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Overview

• On localizing perturbations in nuclear reactors
• Data simulation
• Unfolding perturbations with deep learning
• Experimental study
• Discussion and conclusions 
• Final remarks



Introduction

Monitoring nuclear reactors working at nominal conditions is fundamental for safety purposes.

reactor core fuel assembly fuel pin fuel pellet



Fluctuations always exist in dynamical systems even at steady state-conditions
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Fluctuations always exist in dynamical systems even at steady state-conditions

Fluctuations carry valuable information about the system’s dynamics
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Fluctuations could be used for diagnostics:

• Early detection of anomalies

• Estimation of dynamical system characteristics



Fluctuations could be used for diagnostics:

• Early detection of anomalies

• Estimation of dynamical system characteristics

• Perturbations in core reactors can alter the production of neutrons, which in response is seen as 

a fluctuation in the neutron flux

• Anomalies in nuclear reactors can be detected by analysing neutron flux data.



Neutron detectors present both in-core and ex-core:

• Advantage: “sense” perturbations even far away from the perturbations
• Disadvantage: western-type reactors do not always contain many in-core neutron detectors

Ex-core neutron detectors

Fixed in-core neutron detectors

Movable in-core neutron detectors

detector





The problem
Signal analysis techniques are insufficient for back-tracking the nature and spatial 
distribution of possible anomalies

• Need to be able to invert the reactor transfer function

Perturbation Neutron flux

Forward problem

Backward problem

Unfolding
Machine Learning makes it possible to find a mapping between the signal read by the neutron 
detectors and the perturbation location and type



control rod 
vibration

Unfolding

Forward Problem

Perturbation of the absorption 
in the macroscopic cross 
section

(2-D calculations)

© C. Demazière (Chalmers University of Technology)

Example of a vibrating control rod @ 0.2 Hz



Noise diagnostics in nuclear reactors

• Example of a localized “absorber of variable strength” @ 1kHz

+

© C. Demazière (Chalmers University of Technology)



Proposed approach

1. A deep-learning approach to unfold neutron flux signals, and localise perturbations within 12 

and 48 regions inside the core reactor

2. A k-means and k-NN based coarse-to-fine approach to better localise perturbation sources. 

Starting from 12 and 48 core regions, the signal is unfold up to the core reactor spatial 

resolution

3. A denoising autoencoder to reconstruct part of missing signals and to filter noise out



Dataset
• Data simulated by Chalmers University using CORE SIM tool:

2-energy group formulation - high and low energy spectra
first-order approximation of the neutron noise

• Pressurised Water Reactor (PWR) with:

Radial core 15×15 fuel assemblies
Volumetric mesh of dimension 32×32×26 (∆𝑥=10.75, ∆y = 10.75, ∆z = 15.24)[cm]
Absorber of variable strength
Dirac’s like perturbation generated at 0.1 Hz, 1 Hz and 10 Hz
Green’s function as the reactor transfer function

• CORE SIM output:

• Fast and Thermal neutron response to the applied perturbation
• The signal is complex and it is distributed in a three-dimensional array of size 

32×32×26

+
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Demazière, C. (2011). CORE SIM: A multi-purpose neutronic tool for research and education. 
Annals of Nuclear Energy, 38 (12), 2698-2718



Data processing
• 19552 responses per frequency (0.1, 1, 10 Hz)

• The 3-D complex information (both amplitude and phase of the thermal and fast group 
responses) was unrolled into two dimensional forms, and the values rescaled between 0 and 255

1st ch: Amplitudes of the groups
2nd ch: Amplitudes of the groups
3rd ch: Phase of the groups

• Portions of the signal were obscured (25%, 50%, 75%)

• Added White Gaussian Noise (SNR=1, 3)
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SNR = 1



Recap: Convolutional Neural Networks 

• State-of-the-art in many Computer Vision tasks

i.e. classification, object detection, segmentation etc.

• Made up of stacks of Convolutional and Pooling layers



Recap: Inception Architecture

Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." Proceedings of the IEEE 
CVPR 2016



Recap: Inception module

1x1 convolutions reduce number of parameters and add non-linearity (ReLU) to learn more 
complex functions 

Szegedy, C., et al. “Going deeper with convolutions”. Proceedings of the IEEE CVPR 2016



Recap: Inception transfer learning

Codelabs.developers.google.com. (n.d.). Image Classification Transfer Learning with Inception v3. 



Proposed approach based on CNN

Softmax for Multiclass:

Weighted categorical 
cross entropy:



Experiment 1: Unfolding to 12-48 source locations

The initial 3D array of size 32x32x26 was compartmentalised into 12 and 48 subsections, by a factor 
2x2x3 and 4x4x3 respectively.



Two sets of experiments were conducted:
• with pretrained ImageNet weights and partly re-trained
• with weights re-trained from scratch

Additionally, to make the problem more difficult, the signal was corrupted by:

• Adding White Gaussian Noise at signal-to-noise-ratio (SNR) equal to 1 or 3

• Obscuring part of the signal (maintaining 25-50-75% of the sensors’ information)

• Using different train - development - test data splits, such as:  
75-10-15%, 50-20-30% or 25-10-65%

Experiment 1: Unfolding to 12-48 source locations



Experiment 2 - Unfolding from 12 to 48 source locations

Within cluster L2 norm:



Experiment 3 - Unfolding up to signal’s original resolution 



Experiment 4 – Signal denoising and reconstruction

A denoising autoencoder was trained to reconstruct and filter the partially obscured -
using 25−50−75% of the sensors - and noisy - at SNR=1 and SNR=3 – signals.

Mean Squared Error for 
noise filtering:



Results - Experiment 1 - Unfolding to 12-48 source locations

MAX

MIN



Results - Experiment 2 - Unfolding from 12 to 48 source locations
t-Stochastic Neighbour Embedding (t-SNE) representation of k-means (k=4) of the seventh block. 

Each point is a lower dimensional projection of 2048 dimensional vector representations of signal. 
Each colour indicates a different cluster. 

a-b: training set clusters.  c-d: test set predictions.



Results - Experiment 3 - Unfolding up to signal’s original resolution 

For various values of k-, starting from a resolution of twelve blocks it is possible to estimate the 
source location at the original signal’s resolution of 32x32x26. 

The resulting accuracy error was slightly greater than one point in the reactor. 



Deep-CNN Autoencoder 

 
Sensors 

 
Signal 

  
Train/Test 

Normalised Cross 
Correlation 

Clean vs 
Corrupted 

Clean vs 
Reconstructed 

75% clean 25/75% 0.77 0.995 

50% clean 25/75% 0.57 0.995 

25% clean 25/75% 0.37 0.993 
25% SNR=1 25/75% 0.36 0.991 

 

The reconstruction was measured by the normalised cross correlation (ncc) metric.

This allows a quantitative comparison of the similarity among two images; ncc ranges 
between -1 (completely differing) and +1 (perfectly matching).

MAX MIN

Sensors’ information
25% 50%     75% 25% 50%           75%

Results - Experiment 4 – Signal denoising and reconstruction



Discussion

Goals of CORTEX project:

• Developing high fidelity tools for simulating stationary fluctuations

• Validating those tools against experiments to be performed at research reactors

• Developing advanced signal processing and machine learning techniques (to be combined 

with the simulation tools)

• Demonstrating the proposed methods for both on-line and off-line core diagnostics and 

monitoring

• Machine learning able to correctly identify and localize the type of perturbations existing in 

a nuclear core



Further readings

For further details about the work please refer to:

Limitations:
• Classification based coarse-to-fine approach

• Only signals in the frequency domain were unfolded

• Only one type of perturbation was simulated

Caliva, Francesco*, Fabio De Sousa Ribeiro*, et al. "A deep learning approach to 
anomaly detection in nuclear reactors." 2018 International joint conference on neural 
networks (IJCNN). IEEE, 2018.



Follow-up work:

• Unfolding of perturbations in the frequency and time domains

• Variety of perturbations were precisely unfolded

Fabio De Sousa Ribeiro*, Francesco Calivà* et al. "Towards a deep unified framework 
for nuclear reactor perturbation analysis." 2018 IEEE symposium series on 
computational intelligence (SSCI). IEEE, 2018.
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Thank you

Follow CORTEX at cortex-h2020.eu and on LinkedIn
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