
Understanding the role of Model Transformation Compositions
in Low-Code Development Platforms

Apurvanand Sahay
apurvanand.sahay@univaq.it

Università degli Studi dell’Aquila
L’Aquila, Italy

Davide Di Ruscio
davide.diruscio@univaq.it

Università degli Studi dell’Aquila
L’Aquila, Italy

Alfonso Pierantonio
alfonso.pierantonio@univaq.it

Università degli Studi dell’Aquila
L’Aquila, Italy

ABSTRACT
Low-code development platforms (LCDPs) permit developers that
do not have strong programming experience to produce complex
software systems. Visual environments permit to specify work-
flows consisting of sequential or parallel executions of services that
are directly available in the considered LCDP or are provided by
external entities. Specifying workflows involving different LCDPs
and services can be a difficult task. In this paper, we propose the
adoption of concepts and tools related to the composition of model
transformations to support the specification of complex workflows
in LCDPs. We elaborate on how LCDPs services can be considered
as model transformations and thus, workflows of services can be
considered as model transformation compositions. The architecture
of the environment supporting the proposed solution is presented.

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity; Model-driven software engineering.

KEYWORDS
Model Driven Engineering, Low-CodeDevelopment Platform,Model
Transformation, Model Transformation Composition
ACM Reference Format:
Apurvanand Sahay, Davide Di Ruscio, and Alfonso Pierantonio. 2020. Un-
derstanding the role of Model Transformation Compositions in Low-Code
Development Platforms. InACM/IEEE 23rd International Conference onModel
Driven Engineering Languages and Systems (MODELS ’20 Companion), Oc-
tober 18–23, 2020, Virtual Event, Canada. ACM, Montreal, Canada, 5 pages.
https://doi.org/10.1145/3417990.3420197

1 INTRODUCTION
Low-Code Development Platforms (LCDPs)1 are visual environ-
ments that are being increasingly promoted by major IT players
for supporting citizen developers to create software systems even
if they lack programming background and knowledge [16]. One
of the most prominent application domain for LCDPs is process
automation [10]: citizen developers are provided with visual envi-
ronments to specify workflows orchestrating sequential or even
1Hereafter, the terms low-code platforms and low-code development platforms are used
interchangeably and are abbreviated as LCDPs.

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems (MODELS
’20 Companion), October 18–23, 2020, Virtual Event, Canada, https://doi.org/10.1145/
3417990.3420197.

parallel consumptions of services, each typically provided by ex-
ternal providers, which the used LCDP is able to connect. Thus,
developers can specify processes e.g., to retrieve data from external
data sources (e.g., calendar, sensors, and files stored in cloud ser-
vices), to manipulate retrieved data. It can be achieved by means
of the provided facilities or even by using external services, and to
perform some aggregation and analysis according to rules defined
with the languages provided by the platform. However, when com-
plex workflows have to be specified, developers have to be aware of
the possible service providers that the used LCDP is able to interact
with, and the manipulation means that might be exploited to finally
develop the desired process.

In this paper, we focus on the low-code development of complex
workflows involving the interoperability of different services. In
such a setting, we aim at providing citizen developers with the
means to declaratively specify the goals of the desired processes
and to get back the services, and the corresponding interactions.
Such interactions might be potentially employed to develop the pro-
cess previously specified in a declarative manner at a higher level
of abstraction. To this end, we investigate the possibility of relying
on the results developed by the Model Driven Engineering (MDE)
[11] research community about the topic of model transformation
composition [2]. The envisioned idea is considering workflows as
corresponding model transformation chains, and the services to be
consumed in the workflows as model transformations that have
to be properly composed. Thus, many smaller and simpler model
transformations are composed together to realize complex work-
flows to be executed in the considered LCDP. The contribution of
the paper is to propose a research direction to support several speci-
fications of services to define and execute their complex workflows
in LCDPs.

The paper is structured as follows: Section 2 introduces the prob-
lem we want to cope in this paper. Section 3 presents an overview
of existing approaches for composing model transformations. Sec-
tion 4 proposes their adoption to support the definition of complex
workflows in LCDPs. Section 5 concludes the paper and presents
our future plans.

2 PROBLEM STATEMENT
LCDPs are visual environments that permit mainly in a declarative
manner to develop complex applications even for developers that
do not have strong programming experience. Systems like IFTTT2,
and zapier3 provide users with easy to use tools for developing
workflows consisting of sequential or even parallel execution of
services. By means of such tools, users can specify workflows that
2https://ifttt.com/
3https://zapier.com/

https://doi.org/10.1145/3417990.3420197
https://doi.org/10.1145/3417990.3420197
https://doi.org/10.1145/3417990.3420197
https://ifttt.com/
https://zapier.com/


MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Apurvanand Sahay, Davide Di Ruscio, and Alfonso Pierantonio

can be triggered e.g., when a new email arrives and a correspond-
ing spreadsheet is updated in order to keep track of emails that
have been sent from specific addresses. Even in Internet of Things
(IoT) scenarios, LCDPs can play a key role e.g., when devices from
different brands and ecosystems need to be integrated in a same
physical environment.

Workflows that users might have the need to specify can be com-
plex and involve different platforms and services. An explanatory
scenario is shown in Figure 1 that considers two LCDPs named as
LCDP1 and LCDP2. In LCDP1, there are two applications shown as
circles called App11 and App12. Inside App11, there are two services
shown as squares named as x1 and x2. Inside App12, there are also
two services shown in squares named m1 and m2. Likewise, in
LCDP2, there are two applications shown as circles called App21
and App22. Inside App21, there are three services show in squares
called as y1, y2 and y3. Similarly in App22, there are also three
services shown in squares called as z1, z2 and z3.

y2

z3
m2

m1

x2

x1 y1

z1

LCDP1 LCDP2

App11

App12

App21

App22

y3

z2

Figure 1: Service and Data Flows in LCDPs

According to the depicted arrows in Figure 1, different kinds
of interactions (i.e., service invocations and application interfaces)
can occur in workflows like the one previously described in the
example involving Mendix and Appian. In the following points, we
distinguish two kinds of interactions, i.e., Inter LCDPs and Intra
LCDPs:

• Inter LCDP : This kind of interactions occurs when data from
services and applications produced in one LCDP are manip-
ulated or consumed by services and applications provided
by another LCDP. Such manipulations or consumption are
shown in arrows y1 to x1, z1 to App12, App12 to App21 and
App12 to z2.

• Intra LCDP : This kind of interactions occurs when data from
services or applications are manipulated or consumed by
services or applications within the same low-code platform.
Such interactions can be further detailed as:
– Inter applications: Data from one application are manip-
ulated or consumed by different applications within the
same LCDP. Such manipulations are shown in arrows y2
to z3, y3 to App22, App11 to App12 and App12 to x2.

– Intra application: Data from services in one application
within the same LCDP are manipulated by another ser-
vices offered by the same application. For instance, data
produced by pre-built forms, reports, etc., are used and
manipulated by the same application to provide different

view such as grid view, Kanban view, etc. Such manipula-
tion is shown in m1 to m2.

To make a concrete example with respect to Figure 1, let us sup-
pose to work with the Mendix and Appian low-code development
platforms as shown in Figure 2. In Mendix, there are two developed
applications calledAttendanceManagement System andAutonomous
Vacation Management System. Attendance Managment System de-
termines the attendance of each employee on a given month and it
provides a service named as Enrollment System, which is reused by
the application known as Enrollment Management System built in
the Appian low-code platform. Also, Autonomous Vacation Manage-
ment System built in Mendix uses an application known as Vacation
Management System built in Appian. Autonomous Vacation Manage-
ment System interacts with an external service provided by IFTTT4
to build an automatic allocation of the vacation if the employee
asked for it. This example deals with different services and applica-
tions that interact across different LCDPs.

The data from Autonomous Vacation Management System ap-
plication is used in Attendance Management System in Mendix to
automate the absence of an employee due to the allotment of va-
cation. Also, suppose there is a service named as Salary Section in
the application Vacation Management System which is determined
by another service of another application Enrollment Management
System known as Grading System within the same low-code plat-
form Appian. Such interactions within the same LCDPs can also
be executed within applications or across different applications of
that LCDP.

Enrollment
System

Salary
Section

Mendix Appian

Attendance
Management

System

Autonomous
Vacation

Management
System

Enrollment
Management

System

Vacation
Management

System

Grading
System

IFTTT

Figure 2: Example of Service and Data Flows in LCDPs

Specifying workflows involving different LCDPs and services
can be a difficult task. To support their specifications, we investigate
the possibility of relying on techniques and tools developed in the
MDE field for chaining model transformations. In particular, if
services are seen as model transformations, specifying workflows
consisting of orchestrations of different services can be seen as the
problem of properly chaining different model transformations. To
this end, next section makes an overview of existing approaches
for model transformation compositions. Afterwards, we propose to
4https://ifttt.com/

https://ifttt.com/


Understanding the role of Model Transformation Compositions in Low-Code Development Platforms MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

employ them to support the development of complex workflows in
LCDPs.

3 MODEL TRANSFORMATION COMPOSITION
APPROACHES

Composing model transformations is a way to develop complex
model management operations by composing smaller ones. There
are two main ways to compose model transformations i.e., internal
and external. In internal composition, two model transformation
definitions give place to a new transformation. In external com-
position, two different transformations are chained together and
the output models of the first transformation are given as input to
the second one. Over the last years, several approaches have been
proposed to compose model transformations and relevant works in
such a context are overviewed in Section 3.1. The problem statement
discussed in Section 2 indicates a clear need to research and develop
tools to implement those workflows in concern with LCDPs. An
explanatory example showing the usage of model transformation
compositions is given in Section 3.2

3.1 Overview
Basciani et al. (2018a, 2018b) [2, 3] propose an approach for the
external composition of model transformations. In particular, given
as input the source model, and the wanted target metamodel, the
system is able to find out a ranked list of transformation chains with
respect to a notion of information loss implemented in a customized
Dijkstra algorithm.

Etien et al. (2015) [7] propose an approach to transform very
large models by decomposing them based on a separation of con-
cern technique and then use localized transformations to check
the desired outcomes according to the objectives of the applica-
tion. Thus the proposed technique consists of building localized
transformations and combine them with the help of a composition
language.

Aranega et al. (2012) [1] make use of featuremodels to automate a
consistent set of model transformations and generate an executable
chain implementing the desired objectives.

In [5], authors propose an approach to determine which chaining
of available model transformations gives the desired result with
respect to pre-conditions, post-conditions, and behavioural aspects
of individual rules. Thus, commutativity of the chaining of model
transformations is also used to detect identical results by using both
sides of the transformation. Similarly, in [4] authors present an ap-
proach to find out the best transformation chain (that satisfies given
chaining constraints) by statically analyzing single transformations.

In [6] authors propose a technique to combine independent
model transformations that do not handle compatible source and
target metamodels, and that might jointly work to achieve the
wanted objective. The approach relies on the composition language
for independent model transformations with incompatible meta-
models.

Wagelaar et al. (2010, 2008) [14, 15] propose an internal com-
position technique named model superimposition that allows for
extending and overriding rules in different transformation modules.

Vanfooff et al. (2006) [13] present a language to specify transfor-
mation chains. The language is based on UML activity diagrams

and it is independent from the languages used to develop the trans-
formations being chained. Similarly, Rivera et al. (2009) [9] propose
a graphical language for orchestrating ATL transformations. The
language provides users with modeling constructs to specify con-
ditional, parallel, and looping execution of different ATL model
transformations.

3.2 Explanatory example
We have mentioned external (chaining) as well as internal compo-
sition of model transformations for transforming and composing
different services. According to paper [12], it is easier to build and
test the smaller model transformations separately and then merge
them together to form the whole complex transformation.

MM1 MM2 MM3 MM4 MM5

M1 M2 M3 M4 M5

MT13 MT24

MT14 MT25

MT15

MT12 MT23 MT34 MT45

MT35

Figure 3: Graph of Model Transformation Compositions

Figure 3 graphically represents an example of possible composi-
tions when different model transformations are available. Suppose,
a grid view model is expected to be transformed into a Kanban
view model which in turn is expected to be converted to a pie chart
model. These models have their respective metamodels. Either a
chaining or an internal combination of model transformations is
expected to transform from a grid view model to a pie chart model.
Actually, the grid view model may or may not be converted to
intermediate Kanban view model based on the chaining or internal
combination of model transformations, respectively.

The following points are derived from the graph of model trans-
formation compositions shown in Figure 3. The metamodel X is
shown as MMX indicated inside a rectangle shape. The model X
of the corresponding metamodel is shown as MX indicated inside
an enclosed circles shape. The model transformation which trans-
forms from MMX to MMY is shown as MTXY indicated inside an
oval shape. The arrows represent the forward usage of a model or
model transformation to another model or model transformation.
Model transformation can be formulized as: MTXY = MTX(Y-1) ++
MT(X+1)Y ; where ’++’ means composition (external or internal).

Figure 3 shows five models corresponding to their respective
metamodels. The model transformation MT transforms one model
to another. To transform model M1 to M5, the maximum number of
required forward chainings of model transformations are 4 which is
from MT12 to MT23 to MT34 to MT45; while the minimum number
of MT required is only one which is MT15. This is done by the com-
position of several intermediate model transformations. Therefore,



MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Apurvanand Sahay, Davide Di Ruscio, and Alfonso Pierantonio

Figure 4: Proposed approach

maximum number of forward chainings of model transformations
possible from source to target models are (n-1); where n is the
number of the metamodels to be taken in transformations. The
minimum number of model transformation composition, which is
possible from source to target model is 1. This shows variety of
paths of model transformations that are involved in converting one
model to the another.

Also, from Figure 3, the total number of model transformations
can be calculated as follows. If 2 models are available to be trans-
formed, then only 1 model transformation is possible. Similarly, for
3, 4 and 5 models to be transformed, the total number of model
transformations possible are 3, 6 and 10 respectively. Therefore, we
can generalize this trend. The trend shows for n models (where n
>2) to be transformed, there will be n(n-1)/2 model transformations
possible. Therefore, the total number of model transformations
possible within a system of n models are n(n-1)/2. This explains the
possible number of model transformations in specifying complex
workflows available in a software and gives us the ability to find out
the optimal composition of model transformations by estimating
the optimal paths [3].

The paper aims at composing different model transformations
(either, internally or externally) to have an optimal path to achieve
the target workflows. Therefore, a transformation path is aimed
with minimal cost and time. This would require all the possible
number of model transformations available to obtain a specific
workflow with different combinations of model transformation
compositions. Such model transformation compositions are more
reusable if the overlapping of their combination is maximum. This
gives an efficient and simpler solution to define all the workflows
because most of the compositions are pre-built and therefore it can
be easily reused for a new workflow with minimum changes on the
newer transformations. This maximum overlapping of model trans-
formation compositions utilizes the use of pre-built compositions
developed from previous workflows to deliver a new workflow.

4 PROPOSED APPROACH
In this section, we elaborate on howmodel transformation composi-
tion techniques can be used to support the specification of complex
workflows in LCDPs. In particular, we see the possible interactions
occurring intra and inter LCDPs presented in Section 2 as proper
orchestrations of different services. Then, if we can manage such
services as model transformations, then we can reuse the theories
underpinning existing composition approaches for model transfor-
mations. In this respect, Figure 4 depicts the main components of
the envisioned approach, which is detailed in the following.
Goal specification metamodel: We plan to employ a similar tech-
nique as proposed in [2] to chain model transformations. In that
case, the goal specified by the user consists of the target metamodel
that the desired model should conform. By considering the given
goal and the input model, the approach is able to identify possible
transformation chains, if any. In a similar manner, we aim at pro-
viding users of LCDPs with the means to specify the characteristics
of the desired workflows at a high-level of abstraction. The tools
and languages shall permit to specify constraints, functional, and
non-functional requirements that the final workflow should satisfy.
An example of goal is that the user wants to take some input model
and visualize it by means of two target views, i.e., grid view and
Kanban view. To enable the adoption of the metamodel, it is nec-
essary to define a modeling language providing users with all the
modeling constructs formalized in the metamodel.
LCDP metamodels: We plan to define metamodels for specifying
characteristics of the supported LCDPs. The idea is to be able to
specify workflowmodels that can be executed by the corresponding
LCDP. The specification of such metamodels require the analysis of
different platforms with the aim of identifying the peculiar charac-
teristics with respect to the providedmechanisms for specifying and
executing workflows [10]. The metamodels can be mainly classified
as follows. The main data metamodel of the whole LCDP is mapped
to view-specific metamodels. They are essentially a design-time
view and a run-time view, which correspond to the static analysis of
the data model before the deployment, and to run-time analysis of
the data model after its deployment, respectively. Such views store



Understanding the role of Model Transformation Compositions in Low-Code Development Platforms MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

only those data that are relevant to its specific view [8]. The citizen
developers should only see these view models individually and not
the whole of LCDP’s data model. These separations of views allow
the citizen developer to focus on either of the views without much
worrying about the overall expressiveness and flexibility of the data
model of a particular LCDP.
LCDPs connectors: They are the software components that permit
the system to connect to the different low-code development plat-
forms by relying on provided APIs.
Composition Reasoner: Such a component checks the feasibility of
the input goal with respect to the available services provided by the
LCDPs which the system is able to connect. The list of such services
is retrieved and kept updated by relying on the available LCDPs
connectors. For instance, by considering simple goal specification
previously given, the composition reasoner would check if the
available LCDPs can manage services’ view types like grid and
Kanban views.
Goal2Workflow transformation: By relying on the outcome of the
Composition Reasoner and by considering the available LCDPs
connectors, this component generate possible workflows that are
compatible with the specified goals. Similarly to what happens in
model transformation compositions, different solutions can be pos-
sible and the system will provide the user with a ranked list. By
considering the previous example, the component would show all
the possible workflows that permit to generate grid and Kanban
views out of a source model. In case there are more than one ser-
vices (even provided by different LCDPs) are able to manage grid
and Kanban view, the component would produce all the possible
compositions.
Workflow engine: It is the software component able to execute mod-
els generated by the Goal2Workflow transformation. The engine
interacts with the LCDPs that enable the execution of workflows
via some exposed APIs.

5 CONCLUSION AND FUTUREWORKS
The paper gives preliminary study on the usage of model trans-
formation compositions in the domain of low-code development
platforms. The problem that we want to address in the medium
term is about the specification of complex workflows in LCDPs.
The goal is to support citizen developers by providing them with
modeling constructs that permit to specify the goal of the desired
workflows at a high-level of abstraction. By relying on the tech-
niques and tools developed for composing model transformations,
the idea is to generate possible workflows that satisfy the initial
goal. The architecture of the planned solution has been overviewed
and we plan to work on it by first focusing on the needed model-
ing languages, i.e., the goal and workflow specification languages.
They have to be defined in an iterative manner by specifying real
situations and refine the available constructs in case of errors or

to cover unforeseen requirements. As a next step, we will focus
on the development of the workflow engine and all the dependent
components including the reasoner, and the goal to workflow trans-
formation. We plan to apply the proposed approach in different
application domains including the development of IoT systems and
the specification of complex workflows involving different model
managements operations.

ACKNOWLEDGEMENT
This work is funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie –
ITN grant agreement No 813884.

REFERENCES
[1] Vincent Aranega, Anne Etien, and Sebastien Mosser. 2012. Using feature model

to build model transformation chains. In International Conference on Model Driven
Engineering Languages and Systems. Springer, 562–578.

[2] Francesco Basciani, Mattia D’Emidio, Davide Di Ruscio, Daniele Frigioni, Lu-
dovico Iovino, and Alfonso Pierantonio. 2018. Automated selection of optimal
model transformation chains via shortest-path algorithms. IEEE Transactions on
Software Engineering (2018).

[3] Francesco Basciani, Davide Di Ruscio, Mattia D’Emidio, Daniele Frigioni, Alfonso
Pierantonio, and Ludovico Iovino. 2018. A tool for automatically selecting optimal
model transformation chains. In Proceedings of the 21st ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. 2–6.

[4] Raphaël Chenouard and Frédéric Jouault. 2009. Automatically discovering hidden
transformation chaining constraints. In International Conference on Model Driven
Engineering Languages and Systems. Springer, 92–106.

[5] Anne Etien, Vincent Aranega, Xavier Blanc, and Richard F Paige. 2012. Chaining
model transformations. In Proceedings of the First Workshop on the Analysis of
Model Transformations. 9–14.

[6] Anne Etien, Alexis Muller, Thomas Legrand, and Xavier Blanc. 2010. Combining
independent model transformations. In Proceedings of the 2010 ACM Symposium
on Applied Computing. 2237–2243.

[7] Anne Etien, Alexis Muller, Thomas Legrand, and Richard F Paige. 2015. Localized
model transformations for building large-scale transformations. Software &
Systems Modeling 14, 3 (2015), 1189–1213.

[8] Nick Jansen. 2019. Exploring interactive application landscape visualizations based
on low-code automation. Master’s thesis.

[9] José E Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero, José Bautista, and
Antonio Vallecillo. 2009. Orchestrating ATL model transformations. Proc. of
MtATL 9 (2009), 34–46.

[10] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieranto-
nio. 2020. Supporting the understanding and comparison of low-code develop-
ment platforms. In 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications.

[11] Douglas C Schmidt. 2006. Model-driven engineering. Computer-IEEE Computer
Society- 39, 2 (2006), 25.

[12] Shane Sendall and Wojtek Kozaczynski. 2003. Model transformation: The heart
and soul of model-driven software development. IEEE software 20, 5 (2003),
42–45.

[13] Bert Vanhooff, Stefan Van Baelen, Aram Hovsepyan, Wouter Joosen, and Yolande
Berbers. 2006. Towards a transformation chain modeling language. In Interna-
tional Workshop on Embedded Computer Systems. Springer, 39–48.

[14] Dennis Wagelaar. 2008. Composition techniques for rule-based model transfor-
mation languages. In International Conference on Theory and Practice of Model
Transformations. Springer, 152–167.

[15] Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Deridder. 2010. Module
superimposition: a composition technique for rule-based model transformation
languages. Software & Systems Modeling 9, 3 (2010), 285–309.

[16] Robert Waszkowski. 2019. Low-code platform for automating business processes
in manufacturing. IFAC-PapersOnLine 52, 10 (2019), 376–381.


	Abstract
	1 Introduction
	2 Problem statement
	3 Model Transformation Composition Approaches
	3.1 Overview
	3.2 Explanatory example

	4 Proposed approach
	5 Conclusion and Future works
	References

