grid size and the polynomial order, respectively.

is better predicted. Note that the increase in resolution can be achieved by increasing either the polynomial
order or the number of elements locally. Note that for low-order schemes, we need a resolution about mesh

size 5e — 4c to have a comparable prediction on friction coefficient [69].

5.4. Flow past a sphere

In order to test the proposed method in simulating three-dimensional flows, the flow over a sphere
at Reynolds number 100 and Mach number 0.2 is chosen. To reduce the overall computational cost, we
generate the mesh for a quarter of the whole domain. The size of domain is « € [-30D,30D], y € [0,30D]
and z € [0,30D)], where D is the diameter of the sphere. The symmetric plane is considered as boundary
condition on y = 0 and z = 0 plane, while characteristic boundary conditions are imposed to all the other
boundaries. To ensure sufficient resolution near the wall, uniform grid with size 0.03D is used in region
x € [-0.6D,0.6D], y € [0,0.6D] and z € [0,0.6D]. This results in a total element number of 129 x 55 x 55.

The polynomial order is set to 2. The time step and penalization parameter are chosen as 5e — 5.

15 . : . . 5
—Dandy and Dwyer (1990)
== Fadlun (2000)
b - h=0.03, P2
0.5
o
O
0 L
-0.5 1
© Choi (2007)
- h=0.03, P2
-1 : ‘ ‘ : : -20 ‘ ‘ ‘ : :
0 30 60 90 120 150 180 0 30 60 90 120 150 180
0 0
(a) Pressure coefficient (b) Wall azimuthal vorticity in z direction

Figure 16: Comparison of variables for flow past a sphere at Re = 100 and M = 0.2. h and P are locally uniform grid size and
the polynomial order, respectively. Reference data are taken from Dandy and Dwyer (1990) [81], Fadlun (2000) [35] and Choi

(2007) [70].

25

520

522

524

526

528

530

532

534

536

538

540

The surface quantities from the symmetrical plane z = 0 are used for comparison. The resulting pressure
coefficient distribution is compared with other studies from [8I] and [35], which are shown in Fig. From
the comparison of pressure coefficient, all results nearly collapse, thus indicating the good accuracy from the
present method. The comparison of wall azimuthal vorticity is shown with the IBM results from Choi et al.
[70). A good agreement is also observed, except slight oscillation around the separation position. As shown
in previous study, this can be reduced by further refining the resolution near the wall. The drag coefficient

is about 1.06, which is only about 2% error compared with exist results (1.08 from [82] and 1.09 from [83]).

5.5. Flow past a pitching and plunging airfoil

In this subsection, a moving airfoil with combined plunging and pitching motion is simulated with the
proposed method. This configuration has been extensively considered in flapping wings [84] and FSI analysis
[85]. The present case is taken from Case 2 of the 5th International Workshop on High-Order CFD Methods
[86].

1.2 ‘ ‘ ‘ 120
—b()

0 0.5 1 15 2
Time

Figure 17: Evolution of motion evolution with time. b and 6 are plunging displacement and pitching angle, respectively.

The Mach number is 0.2 and the Reynolds number is 1000. The size of rectangular computational domain
is ¢ € [-30¢,60c] and y € [—30¢, 30¢], where ¢ is the chord length of the airfoil. In the rectangular region
x € [—0.8¢,0.8¢] and y € [—0.3¢, 1.3¢], uniform and square grid with size 0.005¢ is used. This results in a
total number of 652 x 466 elements. The characteristic boundary conditions are imposed to the far field.
The rotation axis is placed at 1/3 chord length at airfoil centerline. The simulation is performed across
polynomial orders 1 to 3, with time step set to 6.0e — 5, 4.0¢ — 5 and 2.5¢ — 5, respectively. As usual, the
penalization parameter is the same as time step for all simulations. The plunging and pitching motions are

defined by the following equation:

{b(t) = 13(—8t3 + 5142 — 111t + 84)/16 (50)

0(t) = (80m/180)¢t2(t? — 4t + 4)

The displacement versus time is shown in Fig. The airfoil keeps moving upward, with an impulse

type pitching motion. The comparison of force coefficient in z and y directions is shown in Fig. A good

26

agreement with the reference data produced from body-fitted simulation [86] is observed, where all IBM

sz simulations are quite close thus is not distinguishable from the figure.

5 2
1.5 \\\ 1 1.5¢ // o |
\ i
1t W\ 1 ir '
NS /
0.5 W\] 05} /
AN
o 0F "\ o ST]
\
0.5 \’,/ 1 0.5+ 1
—h =0.005, P1
-17—h=0.005, P2 7 -1¢]
15//—h=0.005, P3] 15!]
- -reference
-2 : ‘ : -2 : ‘ :
0 0.5 1 1.5 2 0 05 1 1.5 2
Time Time
(a) Ca (b) C;

Figure 18: Force comparison of combined plunging and pitching motion. h and P are locally uniform grid size and the polynomial
order, respectively.

In order to see how the solution converges as we increase the polynomial order, a zoom-in view of force

s evolution is shown in Fig. It can be seen that, as the polynomial order increases, the result will approach
P = 3 simulation. The smoothness of solution is also improved as we increase the polynomial order. This

s6 1S in consistent with the high-order framework where the higher polynomial order leads to better resolution
and better accuracy. The flow fields based on P = 2 simulation is visualized in Fig. From this figure,

sis the vortex shedding pattern for such energy extraction process can be accurately described.

1.9 T T T -0.5
=l N el
o 187 —h=0.005, P1]| o 06F
—h =0.005, P2
h =0.005, P3 _—
1.7 - - - -0.7 - - -
0.6 0.65 0.7 0.75 0.8 1.4 1.45 1.5 1.55 1.6
Time Time
(a) (b)
1.75 T T T T T -
1.2+ 4
L7y \
o o
1651 -1.4 v
16 | | | 16 | | |
0.45 0.5 0.55 0.6 0.65 1.55 1.6 1.65 1.7 1.75
Time Time

() (d)

Figure 19: Detailed comparison of force across different polynomial orders. h and P are locally uniform grid size and the
polynomial order, respectively.

27

0.6 0 0.6 1.2 1.8 24 0.6 0 0.6 1.2 1.8 24
X X

(a) Time = 0.5 (b) Time = 1.0

0.6 0 0.6 12 1.8 24 0.6 0 0.6 12 1.8 24
X X

(c) Time = 1.5 (d) Time = 2.0

Figure 20: Flow snapshots at four time instants for combined pitching and plunging motion of the airfoil. The locally uniform
grid size is h = 0.005 and the polynomial order is P = 2.

28

550

552

554

556

558

560

562

564

566

568

570

572

574

576

578

6. Conclusions

An immersed boundary method based on volume penalization for flux reconstruction method is proposed.
It comes from the aspiration to use high-order DG type methods to efficiently handle the complex geometries
on Cartesian grid and to alleviate the sometimes difficult meshing procedure. FR approach is selected due
to its capability of recovering existing high-order schemes. The volume penalization method, which is
proven to show convergence with low penalization parameter limit, is introduced as the IBM approach. Our
implementation is general and does not assume knowing the analytical shape of the geometry, which enables
generalisation to complex three-dimensional simulations. In order to overcome the numerical stability issue
coming from stiff IBM source term, the splitting scheme with explicit and implicit forcing methods are
proposed. Efficient and accurate methods for reconstructing flow quantities near the wall are used to get the
surface pressure and friction distribution. Through the one-dimensional advection-diffusion equation, the
convergence behavior is investigated. It highlights the importance of increasing resolution near the wall and
the use of small penalization parameter to impose boundary condition properly. The accuracy of the proposed
method has been validated through different real flow cases including flow past static cylinder, airfoil and
sphere, as well as unsteady flow past a moving airfoil. Good agreement with body-fitted simulation and
existing literature is shown, indicating the validity of the proposed method. In addition, the high accuracy
of the flux reconstruction method provided when using high polynomials is evident in the results, and
particularly when computing surface functionals (e.g. lift, drag), in both static and moving geometries.
Further work will extend and enhance the present method to compute complex three-dimensional turbulent

flows in the FSI context.

Conflict of Interest

The work presented in this paper does not have any conflict of interest with other organizations.

ACKNOWLEDGEMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skltodowska-Curie grant agreement (MSCA ITN-EID-GA ASIMIA No 813605).

Appendix A. Analytical mask function for different geometries

Although the present work has developed a method to calculate mask function for arbitrary geometries,
analytical mask functions for the geometries involved in the present study are also given for completeness.
For a cylinder, a sphere, and a NACA0012 airfoil with unit length, whose center point is located at (0,0, 0),
the mask function is given as follows:

For cylinder:

1, if 22 4+ y? < 0.5%
T, 1) = ’ - Al
x(@,?) { 0, otherwise (A1)
For sphere:
1, if 22 + 92 + 22 < 0.52
x(@,t) = , (A.2)
0, otherwise

29

580

582

584

586

588

590

592

594

596

598

For NACAO0012 airfoil:

(@) = { 1, if y2 — (a1(a2/(x + 0.5) + az(z + 0.5) + as(z + 0.5)2 + az(x + 0.5)% + ag(x + 0.5)*))2 < 0
0, otherwise
(A.3)
the coefficients for NACAO0012 airfoils are a; = 0.594689181, ay = 0.298222773, a3 = —0.127125232, a4 =
—0.357907906, a5 = 0.291984971, and ag = —0.105174606.

Appendix B. Smoothing the mask function

As mentioned in [55] [57], smoothing the mask function enables to avoid spurious oscillations of the
hydrodynamic forces on moving obstacles, and also helps for de-aliasing of the penalization term. In order to
test how smoothing mask function helps with the present solver, we make a test on simulating the NACA0012
airfoil for the same case considered in Sec. Following [55], we use a Gaussian function to smooth the

sharp mask function Xsparp:

Xsmooth = [1 - exp(_(xdist/5)2)] * Xsharp (Bl)

where x4;5 refers to the distance of solution point to the surface, § is the width of the smoothing function.
As an example, the 1D smooth mask function with different width parameters are shown in Fig. [B:21] As

the solution point is approaching the surface, less penalization is imposed to this point.

1 :
—sharp mask
0.8F —_—0=1
6=2
06" —o=3
=
0.4r
0.2+
O L i
0 5 10 15 20

point index

Figure B.21: Smooth mask function with different width.

We select the P = 2 test case, with penalization parameter le — 5. Two width parameters, h/3 and h/8
are considered. The results are shown in Fig. It is observed that with the smooth mask function, the
pressure distribution becomes less oscillatory, while some error will also be introduced near the leading edge
of the skin friction coefficient. This is related to the smaller source term near the wall, where the accuracy
may be reduced but the smoothness of the solution can be improved. We can also see that as a larger width
parameter is selected, the accuracy of the result becomes worse. This comparison shows that smoothing
the mask function will help to reduce oscillations near the wall, but will not lead to any gain in accuracy.
Therefore in the present work, we keep using a sharp mask function for all simulations. However, different
smoothing strategies are still worth testing to see if an optimal smoothing approach can be found for the

present approach.

30

600

602

604

606

608

610

612

614

616

618

620

622

624

0.4r
0703
0.2 ==sharp mask
==smooth (¢ = h/3)
smooth (§ = h/8)
0.1 — body-fitted]
0 0.1 0.2 0.3 1
X X
(a) Pressure coefficient (b) Friction coefficient

Figure B.22: Comparison of using smooth mask function for flow past a NACA0012 airfoil at Re = 5000, M = 0.5 and angle
of attack 2 degree.

Appendix C. Comparison of data reconstruction methods

As discussed in Sec. [£:4] for the present method, it is straightforward to employ the high-order poly-
nomial interpolation to get the quantities of interest for surface marker points. However, basic analysis on
the interpolation stencil shows that such operation will involve the solution points immersed solid, with
nonphysical values and gradients. A comparison of data reconstruction methods is made here to show the
difference between the polynomial interpolation and the IDW-IP method used in the present study. We take
the third result from Sec. where flow past a cylinder at Reynolds number 40 is simulated. The third
mesh with locally uniform grid size 0.01D is selected and the polynomial order is set to 2. We take the
final flow field, and reconstruct the surface quantities based on both methods. The comparison of pressure
coeflicient and wall spanwise vorticity is shown in Fig. It is clearly seen that the pressure coefficient
from high-order polynomial interpolation shows very large oscillation, while results from IDW-IP are smooth
and agree well with body-fitted simulation. The under-prediction of wall spanwise vorticity from high-order
polynomial interpolation is evident in Fig. where the result is not only oscillatory but also does
not fit the body-fitted simulation very well. This highlights the weakness of using high-order polynomial to

interpolate flow quantities on the surface.

References

[1] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann,
K. Hillewaert, H. T. Huynh, et al., High-order cfd methods: current status and perspective, International
Journal for Numerical Methods in Fluids 72 (2013) 811-45.

[2] H. Huynh, Z. J. Wang, P. E. Vincent, High-order methods for computational fluid dynamics: A brief

review of compact differential formulations on unstructured grids, Computers & fluids 98 (2014) 209-20.

[3] J. S. Hesthaven, T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and ap-

plications, Springer Science & Business Media, 2007.

[4] H. T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous galerkin
methods, in: 18th ATAA Computational Fluid Dynamics Conference, 2007, p. 4079.

31

626

628

630

632

634

636

638

640

642

644

646

648

¢ polynomial interpolation

® |IDW-IP

1%, — body-fitted

0.5

a N
O 3

O L

-0.5
-1 : ‘ : : : -15 ‘ ‘ ‘ : : :

0 30 60 90 120 150 180 0 30 60 90 120 150 180
0 0
(a) Pressure coefficient (b) Wall spanwise vorticity in z direction

Figure C.23: Comparison of data reconstruction method for flow past a cylinder at Re = 40 and M = 0.2.

[5] Y. Liu, M. Vinokur, Z. J. Wang, Spectral difference method for unstructured grids i: basic formulation,
Journal of Computational Physics 216 (2006) 780-801.

[6] Z.J. Wang, Y. Liu, G. May, A. Jameson, Spectral difference method for unstructured grids ii: extension
to the euler equations, Journal of Scientific Computing 32 (2007) 45-71.

[71 A. J. Lew, G. C. Buscaglia, A discontinuous-galerkin-based immersed boundary method,
International Journal for Numerical Methods in Engineering 76 (2008) 427-54. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2312, doii10.1002/nme . 2312,

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2312.

[8] A. J. Lew, M. Negri, Optimal convergence of a discontinuous-galerkin-based immersed boundary
method, ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et
Analyse Numérique 45 (2011) 651-74. URL: http://www.numdam.org/item/M2AN_2011__45_4_651_0.
doii10.1051/m2an/2010069.

[9] R. Rangarajan, A. Lew, G. C. Buscaglia, A discontinuous-galerkin-based immersed boundary method
with non-homogeneous boundary conditions and its application to elasticity, Computer Methods in
Applied Mechanics and Engineering 198 (2009) 1513 —34. URL: http://www.sciencedirect.com/
science/article/pii/S0045782509000413. doithttps://doi.org/10.1016/j.cma.2009.01.018|

[10] P. Bastian, C. Engwer, An unfitted finite element method using discontinuous galerkin, International

journal for numerical methods in engineering 79 (2009) 1557-76.

[11] G. Brandstetter, S. Govindjee, A high-order immersed boundary discontinuous-galerkin method for

poisson’s equation with discontinuous coefficients and singular sources, International Journal for Nu-
merical Methods in Engineering 101 (2015) 847-69.

[12] H. Dong, B. Wang, Z. Xie, L.-L. Wang, An unfitted hybridizable discontinuous Galerkin method

for the Poisson interface problem and its error analysis, IMA Journal of Numerical Analysis
37 (2016) 444-76. URL: https://doi.org/10.1093/imanum/drv071. doi:10.1093/imanum/drv071.
arXiv:https://academic.oup.com/imajna/article-pdf/37/1/444/9633654/drv071.pdfl

32

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2312
http://dx.doi.org/10.1002/nme.2312
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2312
http://www.numdam.org/item/M2AN_2011__45_4_651_0
http://dx.doi.org/10.1051/m2an/2010069
http://www.sciencedirect.com/science/article/pii/S0045782509000413
http://www.sciencedirect.com/science/article/pii/S0045782509000413
http://www.sciencedirect.com/science/article/pii/S0045782509000413
http://dx.doi.org/https://doi.org/10.1016/j.cma.2009.01.018
https://doi.org/10.1093/imanum/drv071
http://dx.doi.org/10.1093/imanum/drv071
http://arxiv.org/abs/https://academic.oup.com/imajna/article-pdf/37/1/444/9633654/drv071.pdf

650

652

654

656

658

660

662

664

666

668

670

672

674

676

678

680

682

684

[13]

[16]

[17]

H. L. N. THANH, Immersed Hybridizable Discontinuous Galerkin Method for Multi-Viscosity Incom-
pressible Navier-Stokes Flows on Irregular Domains, Ph.D. thesis, National University of Singapore,
2010.

K. J. Fidkowski, D. L. Darmofal, A triangular cut-cell adaptive method for high-order discretizations
of the compressible navier—stokes equations, Journal of Computational Physics 225 (2007) 1653-72.

B. Miiller, S. Kramer-Eis, F. Kummer, M. Oberlack, A high-order discontinuous galerkin method
for compressible flows with immersed boundaries, International Journal for Numerical Methods in
Engineering 110 (2017) 3-30.

M. Geisenhofer, F. Kummer, B. Miiller, A discontinuous galerkin immersed boundary solver for com-
pressible flows: Adaptive local time stepping for artificial viscosity—based shock-capturing on cut cells,
International Journal for Numerical Methods in Fluids 91 (2019) 448-72.

S. Schoeder, S. Sticko, G. Kreiss, M. Kronbichler, High-order cut discontinuous galerkin methods
with local time stepping for acoustics, International Journal for Numerical Methods in Engineer-
ing 121 (2020) 2979-3003. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6343.
doii10.1002/nme . 6343 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6343.

P. Brady, D. Livescu, Foundations for high-order, conservative cut-cell methods: Stable discretiza-
tions on degenerate meshes, Journal of Computational Physics (2020) 109794. URL: http://www.
sciencedirect.com/science/article/pii/S0021999120305684. doithttps://doi.org/10.1016/].
jcp.2020.109794.

K. Schaal, A. Bauer, P. Chandrashekar, R. Pakmor, C. Klingenberg, V. Springel, As-
trophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adap-
tive mesh refinement, Monthly Notices of the Royal Astronomical Society 453 (2015)
4278-300. URL: https://doi.org/10.1093/mnras/stv1859. doii10.1093/mnras/stv1859.
arXiv:https://academic.oup.com/mnras/article-pdf/453/4/4278/8034398/stv1859.pdf|

X.-J. Zhang, Y .-S. Zhu, K. Yan, Y.-Y. Zhang, New immersed boundary method on the adaptive cartesian
grid applied to the local discontinuous galerkin method, Chinese Journal of Mechanical Engineering 31
(2018) 22.

A. C. Kirby, D. J. Mavriplis, Gpu-accelerated discontinuous galerkin methods: 30x speedup on 345
billion unknowns, 2020. arXiv:2006.15698.

H. T. Huynh, A reconstruction approach to high-order schemnes including discontinuous galerkin for
diffusion, in: 47th ATAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace
Exposition, 2009, p. 403.

P. E. Vincent, P. Castonguay, A. Jameson, A new class of high-order energy stable flux reconstruction
schemes, Journal of Scientific Computing 47 (2011) 50-72.

C. S. Peskin, Flow patterns around heart valves: a numerical method, Journal of computational physics
10 (1972) 252-71.

33

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6343
http://dx.doi.org/10.1002/nme.6343
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6343
http://www.sciencedirect.com/science/article/pii/S0021999120305684
http://www.sciencedirect.com/science/article/pii/S0021999120305684
http://www.sciencedirect.com/science/article/pii/S0021999120305684
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109794
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109794
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109794
https://doi.org/10.1093/mnras/stv1859
http://dx.doi.org/10.1093/mnras/stv1859
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/453/4/4278/8034398/stv1859.pdf
http://arxiv.org/abs/2006.15698

686

688

690

692

694

696

698

700

702

704

706

708

710

712

714

716

718

[25]

[26]

[28]

[29]

G. Taccarino, R. Verzicco, Immersed boundary technique for turbulent flow simulations, Appl. Mech.
Rev. 56 (2003) 331-47.

J. Shao, C. Shu, Y.-T. Chew, Development of an immersed boundary-phase field-lattice boltzmann
method for neumann boundary condition to study contact line dynamics, Journal of Computational
Physics 234 (2013) 8-32.

W.-X. Huang, S. J. Shin, H. J. Sung, Simulation of flexible filaments in a uniform flow by the immersed
boundary method, Journal of computational physics 226 (2007) 2206-28.

L. Wang, F.-B. Tian, J. C. Lai, An immersed boundary method for fluid—structure—acoustics interactions

involving large deformations and complex geometries, Journal of Fluids and Structures 95 (2020) 102993.

H. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface cartesian grid method for

simulating flows with complex moving boundaries, Journal of computational physics 174 (2001) 345-80.

T. Ye, R. Mittal, H. Udaykumar, W. Shyy, An accurate cartesian grid method for viscous incompressible

flows with complex immersed boundaries, Journal of computational physics 156 (1999) 209-40.

F. Orley, V. Pasquariello, S. Hickel, N. A. Adams, Cut-element based immersed boundary method for
moving geometries in compressible liquid flows with cavitation, Journal of Computational Physics 283
(2015) 1-22.

S. Majumdar, G. Iaccarino, P. Durbin, Rans solvers with adaptive structured boundary non-conforming
grids, Annual Research Briefs 1 (2001).

Y.-H. Tseng, J. H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry,
Journal of computational physics 192 (2003) 593-623.

D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an external force field,
Journal of computational physics 105 (1993) 354-66.

E. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference
methods for three-dimensional complex flow simulations, Journal of computational physics 161 (2000)
35-60.

H. Luo, H. Dai, P. J. F. de Sousa, B. Yin, On the numerical oscillation of the direct-forcing immersed-
boundary method for moving boundaries, Computers & Fluids 56 (2012) 61-76.

P. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take into account obstacles in incom-
pressible viscous flows, Numerische Mathematik 81 (1999) 497-520.

Z. Li, M.-C. Lai, The immersed interface method for the navier—stokes equations with singular forces,
Journal of Computational Physics 171 (2001) 822-42.

D. Z. Huang, D. De Santis, C. Farhat, A family of position-and orientation-independent embedded
boundary methods for viscous flow and fluid—structure interaction problems, Journal of Computational
Physics 365 (2018) 74-104.

34

720

722

726

728

730

732

734

736

738

740

742

744

746

748

750

752

754

[40]

[41]

[42]

[43]

[44]

R. Mittal, G. Taccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239-61.

F. Sotiropoulos, X. Yang, Immersed boundary methods for simulating fluid—structure interaction,

Progress in Aerospace Sciences 65 (2014) 1-21.

K. Schneider, Immersed boundary methods for numerical simulation of confined fluid and plasma

turbulence in complex geometries: a review, arXiv preprint arXiv:1508.04593 (2015).

B. E. Griffith, N. A. Patankar, Immersed methods for fluid—structure interaction, Annual Review of
Fluid Mechanics 52 (2020) 421-48.

K. Zhou, S. Balachandar, An analysis of the spatio-temporal resolution of the immersed boundary
method with direct forcing, Journal of Computational Physics (2020) 109862.

A. Vreman, Immersed boundary and overset grid methods assessed for stokes flow due to an oscillating
sphere, Journal of Computational Physics (2020) 109783.

R. Abgrall, H. Beaugendre, C. Dobrzynski, An immersed boundary method using unstructured
anisotropic mesh adaptation combined with level-sets and penalization techniques, Journal of Com-
putational Physics 257 (2014) 83-101.

B. Kadoch, D. Kolomenskiy, P. Angot, K. Schneider, A volume penalization method for incompressible
flows and scalar advection—diffusion with moving obstacles, Journal of Computational Physics 231
(2012) 4365-83.

R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Technical
Report, 1943. doii10.1090/50002-9904-1943-07818-4.

E. Arquis, J. Caltagirone, Sur les conditions hydrodynamiques au voisinage d’une interface milieu

fluide-milieu poreux: applicationa la convection naturelle, CR Acad. Sci. Paris IT 299 (1984) 1-4.

G. Carbou, P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow, Ad-
vances in Differential equations 8 (2003) 1453-80.

I. Ramiere, P. Angot, M. Belliard, A general fictitious domain method with immersed jumps and
multilevel nested structured meshes, Journal of Computational Physics 225 (2007) 1347-87.

T. Sakurai, K. Yoshimatsu, N. Okamoto, K. Schneider, Volume penalization for inhomogeneous neu-
mann boundary conditions modeling scalar flux in complicated geometry, Journal of Computational
Physics 390 (2019) 452-69.

Q. Liu, O. V. Vasilyev, A brinkman penalization method for compressible flows in complex geometries,
Journal of Computational Physics 227 (2007) 946-66.

E. Brown-Dymkoski, N. Kasimov, O. V. Vasilyev, A characteristic based volume penalization method
for general evolution problems applied to compressible viscous flows, Journal of Computational Physics
262 (2014) 344-57.

D. Kolomenskiy, K. Schneider, A fourier spectral method for the navier—stokes equations with volume

penalization for moving solid obstacles, Journal of Computational Physics 228 (2009) 5687-709.

35

http://dx.doi.org/10.1090/S0002-9904-1943-07818-4

756

758

760

762

764

766

768

770

772

774

776

778

780

782

784

786

788

[56]

[57]

[58]

P. Horgue, M. Prat, M. Quintard, A penalization technique applied to the “volume-of-fluid” method:
Wettability condition on immersed boundaries, Computers & Fluids 100 (2014) 255-66.

T. Engels, D. Kolomenskiy, K. Schneider, J. Sesterhenn, Numerical simulation of fluid—structure inter-

action with the volume penalization method, Journal of Computational Physics 281 (2015) 96-115.

X. Cui, X. Yao, Z. Wang, M. Liu, A coupled volume penalization-thermal lattice boltzmann method
for thermal flows, International Journal of Heat and Mass Transfer 127 (2018) 253-66.

M. Specklin, Y. Delauré, A sharp immersed boundary method based on penalization and its application
to moving boundaries and turbulent rotating flows, European Journal of Mechanics-B/Fluids 70 (2018)
130-47.

A. Piquet, O. Roussel, A. Hadjadj, A comparative study of brinkman penalization and direct-forcing
immersed boundary methods for compressible viscous flows, Computers & Fluids 136 (2016) 272-84.

H. Viviand, Conservative forms of gas dynamic equations, La Recherche Aerospatiale 1974 (1974) 65-8.

M. Vinokur, Conservation equations of gasdynamics in curvilinear coordinate systems, Journal of
Computational Physics 14 (1974) 105-25.

D. M. Williams, P. Castonguay, P. E. Vincent, A. Jameson, Energy stable flux reconstruction schemes

for advection—diffusion problems on triangles, Journal of Computational Physics 250 (2013) 53-76.

G. Mengaldo, D. De Grazia, F. Witherden, A. Farrington, P. Vincent, S. Sherwin, J. Peiro, A guide to the
implementation of boundary conditions in compact high-order methods for compressible aerodynamics,
in: 7Tth ATAA Theoretical Fluid Mechanics Conference, 2014, p. 2923.

G. Strang, On the construction and comparison of difference schemes, SIAM journal on numerical
analysis 5 (1968) 506-17.

R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, A. Von Loebbecke, A versatile sharp interface
immersed boundary method for incompressible flows with complex boundaries, Journal of computational
physics 227 (2008) 4825-52.

K. Hormann, A. Agathos, The point in polygon problem for arbitrary polygons, Computational
geometry 20 (2001) 131-44.

J. Yang, F. Stern, A non-iterative direct forcing immersed boundary method for strongly-coupled
fluid—solid interactions, Journal of Computational Physics 295 (2015) 779-804.

A. Bharadwaj S, S. Ghosh, Data reconstruction at surface in immersed-boundary methods, Computers
& Fluids 196 (2020) 104236.

J.-I. Choi, R. C. Oberoi, J. R. Edwards, J. A. Rosati, An immersed boundary method for complex
incompressible flows, Journal of Computational Physics 224 (2007) 757-84.

D. Kolomenskiy, K. Schneider, et al., Analysis and discretization of the volume penalized laplace

operator with neumann boundary conditions, Applied Numerical Mathematics 95 (2015) 238—49.

36

790

792

794

796

798

800

802

804

806

808

810

812

814

816

818

820

[72]

[73]

[74]

C. Jause Labert, Simulation numerique d’ecoulements turbulents en rotation, confinement et forcage a

I’aide d’une methode de penalisation, Ph.D. thesis, Ecully, Ecole centrale de Lyon, 2012.

J. S. Hesthaven, D. Gottlieb, Stable spectral methods for conservation laws on triangles with unstruc-

tured grids, Computer methods in applied mechanics and engineering 175 (1999) 361-81.

D. Kolomenskiy, K. Schneider, et al., Approximation of the laplace and stokes operators with dirichlet
boundary conditions through volume penalization: a spectral viewpoint, Numerische Mathematik 128
(2014) 301-38.

F. De Vanna, F. Picano, E. Benini, A sharp-interface immersed boundary method for moving objects

in compressible viscous flows, Computers & Fluids (2020) 104415.

S. Dennis, G.-Z. Chang, Numerical solutions for steady flow past a circular cylinder at reynolds numbers
up to 100, Journal of Fluid Mechanics 42 (1970) 471-89.

B. Fornberg, A numerical study of steady viscous flow past a circular cylinder, Journal of Fluid
Mechanics 98 (1980) 819-55.

D. A. Kopriva, A conservative staggered-grid chebyshev multidomain method for compressible flows. ii.

a semi-structured method, Journal of computational physics 128 (1996) 475-88.

M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Comparisons of p-adaptation strategies based on
truncation-and discretisation-errors for high order discontinuous galerkin methods, Computers & Fluids
139 (2016) 36—46.

A. M. Rueda-Ramirez, J. Manzanero, E. Ferrer, G. Rubio, E. Valero, A p-multigrid strategy with
anisotropic p-adaptation based on truncation errors for high-order discontinuous galerkin methods,
Journal of Computational Physics 378 (2019) 209-33.

D. S. Dandy, H. A. Dwyer, A sphere in shear flow at finite reynolds number: effect of shear on particle
lift, drag, and heat transfer, Journal of Fluid Mechanics 216 (1990) 381-410.

T. Johnson, V. Patel, Flow past a sphere up to a reynolds number of 300, Journal of Fluid Mechanics
378 (1999) 19-70.

J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in

complex geometries, Journal of computational physics 171 (2001) 132-50.

M. F. Platzer, K. D. Jones, J. Young, J. C. Lai, Flapping wing aerodynamics: progress and challenges,
ATAA journal 46 (2008) 2136-49.

C. Gao, W. Zhang, X. Li, Y. Liu, J. Quan, Z. Ye, Y. Jiang, Mechanism of frequency lock-in in transonic
buffeting flow, Journal of Fluid Mechanics 818 (2017) 528.

P.-O. Persson, C. Fidkowski, Test case cll-heaving and pitching airfoil, in: 5th International Workshop
on High-Order CFD Methods, 2018.

37

	Introduction
	The Governing Equations
	The Flux Reconstruction Method
	Immersed Boundary Method
	The volume Penalization method
	Boundary representation and mask function
	Treatment for moving boundaries
	Surface data reconstruction
	Overview of the algorithm
	Discussions on error estimate and selection of penalization parameter

	Test Cases
	One-dimensional advection-diffusion equation
	Flow past a cylinder
	Flow past a NACA0012 airfoil
	Flow past a sphere
	Flow past a pitching and plunging airfoil

	Conclusions
	Analytical mask function for different geometries
	Smoothing the mask function
	Comparison of data reconstruction methods

