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The Gilg, Hanski & Sittler (2003) model for Arctic lemmings

The predator-prey community in Gilg et al. (2003) is constituted of one prey species, the collared

lemming, and its four predators: the stoat, the Arctic fox, the long-tailed skua and the snowy owl.

The basic structure of the model is that of a coupled system of nonlinear differential equations for the

lemming and stoat populations (present year-round and all years), with time-varying terms. The time-

varying part of the model results largely from avian and fox predation on lemmings, which happens

only in the summer, in addition to a heightened intrinsic population growth of lemmings in winter.

Finally, another forcing term comes from the stoat reproduction, which is modelled as a discontinuous

burst, the stoat population being multiplied by (1 + v) every year in the spring. The model here is

slightly reformulated to make its mathematical structure more apparent. The lemming population

dynamics are described by

dN

dt
= r(t)N︸ ︷︷ ︸

exp. growth

− Γ(N,N ′, t)︸ ︷︷ ︸
generalist predation

− cN2P

D2 +N2︸ ︷︷ ︸
specialist predation

. (1)

For convenience, we will count time in unit of years, and define the variable tmod = t ≡ 1, hence

tmod is time of year between 0 and 1. A key variable is N ′, the lemming density at snowmelt:
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tmod < tsnowmelt, N ′ = N(t) & r(t) = rw

tmod > tsnowmelt, N ′ = N(tsnowmelt) & r(t) = rs

(2)

N ′ can be thought of as a perceived lemming density by generalist and nomadic predators upon their

seasonal arrival to the system, that introduces a short time delay in summer in the model (decisions

made by the predators are conditional to N ′). The generalist predation term Γ(N,N ′, t) is exactly

zero in winter, and changes during the summer as a function of settlement and reproduction schedules

of the various predators. The stoat density P has dynamics of the form

dP

dt
= −(dh + ∆(N)(dl − dh))P (3)

with dh the maximum stoat death rate and dl the minimum death rate, and ∆(N) a sigmoid

function between 0 and 1, that makes the dynamics switch between the two mortality rates according

to the formula ∆(N) = 1/2 + arctan(b(N −D))/π. In other words, there is more predator death when

there is no food. The stoat compartment is submitted to an external forcing, i.e. each year at time

tstoat the integration stops and the predator density switches from P to P (1+v) where v is the number

of offsprings (the youngs are assumed to be equivalents to adults).

The generalist predation rate can be decomposed into 3 separate terms corresponding to the dif-

ferent predators (both for adults and juveniles, the latter being counted in “adult equivalents”). It is

a function of time through the predator densities:

Γ(N,N ′, t) =
WfN

2(Pf (t) + Pyf (t))

D2
f +N(t)2︸ ︷︷ ︸

fox

+
WoN(t)2(Po(t) + Pyo(t))

D2
o +N(t)2︸ ︷︷ ︸

owl

+
WlN(t)4(Pl(t) + Pyl(t))

D4
l +N(t)4︸ ︷︷ ︸

skua

. (4)

The numerical response of the predators (and hence, the seasonal variation in the generalist pre-

dation pressure) is fully described in Table 1.
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Predator Adults (when present) Youngs x Growth youngs Arrival date Leaving date Birth date

Fox Pf =
bfN′2

Y 2
f
+N′2

Pyf (t) =
b′
f
N′2

Yf ’²+N′2
× 1

1+e−0.36(365tmod−9) tofa = 0.52 tfall = 1.0 tsnowmelt = 0.65

Owl Po =
bo(N

′−2)
Y o+N′−4

Pyo(t) =
b′o(N

′−2)

Y ′o+N′−4
× 1

1+e−0.36(365tmod−9) tofa = 0.52 tfl = 0.94 tbirth owl = 0.67

LT skua Pl = 0.02 Pyl(t) =
b′
l
N′2

Y ′2
l

+N′2
× 1

1+e−0.464(365tmod−4.55) tla = 0.62 tll = 0.81 tbirth skua = 0.72

Table 1: Numerical responses of generalists. The density of adults in the first column apply only during
the period between the arrival and leaving dates mentioned in the 4th and 5th columns. The density
of youngs is conditional on that of the adults being positive, and will be non-zero after the birth date.
Po = 0 whenever N ′ < 2. Note, for comparison, that the time of stoat reproduction is tstoat = 0.69.
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Figure 1: Predator abundances over time in the Gilg et al. (2003) model for the reference parameter
set with all predators present.

This seasonal and large mortality (≈ 80 to 90% of lemming individuals are eaten by skuas and owls

over the summer in peak years1) is in effect equivalent to a very large seasonal perturbation, mirroring

theoretical results that show the oscillation-generating effects of such seasonal perturbations (Rinaldi

et al., 1993; King & Schaffer, 2001; Taylor et al., 2012). Simulations of another, simplified Lemming-

Stoat-Skua (LSS) model2 adapting the framework of Turchin & Hanski (1997) to reduce the model

complexity of the Gilg et al. (2003) model, show that the 95% upper quantile of lemming values can

be increased by a factor of about 1.3 in case of seasonal rather than constant generalist predation.

Hence seasonal generalist predation, together with other sources of seasonality (e.g., in birth rates,

1computed for a few peaks with the model
2which assumes that all generalist predators behave like skuas
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Figure 2: Population cycles and predation rates in the Gilg et al. (2003) model, in log-
arithmic scale. Parameters for lemming and stoats: rW = 5, rS = 0.8, v = 4.0, c = 1000, D =
0.08, Ncrit = D, dl = 0.1, dh = 4, b = 25. Lemming density is given in individuals per ha.
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Figure 3: 2-year population cycles (and transients) in the Gilg et al. (2003) without
mustelids. Parameters for lemming growth: rW = 4, rS = 0.8, v = 4.0, c = 1000, D = 0.1, Ncrit =
D, dl = 0.1, dh = 4, b = 25. The max. number of owls has been multiplied by two.

Taylor et al., 2013), can increase the potential for high-amplitude oscillations. Our LSS model does

confirm, however, that increases in the average quantity of generalists (G) such as skuas decreases

cycle amplitude and periodicity like shown in Turchin & Hanski (1997).

The Gilg et al. (2003) model without mustelids, but with generalist predators, can exhibit 2-year

population cycles for some parameter values (Fig. 3), and this is largely due to the recruitment of

juveniles foxes at the end of the cycle. We initially spotted this because of a typo in Gilg et al. (2003)’s

Supplementary Material (which has been corrected in Gilg et al., 2009 and did not affect Gilg et al.,

2003’s simulations) where the max density of owls b0 had been multiplied by two. Two-year population

cycles do not appear for the standard parameter set of Gilg et al. (2003), but it is easy to imagine that

for a slightly different predator composition at another study site, such short-term fluctuations might

become possible.

On the other hand, removing the skua population in the differential equations model leads to a

blow-up (unstable oscillations diverging away from the attractor). Therefore, our interpretation of the

cycles in the model of Gilg et al. (2003) is that:

1. Long-tailed skuas keep the lemming cycle within bounds through predation during the summer
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and generate, together with owls, strong seasonal forcing. Their influence is therefore two-fold:

(a) their generalist predation tends to keep lemmings in check but (b) the fact that such predation

is seasonal contributes to the population cycling.

2. The slightly delayed reproductive response of foxes can for some parameter sets create a short-

period (2-year) cycle in absence of mustelids.

3. Stoats generate an eventually unstable lemming-stoat oscillation, which is transformed into a

more sustainable attractor by generalists (skuas in particular).

Our conclusion is therefore that both ‘generalists’ such as skuas/owls/foxes and specialists such as

mustelids contribute to some degree to generating collared lemming fluctuations in the Traill Island

model. These considerations open up new challenges in defining the precise role of generalist (or

nomadic specialists) versus resident specialist predators.

Comparison to the vole weasel-model of Turchin and Hanski

(1997)

The model of Turchin & Hanski (1997) can be written

dN

dt
= rN

(
1 − N

K

)
− GN2

C2 +N2︸ ︷︷ ︸
generalists

− aNP

D +N︸ ︷︷ ︸
specialists

(5)

dP

dt
= sP

(
1 − q

P

N

)
(6)

Adding seasonality and adimensionalizing, we arrive at

dn

dt
= r(1 − e sin(2πt))n− rn2 − gn2

h2 + n2
− an

n+ d
(7)

dp

dt
= s(1 − e sin(2πt))p− sp2/n (8)

with possibly a small noise term on all parameters, so that each parameter Πt is transformed once

a year into Πt(1 + σεt), εt ∼ N(0, 1). This models reproduces the Fennoscandian gradient when G is

increased from South to North. We use here the parameters r = 6, e = 1.0, K = 150.0, s = 1.25, C =

600.0;D = 6.0, , Q = 40.0; , G = 60.0, H = 15, σ = 0.

6



In Fig. 4 below we illustrate the time series of weasel and vole densities as well as the total amount

killed per unit time for specialists or generalists, which shows that specialist predation is superior to

generalist predation during vole population declines.
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Figure 4: Densities and predation rates in the Turchin & Hanski (1997) model.

In contrast, the model we adapted for modelling Greenland lemmings using the same model frame-

work shows a slightly different kind of dynamics.

“Pooled generalists” model (aka Lemming - Stoat - Skua)

Because there are very many parameters in Gilg et al. (2003) (≈ 25), we constructed a simplified model

to compare its behaviour to Turchin & Hanski (1997). The model assumes that all generalists behave

like the skua (the more abundant generalist, with numbers that only depend on the season and not on

other species densities). It also assumes that the numerical response has the more simplifed Leslie-type

form of Turchin & Hanski (1997), which allows to formulate a smooth model. The LSS model uses a

winter indicator variable W (t) = 1
2 (1 + cos(2πt)). The time t = 0 is in january, so that W = 1 in full

winter, 0 in full summer. The full differential equation model then writes
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dN

dt
= rminN + (rmax − rmin)W (t)N − rmax

N2

K
− G(1 −W (t))N4

H4 +N4︸ ︷︷ ︸
generalist = skua

− CN2P

D2 +N2︸ ︷︷ ︸
specialist = stoat

(9)

dP

dt
= sP

(
1 − q

P

N

)
(10)

Parameters are tailored for the Greenland Traill island case study: rmax = 6, rmin = 0.5, K =

500, G = 50, H = 2, C = 1000, D = 0.1, s = 1.75, Q = 100. See Taylor et al. (2013) for other

interesting parameterizations of similar seasonal models. Because the carrying capacity K in absence

of predation was absent in the Traill island model, it is here set to a large value, but it is notable

that the LSS model can also work without. The functional response exponents have been taken in

accordance to Gilg et al. (2003) and are all sigmoid (Type III), in contrast to the more classical choice

of type II response for specialists and type III for generalists in Turchin & Hanski (1997).

Simulating this model, Fig 5 below, we see that the predation by generalists in summer is much

higher than that of the specialist (note the logarithmic scale), in constrast to Turchin & Hanski (1997).

We also see very clearly that generalists clearly initiate the lemming declines, by “cropping off” the

lemming peaks.

0 5 10 15 20 25 30

10
−1

10
0

10
1

10
2

Le
m

m
in

g 
D

en
si

ty

Time [Years]
0 5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

S
to

at
 D

en
si

ty

0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

A
m

ou
nt

 k
ill

ed

 

 
specialist
generalists

Figure 5: “Pooled generalists” LSS model simulation.
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A cautionary tale on cycle shape in mechanistic models

It has been proposed that cycle shape can be a proxy for cycle causation (Turchin et al., 2000). We

offer a different view here. A difficulty with the numerous mechanistic mathematical models available

to model rodent cycles is that they tend to produce cycles with correct periodicity and amplitude, but

with shapes often different from that of the data. In other words, mechanistic models with empirically

estimated parameters might not fit all the details of the cycle very well. For example, in Korpimäki

et al. (2002, Fig. 4) the mechanistic predation model consistently produces cycles that rank in the right

side of Royama’s triangle, where delayed density-dependence generates the crashes after a plateau at

high density (Royama, 1992). However, the data shows often faster crashes, ranking on the left side

of the triangle (Fig. 4 in their paper). Conversely, the model in Gilg et al. (2003) cited above tends to

produce fast crashes in just one year while the data show crashes occurring over one or two years. This

is arguably an undesirable property of the model (Oksanen et al., 2008), which incidentally refutes the

claims of Turchin et al. (2000) that “prey peaks” have a rounded shape. The models by Korpimäki

et al. (2002) and Gilg et al. (2003) therefore seem to be equally good at describing periodicity and

amplitude of the time series, but equally limited to reproduce cycle shape3. With very rich datasets

(>100 data points), it might be possible to find the most likely models just based on cycle shape,

but given the limited data available here (≈ 25 years with no spatial replication, which is common in

many stuch study sites), such endeavours may be a little premature. Mechanistic mathematical models

may be best interpreted as illustrating what is possible, rather than what is actually happening in real

populations. Although in some cases, it may be possible to at least rank different scenarios based on

very contrasted models (Kendall et al., 2005).
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