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ABSTRACT

In this paper, we present a novel approach for detection
and localization of both impulsive and non-impulsive
sound sources. At first, theoretical basics of the used
algorithms are presented. Subsequently, we describe
a standard SRP-PHAT based localization method and
discuss occurring complications, especially for impulsive
sound sources. Therefore, a modified approach is pre-
sented as a solution. It distinguishes between impul-
sive and non impulsive sound sources, and additionally
aligns the detection window to the event. The pre-
classification and alignment are done with the help of
an energy detector.

1. INTRODUCTION

For a complete acoustic scene analysis, especially for
surveillance applications or interaction with a humanoid
robot [1], it is necessary to localize and detect all types
of sound events which can happen in the proximity. Ba-
sically, two types of sound sources can be differentiated:
impulsive and non-impulsive. In many cases only the
non-impulsive ones, mainly speech, are taken into ac-
count. But especially for the detection of dangerous or
unusual situations, it is often necessary to localize and
detect also impulsive sound sources like slamming doors
or breaking glass.

The detection problem is directly related to the
knowledge of the signal we are interested in and the
background noise characteristics. The easiest case would
be to detect known events in a stationary white Gaus-
sian background noise environment, but when the sound
sources are not completely known, the design of the ap-
propriate detector is more difficult [3, 5]. In this case,
energy detection can be useful to collect more informa-
tion about the actual event and improve the localization
step.

While the localization of non-impulsive sound
sources following the approach in [6] showed very sta-
ble results, impulsive sound sources were not localized
reliably. In order to be able to handle both types of
events, a modification of a standard SRP-PHAT loca-
lization method is required. Therefore, a novel approach
using an energy detector for a temporal event alignment
and a pre-classification is proposed.

This paper is organized as follows. Section 2 presents
the principles of the Gaussian energy detector and in

Section 3 the general idea of the localization algorithm
is described. In Section 4 the experimental setup is pre-
sented. The modified localization method is proposed
in Section 5. In Sections 6 and 7 achieved results are
shown and a conclusion of our work is given.

2. ENERGY DETECTOR

The simplest detection problem is to decide whether a
signal is embedded in noise or if only noise is present.
One common method for detection of unknown signals
is energy detection, which measures the energy in the
received waveform over a specified observation time.

The energy detector is an optimum solution when the
noise w and the signal s are considered zero-mean Gaus-
sian random vectors with uncorrelated components,
w : N (0, σ2

wI) and s : N (0, σ2
s I), where σ2

w and σ2
s are

the noise and the signal variances. The optimum test
under this conditions is [3, 5]:

yTy
σ2
w

H1
>
<
H0

λ, (1)

where y is the observation vector, hypothesis H1 corres-
ponds to y = s + w, and H0 corresponds to y = w.
The statistic yT y

σ2
w

is chi-squared distributed with N de-
grees of freedom (χ2

N ) and λ can be set for a specific
probability of false alarm (PFA).

The test (1) assumes that the components of w are
independent and identically-distributed. However, real
audio signals do not have white noise properties, as ad-
jacent audio samples are highly correlated. In this case,
some additional preprocessing is required to increase the
detection performance significantly.

In this work, the background noise is assumed to be
Gaussian and additive with zero-mean. In so doing, sta-
tistical independence and uncorrelation are equivalent,
hence simple prewhitening is sufficient and the original
observation vector y is transformed into a prewhitened
observation vector yp by means of

yp = R−1/2
w y, (2)

where Rw = E
[
wwT

]
is the noise covariance matrix,

which can be estimated from a training set of noise vec-
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tors wk, with k = 1, . . . ,K, using the sample estimate

R̂w =
1
K

K∑
k=1

wkwT
k . (3)

The test (1) can be rewritten as

yT
p yp

σ2
wp

H1
>
<
H0

λ. (4)

Note that Rw = E
[
wpwT

p

]
= I and hence σ2

wp
= 1. The

prewhitening transformation whitens and mean-power
calculation normalizes the original observation noise.

R̂
−1/2

w
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> λ
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Figure 1: Block diagram of an energy detector.

In Figure 1 the complete energy detector procedure
is depicted. The acoustic signal is divided into frames
y of size N and then these observed vectors are linearly
transformed (R̂w), so that a new white vector yp is ob-
tained. After that, the energy of the prewhitened data
is calculated (Ep) and compared with a threshold fixed
by the PFA. The output of the energy detector will be
1 for H1 and 0 for H0.

3. LOCALIZATION

3.1 Time delay estimation

Today, the most commonly used methods for the acous-
tic localization are based on the estimation of the time
difference of arrival (TDOA) of sound signals in a pair
of spatially separated microphones. The time delay es-
timation is achieved by correlating the sound signals of
two microphones in a microphone pair. The correlation
function Rxixj (τ) in frequency domain can be defined
as

Rxixj (τ) =
∫ +∞

−∞
Xi(ω)Xj(ω)∗ejωτ dω, (5)

where Xi is the Fourier transform of the given micro-
phone signal xi. In theory, the signals xi and xj in a
given pair should be an exact copy of each other, with
a time delay τ . However, in real environments we have
to deal with noise and reverberation effects. This leads
to the following system model:

xi(t) = hi(t) ∗ si(t) + ni(t) (6)
xj(t) = hj(t) ∗ sj(t) + nj(t), (7)

where hi(t) is the acoustic impulse response of the room
from the source to the ith microphone, the additive term
ni(t) summarizes the channel noise in the microphone

system as well as the environmental noise for the ith

sensor, and sj represents the delayed signal si, which is
delayed by τij . Having a closer look to the noise terms,
they are represented by two different types: on the one
hand, those which are correlated to each other, like the
background noise of a running fan, on the other hand,
those which are not correlated. If we assume that the
noise is fully correlated and we have an ideal room with
a Dirac impulse response, we can easily achieve a noise
free estimation of the correlation in a given microphone
pair by subtracting the correlation of the noise from
the correlation of the received signal, analogously to the
background noise suppression, presented in [6]:

Rsisj (τ) = Rxixj (τ) −Rninj (τ) (8)

In order to make the correlation more stable, we ad-
ditionally use the so called Phase Transform (PHAT)
ψxixj to weight the correlation function. This way of
proceeding leads to the well known Generalized Cross
Correlation (GCC) function [4]:

R(g)
xixj

(τ) =
∫ +∞

−∞
ψPHAT

xixj
(ω)Xi(ω)Xj(ω)∗ejωτ dω, (9)

with PHAT weighting function defined by

ψPHAT
xixj

(ω) =
1

|Xi(ω)Xj(ω)∗| , (10)

which can also be regarded as a whitening filter. The
combination of the GCC and (8) leads to:

R(g)
sisj

(τ) = R(g)
xixj

(τ) −R(g)
ninj

(τ). (11)

The estimation of R(g)
ninj (τ) for each microphone pair

is achieved during phases of no activity of the sound
source, which are detected by using the energy detector,
both described in detail in [6].

3.2 SRP-PHAT

Based on the time delay estimation, the spatial posi-
tion of a sound source can be calculated. Therefore,
the so called Power Field (PF) technique, also known
as SRP (Steered Response Power), can be used. In this
approach, beamforming is used to focus a microphone
array to a specific spatial area. In order to find the ex-
act position of a sound source, the entire environment
is scanned searching for the spatial position with the
highest acoustic power.

The combination of SRP and the TDOA based me-
thods mentioned before leads to a called SRP-PHAT [2],
which fuses the stability of the SRP against reverbera-
tion and the efficiency of the GCC method giving us the
possibility to build a real-time system.

SRP-PHAT is computed as

P (s) =
1

|Mp|
∑

(i,j)∈Mp

R(g)
sisj

(τij(s)), (12)

where τij(s) denotes the theoretical delay between the
microphones in pair (i, j) for the assumed spatial source
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Figure 2: Head of the humanoid robot ARMAR III.

position s = (sx, sy, sz). Mp represents a given set of
microphone pairs. In order to estimate the source posi-
tion ŝ, the position of the maximal value in P (s) has to
be found in a given search space S:

ŝ = arg max
s∈S

P (s). (13)

4. EXPERIMENTAL SETUP

In order to evaluate the localization of impulsive and
non-impulsive sound sources, recordings were done with
and without background noise. Different signal-to-noise
ratios are of particular interest because of various noise
sources, which can exist for example in the proximity
of a humanoid robot. In our application, such a typical
case is represented by the cooling fans of the robot.

For the evaluation, impulsive sound sources like
putting a cup on the table, opening and closing a door,
dropping a spoon on a table, and a toaster were ana-
lyzed. A mixer and human speech were used as non-
impulsive sound sources.

The microphone array used for our experiments was
built according to the head geometry of a humanoid
robot (Figure 2) and consisted of four omni-directional
electret condenser microphones. It is roughly an inverse
t-shape geometry with a total width of 20 cm and a
height of 5.5 cm. Sound data were acquired by using a
multichannel audio data acquisition unit with the sam-
pling frequency of 48 kHz. The window size used for
the Gaussian energy detector was about 5 ms (256 sam-
ples); the amount of noise vectors required to estimate
the whitening matrix was 1024 with a re-estimation pe-
riod of 2 seconds. The source position was estimated by
means of a 3D-grid search with grids of 5 cm and a total
grid dimension of 3.60 m x 1.80 m x 1.20 m.

Furthermore, it was necessary to define a correct lo-
calization of the sound source position. Due to the small
concentrated array used, it was not possible to deter-
mine the distance to the sound source, and only the
azimuth and elevation angles were taken into account.
The localization was deemed correct, if the Euclidean

distance between the estimated and the real angle was
below 10 degrees.

5. MODIFIED LOCALIZATION METHOD

For the impulsive sound sources, SRP-PHAT does not
reach the high accuracy that is obtained with non-
impulsive events. This is the reason why even in scena-
rios without any background noise, the mislocalization
rate is very high [6]. In order to be able to localize both
impulsive and non-impulsive sound sources, we modi-
fied the standard SRP-PHAT technique, described in
Section 3. The basic idea thereby is to distinguish be-
tween the different types of sound sources and to adapt
the localization algorithm accordingly.

5.1 Pre-classification

In the first step, the pre-classification phase, the sound
source which should be localized is classified as an im-
pulsive or non-impulsive event. This is done by measu-
ring the length of the event counting detections of the
energy detector in a specific time interval. In our case,
this interval has a length of 256 detector windows and
corresponds to approximately 1.37 seconds. An event
is handled as an impulsive event if the totalized time
duration of all detections in the time interval amounts
less than one second.

5.2 Temporal event alignment

Mislocalizations of impulsive events can be mainly rea-
soned by reverberation. Because of the fact that all
reflected possible paths of the sound are longer than the
direct path, the first wave which arrives to the micro-
phone pair, is not influenced by reverberation. In order
to benefit from this knowledge, it is necessary to align
the correlation window exactly to the event. This is
done by positioning the beginning of an event in the
middle of the correlation window. We do this by using
the detections of the energy detector which uses smaller
windows of only 256 samples. This alignment is done
for both sound source types. In the case of an impul-
sive event, we additionally decrease the window size to
a quarter (43 ms, 2048 samples) to gain more influence
of the first wave.

After the first localization, the localization algorithm
has to handle two different event types: for an impulsive
one, it terminates and is waiting for the next event, for a
non-impulsive event type, it waits for a half correlation
window (85 ms, 4096 samples) and the pre-classification
is repeated. This whole procedure is iterated until the
classification result is impulsive again. That means that
the on-going event is finished and the algorithm is wai-
ting for the next event.

6. RESULTS

As a baseline localization method we used the standard
SRP-PHAT approach. Thereby, sound data are divided
in windows of a specific size with an overlap factor of 0.5.
Each time an event inside of such a window is detected
by the energy detector, the data is first multiplied by
a Hamming window and then passed to the localization
algorithm described in Section 3. The window size, used
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source
baseline method modified method

correct [%] RMS [◦] correct [%] RMS [◦]
cup 29.23 42.08 93.41 10.91
door 60.81 39.77 79.77 17.46
spoon 48.18 37.22 100.00 3.26
toaster 73.39 23.78 97.87 6.35
mixer 96.89 7.12 98.75 4.58
speech 94.98 8.90 97.78 6.28

(a) without background noise

source
baseline method modified method

correct [%] RMS [◦] correct [%] RMS [◦]
cup 30.38 42.08 93.26 6.19
door 65.43 31.29 74.97 26.06
spoon 27.28 34.28 97.78 4.02
toaster 55.64 30.53 80.22 17.94
mixer 79.44 16.04 80.22 12.65
speech 96.09 9.38 95.65 9.04

(b) with background noise

Table 1: Percentage of correct localizations and the cor-
responding RMS in degrees without (a) and with back-
ground noise (b), in comparison between the baseline
and the modified localization method.

in this case, was 8192 samples and corresponds to 170
ms, according to 11.7 localizations per second.

For non-impulsive sound sources like speech or a
mixer, on which we concentrated in the past [6], this
setup delivers high correct localization rates of over 95%
with a relatively small root mean square error (RMS),
under both conditions, i.e. with and without back-
ground noise. But the disadvantages of this setup can be
clearly seen in the results for impulsive sound sources.
In this case, the localization rate drops partially under
50% and also the RMS increases significantly (Table 1).

For non-impulsive sources, the modified algorithm,
proposed in Section 5, results in a slight improvement of
1-2%. However, the localization rate and the RMS can
be improved significantly for impulsive sound sources
(Table 1). In this case, an absolute improvement of up
to 71% is reached, with a partially significant decrease of
the RMS. For example, using the modified localization
method, the RMS decreases from 37◦ to 3◦ for the spoon
case. Fig. 3 highlights this fact, comparing the baseline
and the modified localization method for the azimuth
estimation.

7. CONCLUSION

In this paper, we proposed and evaluated a modified
localization algorithm which is able to localize reliably
both impulsive and non-impulsive sound sources. Based
on the standard SRP-PHAT localization approach we
showed that a much higher correct localization rate with
and without background noise can be reached using an
energy detector for the temporal alignment and the pre-
classification of an event. In so doing, an absolute im-
provement of the localization accuracy up to 71% could
be achieved.

However, as pointed out before, the pre-classification
results in an additional delay of 1.37 seconds. For real
applications it is still acceptable, but it does not repre-
sent an optimal solution. Further investigations will try
to minimize the time needed for the pre-classification.
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Figure 3: Localization azimuth results for the case of
a dropping spoon in a noisy environment; compari-
son between the baseline and the modified localization
method.

8. ACKNOWLEDGMENT

This work has been supported by the German Sci-
ence Foundation within the Sonderforschungsbereich
588 “Humanoid Robots” and the Spanish administra-
tion under the project TEC 2008-02975. This paper was
financially supported by the European Cooperation Ex-
change Program HD2008-0062. Additionally, we want
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