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Abstract Intensive agriculture and meat-based westernized diets have brought a
heavy environmental burden to the planet. Legumes, or pulses, are members of the
large Fabaceae (Leguminosae) family, which comprise about 5% of all plant species.
They are ancient crops whose popularity both for farmers and consumers has gone
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through several stages of acceptance, and in recent years, legumes have regained
their luster. This is due to a global understanding that: (1) farming systems need to
promote biodiversity, (2) biological nitrogen fixation is an important tool to reduce
the application of external chemical inputs, namely in the form of nitrogen fertil-
izers, and that (3) plant-based foods have fewer adverse environmental effects per
unit weight, per serving, per unit of energy, or per protein weight than do animal
source foods, across various environmental indicators. Legumes play a key role in
answering these three global challenges and are pivotal actors in the diversification
and sustainable intensification of agriculture, particularly in light of new and urgent
challenges such as climate change. In this chapter, we showcase the importance of
legumes as contemporary agents of change, whose impacts start in the field, but then
branch out into competitive global economies, modernized societies, and ultimately,
improved food security and human health.

Keywords Biodiversity * Biological nitrogen fixation - Nutrition and health -
Pulses + Sustainability

1 Introduction

The word legume comes from the Latin word legumen which can be translated to
“seeds harvested in pods.” In many parts of the world, such as in Canada, Bangladesh,
or India, the world pulse is used when referring to legume grains, especially those with
alow content in fat. Legumes or pulses have accompanied farmers since the Neolithic
revolution, the very onset of farming practices of mankind. Pea (Pisum sativum), lentil
(Lens culinaris), chickpea (Cicer arietinum), and bitter vetch (Vicia ervilia) belong
to the “Big Eight,” that package of “founder crops” which have been domesticated in
the Fertile Crescent during the 10th and 9th millennia BCE (Asouti and Fuller 2013).
Legumes were domesticated alongside grasses as early as 10,000 years ago (Hancock
2012). Among the earliest legume crops were chickpea, garden pea, and lentil (Sprent
2009; Hancock 2012; Smykal et al. 2015). The domestication of other important
legumes followed later on in different regions of the world, for example, soybean
in east Asia (Sedivy et al. 2017), Azuki bean (Vigna angularis) in west Asia (Lee
2012), or common bean (Phaseolus vulgaris) in Mesoamerica (Lopez et al. 2013).
The cultivation of soybean [Glycine max (L.) Merrill] dates from China in around
2500 BCE, being now spread throughout the world mostly due to its elevated protein
content of the seeds that can reach almost 40%. Despite its particular worldwide
importance, soybean is heavily reliant on inoculation to bring it into profitable use
in non-native countries like Brazil (Alves et al. 2003).

It is thought that the introduction of legumes into cropping systems in Europe
(before the tenth century) enabled an improvement in soil quality and provided nour-
ishment to populations, relieving famine and improving overall population growth.
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More than 820 million people have insufficient food and many more consume low-
quality diets that cause micronutrient deficiencies. This has contributed to a substan-
tial rise in the incidence of diet-related noncommunicable diseases. All legumes offer
a high level of protein in above- and belowground biomass, particularly in grains, in
comparison to other crops such as cereals. They are self-supporters of nitrogen fertil-
ization through atmospheric nitrogen fixation in root nodules in symbiosis with soil
bacteria from the families Rhizobium, Bradyrhizobium, and others. The genetic reg-
ulation of these processes has been intensively investigated and various forward- and
reverse-genetic approaches have identified nearly 200 genes required for symbiotic
nitrogen fixation in legumes (Roy et al. 2019).

In times with low availability of meat, pulses—legumes with predominant grain
usage—provided a valuable source of proteins for the human diet. The biblical tale
of Esau who sold his birthright to his younger brother Jacob for the price of a lentil
stew illustrates the estimation of the pulses in early societies. In the past, meat was
often unavailable to common people, i.e., for the majority of ancient societies. Pulses,
therefore, were a sufficient alternative to meat for a healthy and whole food diet. The
traditional Milpa cropping system, a combination of maize, beans, and squash, is a
good example for the integration of legumes in sustainable cropping systems and
in the whole food human diet (Altieri et al. 2011). It integrates physiological and
morphological benefits of crops, including pulses, at the field, and offers a balanced
food composition for human consumption with beans as the main provider of protein.
The Milpa system originated from Mesoamerica and has spread to many tropical and
subtropical regions across the world because of its benefits. Meanwhile, it can be
considered a model for innovative cropping systems today and in the future.

In the middle of the twentieth century, pulses disappeared more and more from the
menu in the industrial countries and as well from cropping systems at the same time.
Pulses were considered to be an old-fashioned food, with nonnutritive compounds
such as lectins, alkaloids, saponins, or phytates (Muzquiz et al. 2012), with lengthy
time-consuming preparation methods and some causing intestinal irritations. Finally,
meat was available to all social classes. There are additionally some agricultural
challenges of legume growing: they have lower yields and lower economic value in
comparison to cereals. For example, a farmer in temperate Europe (France, Germany,
Poland) can achieve a yield of 4.8-7.6 t ha~! winter wheat and only 2.7-3.5 t ha™!
dry pea (FAO Stat 2019).

Recently, there seems to be a return to the value of pulses. Concerns about eco-
logical impacts of meat production, ethical concerns in terms of animal welfare, and
considerations for human health (Chai et al. 2019; Hagmann et al. 2019) have pro-
moted an interest in a more sustainable plant-based food production, with legumes as
a substantial contributor. In times of public discussions about the loss of biodiversity,
sustainable agriculture, and climate change, a renaissance of legumes in agricultural
systems seems a reasonable and promising way to design the future of our planet.
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2 The Biology of Legumes

2.1 Taxonomy and Morphology

The Earth currently has almost 400,000 species of plants. About 5% of plant species
are members of the large plant family Fabaceae (Leguminosae) which produce their
protein-rich seeds within simple dehiscent dry fruits botanically known as legumes
(commonly known as pods). The Fabaceae family includes 770 genera and nearly
20,000 worldwide distributed species (LPWG 2017). The Fabaceae evolved to have
root systems that enable symbiotic relationships with various species of soil bacte-
ria that are capable of fixing atmospheric nitrogen, thereby providing a basic bio-
logical source of nitrogenous compounds such as proteins and their biochemical
derivatives. Legume species are very diverse and are adapted to almost all terrestrial
ecosystems in the form of trees, shrubs, vines, and annual herbs. Legume flowers
characteristically have five petals that have evolved to a wide range of characteristic
sizes, shapes, and colors. Legume species can be self-pollinating, cross-pollinating
or both. The traditional classification of Fabaceae into the three subfamilies, Cae-
salpinioideae, Mimosoideae, and Papilionoideae, has been revised by The Legume
Phylogeny Working Group (LPWG 2017) and Sprent et al. (2017). A new subfamily
classification presented by LPWG (2017) divides the Leguminosae into six subfami-
lies: Detarioideae (84 genera; ca. 760 species; Pantropical), Cercidoideae (12 genera;
ca. 335 species; Pantropical, Cercis warm temperate), Duparquetioideae (1 genus;
1 species; West and West-central Africa), Dialioideae (17 genera; ca. 85 species;
Pantropical), Caesalpinioideae (148 genera; ca. 4400 species; Pantropical, some
temperate), and Papilionoideae (503 genera; ca 14,000 species; cosmopolitan). The
previous subfamily Mimosoideae has been incorporated into the Caesalpinioideae
as the mimosoid clade. Species from the Detarioideae, Cercidoideae, Duparque-
tioideae, and Dialioideae are all non-nodulators. Nodulation has been confirmed in
only eight genera in the Caesalpinioideae sensu stricto subfamily. Most, but not all
mimosoids and papilionoids can nodulate (Sprent et al. 2017).

The Caesalpinoideae subfamily is highly variable, mostly trees and shrubs with
zygomorphic asymmetrical flowers. The mimosoid clade are adapted to tropical and
subtropical climates and exist mostly in the form of trees and shrubs. Their flowers
are symmetric with valvate petals and have large numbers of prominent stamens. The
Papilionoideae is the largest, most widely adapted and diverse legume subfamily.
Their floral morphology (standard, wings, and keel petals) is demonstrated by that of
the widely known species (bean, pea, and soybean) that have edible pods and seeds
used in food systems as vegetables and dry seeds. The members of this ecologically
diverse group include trees, shrubs, and herbs.
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2.2 Nodulation

Legumes form symbiotic relationships with nitrogen-fixing bacteria (rhizobia),
most of which belong to the genera Rhizobium, Bradyrhizobium, Mesorhizobium,
Ensifer (Sinorhizobium), and Azorhizobium in the Alphaproteobacteria (Denison
and Okano 2003; Tampakaki et al. 2017a, b; Ferguson et al. 2019) and in the genera
Paraburkholderia, Cupriavidus, and Trinickia in the Betaproteobacteria (Gyanesh-
war et al. 2011; Estrada-de los Santos et al. 2018). The infection of roots by rhizobia
results in the formation on roots (and occasionally stems) of unique organs called
nodules (Ferguson et al. 2013) in which the biological nitrogen fixation process takes
place (Ferguson et al. 2019). In this process, the bacterial enzyme nitrogenase cat-
alyzes the reduction of atmospheric N, to ammonia (Howard and Rees 1996), which
is a plant-available N form.

The nodulation process in many, but not all, legumes follows root infection by
efficient compatible rhizobia strains. The root infection causes the curling of the root
hairs that entrap the rhizobia and then, after the formation of infection threads through
these structures, the bacteria enter the root cells (Peleg-Grossman et al. 2007; Fournier
et al. 2015). According to Oldroyd and Downie (2008), the induction of cortical cell
divisions is necessary for the nodule’s morphogenesis. The bacteria within the nodule
cells are a differentiated symbiotic form of rhizobia called bacteroids. Each bacteroid
is surrounded by the symbiosome (or peribacteroid) membrane (Denison and Okano
2003; Peleg-Grossman et al. 2007). In the initiation of the rhizobia-legume symbiosis,
several compounds (e.g., Nod factors and flavonoids) are implicated. Nod factors are
lipochitooligosaccharides secreted by rhizobia that are involved in the initiation of
cell divisions in the cortex, which leads to root hair curling and the formation of
infection threads (Ibafiez and Fabra 2011; Murray 2011). Flavonoids produced by
legume roots activate NodD proteins and consequently the expression of the Nod
genes that are implicated in the synthesis of Nod factors (del Cerro et al. 2017).

Taken together, this chemical cross-talk between the rhizobia and the host legume
allows the latter to impose a degree of stringency on which bacteria can enter and
form a symbiotic nodule, but as it is based on nod genes rather than nif genes,
it cannot guarantee that the symbiosis will be effective, and hence compatible, but
“cheating” rhizobia are considered to be a significant problem for nodulated legumes
(Sprent et al. 2017).

Oxygen plays a significant role in nitrogen fixation because an adequate supply
of oxygen in the nodules is needed by bacteroids for respiration (Denison and Okano
2003). See review by Minchin et al. (2008). It is also important to point out that the
nitrogen fixation process is characterized by high energy (ATP) demands (Rutten and
Poole 2019), because the reduction of 1 molecule of N, to ammonia utilizes at least
16 molecules of ATP (Maier 2004). These energy requirements are covered by the
respiration of bacteroids (Miller et al. 1988), but sufficient transport of carbohydrates
to the roots is needed to maintain sufficiently high respiration rates. Nevertheless,
excessive oxygen concentrations can inactivate the nitrogenase (Denison and Okano
2003), and thus the protein leghaemoglobin (Lb) is also an important component



8 M. W. Vasconcelos et al.

of the nodules, as it acts as an oxygen carrier that facilitates a controlled flux of
oxygen to the nitrogen-fixing bacteroids (Denison and Okano 2003). Furthermore,
Lb protects nitrogenase from being inactivated by free oxygen, while the Lb-bound
oxygen is accessible to bacteroids (Abdelmajid et al. 2008; Rutten and Poole 2019).
The internal red-pink color of the nodules is due to the presence of leghaemoglobin
(Rejili et al. 2012). Abdelmajid et al. (2008) linked higher nitrogen fixation capacity
with a higher accumulation of leghaemoglobin in the nodules.

3 Agronomic Impact

3.1 Nitrogen Supply via Biological Nitrogen Fixation (BNF)

Over the past decades, the excessive application of inorganic nitrogen fertilizers
has resulted in groundwater contamination with nitrates (Lv et al. 2019). Ground-
water pollution via leaching of these pollutants (NO5') is one of the most serious
environmental problems and is positively related to high nitrogen fertilization rates
(Vinod et al. 2015; Zheng et al. 2019). Thus, to reduce the groundwater pollution
with nitrates, it is important to reduce the excess application of inorganic fertilizers
in agricultural fields and/or to apply organic nitrogen sources such as compost or
manure. The use of legumes as green manures or the inclusion of legumes in crop
rotation systems is alternative to inorganic nitrogen fertilizers that can contribute to
higher crop yields and improved soil quality (Castro et al. 2017; Ntatsi et al. 2018).

Biological N fixation by legumes (e.g., faba bean, lentil, pea, chickpea, alfalfa,
red clover etc.) ranges from 21 to 389 kg ha~! (Table 1) (Cazzato et al. 2012; Nimmo
et al. 2013; Biichi et al. 2015; Hossain et al. 2016; Snapp et al. 2017; Akter et al.
2018; da Silva Junior et al. 2018; Dhamala et al. 2018; Ntatsi et al. 2018; Pampana
et al. 2018; Ntatsi et al. 2019).

The N,-fixation capacity of legumes (e.g., the proportion of N derived from the
atmosphere [%Ndfa] and biomass productivity) is mainly dependent on plant species,
genotypes, symbiotic bacteria (e.g., Rhizobium spp.) strains, and environmental con-
ditions (Biichi et al. 2015; Hossain et al. 2016; Akter et al. 2018; Ntatsi et al. 2018;
Benjelloun et al. 2019; Ntatsi et al. 2019).

Despite the fact that legumes contribute to nitrogen enrichment of soil BNF, it is
worth mentioning that their over-frequent use of these plant species can also lead to
nitrate leaching (De Notaris et al. 2018; Hansen et al. 2019). Thus, it is important
to optimize the use of legumes (e.g., appropriate crop rotation sequences, mixtures
of legumes, and nonlegumes) in order to reduce the risk of nitrate leaching (Hansen
et al. 2019; Rakotovololona et al. 2019).
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Table 1 Biological nitrogen fixation (BNF) capacity (kg ha™') of commonly cultivated legumes

Common name | Scientific name BNF (kg ha~!) | Cultivation area References
Faba bean Vicia faba L. 118.6-311 Greece, Italy Ntatsi et al.
(2018), Pampana
et al. (2018)
Pea Pisum sativum 36.6-125.3 Canada, Greece Hossain et al.
L. (2016), Ntatsi
et al. (2019)
Common vetch | Vicia sativa L. 107-131 Switzerland Biichi et al.
(2015)
Grass pea Lathyrus sativus | 101-149 Switzerland Biichi et al.
L. (2015)
White lupin Lupinus albus L. | 53.1-64.1 Italy Cazzato et al.
(2012)
Chickpea Cicer arietinum 21.0-103.6 Canada Hossain et al.
L. (2016)
Lentil Lens culinaris 23.0-86.8 Switzerland, Biichi et al.
Med. Canada (2015), Hossain
et al. (2016)
Common bean | Phaseolus 16.3-71.9 Canada Akter et al.
vulgaris L. (2018)
Cowpea Vigna 36-75 Brazil da Silva Juinior
unguiculata (L.) et al. (2018)
Walp.
Soybean Glycine max 90-95 USA Snapp et al.
(L.) Merr. (2017)
Alfalfa Medicago sativa 103-209 Canada, China Nimmo et al.
L. (2013)
Egyptian clover | Trifolium 35-59 Switzerland Biichi et al.
alexandrinum L. (2015)
Red clover Trifolium 35.4-389 Denmark, USA Snapp et al.
pretense L. (2017), Dhamala

et al. (2018)

3.2 Pre-crop Benefits Through a Combination of Residual
Nitrogen and Break-Crop Effects

Legume cropping, including rotation, intercropping, green manure, and legume-
enriched pastures, shows significant advantages over nonlegume systems in terms
of fertilizer use and hence emissions of the greenhouse gases CO, and N,O (Jensen
and Hauggaard-Nielsen 2003). Grain and forage legumes, by virtue of their sym-
biosis with N,-fixing bacteria, can reduce the need for N fertilizer application. If
legume cropping becomes more widely adopted, this could reduce the demand for
manufactured fertilizer (Jensen et al. 2012). In terms of soil N inputs from BNF,
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an approximate value of 9 kg N mineralized per ton of stubble may be possible for
grain legume crops, with higher transfer values being recorded for forage legume
systems—15 to 20 kg N per tonne (Peoples et al. 2004, 2009, 2017). Typical rates
of BNF for grain and forage legumes are between 100 and 200 kg shoot N ha~! per
year or growing season (Peoples et al. 2019).

Reduced fertilizer usage associated with legume cropping is only suitable after the
successful establishment of the root-nodule symbiosis, adequate levels of BNF, and
appropriate crop management practices to maintain N, fixation. This may involve
inoculation of plants with appropriate strains of rhizobia to improve nitrogen fixation,
carrying a cost in terms of energy and GHG emissions, and careful monitoring of soil
N. Liming of soils is important too in maintaining N, fixation, N, fixation having
the potential to acidify unbuffered soils and hence inhibit nitrogenase activity. This
acidifying activity has the potential also to mineralize inorganic phosphate and reduce
the requirement for P fertilizer addition (Williams et al. 2017).

Skowronska and Filipek (2014), in their review of life cycle analysis studies
on fertilizer manufacture, provide illustrative data on the extent of GHG savings
possible through reduced fertilizer production. Depending on the type of N fertilizer,
the combined GHG cost of production, packaging, and delivery ranges from 1.9 to
6.3 kg CO,e (carbon dioxide equivalent) kg~! fertilizer The GHG cost for P fertilizer
is considerably less, 0.6-1.66 kg COe kg~ fertilizer, with manufacture of calcium
carbonate for soil amendment accounting for 0.15 kg CO,e kg~! (Skowronska and
Filipek (2014).

Calculation of the reduction in field GHG emissions possible with legume crop-
ping is problematic given the wide variance in data available due to differing crops,
soils, climate, management, and most significantly the type of measurement and the
time course of measurements employed. Using values averaged across 67—71 site-
years of data, Peoples et al. (2019) report an overall reduction in N,O emissions for
legume crops compared with N fertilized crops and pastures of approximately 59%,
assuming N, O emissions of 0.47 t COp, ha~! for legume crops and 1.16 t COy, ha~!
for N fertilized crops and pastures.

3.3 Increased Crop Diversification and Biodiversity

Modern intensive agricultural systems are relatively simplified, focussing on a small
number of crop species, often in monocultures, and reliant on mineral fertilizers
and chemical crop protection to maximize their productivity. Heterogeneous crop
systems, however, can show improved production efficiency, yield stability, and
resilience to environmental stresses. Legume crops have great potential for opti-
mizing these benefits, whether by increasing the diversity of crops within the crop
rotation sequence or as components of crop species mixtures. The positive contri-
bution of legumes to diversification arises directly from legume-specific traits and
indirectly from their reduced reliance on agronomic inputs. This is underpinned pri-
marily by the ability of legumes to fix atmospheric nitrogen into nitrogen-rich organic
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compounds—as well as their capacity to capitalize on generating a symbiotic- or
facilitative-microbiome in the rhizosphere (Chen et al. 2019).

Nonlegume crops show up to 30% greater biomass production in a legume-
supported rotation: the benefit of BNF is estimated to be maximal when grain and
forage legume crops are present in half of the years of the crop sequence (Iannetta
etal. 2016). Despite this, grain legume production in Europe is falling (Magrini et al.
2016) and is characterized by only a few legume crop species, which has constrained
progress in legume crop improvement. There are ample opportunities to diversify
the range of legume crops and take advantage of adaptive traits in of orphan legume
species to improve, for example, their resilience to biotic and abiotic stresses (Cullis
and Kunert 2017). By enhancing soil nutrient supply and function, legumes can pro-
mote nutrient acquisition by nonleguminous plants growing in a species mixture.
Legume crops exhibit multiple traits that complement or facilitate the growth of
nonlegume species, leading to more efficient use of resources. This allows greater
productivity and profitability per unit land area to be achieved with intercropping
compared with monocultures (Martin-Guay et al. 2018). Floral resource provision
in legume-supported mixtures, along with increased canopy and root system hetero-
geneity, and reduced reliance on agronomic inputs, can promote the abundance and
activity of beneficial organisms, which facilitate ecosystem services such as pollina-
tion, nutrient cycling, and suppression of pests, diseases, and weeds (Everwand et al.
2017).

4 Economic Impact

Understanding the economics of legume systems requires an analysis of the factors
influencing the equilibrium between supply (farmers) and demand (consumers) and
the interlinkages along the supply chain, while assessing the impact of any shocks
to the system on other aspects such as trade and environment. As is the case of
any other agricultural industry, but even more so due to their benefits to the public
good (European Parliament 2013), changes to the equilibrium between the supply
and demand of legumes translates into wider long-term effects, and as such, an
analysis of legume production (e.g., assessment of farm profitability) is incomplete
and potentially incorrect if not coordinated with an analysis of demand, and of the
corresponding ripples on trade, environment, and health.

The economics of legumes in the European Union (EU) shows a production trend
closely correlated to the different types of subsidies and payments linked to the Com-
mon Agricultural Policy (CAP) reforms, and the global market prices for fertilisers
(Fig. 1). Linked to similar factors affecting livestock production, feed demand mir-
rors production trends for dry pulses (only starting in the 1980s in the case of beans).
Imports mirror the demand for processing in the case of soybeans, and mirror the
production trends for peas and, respectively, lentils, lupins and other pulses, while
showing an opposite trend to the domestic production of beans (following the rise in
the 1980s in its use for feed and food).
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Fig. 1 Legumes production and imports, uses and losses in the European Union. Source Own
creation based on FAOSTAT data (extracted November 2019)

The cultivation of dry pulses (i.e., grain legumes except soybeans) in EU countries
is significantly more frequent in: regions with higher receipt of voluntary coupled
CAP support to protein crops; regions with higher shares of organic farming; regions
with a more important role of legume consumption in regional diets; regions with
relatively deep soils and; regions displaying lower competition for land use with
sunflower. Livestock density and share of irrigable agricultural areas are significantly
negatively correlated with the share of dry pulses. Up to a certain temperature sum
maximum, also higher temperature sums seem to be beneficial for the cultivation of
dry pulses. In contrast to dry pulses, regional soybean shares in the arable area are
positively correlated with a region’s distance to the next main port and with the share
of irrigable agricultural area. Agglomeration and spillover effects may matter (i.e.,
farms located in the neighborhood of dry legume producers are also more likely to
commence cultivation of dry legumes; regions with a high share of dry pulses tend
to be close to each other), as in the case of dry pulses where a significant spatial lag
coefficient was found. Such effects, however, are likely to be effective on a spatial
scale smaller than the regional level. Potentially significant causal factors, which
have not been tested due to poor data availability, that may be positively linked to
legume production include proximity to processing facilities and trading companies
and access to extension services and regional networks and training programs (Oré
Barrios et al. 2020). Other factors well acknowledged in the literature (European
Parliament 2013) with positive causal effects on the cultivation of legumes are market
factors, i.e., producer prices for outputs (pulses) and inputs (nitrogen fertilisers).
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The economic circumstances of farms cultivating legumes are linked to some
of the factors mentioned above, e.g., larger organic farms show higher profitability.
There are also indirect economic benefits of legume cultivation such as the lower cost
of agricultural inputs (nitrogen and tillage cost saving) and yield effects on other crops
(e.g., cereals included in the rotation). While profits and the economic sustainability
of the farm are necessary, they may not always be sufficient and farmers’ decision-
making may be influenced by noneconomic factors, such as their perceptions of how
what they create affects other issues beyond the farm gate, such as the environment
and human health.

Similarly, consumers’ choices may be influenced by environmental and health
concerns as opposed to purely economic reasons and assessing the weight of the
different attributes of choice would help predict sustainable changes in shopping
habits and subsequent consumption patterns. A study on the own-price elasticities
of legumes shows that consumer’s demand can only change significantly if factors
other than price are considered, such as provision of targeted campaigns and better
communication of legumes’ health and environmental benefits, better availability
of healthy convenience foods, access to information on cooking, and easy recipes
(Akaichi 2019).

As represented in Fig. 1, while the consumption trend for beans has been in a
stable decrease, the consumption of peas, lentils, lupins, and other dry pulses shows
a gentle but steady increase, likely correlated to a slow change in consumer diets
reflecting a healthier pattern.

While slow, changes in consumption patterns to include more legumes are appar-
ent and need to be translated into production patterns. The current EU demand for
legumes is met partly by domestic production, partly by imports (Fig. 1) and equi-
librium analysis is necessary to assess the sustainability of the whole sector when
faced with shocks such as price fluctuations in the context of higher dependency on
imports, or changes in environmental policies leading to stronger incentives to EU
producers and thus a larger share of the demand being met by local production.

5 Social Impact

5.1 Nutrition and Food Security

Food insecurity is a reality for millions of people and households, especially in
poor and developing countries (FAO 2019). Recent data reveals that over 2 billion
people around the world do not have regular access to safe, nutritious and sufficient
food, including eight percent of the population in Northern America and Europe
(FAO 2019). Indeed, more than 820 million people in the world were still hungry in
2018. Such living conditions increase the risk of malnutrition and ultimately impair
the health of populations (FAO 2019). It is recognized that lack of protein-energy
intake, as well as micronutrient deficiencies, are major undernutrition triggers, both



14 M. W. Vasconcelos et al.

frequently associated with more severe food insecurity states (FAO 2019; Webb et al.
2018). Grain legumes could be part of the solution for these problems; however, over
time they have been significantly depreciated within human diets, and legume crops
are yet greatly under-cultivated (Foyer et al. 2016). In fact, legumes are relatively
invisible actors of our food system.

A 2015 Joint Research Center policy foresight assessing the role of EU policies for
global food security called for a “Common Food Systems Policy,” but failed to even
mention protein crops, pulses, or legumes (Maggio et al. 2015). Whereas unique
agro-ecological benefits of legumes are gaining more recognition and are slowly
being acknowledged in food policy debates, their impact is still at the small-scale of
home-grown legume production and consumption. Nevertheless, a recent public food
procurement mandate in Portugal (Graga et al. 2018) successfully increased home-
grown legume consumption. On the large scale, only the cultivation of non-GMO
soybean for feed has increased in Italy, Germany, France, and Poland due to multiple
support policies. In other geographical frameworks, such as Canada, cost-benefit
analyses have revealed the positive impact of legume consumption (100 g cooked
legumes/day by 50% of the population) in combination with a low glycaemic index or
high fiber diet on healthcare costs. In addition, human productivity costs (reductions
of roughly $370 million Canadian dollars), particularly related with cardiovascular
disease and type 2 diabetes (Abdullah et al. 2017), have driven the 2019 Canada’s
Food Guide to emphasize plant-based protein foods within the “protein foods” group.
Beans and lentils have been placed at the top of the list, before nuts and other seeds
and animal protein products (meat, poultry, fish, eggs, and dairy foods) (https://food-
guide.canada.ca/en/).

Historically, food and agricultural policy often lagged behind nutrition science,
though more recently this position has started to change. Legumes may already be
leading a green food revolution (Tenkouano 2011), because they have been identified
as critical to provide nutrients and balanced diets and provide nutritional security
with minimal use of resources, as well as to facilitate social-eating when cultivated
in small areas within backyards or home-, school- and community-gardens (Keatinge
et al. 2012). Their high protein content (17-30%) (Boye et al. 2010) associated with
relevant nutritional richness (Marinangeli et al. 2017), turns grain legumes into better
affordable nutritive options, comparatively to more expensive animal-based protein
food sources, such as meat or dairy products, which may be less achievable among
food insecure contexts. Legumes are also important food sources of slowly digested
complex carbohydrates (~50-65%) (Havemeier et al. 2017) and fiber (~30/100 g,
with low glycaemic index; dry weight) (Tosh and Yada 2010), as well as minerals
(Grela and Samoli 2017) like magnesium, iron, potassium, phosphorus or zinc and
several complex B vitamins (Mudryj et al. 2014), namely B1, B6, and B9. On the
other hand, they possess low energy density in terms of fat (1.3 kcal/g cooked),
providing mostly mono- and polyunsaturated fats (Grela and Samoli 2017).

Grain legumes are also relevant dietary sources of health-protective bioactive
compounds (Singh et al. 2016). Last but not least, grain legumes hold versatile
technological and cooking properties providing excellent opportunities among food
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industry to be used in the production of several convenience value-added food prod-
ucts, like flours, snacks, infant, or sports foods (Asif et al. 2013). The possibility to
store grain legumes for long periods of time without altering their nutritional value
results in one of their best features helping minimize food waste and therefore food
insecurity. Although diet is the most apparent link by which agro-food systems affect
our health, the role of legumes to provide solutions to the double burden of inad-
equate dietary intake (undernutrition) and excess food intake (overnutrition) in an
unequal world is not widely considered or understood. Still, there seems to be a con-
sensus on a sustainable and nutrient-rich plant-based diet (ovo-lacto-vegetarian and
pescetarian) that may provide optimal synergy between nutrition health and envi-
ronmental sustainability (Springmann et al. 2016; van Dooren et al. 2017). Indeed,
markets for plant protein and fiber-based diets are rapidly growing (Logatcheva and
van Galen 2015). However, without appropriate and careful reframing, public health
improvement and environmental sustainability arguments in favor of a diet-change
will not be enough to engage stakeholders and beneficiaries (c.f. de Boer and Aiking
2017) and to achieve a paradigm shift (Mason and Lang 2017).

5.2 Mitigating Effect on Climate Change

The food habits of the 7.7 billion people who inhabit our planet have been threaten-
ing all life domains, with extremely worrying expression at the climate change level
(Macdiarmid and Whybrow 2019). Animal-based foods are a significant component
of food production worldwide and meat or meat products are major dietary protein
sources, especially across more westernized countries (Willett et al. 2019). Never-
theless, livestock production accounts for considerably high amounts of total green-
house gas (GHG) emissions and other pollutants, together with increasing demands
for scarce water resources and the promotion of soil erosion (Godfray et al. 2018).
If such production and consumer patterns persist, it is expected that by 2050, there
will be a 50-80% increase in GHG emissions and a ~13—-66% expansion in land
used for crop production (Clark et al. 2019), both associated with increased threats
to biodiversity (Tilman et al. 2017).

Globally, this will also translate into ~15% more water use, as well as ~50% and
~100% more nitrogen and phosphorous fertilizer use, respectively (Clark et al. 2019).
According to the literature, the production of plant-based foods has the lowest envi-
ronmental impact, achieving for example 25-150 times less GHG emissions than
ruminants produce for meat production (Clark et al. 2019). As such, a dietary shift
toward more plant-based diets, providing more eco-friendly protein food sources, is
being suggested (Willett et al. 2019). Grain legumes have caught the public’s atten-
tion over the past few years, being considered as nutritious animal food alternatives
and highlighted for their key role within sustainable food production systems (Calles
et al. 2019b). Among several important features, the atmospheric nitrogen fixation
capacity of legumes reduces the need for chemical fertilizer use during crop cultiva-
tion, helping reduce GHG production, like carbon dioxide (CO;) and nitrous oxide
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(N,0). In fact, it appears that by substituting meat with grain legumes could lead to
a reduction of up to 74% in GHG emissions, enabling the achievement of the 2020
target for the US (Harwatt et al. 2017).

Grain legume crops are also able to release high-quality organic matter into the
soil and facilitate nutrient circulation in the soil, as well as promote water retention
minimizing fossil energy inputs in the agricultural food production chain (Stagnari
et al. 2017). Indeed, the water footprint per gram of protein for grain legumes seems
1.5 times smaller than for milk, eggs and chicken meat (Mekonnen and Hoekstra
2012). When beef production is considered, such difference becomes six times less,
again in favor of grain legumes (Mekonnen and Hoekstra 2012). It is possible then that
the increase in production and consumption of grain legumes could be a cornerstone
to ensure food and nutritional security, in light of ongoing global climate change
(Willett et al. 2019).

Trying to empower this message, the United Nations declared 2016 as the Inter-
national Year of Pulses (Calles et al. 2019a). In the same year, the slogan for the
celebration of the World Food Day was “Climate is changing. Food and agriculture
must too” (FAO 2016). Since then, grain legumes have been in the spotlight across
worldwide climate change mitigation strategies (Willett et al. 2019). Likewise, a
recent World Bank report states that fruits, vegetables, and legume-based products
should be supported at the expense of cereals, palm oil, and sugar, while the subsi-
dies and price support mechanisms for unhealthy ingredients should be abandoned.
However, to find pathways to more sustainable agro-food systems and innovative
policy solutions, greater civil society engagement and more effective public-sector
research and education efforts are required (Abarca-Gomez et al. 2017).

5.3 Cultural Valorisation

Traditional food products are naturally linked with local resources and cultural her-
itage of involved territories. Indeed, gastronomy and several cultural practices related
to food represent a distinctive element between different populations. All over the
world, it is possible to find a high number of traditional dishes containing grain
legumes prepared and cooked in different ways and with unique organoleptic prop-
erties, combinations that people easily associate with comfort, societal wellness,
and festive food (Polak et al. 2015). In this regard, FAO’s Information Network on
Post-harvest Operations maintains an updated database of more than 850 recipes
from more than 50 countries, where not only the traditional recipes are preserved for
posterity but also less common ingredients are presented and promoted (FAO 2015).

Cooking with pulses offers several advantages that go from their affordability for
family budgets (food security asset as previously mentioned), their long shelf-life
where nutritional value is preserved throughout, to their important organoleptic ver-
satility where savory yet subtle tastes enable their harmonious inclusion in a wide
range of cuisines and flavor profiles. Kidney beans, black beans, pigeon peas, chick-
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peas, and lentils are featured regularly in legume recipes supporting their popularity
for cuisine management and making these grain legumes a staple of many diets. Such
high versatility enables their inclusion in all types of servings, including entrees, soup
bases, side dishes, salads, stews, and desserts (Figueira et al. 2019).

Across the globe, consumption of traditional legume foods is popular in Brazil
(black beans with rice) (FAO 2015), in India (dhal, pappadums) (Appel 2005; Misra
2011), in Mexico (refried kidney beans or chili) (FAO 2015) in Middle Eastern coun-
tries (hummus, falafel, nakee, bajelah, fasolia) (Kamboj and Nanda 2018; Alalwan
et al. 2017), and in Mediterranean countries (navy bean soup, bean stew “feijoada,”
fave bianche) (Lacatusu et al. 2019; Renna et al. 2015). In addition, legume flours
are traditionally incorporated into many different foods either as batter for vegeta-
bles (onions, leeks, aubergine) or as ingredients for savory snacks, that when com-
bined with fried whole grain legumes (Alalwan et al. 2017), may be consumed as a
mid-morning or a mid-afternoon meal.

New foods using grain legumes are emerging on the market and may be an interest-
ing alternative to increase their consumption; nevertheless, efforts need to continue
to be made in order to promote traditional dishes and associated nutritional value. A
balance between old and new is undoubtedly the most favorable means to preserve
the heritage and health of a population.

5.4 Increasing the Social Acceptance of Legumes

More and more, populations should be aware of the impact of their choices, namely
dietary choices, on the planet’s sustainability. The grain legumes should be con-
sidered as good options even though these foods continue to be unpopular, espe-
cially in developed countries (Perignon et al. 2017). Some misconceptions related
to their consumption and subsequent gastrointestinal problems or presumed impact
on weight gain, the time needed for their soaking and cooking, and the perceived
lack of appealing preparations certainly contribute to their scarce utilization. The
promotion of legumes should start among children for several reasons: this food
group is unpopular among children and, consequently, their consumption is scarce
at this age; dietary changes are easily implemented among children, since their food
habits are not so fixed and evidence suggests that early food patterns tend to be main-
tained throughout life. On the other hand, the issues related to a “healthy planet” are
motivating targets for children (Sadegholvad et al. 2017; Smith et al. 2016).

Taste modulation starts very early in the lifecycle and grain legumes could be
gradually introduced as early as the eighths or ninth month of life (Fewtrell et al.
2017). However, since the insertion of the child within the family diet is crucial,
it is important that these foods are offered regularly and the parents also eat them.
Their inclusion in school meals is also fundamental, inclusively as a partial substitute
of animal protein. Schools are the ideal place to widely spread concepts regarding
nutritional and ecological benefits of legumes, having as major targets the children
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and their relatives (Smith et al. 2016). Issues related with the practicability of grain
legume cooking could be easily overlapped with canned alternatives or even with
pre-preparation and freezing in portions. Innovative foods containing grain legumes
and ready-to-eat options are also a good solution.

6 Conclusions

Our global society faces several challenges that are negatively impacting the health
of our planet, our people, and our agricultural economies. Increases in atmospheric
CO, and other greenhouse gases are altering our climate in ways that are straining
our food systems. Our growing human population is worsening our ability to meet
food security and nutrition needs. And various production and processing costs are
limiting the economic potential of different players in our food value chain. While
legume crops cannot solve all of these issues, we have attempted to show how an
expanded utilization of legumes in our food production systems could supply a
number of benefits to mitigate these problems.

Our future challenge, then, is to scale up the use of legumes in a way that achieves
the most social, economic, and environmental benefits. This will require a change
in society’s acceptance of legumes and a willingness to divert some cereal-based or
meat-based production systems to legume systems and primarily to grain legumes.
Fortunately, the benefits gained from legumes are highly integrated and complemen-
tary, providing clear value to all members of the legume supply chain (producers,
food industry, and consumers). This should facilitate increased acceptance, but a con-
certed effort among agronomists, nutritionists, environmentalists, and others will be
needed to educate and promote the societal benefits of legumes. A reshaping of pub-
lic and policy maker’s opinions will be critical to ensure that legumes are elevated
to a new level in our global food network.
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