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Abstract

In the last decade, there has been a lot of interest in developing high-order methods as viable option for

unsteady scale-resolving-simulations which are increasingly important in the industrial design process. High-

order methods offer the advantage of low numerical dissipation, high efficiency on modern architectures and

quasi mesh-independence. Despite significant advances in high-order solution methods, the general CFD

workflow (geometry, CAD preparation, meshing, solution, post-processing) has largely remained unchanged,

with mesh generation being a significant bottleneck and often determining the overall quality of the solution.

In this work, we aim to combine the numerical advantages of the high-order Flux-Reconstruction (FR)

method and the simplicity of the mesh generation (or lack thereof) of the Immersed Boundary Method

(IBM) for steady and unsteady problems over moving geometries. The volume-penalization (penalty-IBM)

method is selected for its ease of implementation and robustness. Detailed discussions about numerical

implementation, including the boundary representation, mask function, data reconstruction, and selection

of the penalization parameter are given. Advantages of combining volume penalization in the high-order

framework are shown by various numerical test cases. The approach is firstly demonstrated for the linear

advection-diffusion equation by investigating the numerical convergence for the coupled FR-IBM approach.

Thereafter, the accuracy of the approach is demonstrated for canonical (static) test cases in 2D and 3D when

compared to a standard body-fitted unstructured simulation. Finally, the efficiency of the method to handle

moving geometries is demonstrated for the flow around an airfoil with pitching and plunging motions.

Keywords: volume penalization, flux reconstruction, immersed boundary method, high-order method,

moving boundary
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1. Introduction22

Despite significant advantages, the general CFD workflow used in the industrial design process has largely

remained unchanged. The typical workflow consists of geometry definition, CAD preparation, meshing,24

numerical solution, post-processing and subsequent design optimization. Of these, meshing is often the most

time consuming and can have a significant impact on the overall quality of solution. The bottleneck associated26

with mesh generation could be eased with the development of mesh independent schemes or alternatively,

by developing methods designed for simple Cartesian grids via the Immersed Boundary Method (IBM). The28

desire to achieve the former has been a motivating factor for the development of high-order schemes on

unstructured grids over the last decade. High-order methods are known to be more efficient for a given30

level of accuracy, highly scalable on modern architectures and display a level of quasi mesh independence

for industrially relevant problems [1, 2]. Examples of high-order methods include Discontinuous Galerkin32

(DG) [3], Flux Reconstruction (FR) [4] and Spectral Difference (SD) [5] [6].

By contrast, the development of high-order methods on Cartesian grids for complex moving geometries34

using IBM or related approaches has been relatively unexplored. One of the earliest proponents of exploring

this idea was Adrian Lew and his coworkers [7, 8] where the advantages and optimal order of convergence of36

using the DG method over standard finite-differences for a 2D Poisson problem was reported. The method

was subsequently applied to problems in elasticity [9]. The solution of the Poisson problem with IBM and38

DG was also considered in [10, 11] and in [12] for the Hybridized Discontinuous Galerkin (HDG) method.
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The HDG method on irregular domains was also developed for the Navier-Stokes equations in [13]. Fidkowski40

and Darmofal [14] were the first to report the use of cut-cell method to solve steady compressible flows over

two-dimensional geometries based on the DG and Finite Element Method (FEM). The high-order cut-cell42

approach was also studied in [15, 16, 17] and more recently in [18] where stable discretizations on degenerate

meshes are presented for high-order finite-difference methods. While the cut-cell approaches are undoubtedly44

superior on static grids, the extension to moving grids is far from straightforward.

The challenge to use high-order DG type methods for industrially relevant problems lies in the efficient46

handling of complex geometries which on Cartesian grids can be combined with efficient Adaptive Mesh

Refinement (AMR) and highly optimized for GPU architectures [19, 20, 21]. Here, the IBM is a natural48

choice and in this work we present an approach that combines the flexibility and ease of implementation

of the high-order FR method [4, 22, 23] on Cartesian grids with the IBM for moving geometries. The50

approach utilizes the compact stencil of the high-order operators and offers the possibility of locally varying

the polynomial order for a more accurate representation of the boundary conditions than traditional finite52

difference or finite volume methods. The flexibility of handling complex moving geometries stems from the

use of the IBM approach. Indeed, since it’s introduction [24], the IBM approach has been shown to be54

versatile and applicable to a variety of problems ranging from flow over complex geometries [25], multiphase

flows [26] to Fluid Structure Interaction (FSI) [27, 28]. In an IBM based approach the governing equations56

(compressible or incompressible flow) are solved on a simple background Cartesian grid. The methods can

be differentiated by the way in which the influence of the immersed boundary on the fluid is taken into58

account. This can be either through a cut-cell approach [29, 30, 31], ghost-fluid method [32, 33], direct

forcing [34, 35, 36] or by the introduction of source terms [37] to take into account the presence of the60

geometry. Alternatively, IBM approaches can be classified as sharp interface or diffuse interface methods.

It is worth noting that there are additional methods that are specific to a certain class of problems. These62

are the immersed interface method [38] and family of embedded boundary method [39] for viscous flow and

FSI. The interested reader is referred to [40, 41, 42, 43] and the references cited therein for comprehensive64

reviews of the IBM method and their applications. Recently, a comprehensive convergence analysis with

regard to the spatial and temporal resolution is presented by Zhou and Balachandar [44]. A systematic study66

on convergence of IBM and an overset grid method is performed by Vreman [45].

In recent years, the volume penalization method [37, 46] has attracted a lot of attention due to its robust-68

ness, simplicity and proofs of convergence [37, 42]. It follows a basic physical intuition that the solid wall can

be modelled as a porous medium with vanishing diffusivity [47]. A characteristic or mask function χ is intro-70

duced that is 1 in the solid domain and 0 elsewhere. A source or penalty function is introduced and is active

in the solid domain. The source term is designed to impose the desired boundary condition. When compared72

with the other IBM approaches, the reconstruction procedure and the distribution of the source term are

not needed, thus largely reducing the computational cost. The extension to moving boundary problems is74

also straightforward. The penalization method can be traced back to the works of Courant [48] who intro-

duced such an approach to transform constrained optimization problems into problems free of constraints.76

The volume penalization method for the Navier-Stokes was first proposed by Arquis and Caltagirone [49] to

simulate the natural convection flow inside a fluid–porous cavity where a Brinkman type penalization was78

introduced to the momentum equation. Rigorous proofs of the convergence is given by Angot et al. [37] and

Carbou and Fabrie [50] where it was proven that, as the penalization parameter η approaches 0, the solution80

of the penalized Navier-Stokes equations will converge to the solution of the Navier-Stokes equations with
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no-slip boundary conditions. The extension of volume penalization method to general Robin type boundary82

conditions method was investigated by Ramière et al. [51] and Kadoch et al. [47] and Sakurai et al. [52]

for the finite-volume method a pseudo-spectral method respectively. The volume penalization method has84

also been applied to compressible flows by Liu and Vasilyev [53], Brown-Dymkoski et al. [54] and Abgrall et

al. [46]. The method has been successfully used for complex problems such as flapping wings [55], two-phase86

flow [56], FSI [57], thermal flows [58], and turbulent rotating flows [59]. The comparison between direct

forcing method and the penalization method is studied in by Piquet et al. [60], where it was found that the88

volume-penalization method is a suitable and a possibly competitive IBM method for viscous flows in terms

of predictive performance, accuracy and computational cost. A review of volume penalization method for90

numerical simulation of complex flows is given by Schneider [42].

Despite the amount of publication devoted to volume penalization, this technique has not been studied92

with the high-order methods. It does not need to treat complicated cell cuts, and is easy to be extended

to moving boundaries. Therefore, it is worth investigating the performance of high-order methods with94

volume penalization method, which is the aim and novelty of the present work. The high-order method

adopted in the current study is based on the FR approach [4, 22, 23]. It provides a differential framework96

for discontinuous finite element schemes, which is a unifying framework for high-order methods and can

recover existing high-order schemes. Volume penalization is used to impose the no-slip boundary condition98

within the solid body. The present approach allows locally refining the solution near the wall to improve

both the accuracy and the smoothness of the solution, using local p-refinement of the FR scheme. Increasing100

the polynomial order also leads to improved solution for moving boundary simulation. To the authors’

knowledge, these advantages have not been reported in previous works about IBM.102

This paper is organized as follows. Section 2 gives an introduction of the Navier-Stokes equations. Section

3 presents the high-order FR method for general conservation law. Section 4 details the penalty IBM method104

used in the present study, along with the method for surface data reconstruction and the handling of moving

boundary. The proposed method is tested in Section 5, where cases with increasing complexity are shown.106

Finally, conclusions are drawn in Section 6.

2. The Governing Equations108

The governing equations for a compressible viscous fluid are written as

∂U

∂t
+∇ · F =

∂U

∂t
+
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

= 0 , (1)

where U denotes the vector of conserved variables U = (ρ, ρu, ρv, ρw,E)T . ρ is the density, u , v andw are the

velocity components and E is the total energy. The equations are closed by the ideal gas equation-of-state:

E =
P

γ − 1
+

1

2
ρ(u2 + v2 + w2) , (2)
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where P is the static pressure and γ is the ratio of specific heats. The flux vectors Fx, Fy, Fz contain the

inviscid and viscous fluxes and are written as

Fx =



ρu

ρu2 + P

ρuv

ρuw

u(E + P )


−



0

τxx

τxy

τxz

uτxx + vτxy + wτxz + qx


= Fx,inv + Fx,vsc (3)

Fy =



ρv

ρuv

ρv2 + P

ρvw

v(E + P )


−



0

τyx

τyy

τyz

uτyx + vτyy + wτyz + qy


= Fy,inv + Fy,vsc (4)

Fz =



ρw

ρuw

ρvw

ρw2 + P

w(E + P )


−



0

τzx

τzy

τzz

uτzx + vτzy + wτzz + qz


= Fz,inv + Fz,vsc. (5)

In these equations, τij = µ( ∂vi∂xj
+

∂vj
∂xi
− 2

3δij
∂vk
∂xk

) is the viscous stress tensor with µ denoting the dynamic

viscosity. The heat flux vector ∇q is given by

∂q

∂xi
= λ

∂T

∂xi
, (6)

where λ is the thermal conductivity and T is the static temperature. The equations are solved in non-

dimensional form with the introduction of the Prandtl number Pr = µ
Cp

λ , the Reynolds number Re =110

ρrefVrefLref/µref and the Mach number M = Vref/
√
γRgasTref , with Cp being the specific heat capacity

at constant pressure and Rgas being the gas constant. Finally, Vref , Lref , Tref are reference velocity, length112

and temperature, respectively. The discretization of these equations with the Flux-Reconstruction method

is described next.114

3. The Flux Reconstruction Method

Flux reconstruction is a high-order framework which unifies a number of other high-order methods like116

the SD method and the nodal DG method. FR was first introduced by Hyunh for advection [4] and diffusion

[22] equations. This method is detailed below. Consider the following hyperbolic system of conservation law:118

∂U

∂t
+∇ · (Fivc + Fvsc) = S

Q−∇U = 0

(7)

where Fivc, Fvsc, S refer to the inviscid flux, viscous flux and the source term. These vectors are functions

of solution U and its gradient Q = ∇U . The space dimension is defined as D. After space discretization,120
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the computational domain Ω is divided into Nc distinct cells. In each cell, the discrete solution U δ
i is locally

approximated by a polynomial of degree P , defined at Np solution points. In addition, the flux at each122

interface of an element is approximate by a polynomial of degree P + 1, defined at Nf flux points on the

element interface. An isoparametric spatial mappingM : x→ ξ is defined to transform physical coordinates124

of the solution and flux points to reference coordinates [61, 62]. In the present study, we utilize a standard

tensor-product formulation with a Legendre polynomial basis to define the polynomial interpolation. The126

solution and flux points are located at the Gaussian quadrature points. The standard flux reconstruction

process for the general conservation law can include seven stages [63] as follows:128

1. Getting the interpolated solution at flux points. The interpolated solution at the flux point ξδF is

given by the following polynomial interpolation:130

U δD(ξ) =

Np∑
i=1

U δD
i IPi (ξ) (8)

where IPi refers to the nodal basis function defined at each solution point with polynomials of degree P , and

U δD
i is the solution at the ith solution point.132

2. Obtaining common solution at the flux point, computed from the left and right interpolated solutions.

The Local Discontinuous Galerkin (LDG) is chosen for the common solution:134

U δI
f,j = {{U δF

f,j}} − β · [[U δF
f,j ]] (9)

where β refers to an upwinding parameter, δF and δI refers to the interpolated flux at flux points and the

common flux, respectively. {{·}} and [[·]] compute the mean and jump values of the interpolated solution. The

correction solution is subsequently given as:

U δC
f,j = U δI

f,j −U δF
f,j . (10)

3. Computing the gradient of solution Q from the correction solution U δC and the discrete solution U δD:

Q̃δD = ∇̃U = ∇̃U δD + ∇̃U δC (11)

where the discrete gradient ∇̃U δD in the reference space is computed from the gradient of the discrete136

solution U δD:

∇̃U δD(ξ) =

Np∑
i=1

U δD
i ∇̃IPi (ξ) (12)

The corrected gradient ∇̃U δC is computed by transforming the correction solution from the flux points138

to the solution points. This is achieved by the correction function:

∇̃U δC(ξ) =

Nface∑
f=1

Nf∑
j=1

∇̃CP+1
f,j (ξ) ·U δC

f,j (13)

where the function CP+1
f,j is the correction function, which is of polynomial order P + 1. Then gradient is140

transformed to physical space.
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4. Computing the discrete flux at each solution point from the solution and gradient values. The inviscid142

and viscous flux at each solution point is defined by the same polynomial interpolation with degree P :

F δDivc (ξ) =

Np∑
i=1

F δDivc,iIPi (ξ), F δDvsc(ξ) =

Np∑
i=1

F δDvsc,iIPi (ξ). (14)

The interpolated fluxes F δFivc and F δFvsc at flux points are obtained from the above formulation.144

5. Obtaining the interaction flux F δI at the flux point. This flux is approximated by a Riemann solver

R(U δF
f,j,−,Q

δF
f,j,−,U

δF
f,j,+,Q

δF
f,j,+). For the inviscid flux, the Rusanov flux is used. The viscous flux is obtained146

by the LDG approach, where the interaction flux is computed as:

F δIvsc,f,j = F δFvsc,f,j + τ · [[U δF
f,j ]] + β · [[F δFvsc,f,j ]] (15)

where the τ is the parameter controling the jump of the solution, and β is the upwinding parameter defined148

previously. For LDG approach, a combination of β = 0.5 and τ = 0.1 is used here, in order to promotes

compactness of the FR scheme in multiple dimensions [63].150

6. Computing the flux correction term. This term is constructed from the interaction flux, the interpo-

lated flux and the correction function. The correction flux is the difference between the interaction and the152

interpolated fluxes:

F δCf,j = F δIf,j − F δFf,j (16)

The corrected divergence of flux correction term is transformed from the flux difference at the boundary154

to the solution points through the correction function:

∇̃ · F δC(ξ) =

D∑
k=1

Nface∑
f=1

Nf∑
j=1

∇̃kCP+1
f,j (ξ) · F δCf,j,k (17)

where k refers to the spatial direction index.156

7. Calculating divergence of the continuous flux from the local discrete flux divergence and the corrected

divergence:158

Ũ δD
t = −∇̃ · F = −∇̃ · F δD − ∇̃ · F δC = −

D∑
k=1

Np∑
i=1

∇̃kIPi (ξ) · F δDi,k −
D∑
k=1

Nface∑
f=1

Nf∑
j=1

∇̃kCP+1
f,j (ξ) · F δCf,j,k (18)

Finally, the flux divergence needs to be transformed into the physical space. Once the divergence of

continuous flux is obtained, the equation can be advanced in time by any explicit or implicit time-marching160

method. The governing equation can be discretized as

dU

dt
= R(U) (19)

where R(U) refers to the residual of the equation, which is a function of U . For the time marching method,162
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we use the classic TVD Runge-Kutta method. Equations of time integration are

U∗ = Un + ∆tR(Un) (20)

U∗∗ =
1

4
[3Un +U∗ + ∆tR(U∗)] (21)

Un+1 =
1

3
[Un + 2U∗∗ + 2∆tR(U∗∗)] (22)

where ∆t denotes the time step, and n is the present time index. Note that when IBM source term is present,164

a splitting approach can be used to handle the stiffness of the source term. It should also be pointed out that

the performance of flux reconstruction depends on six factors [63], including the location of solution and flux166

point, the Riemann solvers used for computing the common solution values and the interaction fluxes, and

the form of the correction functions for solution and flux values. The boundary conditions, like the far-field168

characteristic boundary condition, are imposed in a weak-Riemann formulation following Mengaldo et al.

[64]. The ghost state from the boundary side of the face is given from the boundary condition, while the170

flux is calculated by a Riemann solver.

4. Immersed Boundary Method172

The basic idea of IBM is to impose boundary conditions to the non body-fitted mesh with proper

numerical treatment. Volume penalization is a particular method, which imposes boundary condition through174

penalizing the velocity of solution points in the solid body. This method is easy to understand with rigorous

theoretical foundation, therefore it is selected for the present study.176

4.1. The volume Penalization method

The volume penalization method imposes boundary conditions by introducing penalization source terms178

to the governing equations. In this approach, a mask function which distinguishes between the fluid region

Ωf and solid region Ωs is firstly defined:180

χ(x, t) =

{
1, if x ∈ Ωs

0, otherwise
(23)

This mask function is used to determine whether the IBM force should be imposed to the current

solution point [46] [54]. For moving boundaries, χ(x, t) is time-dependent. It should be noted that this182

usual definition of mask function will lead to a sharp jump of source term between the solid and fluid points

near the boundary, which may lead to spurious oscillations (or Gibbs phenomena) of the hydrodynamic184

forces on moving obstacles [55]. In addition, for static obstacle, this sharp mask function may also lead

to oscillations of flow variables near the wall. These oscillations can be reduced by smoothing the mask186

function, which will smooth the transition between the solid and fluid points, thus allowing smaller penalty

force for solution points near the wall. This strategy is also tested and will be discussed in Appendix B. The188

volume penalization method for a high-order, Cartesian mesh is illustrated in Fig. 1. All solution points,

covered by the solid region, need to be penalized to impose the boundary condition.190
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Figure 1: Schematic illustration of volume penalization for high-order method. The computational domain is discretized by the
Cartesian grid. Solution points defining the high-order polynomial are represented by black circles. The polynomial order for
the Cartesian grid is P = 2. The solid body Ωs is highlighted in the red region.

The Navier-Stokes equations with IBM is written as:

∂U

∂t
= RHS + χS(U) (24)

where S refers to the IBM forcing term. RHS refers to the right hand side term of the Navier-Stokes

equation

RHS = −(
∂F

∂x
+
∂G

∂y
+
∂H

∂z
). (25)

For the Dirichlet boundary condition for velocity us = (us, vs, ws)
T of the solid body, the source term is

considered as:

S(U) =
1

η
×



0

ρus − ρu
ρvs − ρv
ρws − ρw

ρ
2 (u2

s + v2
s + w2

s)−
ρ
2 (u2 + v2 + w2)


(26)

where η denotes the penalization parameter for IBM. The penalization terms proposed were used in [46] for

compressible Navier-Stokes equations. Generally, the penalization parameter η should be sufficiently small192

to ensure accuracy. The stiffness of the equations depends on η, where small η value leads to very stiff source

terms. In practice, the explicit time step ∆t is suggested to be the penalization parameter [57]. Discussion194

on this argument is given in Sec. 4.6. The above equation can be used for moving bodies, where the solid

velocity is updated based on the equations of motion. When no-slip boundary condition is considered, the196

condition us = (0, 0, 0)T will be imposed.

The governing equation Eq.24 is marched in time by efficient time integration methods. Due to the198

stiffness of the source term, we use the second-order Strang splitting [65] approach to add the source term.

As discussed by Piquet et al. [60], with Strang splitting, penalization terms are computed exactly for the200

momentum and energy equations. At time step n, the following sequence of operations is performed:
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step 1 :
U1 −Un

∆t1
= S(U1),∆t1 = ∆t/2,U1,0 = Un (27)

step 2 :
U2 −U1

∆t2
= RHS(U2),∆t2 = ∆t,U2,0 = U1 (28)

step 3 :
Un+1 −U2

∆t3
= S(Un+1),∆t3 = ∆t/2,Un+1

0 = U2 (29)

Currently, in step 2, we use the third-order TVD Runge-Kutta method to perform explicit time marching.202

In step 1 and step 3, when adding the source term, both implicit or explicit forcing methods can be considered.

The implicit forcing method leads to better numerical stability, which is especially beneficial for penalty204

method due to a very stiff source term. The approaches are as follows:

Explicit forcing : The explicit formulation is simply given as:

U1 −Un

∆t1
= S(Un), (30)

U1 = Un + ∆t1 · S(Un). (31)

Implicit forcing : For implicit implementation of the penalty method, the backward Euler method with

first-order Taylor expansion leads to the following formulation

U1 −Un

∆t1
= S(Un) +

∂S(Un)

∂U
(U1 −Un) (32)

After some manipulation, the following equation is obtained:(
I−∆t1

∂S

∂U
(Un)

)
U1 = Un + ∆t1

(
S(Un)− ∂S

∂U
(Un)Un

)
(33)

where I is the identity matrix. From Eq. 26, the Jacobian matrix of the IBM force term, is then derived as

∂S

∂U
= −1

η
×



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− 1
2 (u2 + v2 + w2) u v w 0


(34)
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Therefore, the inversion of matrix I−∆t1
∂S
∂U (Un) can be derived analytically

(
I−∆t1

∂S

∂U
(Un)

)−1

=

1 0 0 0 0

0 η
∆t1+η 0 0 0

0 0 η
∆t1+η 0 0

0 0 0 η
∆t1+η 0

∆t1
2η (u2 + v2 + w2) − ∆t1u

∆t1+η − ∆t1v
∆t1+η − ∆t1w

∆t1+η 1


(35)

By Substituting Eq.34 and Eq.35 into Eq.33, the first and third step of time integration can be efficiently206

solved.

4.2. Boundary representation and mask function208

Representation of solid boundaries is a crucial aspect of IBM approaches. It serves for two main purposes:

1) the definition of mask function. For general geometries where a simple shape function cannot be found,210

the mask function χ should be determined by effective methods to identify whether the present solution

point is inside or outside the solid body. 2) the computation of aerodynamic coefficients. This depends on212

how the surface of obstacle is discretized, since the flow quantities on the surface need to be interpolated

from data of its surrounding solution points, and we also need to get the surface normal and area for force214

computation.

The discretization of immersed boundary should be flexible enough to handle complex geometries. In the216

present study, we choose to use a set of Lagrangian marker points to represent the solid boundary, defined

as immersed boundary (IB) points. The marker points are connected by linear elements, i.e., line segments218

in two dimensions and triangular elements in three dimensions. Calculations of the geometrical quantities,

including the surface normal, the interpolation stencil for data reconstruction, and the surface distance, can220

be performed efficiently with this representation [66, 36]. The development of algorithm to compute the

mask function also depends on such discretization.222

(a) (b)

Figure 2: Determination of mask function for general geometries, based on (a) ray casting and (b) the simplified approach used
in the present study. The polynomial order for the Cartesian grid is P = 2.

For simple geometries like a cylinder, a sphere or an airfoil, analytical shape functions exist and can be
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used to define the mask function, as listed in Appendix A. However, in order to handle other geometries whose224

shape function is difficult to obtain, we still need an algorithm to compute the mask function. Therefore,

in the present work, a method to get mask function for general shapes, rather than using the analytical226

function, has been developed. This method takes an algorithm to identify whether the present solution point

is inside or outside the solid body. This forms a typical ’point in polygon’ (PIP) 1 problem in computational228

geometry [67]. PIP problem refers to a set of problems, which determine whether a given point in the plane

lies inside, outside, or on the boundary of a polygon. One common approach is the ray casting method.230

Ray casting approach generates a ray starting from the point and going in any fixed direction, and tests

how many times a ray intersects the edges of the polygon. If the point is outside the polygon, the ray will232

intersect the edges an even number of times. On the contrary, if the point is inside the polygon, the ray will

intersect the edges an odd number of times. Schematic illustration of the ray casting method is shown in234

fig. 2a.

In practice, the ray casting method can be implemented in multiple ways. We take a simplified method236

to achieve this. For any solution point in the computation domain, we will first define those points that

lie outside the bounding box of the surface (i.e., the box formed by coordinates of the rectangular border238

that fully encloses the solid body) to be the fluid points. For other solution points lie inside the bounding

box, we will draw a line along y-axis direction (in 2D) or z-axis (in 3D), as shown in Fig. 2b. After that,240

the maximum and minimum intercepts in y coordinate (2D) or in z coordinate (3D) are identified. If the

corresponding coordinate of the solution point lies in between the maximum and minimum values, then242

this point lies in the solid and its mask is set to 1. From an implementation point of view, this can be

achieved by firstly looking for the nearest IB points along x direction (2D) or x-y plane (3D). After that the244

minimum and maximum values of these points in y coordinate or z coordinate are easily obtained, and the

comparison is subsequently performed. Therefore, the boundary should be sufficiently resolved by the IB246

points, in order to make sure the the neighboring search involved in getting the mask function is accurate.

A limitation of this method is that it is only applicable to convex geometry. For non-convex geometry, more248

than two intercepts exist. The ray tracing method can be applied to such cases to check how may times the

ray intersect the edges along the y or z direction. However, the present approach still works well for the test250

cases considered in this work.

4.3. Treatment for moving boundaries252

This subsection introduces the treatment of moving boundaries (with rigid motion) for penalty IBM

method. When the boundary moves, the mask function and the velocity at each solution point should be254

updated accordingly. The basic idea of updating the mask for each solution point is to first recover the

position of this point relative to the static solid body (in the non-inertial reference frame), then determine256

the mask value based on the recovered position and the mask function defined for the static solid body

χ(x, 0). The velocity is updated based on the rigid motion equation of the obstacle.258

For the cases considered in this study, i.e., a two-dimensional solid body with rigid motion, the translation

in x-axis and y-axis, and the rotation motions are included [55]. These displacements are defined respectively260

as a, b, and θ, following positive x and y direction, and clockwise rotation direction. The initial rotation

axis at t = 0 is given as (xr, yr). Although the present treatment of moving boundaries is not limited to any262

1https://en.wikipedia.org/wiki/Point in polygon
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Figure 3: Schematic illustration of an airfoil free to move in translation and rotation directions, with chord length c. a, b and
θ are displacements in x and y directions, and the pitching angle, respectively. This definition is applicable to any rigid body.

specific geometry, the schematic illustration of a moving airfoil is shown in Fig. 3 as an example. When the

boundary is moving, as the first step, the coordinates are translated into the reference coordinates in the264

non-inertial reference frame:(
x̃

ỹ

)
=

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)(
x− a(t)− xr
y − b(t)− yr

)
+

(
xr

yr

)
(36)

The mask for any solution point placed in (x, y) is determined based on the transformed coordinates in266

the non-inertial reference frame, through substituting x̃ and ỹ into the original mask functions at t = 0. The

solid velocity at each solution point is subsequently updated as follows:268

ẋ = ȧ(t) + θ̇(t)(y − b(t)− yr) (37)

ẏ = ḃ(t)− θ̇(t)(x− a(t)− xr) (38)

It should be pointed out that this method is not applicable to flexible structures, e.g., when the boundary

shape changes with time. In such cases, recovering the position of solution point in the non-inertial reference270

frame becomes difficult. A solution is to redefine the mask function at each time step based on the updated

position of surface points. The velocity of solution points immersed in the solid should also be approximated272

numerically [57]. In addition, if the movement is too big in one time step, there can be a loss of mass due to

the fast transition between fluid and solid state. Some strategies can be considered to handle such problems274

[36, 68], which will be explored in the future.

4.4. Surface data reconstruction276

The reconstruction of data on the solid surface is an important aspect to get the distribution of quantities

of interest (e.g., pressure and friction force). The integrated aerodynamic coefficients, like lift and drag, are278

computed from these quantities. The basic idea to get the surface quantity for each surface point (i.e., IB

point) is to perform interpolation based on data of surrounding solution points.280

In the high-order framework, it is straightforward to consider using the high-order polynomial defined in

each element to perform data reconstruction. Procedures in such cases is very simple: 1) find the element282

where the current IB point lies; 2) compute the reference coordinate of this IB point in the present element;

3) apply the polynomial interpolation scheme at this reference coordinate. This method, however, has some284

potential drawbacks that lead to inaccuracy. This is mainly due to the fact that in most of cases, such
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(a) (b) (c) (d)

Figure 4: Different locations of solid surface point within a numerical element with polynomial order P = 2. Blue circle is the
surface marker point. Red region is the solid region. Black points are solution points inside the element.

interpolation formula will involve solution points immersed in the solid, which usually have nonphysical286

values. The schematic illustration for such problem is given in Fig. 4, where in all cases, nonphysical values

at the solid solution point will be involved in interpolation. A comparison between polynomial interpolation288

and the data reconstruction method used in the present study is shown in Appendix C, illustrating the

failure of directly using high-order polynomial for data reconstruction.290

Other than polynomial interpolation, an alternative method is to interpolate the data from several nearest

solution points. Compared with interpolation based on high-order polynomial, an advantage is that it has292

more flexibility to select the interpolation points, without involving the solid solution points with nonphysical

values. Here, the interpolation methods described in [69] are followed, and are adapted to the high-order294

framework. In general, the interpolation framework in [69] is based on the inverse distance between the

IB point and the interpolation point. Candidate interpolation points are chosen from the nearest fluid296

points around the IB point. The value and gradient of conservative variables are interpolated. To compute

aerodynamic coefficients, the pressure and shear stress are subsequently obtained from the interpolated298

variables. In particular, the Inverse Distance Weight at Interpolation Point (IDW-IP) method is used for

interpolation in the present study.300

For standard IDW method, the inverse distance between each surface point and the solution point is used

as a weight to compute the value of any variable, as shown below302

UIB =
ΣiUi/di
Σi1/di

(39)

where Ui and di refer to the solution vector and distance to surface point of the ith. For IDW-IP method,

following [70], we first define the interpolation point (IP) as a virtual point close to a specific IB point304

that lies along the normal of that point. Here the normal can be computed efficiently based on the surface

representation method described in Sec. 4.2. The distance of IP to the IB point is defined as306

dIP =
Σid2,i/d1,i

Σi1/d1,i
(40)

where d1 is the perpendicular distance from any solution point to the surface normal of the IB point, while

d2 is the projection of the distance from the solution point to the IB point along the surface normal. These308

points and distances are illustrated in Fig. 5.

Like IDW method, the data is interpolated from the surrounding solution points but with d1 as the310

distance. From the above equation, the interpolation formulation is given as [69]:

UIP =
ΣiUi/d1,i

Σi1/d1,i
(41)
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Figure 5: Schematic illustration of data reconstruction method on a Cartesian grid with polynomial order P = 2.

Interested readers can refer to [69] for more details. After extensive testing, we found a good balance312

between accuracy and efficiency is to choose the nearest 2Np ∼ 3Np flow points, where Np refers to the

number of solution points for near-wall elements. The integrated aerodynamic loads, including the lift and314

drag coefficients, is obtained from the reconstructed data at IB points. In particular, the reconstructed

surface pressure P and shear stress τij are used. The boundary representation discussed in Sec. 4.2 allows316

getting the surface normal and area efficiently. The distribution of surface points for force calculation is

sufficiently dense to guarantee the accuracy of integration. The lift and drag coefficients are given as:318

Cl =
1

(1/2)ρ∞U∞l

∫
∂S

(τyn− Py)dS (42)

Cd =
1

(1/2)ρ∞U∞l

∫
∂S

(τxn− Px)dS (43)

where l is the characteristic length.

The implementation of data reconstruction (IDW-IP method) in the high-order framework is as follows:320

1) locate the element where the current IB point lies; 2) find neighboring elements of this element (and

neighbors of the neighboring element) and get the coordinates and masks for all the solution points in these322

elements; 3) compute the distance of all candidate solution points to the IB point, and rank the points

based on the distance in increasing order; 4) select the points according to the rank, and discard the points324

immersed in the solid, until the preset number of stencil points is reached; 5) compute the distance d1 for

all candidate stencil points, and compute the weighting coefficients for each stencil point based on Eq. 41.326

4.5. Overview of the algorithm

The proposed IBM approach based on volume penalization and high-order FR can be summarized in328

Fig. 6. Overall, the following procedures are needed:

(1) Import the background mesh and IBM geometry. The geometrical information is extracted from330

the IBM marker points, including the surface normal and surface area. The distance to the surface is also

needed when using smooth strategy for the mask Appendix B. The reconstruction stencil is computed332

for each marker point, respectively. For static boundary, these operations are only performed once in the

simulation.334

15



Figure 6: Flow chart of the proposed method.

(2) At each time step, perform the first splitting step, Runge-Kutta explicit time integration, and the

second splitting step accordingly.336

(3) When the solid body is moving, additional update operations are required after every time step (or

every several time steps). The solid displacement is first updated based on the prescribed motion function.338

This displacement is used to update the mask and the velocity for each solution point, based on the method

in Sec. 4.3. To evaluate the aerodynamic coefficients under moving boundaries, the surface IB points are340

updated, along with its normal vector. With the updated position of IB points, data reconstruction also

needs to be reset.342

4.6. Discussions on error estimate and selection of penalization parameter

One of the advantages of penalization method over other IBM approaches is that rigorous proofs of the344

convergence have been given [37, 50]. Therefore, the numerical error introduced from the penalization term

can be controlled a-priori [54]. The error of the numerical solution of the penalized problem corresponding346

to the original problem includes two parts [57], the penalization error and the discretization error:

∥∥uexact − uNη ∥∥ ≤ ∥∥uexact − uη∥∥+
∥∥uη − uNη ∥∥ (44)

where uexact is the exact analytical solution of the governing equations, uη and uNη are the exact and

numerical solution of the penalized equations. ‖·‖ is the norm used for quantifying the error, e.g., L1, L2 or

L∞ norm. The first part of error is the penalization error depending on the penalization parameter [42]:

∥∥uexact − uη∥∥ ∝ ηα (45)

It should be emphasized again that the physical interpretation of volume penalization is that the solid348

obstacle is assumed to be a porous medium with sufficiently small permeability η, thus the velocity of the
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surrounding fluid tends to be zero and vanishes at the interface. Therefore, the convergence for the solution350

of penalization method to the exact solution requires the error norm to approach zero for small penalization

parameter limit, i.e., limη→0 ‖uexact − uη‖ → 0. In order to achieve this, we need α > 0. Fortunately,352

theories based on rigorous mathematics have been proposed to validate that volume penalization method

satisfies this requirement. From Angot et al. [37] and Carbou and Fabrie [50], the volume penalization gives354

α = 1
2 , indicating the penalization error has a decay rate of O(

√
η) for Dirichlet boundary condition. For

Neumann boundary condition, O(η) can be obtained [71].356

The discretization error refers to the error between the exact solution and the numerical solution of the

penalized equations. With consistent discretization and a stable numerical scheme, the discretization error358

usually follows (β > 0):

∥∥uη − uNη ∥∥ ∝ N−β . (46)

However, as pointed out by Schneider et al. [47] [42], the discretization error is not only determined360

by the numerical scheme, but also limited by the regularity of the solution. Regularity is characterized by

the smoothness of the exact solution uη at the boundary of the penalized problem. Therefore, the order of362

convergence β becomes the minimum order between the numerical scheme and the regularity of the exact

penalized solution. For high-order method, the error of the numerical scheme can be reduced by performing364

mesh refinement (h-refinement) or increasing polynomial order (p-refinement). However, the low regularity

of the solution near the wall for the penalized equation still remains a limitation to the present method.366

From the error estimate, it is suggested to use a very small penalization parameter η to minimize the

penalization error. However, small η will lead to very stiff source term, thus causing stability issues. This is368

the motivation of using splitting approach, as discussed in Sec. 4.1. In practice, the penalization parameter

is dependent on the numerical resolution, where smaller penalization parameter requires a smaller time step370

and finer resolution near the wall. When the penalization parameter is treated explicitly, from the linear

stability analysis [55], the time step for explicit time integration must be smaller than the penalization372

parameter ∆t < η. This condition can be relaxed by using the Strang splitting method in the present

study, and can be further relaxed with the implicit forcing approach mentioned in Sec. 4.1. Also in [72],374

the intimate coupling between ∆t and η is observed, indicating the error will saturate when ∆t ≈ η. This

explains why it is usually suggested to use ∆t = η in the volume penalization method. An interpretation is376

that the penalty term acts as a strong damping term with order η on the velocity, which has to be resolved

by the time discretization scheme [57]. From a practical point of view, one can select the maximum ∆t which378

allows ∆t = η to maintain both computational efficiency and accuracy. Note that in high-order methods,

the time step ∆t is determined by the Courant-Friedrichs-Levy (CFL) condition, which scales as the inverse380

of the spatial order squared [73]. Therefore a practical guideline is to fix ∆t = η first and determine ∆t

according to stability criterion.382

5. Test Cases

In this section, the proposed IBM based on volume penalization for high-order flux reconstruction frame-384

work is validated by different test cases with increasing complexity. Analysis of one-dimensional equation

is firstly performed to study the convergence of the method. Simulation of flow past static obstacles in386
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two-dimension and three-dimension is then shown. Finally, the capability of treating moving boundaries is

validated.388

5.1. One-dimensional advection-diffusion equation

The convergence behavior of the proposed method is tested in this subsection. A one-dimensional390

advection-diffusion is considered as the test case:

∂u

∂t
+ c

∂u

∂x
− ν ∂

2u

∂x2
+
χ

η
(u− ub) = 0, x ∈ [0, 1] (47)

The advection speed and diffusivity coefficient are chosen as c = 0.1 and ν = 0.01, respectively. The392

initial condition and the homogeneous Dirichlet boundary conditions to be imposed are shown as follow:

u(x, 0) = exp(5x)sin(πx), u(0, t) = 0, u(1, t) = 0. (48)

The analytical solution of this problem is given by:

u(x, t) = exp(5x− t(0.01π2 + 0.25))sin(πx) (49)

We choose a constant time step 1e − 7 to ensure time accuracy. The penalization parameter η = ∆t.394

For the diffusion term, the β and τ used for LDG scheme are 0.5 and 0.1. We march the solution in

time to tmax = 0.01, based on the third-order TVD Runge-Kutta scheme. The convergence with respect396

to penalization parameter is firstly tested, as shown in 7. The computational domain is discretized by 80

elements, and 2 additional elements are extended to both sides to impose the penalized boundary conditions.398

The solution points in the solid are penalized by the values at two boundaries, i.e., homogeneous boundary

conditions u = 0, which are known to be the exact boundary condition we want to impose at the interface.400

The error of the simulation is quantified by the L2 error norm between the analytical solution u and the

approximated solution uN within the whole fluid region. The convergence plot is given in Fig. 7. It can be402

seen that as the penalization parameter η approaches zero, the accuracy limit of the penalization method

will be reached. The convergence rate of O(
√
η) is recovered at large η, which agrees with the theory of404

penalization method for Dirichlet problem in the continuous setting [37] [50]. In addition, as P increases,

a smaller η is required to get the best accuracy. When P is larger than 1, a super-convergence larger than406

the theoretical limit is also observed, where the convergence rate becomes O(η−1). This is different from

numerical tests of low-order scheme, where O(η−0.5) is observed [74] [57].408

The convergence with respect to the spatial resolution is then studied. To test the numerical convergence

in detail, we consider two situations: 1) when the analytical solution in the solid is known (e.g., Eq. (49)410

is known a-priori), solutions at each solution point are penalized by its analytical solution respectively; 2)

when the analytical solution inside the solid is not known, but only the values at the boundary are known412

(e.g., imposing the homogeneous Dirichlet boundary condition in Eq. (48) for all solid solution points). In

this latter case, we penalize all the solution points immersed in the solid with u = 0. The L2 error norm in414

the fluid is used to quantify the error of numerical scheme. It is obvious that the latter case is more realistic

since in practice the behavior of the solutions inside the solid is unpredictable, therefore they should also416

adopt the boundary condition at the interface.
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Figure 7: Convergence with penalization parameter η for penalized advection-diffusion equation. P is the polynomial order.
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Figure 8: Convergence with the number of elements for penalized advection-diffusion equation. Solid solution points are
penalized by the analytical solution. P is the polynomial order. Reference lines give the expected convergence rate of flux
reconstruction scheme N−(P+1).
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The convergence plot of the first case is shown in Fig. 8. As shown in the figure, when the analytical418

solutions for all solid points are used in the volume penalization method, an order of convergence N−(P+1)

is recovered. This is the exact convergence rate of standard FR scheme. This indicates that the volume420

penalization method itself does not deteriorate the high-order convergence from high-order schemes. Con-

vergence plot of the second case, which is more realistic, is shown in Fig. 9. From Fig. 9a, in the flow region422

far from the wall x ∈ [0.2, 0.8], the theoretical convergence rate N−(P+1) can still be recovered. However,

for the global fluid domain x ∈ [0, 1], the convergence rate is reduced to approximately O(N−1) across all424

polynomial orders, as indicated in Fig. 9b. This is because when homogeneous Dirichlet boundary conditions

are imposed for all solution points, the smoothness (or regularity) of the gradient across boundary cannot be426

guaranteed. As explained in Section 4.6, this low regularity of the solution near the wall will limit the overall

convergence [47] [60]. Such limitation of convergence rate was also observed [54] [55] and discussed [42] [57]428

in previous works. The regularity can be improved by using larger penalization parameter, but this will

affect the accuracy near the wall [47]. In addition, due to the fact that in the flow region far from the wall,430

high-order accuracy can be recovered, it is preferable to perform local refinement near the wall to increase

the accuracy, without costing to many additional degrees of freedom. Compared with the first case, it can be432

concluded that once the exact solution of the original equations in the solid is known, the regularity near the

wall is well kept, thus better global convergence rate is recovered. Therefore, the error will only come from434

the numerical scheme, where the convergence of standard flux reconstruction method in the global region is

retained. This case helps to investigate only the influence of spatial and temporal discretizations, and can436

also be used to test the correctness of code implementation with penalization method. This also directs the

future development of the present method, where some strategies can be sought to improve the regularity438

near the wall, thus improving the overall convergence.
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(a) Order of convergence for the computational domain far from
boundary x ∈ [0.2, 0.8]
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Figure 9: Convergence with number of elements for penalized advection-diffusion equation. Solid solution points are penalized
by the homogeneous Dirichlet condition. P is the polynomial order. Reference lines give the expected convergence rate of flux
reconstruction scheme N−(P+1).

5.2. Flow past a cylinder440

The flow past a cylinder is a standard test case for IBM simulation. Therefore, in the present study,

it is chosen as the first test case to investigate the proposed method for the Navier-Stokes equations. The442

Reynolds and Mach numbers are set to 40 and 0.2, where the flow remains steady. The no-slip adiabatic
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wall boundary condition is considered for the wall, therefore we impose us = 0 and vs = 0 in the solid. Here444

three sets of mesh are considered. The size of rectangular computational domain is x ∈ [−30D, 50D] and

y ∈ [−30D, 30D], where D is the diameter of the cylinder and is set to 1. In the square region x ∈ [−D,D]446

and y ∈ [−D,D], uniform grid is used. The uniform mesh size h is chosen as 0.03D (Mesh 1), 0.015D

(Mesh 2) and 0.01D (Mesh 3), respectively. Mesh 1 is illustrated in Fig. 10. The number of grid points are448

187×178, 325×313 and 410×400. Thanks to the inner degree of freedom given by high-order methods, the

mesh size is relatively coarse compared with existing works based on low-order methods. For example, in a450

recent IBM work based on finite difference method [75], grid with size 800 × 320 is used for the same case.

With a decent mesh, the present method allows to increase the resolution based on high-order polynomial452

approximation. We choose the polynomial order P = 3 for Mesh 1, P = 2 for Mesh 2 and Mesh 3. The

explicit time steps used for these cases are 7e− 5, 1e− 4, and 5e− 5, respectively. The penalty parameter is454

chosen to be equal to the time step. The characteristic boundary conditions are imposed to all the far field

boundaries.456

(a) Global view. (b) Zoom-in view.

Figure 10: The computational mesh (Mesh 1, locally uniform grid size h = 0.03)
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Figure 11: Comparison of variables for flow past a cylinder at Re = 40 and M = 0.2. h and P are locally uniform grid size and
the polynomial order, respectively.

The pressure coefficient Cp and wall spanwise vorticity ωz are compared in Fig. 11. The results are also

compared with those from body-fitted simulation with the same solver. A detailed comparison of quantity458
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Table 1: comparison of reattachment length, separation angle and drag coefficient for flow past a cylinder

Case L/D θ Cd
Dennis and Chang [76] 2.35 53.8 1.52
Fornberg [77] 2.24 55.6 1.50
Choi et al. [70] 2.21 53.6 1.49
body-fitted 2.24 51.0 1.53
Mesh 1 2.30 51.2 1.50
Mesh 2 2.30 52.0 1.51
Mesh 3 2.27 52.0 1.52

of interest is given in Table 1. All results give good agreement for the pressure coefficient distribution.

However, the prediction of spanwise vorticity is not as good as Cp. This is mainly due to the difficulty in460

predicting the gradient values on the surface, since the present method only impose the constraint to the

surface velocity. To solve this, better refined resolution or other treatment to impose the gradient condition462

can be a good choice for future works. But from Table 1, good agreement with the literature is shown, and

as we increase the resolution, the results also become closer to the reference data. A typical flow snapshot464

is shown in Fig. 12.
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Figure 12: The x-momentum field and the streamlines for flow past a cylinder at Re = 40 and M = 0.2.

In addition, we also want to highlight the advantage of high-order method in performing local p-refinement466

near the wall. Local refinement of the polynomial order comes from the flexibility of high-order framework,

where the mesh remains unchanged but the resolution inside the element can be improved. This will keep468

good accuracy with a much reduced degree of freedom, thus reducing the overall computational cost. Al-

though it is not the main focus of the present work, we also investigated the efficacy of local p-refinement470

near the wall. The p-refinement is implemented based on the mortar method [78], where a mortar element is

introduced to the element interface. The common and interaction fluxes are computed on the mortar element472

and are projected back to each neighboring face. We tested this approach based on the first mesh, where

the global order P = 1 is used for elements in the farfield. Local p-refinement near the wall is performed to474

improve the polynomial order locally to P = 3. The distribution of polynomial order across each element is

shown in Fig. 13a. To implement local p-refinement, we firstly measure the distance between each cell center476

and the surface. When this distance is smaller than 0.25D, the polynomial order of that element is increased

to P = 3. A buffer layer with P = 2 is also included between P = 1 and P = 3 cells. From the results in478

Fig. 13b, it is clear that with local p-refinement, we can produce very close results compared with globally

high-order computation. The total degree of freedom, defined by the total number of solution points, is480
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Figure 13: Comparison of variables for flow past a cylinder at Re = 40 and M = 0.2. The local p-refinement is considered
near the wall. The white curve represents the solid boundary. h and P are locally uniform grid size and the polynomial order,
respectively. P1P3 refers to the local p-refinement case with global order 1 and local order 3 near the wall.

148296 for the p-refinement case. This is nearly one quarter of the degree of freedom 532576 required for

the test case with P = 3 cells globally. This indicates the advantage of combining high-order methods with482

IBM. The p-adaptation framework [79, 80] with proper adaptation strategy can be further considered to

increase the resolution on any flow region of interest.484

5.3. Flow past a NACA0012 airfoil

The flow over an airfoil is tested to evaluate the present method for a configuration with higher Reynolds486

number and a non-zero angle of attack. The benchmark of NACA0012 airfoil at Mach number 0.5 and

Reynolds number 5000 is chosen, with an angle of attack 2 degree. The size of rectangular computational488

domain is x ∈ [−30c, 50c] and y ∈ [−30c, 30c], where c is the chord length of the airfoil. In the square region

x ∈ [−c, c] and y ∈ [−c, c], uniform and square grid with mesh size 0.004c is used. The number of mesh490

elements are 897× 697. The characteristic boundary conditions are imposed to all the far field boundaries.

The reference data is obtained from a body-fitted simulation of the same solver.492

The influence of penalization parameter, is firstly studied for this case, as shown in Fig. 14. Here for all

the cases, the polynomial order is selected as P = 2 with a constant time step 1e − 4. As the penalization494

parameter decreases, the results become more accurate. This is consistent with the error estimate that the

penalization parameter should be small enough to ensure good accuracy. In addition, the smoothness of496

the solution becomes worse as penalization parameter decreases. It can be seen that when the penalization

parameter is smaller than ∆ = 1e−4, the solution accuracy does not seem to improve anymore, but becomes498

slightly more oscillation, as sown in the η = 1e−5 case. This highlights the argument that the error saturates

around η ≈ ∆t [72] [57].500

To compare the solution with refined resolution, two more test cases are simulated. For the same mesh

used, the polynomial order is increased to P = 4, with time step and penalization parameter set as 2e−5. In502

addition, a locally refined mesh with size 0.001c is also generated, with mesh size 1341×365. The simulation

with P = 2, dt = 1e−5 and η = 1e−5 is also added. As shown in the Fig. 15, all simulations give very good504

prediction on Cp. The prediction of surface skin friction coefficient is more difficult, since it involves the

reconstruction of gradient. From Fig. 15, we can also see that as the resolution near the wall increases, Cf506
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Figure 14: Influence of penalization parameter η for flow past a NACA0012 airfoil at Re = 5000 and M = 0.5, illustrated by
Cp distribution. h and P are locally uniform grid size and the polynomial order, respectively.
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Figure 15: Comparison of pressure and friction coefficients with different h and p resolutions, for flow past a NACA0012 airfoil
at Re = 5000 and M = 0.5. h and P are locally uniform grid size and the polynomial order, respectively.

is better predicted. Note that the increase in resolution can be achieved by increasing either the polynomial

order or the number of elements locally. Note that for low-order schemes, we need a resolution about mesh508

size 5e− 4c to have a comparable prediction on friction coefficient [69].

5.4. Flow past a sphere510

In order to test the proposed method in simulating three-dimensional flows, the flow over a sphere

at Reynolds number 100 and Mach number 0.2 is chosen. To reduce the overall computational cost, we512

generate the mesh for a quarter of the whole domain. The size of domain is x ∈ [−30D, 30D], y ∈ [0, 30D]

and x ∈ [0, 30D], where D is the diameter of the sphere. The symmetric plane is considered as boundary514

condition on y = 0 and z = 0 plane, while characteristic boundary conditions are imposed to all the other

boundaries. To ensure sufficient resolution near the wall, uniform grid with size 0.03D is used in region516

x ∈ [−0.6D, 0.6D], y ∈ [0, 0.6D] and z ∈ [0, 0.6D]. This results in a total element number of 129× 55× 55.

The polynomial order is set to 2. The time step and penalization parameter are chosen as 5e− 5.518
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Figure 16: Comparison of variables for flow past a sphere at Re = 100 and M = 0.2. h and P are locally uniform grid size and
the polynomial order, respectively. Reference data are taken from Dandy and Dwyer (1990) [81], Fadlun (2000) [35] and Choi
(2007) [70].
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The surface quantities from the symmetrical plane z = 0 are used for comparison. The resulting pressure

coefficient distribution is compared with other studies from [81] and [35], which are shown in Fig. 16. From520

the comparison of pressure coefficient, all results nearly collapse, thus indicating the good accuracy from the

present method. The comparison of wall azimuthal vorticity is shown with the IBM results from Choi et al.522

[70]. A good agreement is also observed, except slight oscillation around the separation position. As shown

in previous study, this can be reduced by further refining the resolution near the wall. The drag coefficient524

is about 1.06, which is only about 2% error compared with exist results (1.08 from [82] and 1.09 from [83]).

5.5. Flow past a pitching and plunging airfoil526

In this subsection, a moving airfoil with combined plunging and pitching motion is simulated with the

proposed method. This configuration has been extensively considered in flapping wings [84] and FSI analysis528

[85]. The present case is taken from Case 2 of the 5th International Workshop on High-Order CFD Methods

[86].530
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Figure 17: Evolution of motion evolution with time. b and θ are plunging displacement and pitching angle, respectively.

The Mach number is 0.2 and the Reynolds number is 1000. The size of rectangular computational domain

is x ∈ [−30c, 60c] and y ∈ [−30c, 30c], where c is the chord length of the airfoil. In the rectangular region532

x ∈ [−0.8c, 0.8c] and y ∈ [−0.3c, 1.3c], uniform and square grid with size 0.005c is used. This results in a

total number of 652 × 466 elements. The characteristic boundary conditions are imposed to the far field.534

The rotation axis is placed at 1/3 chord length at airfoil centerline. The simulation is performed across

polynomial orders 1 to 3, with time step set to 6.0e − 5, 4.0e − 5 and 2.5e − 5, respectively. As usual, the536

penalization parameter is the same as time step for all simulations. The plunging and pitching motions are

defined by the following equation:538 {
b(t) = t3(−8t3 + 51t2 − 111t+ 84)/16

θ(t) = (80π/180)t2(t2 − 4t+ 4)
(50)

The displacement versus time is shown in Fig. 17. The airfoil keeps moving upward, with an impulse

type pitching motion. The comparison of force coefficient in x and y directions is shown in Fig. 18. A good540
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agreement with the reference data produced from body-fitted simulation [86] is observed, where all IBM

simulations are quite close thus is not distinguishable from the figure.542
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Figure 18: Force comparison of combined plunging and pitching motion. h and P are locally uniform grid size and the polynomial
order, respectively.

In order to see how the solution converges as we increase the polynomial order, a zoom-in view of force

evolution is shown in Fig. 19. It can be seen that, as the polynomial order increases, the result will approach544

P = 3 simulation. The smoothness of solution is also improved as we increase the polynomial order. This

is in consistent with the high-order framework where the higher polynomial order leads to better resolution546

and better accuracy. The flow fields based on P = 2 simulation is visualized in Fig. 20. From this figure,

the vortex shedding pattern for such energy extraction process can be accurately described.548
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Figure 19: Detailed comparison of force across different polynomial orders. h and P are locally uniform grid size and the
polynomial order, respectively.
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Figure 20: Flow snapshots at four time instants for combined pitching and plunging motion of the airfoil. The locally uniform
grid size is h = 0.005 and the polynomial order is P = 2.
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6. Conclusions

An immersed boundary method based on volume penalization for flux reconstruction method is proposed.550

It comes from the aspiration to use high-order DG type methods to efficiently handle the complex geometries

on Cartesian grid and to alleviate the sometimes difficult meshing procedure. FR approach is selected due552

to its capability of recovering existing high-order schemes. The volume penalization method, which is

proven to show convergence with low penalization parameter limit, is introduced as the IBM approach. Our554

implementation is general and does not assume knowing the analytical shape of the geometry, which enables

generalisation to complex three-dimensional simulations. In order to overcome the numerical stability issue556

coming from stiff IBM source term, the splitting scheme with explicit and implicit forcing methods are

proposed. Efficient and accurate methods for reconstructing flow quantities near the wall are used to get the558

surface pressure and friction distribution. Through the one-dimensional advection-diffusion equation, the

convergence behavior is investigated. It highlights the importance of increasing resolution near the wall and560

the use of small penalization parameter to impose boundary condition properly. The accuracy of the proposed

method has been validated through different real flow cases including flow past static cylinder, airfoil and562

sphere, as well as unsteady flow past a moving airfoil. Good agreement with body-fitted simulation and

existing literature is shown, indicating the validity of the proposed method. In addition, the high accuracy564

of the flux reconstruction method provided when using high polynomials is evident in the results, and

particularly when computing surface functionals (e.g. lift, drag), in both static and moving geometries.566

Further work will extend and enhance the present method to compute complex three-dimensional turbulent

flows in the FSI context.568

Conflict of Interest

The work presented in this paper does not have any conflict of interest with other organizations.570

ACKNOWLEDGEMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation572

programme under the Marie Sk lodowska-Curie grant agreement (MSCA ITN-EID-GA ASIMIA No 813605).

Appendix A. Analytical mask function for different geometries574

Although the present work has developed a method to calculate mask function for arbitrary geometries,

analytical mask functions for the geometries involved in the present study are also given for completeness.576

For a cylinder, a sphere, and a NACA0012 airfoil with unit length, whose center point is located at (0, 0, 0),

the mask function is given as follows:578

For cylinder:

χ(x, t) =

{
1, if x2 + y2 ≤ 0.52

0, otherwise
. (A.1)

For sphere:

χ(x, t) =

{
1, if x2 + y2 + z2 ≤ 0.52

0, otherwise
. (A.2)
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For NACA0012 airfoil:

χ(x, t) =

{
1, if y2 − (a1(a2

√
(x+ 0.5) + a3(x+ 0.5) + a4(x+ 0.5)2 + a5(x+ 0.5)3 + a6(x+ 0.5)4))2 ≤ 0

0, otherwise
.

(A.3)

the coefficients for NACA0012 airfoils are a1 = 0.594689181, a2 = 0.298222773, a3 = −0.127125232, a4 =

−0.357907906, a5 = 0.291984971, and a6 = −0.105174606.580

Appendix B. Smoothing the mask function

As mentioned in [55, 57], smoothing the mask function enables to avoid spurious oscillations of the582

hydrodynamic forces on moving obstacles, and also helps for de-aliasing of the penalization term. In order to

test how smoothing mask function helps with the present solver, we make a test on simulating the NACA0012584

airfoil for the same case considered in Sec. 5.3. Following [55], we use a Gaussian function to smooth the

sharp mask function χsharp:586

χsmooth = [1− exp(−(xdist/δ)
2)] · χsharp (B.1)

where xdist refers to the distance of solution point to the surface, δ is the width of the smoothing function.

As an example, the 1D smooth mask function with different width parameters are shown in Fig. B.21. As588

the solution point is approaching the surface, less penalization is imposed to this point.
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Figure B.21: Smooth mask function with different width.

We select the P = 2 test case, with penalization parameter 1e− 5. Two width parameters, h/3 and h/8590

are considered. The results are shown in Fig. B.22. It is observed that with the smooth mask function, the

pressure distribution becomes less oscillatory, while some error will also be introduced near the leading edge592

of the skin friction coefficient. This is related to the smaller source term near the wall, where the accuracy

may be reduced but the smoothness of the solution can be improved. We can also see that as a larger width594

parameter is selected, the accuracy of the result becomes worse. This comparison shows that smoothing

the mask function will help to reduce oscillations near the wall, but will not lead to any gain in accuracy.596

Therefore in the present work, we keep using a sharp mask function for all simulations. However, different

smoothing strategies are still worth testing to see if an optimal smoothing approach can be found for the598

present approach.

30



0 0.1 0.2 0.3
x

0.1

0.2

0.3

0.4

0.5
C

p

sharp mask
smooth (  = h/3)
smooth (  = h/8)
body-fitted

(a) Pressure coefficient

0 0.2 0.4 0.6 0.8 1
x

0

C
f

(b) Friction coefficient

Figure B.22: Comparison of using smooth mask function for flow past a NACA0012 airfoil at Re = 5000, M = 0.5 and angle
of attack 2 degree.

Appendix C. Comparison of data reconstruction methods600

As discussed in Sec. 4.4, for the present method, it is straightforward to employ the high-order poly-

nomial interpolation to get the quantities of interest for surface marker points. However, basic analysis on602

the interpolation stencil shows that such operation will involve the solution points immersed solid, with

nonphysical values and gradients. A comparison of data reconstruction methods is made here to show the604

difference between the polynomial interpolation and the IDW-IP method used in the present study. We take

the third result from Sec. 5.2, where flow past a cylinder at Reynolds number 40 is simulated. The third606

mesh with locally uniform grid size 0.01D is selected and the polynomial order is set to 2. We take the

final flow field, and reconstruct the surface quantities based on both methods. The comparison of pressure608

coefficient and wall spanwise vorticity is shown in Fig. C.23. It is clearly seen that the pressure coefficient

from high-order polynomial interpolation shows very large oscillation, while results from IDW-IP are smooth610

and agree well with body-fitted simulation. The under-prediction of wall spanwise vorticity from high-order

polynomial interpolation is evident in Fig. C.23b, where the result is not only oscillatory but also does612

not fit the body-fitted simulation very well. This highlights the weakness of using high-order polynomial to

interpolate flow quantities on the surface.614
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