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Abstract

Background: In type | diabetes (TID) research, in-silico clinical trials (ISCTs) have proven effective in accelerating the
development of new therapies. However, published simulators lack a realistic description of some aspects of patient lifestyle
which can remarkably affect glucose control. In this paper, we develop a mathematical description of meal carbohydrates
(CHO) amount and timing, with the aim to improve the meal generation module in the TID Patient Decision Simulator
(T1D-PDS) published in Vettoretti et al.

Methods: Data of 32 TID subjects under free-living conditions for 4874 days were used. Univariate probability density
function (PDF) parametric models with different candidate shapes were fitted, individually, against sample distributions of:
CHO amounts of breakfast (CHO,), lunch (CHO,), dinner (CHO,), and snack (CHO,); breakfast timing (T); and time
between breakfast-lunch (T, ) and between lunch-dinner (T, ). Furthermore, a support vector machine (SVM) classifier was
developed to predict the occurrence of a snack in future fixed-length time windows. Once embedded inside the T1D-PDS,
an ISCT was performed.

Results: Resulting PDF models were: gamma (CHO,, CHO), lognormal (CHO,, T,), loglogistic (CHO.), and generalized-
extreme-values (T, , T ;). The SVM showed a classification accuracy of 0.8 over the test set. The distributions of simulated
meal data were not statistically different from the distributions of the real data used to develop the models (c.=0.05).
Conclusions: The models of meal amount and timing variability developed are suitable for describing real data. Their
inclusion in modules that describe patient behavior in the TID-PDS can permit investigators to perform more realistic,
reliable, and insightful ISCTs.
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Introduction aspects mainly related to patient behavior has, so far, been
rarely investigated.!” Nonetheless, lifestyle can remarkably
affect the quality of glucose control in T1D management. A
first attempt to take these aspects into account in a simula-
tor, and to enable more realistic ISCTs, was the T1D Patient
Decision Simulator (T1D-PDS) proposed by Vettoretti
et al.?® Over the state-of-the-art UVa/Padova model of
glucose, insulin, and glucagon kinetics,!> the T1D-PDS

In the past 15 years of type 1 diabetes (T1D) research, in-silico
clinical trials (ISCTs), performed using simulators relying on
mathematical models of glucose-insulin system dynamics,
have accelerated the development of new treatments'* and
drugs,”” and have facilitated the design of clinical studies.®!!
ISCTs allow investigators to carry out a vast number of experi-
ments quickly, in order to evaluate, for example, new algo-
rithms in high-risk scenarios, and so offer considerable
economic and human resource savings.12'14 In order to per- 'Department of Information Engineering, University of Padova, Padova,
form ISCTs, mathematical models mimicking the physiology Italy
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mounted additional modules describing the accuracy of glu-
cose monitoring devices, pump insulin administration, and
(of special interest in this paper) some behaviors of patients
when making treatment decisions. Specifically, the T1D-
PDS embeds models describing the variability in meal time
and amount, behavior in tuning hypotreatment consump-
tions and insulin correction bolus injections, and the errors
in meal bolus time and in carbohydrates (CHO) counting.
Though the T1D-PDS was seen as useful for augmenting the
credibility of ISCTs,*""? its module describing meal vari-
ability did leave some room for improvement. In fact, break-
fast, lunch, and dinner CHO amounts are described by
uniform distributions, mealtimes are considered uncorre-
lated to each other, and there is no model of snacks.

In this work, we aim to overcome these limitations by
developing new mathematical models mimicking the meal
amount and timing variability in individuals with T1D under
free-living conditions. Specifically, by leveraging a pub-
lished dataset of 32 subjects—for a total of 4874 days and
17111 meals—we derive a new model for the three main
meals, ie, breakfast, lunch, and dinner, which considers the
CHO amount of each meal and the time between consecutive
meals. We also develop a model for the CHO amount of
snack and a model to realistically simulate snack timing, tak-
ing into account a group of variables that influence the likeli-
hood of consuming a snack during the day. Lastly, we embed
the new models into the TID-PDS and we compare the
resulting simulations against real data.

Methods

Dataset

Data were collected in a multinational, randomized, cross-
over trial made for the AP@home EU project.? The study
involved 32 individuals with T1D, recruited from three
medical centers: Padova (Italy), Montpellier (France), and
Amsterdam (Netherlands). Participants were 44% women,
and 47.0 £ 11.2 years old, with mean diabetes duration of
28.6 = 10.8 years, HbAlc of 8.2 £0.6% (65.9 =4.8 mmol/
mol), and BMI of 25.1 =3.5kg/m? The study aimed to
compare the artificial pancreas (AP) and the sensor aug-
mented pump (SAP) therapy, by assessing their impact on
glucose control. Subjects were randomly assigned to two
months of AP, from dinner to waking up, plus SAP therapy
during the day, versus two months of SAP use only. A sub-
group of 20 subjects was monitored in a further one month
trial under all-day AP therapy.?* Then, 18 out of the previous
20 subjects underwent a last one month follow-up with a
personalized all-day AP.%

During AP therapy, participants used the DiAs plat-
form?® to promptly register many variables, such as meal
CHO content, insulin bolus administration, and hypotreat-
ments. In particular, to perform an insulin bolus in occa-
sion of a meal, it was mandatory for trial participants to

insert in the platform their CHO amount. Hypotreatments
were recorded separately from other meals. During SAP
therapy, participants were encouraged to report any items
of possibly useful information (eg, time and CHO amount
of meal intakes and insulin boluses) in a handwritten diary.

Since we aimed to model the behavioral aspects of people
with diabetes, independent of their therapy, we considered
data collected under SAP therapy and AP therapy as a single
dataset, thus obtaining a total of 17 111 meals collected over
4874 days.

Data Pre-Processing

We looked for consecutive meals registered temporally
close to each other, since they could very likely be parts of
the same main meal—hereafter referred to as “fragmented”
meal. For example, a “fragmented” meal could be a lunch,
in which the main course and the dessert were reported
separately as two sub-meals. Specifically, the meals that
were no more than 25 minutes distant from one another
were considered as part of the same “fragmented” meal.
Thus, the sub-meals of each “fragmented” meal were
assembled into a single meal by setting the total meal
amount to the sum of the sub-meals CHO amounts, and the
mealtime to the time of the earliest sub-meal. With this
criterion, 2.49% of all the registered meals were detected
as sub-meals. A robustness analysis over the temporal
threshold to identify sub-meals (here fixed at 25 minutes)
showed that increasing this value, just minimally affected
the number of detected “fragmented” meals.

In order to model breakfast, lunch, dinner, and snack
separately, all meal data were labeled. Although in real life
not all the meals fall under these meal categories (eg, a
brunch can be difficult to classify), having an exact meal
labeling is not crucial for our final purpose of improving
the meal generation module in the T1D-PDS. Indeed, to
reliably model meal amount and timing variability, what
really matters is to allocate the CHO intakes over the hours
of the day in a plausible way, which reflects what is
observed on real data.

To label the main meals (ie, breakfast, lunch, and dinner),
we selected meal-specific time windows as follows:
4:00AM-11:30AM for breakfast, 11:35AM-4:30PM for
lunch, 4:35PM-3:55AM for dinner.” Main meals were iden-
tified as being those with the biggest CHO amount amongst
all the meal intakes registered inside each window. The
remaining meal data could be related either to hypotreat-
ments or to snacks. In the AP scenario, the DiAs platform
forced users to record hypotreatments separately from other
meal intakes; thus, the related data were already labeled.
Therefore, once the main meals had been identified, the
remaining CHO intakes were presumed to be snacks. In the
SAP scenario, once the main meals had been identified, since
a further classification between hypotreatments and snack
would have added uncertainty over the data, the other CHO
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intakes were not labeled, and thus, were not assigned to a
specific CHO intake category, ie, they were excluded from
the analysis.

Note that meal data registered on handwritten diaries (ie,
those collected in SAP therapy) were manually analyzed and
meals likely to be inaccurately reported (eg, a slight number
of meals not associated to an insulin bolus) were discarded.

The pre-processing step provided 11460 main meals
(3643 breakfasts, 3837 lunches, 3980 dinners) and 1218
snacks. These data were used to derive models of meal
CHO amounts and main meal timing, as well as a model of
the probability of consuming a snack in different moments
of the day.

A sensitivity analysis to evaluate the impact of mislabel-
ing over the models of meal amount and timing is reported in
the Appendix.

Meal Carbohydrates Content and Main Meal
Time Variability Models

The statistical distributions of the CHO content of breakfast,
lunch, dinner, and snack were modeled by parametric prob-
ability density function (PDF) models. To describe main
meal timing by taking into account the correlation between
consecutive meals, a parametric PDF model was also derived
for breakfast time, time between breakfast-lunch, and time
between lunch-dinner. In total, seven variables describing
meal amounts and times were modeled. For each variable,
we considered the following 10 candidate univariate PDF
models: Gaussian, lognormal, loglogistic, gamma, general-
ized-extreme-value (GEV), t-Student, exponential, inverse
Gaussian, logistic, and uniform, whose equations are reported
in the second column of Table 1. The model providing the
best description of the data was selected for each variable as
follows.

For each variable of interest, we randomly split the avail-
able data into training set (TR) and test set (TE), whose car-
dinalities were, respectively, 70% and 30% of the entire
dataset. TR data were used to fit the 10 candidate PDF mod-
els, whose parameters were estimated by maximum likeli-
hood (ML). Then, a random sample was extracted by each
of the PDF models identified and compared to the TE
through computation of a measure of distance between
the empirical distribution functions (EDFs) of the two
samples.?®3° The EDF is a discrete estimate of the cumula-
tive distribution function of a random variable, obtained by
assigning equal probability to each observation in a sample.
As reported in Eq. (1), we computed the maximum absolute
difference (MAD, also known as the Kolmogorov-Smirnov
statistic) between the EDF of the TE data (f?( x)) and the
EDF of the sample generated by the i-th hypothesized PDF
model (ie, G;(x)).

MAD, =m?x(‘;'(x)—Gi (x)‘) (1)

To reduce the sensitivity to the TR-TE split, the procedure
was re-iterated for 100 different TR-TE splits. Then, the
median [25th-75th percentiles] MAD for each candidate
PDF model were extracted. Lastly, the PDF model providing
the lowest median MAD was selected as the most suitable
model and its parameters are re-estimated on the entire
dataset.

To visually check the fit quality, the obtained PDF mod-
els were compared to the normalized histograms of all the
data used to fit the models. In addition, a quantile-quantile
plot of the entire dataset and the selected PDF model was
reported for each variable. Then, 100 random samples of
the same size as the numerosity of available data for each
variable of interest were extracted by the final PDF mod-
els and their EDFs compared to the EDF of the whole
dataset.

Snack Time Variability Model

While main meals are usually consumed three times per day
inside time windows sufficiently consistent between indi-
viduals,?” snack time clearly has much more inter- and intra-
subject variability. The number of snacks consumed per day,
and the time windows in which a snack is consumed, can be
heavily dependent both on a subject’s habits and on daily
conditions (eg, previous meal sizes and times). To obtain a
plausible model for describing T1D patient behavior when
consuming snacks, we looked for variables that could influ-
ence snack consumption times in the dataset being analyzed.
To do this, we derived a support vector machine (SVM) clas-
sifier able to predict the occurrence of a snack in fixed time
windows, based on predictors collected back in time.

The dataset to derive the model was built as follows.
We split each subject’s trial into contiguous three-hour
observation windows and labeled them with “1,” if at least
one snack was consumed inside the window, or “0” other-
wise. The total number of windows was 8405: 1028 obser-
vations labeled as “1,” and 7377 labeled as “0.”

Then, for each three-hour window, possible predictors of
the label were extracted, either from portions of the trial
before the observation window, or from the patient’s demo-
graphic data. We considered the following 13 features: (i)
subject’s age; (ii) body weight (BW); (iii) CHO amount of
the last meal intake before the observation window; (iv) the
time from that meal; (v) sum of the CHO amount consumed
in the last one hour, (vi) four hours, and (vii) six hours before
the observation window; (viii) mean continuous glucose
monitoring (CGM) in the previous one hour, (ix) four hours,
and (x) six hours before the observation window; (xi) first
CGM value of the observation window; (xii) CGM rate-of-
change in the one hour before the observation window; (xiii)
time of the observation window (categorical variable equal
to 1, 2, 3, 4 if the first sample in the window is in the interval
5:00AM-10:55AM, 11:00AM-4:55PM, 5:00 PM-10:55PM,
11:00PM-4:55 AM, respectively).
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Table |I. Candidate PDF Model Equations.

Candidate PDF model Equation
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Abbreviations: GEV, generalized-extreme-value; PDF, probability density function.

* is the gamma function: F(x) = J;""e"dt.
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Figure |. Schematic representation of the new version of the patient’s behavior and treatment decision model, included in the T1D-
PDS, which embeds the new meal models developed in this work (yellow boxes). The diagram is adapted from Visentin et al.'> TID-

PDS, Type | Diabetes Patient Decision Simulator.

The final dataset was randomly divided into TR (cardi-
nality: 80%) and TE (cardinality: 20%), maintaining the
same proportion of the labels: 5902 (87.78%) “0,” 822
(12.22%) “1” in the TR and 1475 (87.75%) “0,” 206
(12.25%) “1” in the TE. A z-score standardization was per-
formed on the features using their mean and their standard
deviation in the TR.3!

As classifier, we used a nonlinear SVM with a radial
basis function (RBF) kernel. Using RBF kernels is a
widely adopted strategy used to map the inputs into a
high-dimensional feature space in a flexible way, in order
to make the SVM more robust for any kind of data to
achieve a highly accurate classification rate.*>** Moreover,
being the dataset unbalanced, with the number of “0”
greater the number of “1,” two different weights for the
two classes were used during the training, according to the
following rule of thumb:

N

W, =——
Kn,

Where N = 6724 was the total number of observations in the
training set, K =2 was the total number of classes, and n,
was the number of observations in the class k , thus obtain-
ing w,_, =0.570 and w,_, =4.073.

To perform feature selection, we performed a 20-fold
cross validation (CV) on the TR. At each step of CV, a
recursive feature elimination (RFE) approach was imple-
mented to iteratively remove the weakest features.’*3¢
Thus, the algorithm begun by training the SVM model on
the entire set of predictors and quantifying its perfor-
mance through the area under the receiving operating
characteristic curve (AUROC). The AUROC is a com-
monly employed metric in classification problems, which
quantifies to what extent the model is able to distinguish
between classes: the closer the AUROC is to one, the

better is the discriminatory power of the model. Then, the
least important predictor (ie, the one that if removed,
resulted in the smallest deterioration of the AUROC) was
removed and the SVM model was then re-built without
that feature. This procedure was repeated until only one
feature remained. Thus, the RFE provided a ranking of the
features, according to each one’s contribution to the
AUROC. After 20 CV iterations, the 20 ranked feature
lists were aggregated into a single ranked list, using the
Borda method.?” In particular, a score corresponding to
the number of features ranked lower was assigned to each
feature and the final ranked list was obtained by adding up
the scores of each of the 20 feature lists. The RFE also
provided a classification performance curve, which was
obtained by computing the AUROC values of the SVM
models trained on a decreasing number of features. An
average classification performance curve was then
obtained by averaging the 20 curves obtained after the 20
CV iterations. The maximum point of the curve indicated
the optimal feature number n . Therefore, the top n
variables of the aggregated ranked list were selected as
the subset of features providing the best AUROC. Lastly,
the SVM model containing the selected features was
trained on the whole TR and its performance was com-
puted on the TE.

Embedding the Models into the Type-1 Diabetes
Patient Decision Simulator

The meal amount and timing variability models developed
are then embedded into the T1D-PDS published in
Vettoretti et al.?° A schematic representation of the result-
ing, complete model is reported in Figure 1. For each vir-
tual patient, one breakfast, one lunch, and one dinner are
always triggered during the day, at times selected by
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Table 2. Comparison of Candidate Models According to MAD.

PDF model

Variable

Breakfast CHO amount

Lunch CHO amount

Dinner CHO amount

Snack CHO amount

Breakfast time

Time breakfast-lunch

Time lunch-dinner

Gaussian
Lognormal
Loglogistic
Gamma
GEV
t-Student
Exponential
Inverse
Gaussian
Logistic

Uniform

0.119[0.107-0.131]
0.091 [0.078-0.102]
0.085 [0.077-0.094]
0.078 [0.071-0.086]
0.082 [0.073-0.091]
0.104 [0.095-0.118]
0316 [0.310-0325]
0.097 [0.082:0.109]

0.096 [0.087-0.105]
0.324 [0.317-0.334]

0.134[0.119-0.147]
0.072 [0.065-0.083]
0081 [0.074-0.091]
0.080 [0.072-0.092]
0081 [0.073-0.090]
0.127 [0.110-0.140]
0.289 [0.282-0.296]
0.073 [0.065-0.086]

0.102 [0.093-0.115]
0.350 [0.342-0.361]

0.145 [0.135-0.155]
0071 [0.064-0.079]
0.071 [0.063-0.081]
0.087 [0.076-0.098]
0.072 [0.065-0.084]
0.096 [0.087-0.104]
0302 [0.297-0.309]
0.079 [0.071-0.087]

0.108 [0.086-0.118]
0.456 [0.450-0.465]

0.164 [0.141-0.181]
0.123 [0.104-0.130]
0.090 [0.078-0.121]
0.087 [0.079-0.102]
0.095 [0.082:0.114]
0.132 [0.113-0.151]
0.207 [0.193-0217]
0.208 [0.190-0219]

0.127 [0.111-0.146]
0.450 [0.433-0.466]

0.088 [0.077-0.099]
0.073 [0.063-0.081]
0.079 [0.072-0.087]
0.077 [0.067-0.086]
0.074 [0.064-0.082]
0.088 [0.077-0.099]
0.498 [0.492-0.498]
0.074 [0.063-0.080]

0.084 [0.073-0.092]
0.312 [0.309-0.323]

0,048 [0.039-0.058]
0074 [0.057-0.088]
0059 [0.053-0.071]
0061 [0.045-0.074]
0.043 [0.037-0.053]
0.048 [0.039-0.058]
0.403 [0.356-0.410]
0.078 [0.062-0.092]

0.057 [0.049-0.068]
0.190 [0.182-0.193]

0.095 [0.083-0.116]
0.135 [0.125-0.157]
0.092 [0.083-0.104]
0.123[0.112-0.145]
0.063 [0.056-0.081]
0.077 [0.068-0.099]
0421 [0.416-0.427]
0.141 [0.131-0.162]

0.072 [0.063-0.087]
0.269 [0.259-0.230]

Abbreviations: CHO, carbohydrates; GEV, generalized-extreme-value; MAD, maximum absolute difference; PDF, probability density function.

MAD reported as median [25th-75th percentiles].
Note. Selected Models Are Reported in Bold.

extracting random samples from the new models describ-
ing breakfast time, time between breakfast-lunch, and
time between lunch-dinner. Predictors of future snacks are
collected in real-time and the SVM model is applied every
three hours. Then, if the model predicts a snack in the fol-
lowing three hour window, the snack will be triggered at a
time randomly selected, with uniform probability, within
the time window. The duration of main meals and snacks
is set to 15minutes and five minutes, respectively, and
their CHO amount is randomly sampled by the developed
PDF model.

Both main meals and snacks are associated with insulin
meal boluses, which are calculated both on the basisgﬂle
patient’s estimate of the CHO content of the meal (CHO )
and on the glucose concentration, measured at meal bolus
time, using the patient’s carbohydrate-to-insulin ratio and
the correction factor.® The estimated CHO is simulated
by implementing the nonlinear model developed in
Roversi et al*® which takes into account the CHO amount
and the type of meal. The model of meal bolus administra-
tion time, already used in the T1D-PDS to simulate early/
delayed main meal insulin administrations that commonly
occur in real life, is extended to the snacks.

Once the models have been incorporated into the T1D-
PDS, they are assessed through simulation. To demonstrate
the reliability of their realizations, we simulated 100 virtual
subjects for seven days and compared the meal-related out-
comes with the real data used in this work. Assessment met-
rics were: number of snacks per day (# snack/day), frequency
of days with at least one snack (freq), time between a snack
and the previous main meal (A ), total CHO ingested per
day (CHO/day), CHO ingested per day as breakfast (CHO,/
day), lunch (CHO,/day), dinner (CHOp/day), and snack
(CHOg/day).

Results

Table 2 shows, in median [25th-75th percentiles], the MAD
computed between the EDF of TE data and the EDF of the

hypothesized models, whose parameters were estimated
over the TR, for 100 different TR-TE splits. For each col-
umn, the lowest MAD median value is reported in bold.
Breakfast and snack CHO amount were modelled by
gamma distributions, dinner CHO amount was modelled by
loglogistic distributions, lunch CHO amount and breakfast
time were modelled by lognormal distributions, and time
between breakfast-lunch and time between lunch-dinner
were modelled by GEV distributions.

The final models’ parameters estimated on the whole
dataset are reported in the third column of Table 3. The
final PDF models were plotted versus the histogram of
the entire dataset in Figure 2: they replicate the shapes of
the histograms well. This claim was further assessed by
observing the quantile-quantile plot of the entire dataset
vs the selected PDF models, reported, for each variable,
in Figure 3. Indeed, since the plots approximately lay on
a line, the selected PDF models were confirmed as being
suitable to describe the data. Furthermore, the EDFs of
100 random samples generated by the final models and
the EDF of the entire respective dataset are reported in
Figure 4. The EDF of the data represents the mean of the
100 simulated EDFs quite well, for all the variables ana-
lyzed, so the models obtained had been able to mimic the
shape of the distributions of the data, adding credible
variability.

Regarding the SVM model for predicting future snacks,
the feature selection step resulted in a ranked feature list
of predictors and an average classification performance
curve. The former was reported in Table 4, with the Borda
score (second column) for each feature (first column). The
latter is shown in panel (a) of Figure 5. The maximum
value of the AUROC average is 0.774, which was obtained
using the optimum number of features, n, =7 (blue dot in
Figure 5(a)). Therefore, the top seven features of the aggre-
gated ranked list (rows in bold in Table 4), selected as the
subgroup of features providing the best AUROC results,
are: time of the observation window, time from the last
meal intake before the observation window, subject’s age,
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Table 3. Parameters of the PDF Models of Meal CHO Content and Main Meal Time Variability.

Selected PDF model

Estimated parameters

Variable

Breakfast CHO amount Gamma
Lunch CHO amount Lognormal
Dinner CHO amount Loglogistic
Snack CHO amount Gamma
Breakfast time Lognormal
Time between breakfast-lunch GEV
Time between lunch-dinner GEV

o =5.290;1 = 7.696
1L=38840=0518
o =0.284;8 =3.977
o =2.060;1 =11.88
1 =2078c=0.175
1L =282.9;c = 79.98;£ = —0.320

p=374.9;0 = 84.86;& = —0.472

Abbreviations: CHO, carbohydrates; GEV, generalized-extreme-value; PDF, probability density function.

subject’s BW, CHO amount of the last meal intake before
the observation window, sum of the CHO consumed in the
previous six hours before the observation window, and
mean CGM in the previous one hour before the observa-
tion window.

Lastly, the SVM model containing the selected features
was trained on the whole TR and evaluated on the TE,
thus obtaining the ROC curve depicted in panel (b) of
Figure 5. The resulting AUROC is equal to 0.754. Accuracy,
sensitivity, and specificity were also computed as further
performance metrics.*’ In order to maximize the accuracy,
a threshold of 0.100 on the posterior probability was cho-
sen. This threshold provides an accuracy of 0.800. The
corresponding values of sensitivity and specificity are
0.592 and 0.830, respectively, and are marked by a red dot
in Figure 5(b).

After embedding the models developed into the T1D-
PDS, a total of 2560 meals were generated: 2100 main
meals and 460 snacks. In order to assess whether the mod-
els could capture real-world data variability, in Figure 6,
the distributions of CHOg/day (panel a), CHO, /day (panel
b), CHOp/day (panel c), CHO4/day (panel d), #snack/day
(panel e), A . (panel f), CHO/day (panel g) are shown
through boxplot representation for both real data (label
“Data”) and simulated data (label “Sim”). The metrics
present similar distributions in real and simulated datas-
ets. In Table 5, we report both the median and the inter-
quartile range of these metrics, calculated on real data
(second column) and simulated data (third column) and
the P value of the two-tailed Mann-Whitney U-test, com-
paring metric medians in real data versus simulated data
(fourth column). According to the test with 5% signifi-
cance level, no statistically significant difference was
found between the median outcomes of real data vs simu-
lated data. Finally, freqq was computed, both on real and
simulated data, as the percentage of days in which at least

one snack was consumed. It was equal to 71.23% for real
data and 66.42% for simulated data.

Conclusion

Existing T1D simulators are not equipped with realistic
descriptions of some behavioral aspects that can remark-
ably affect glycemic control. In this work, by leveraging a
dataset involving 32 T1D individuals monitored up to six
months, we developed models to describe meal amount
and timing variability under free-living conditions. We
obtained eight separate PDF models to describe the CHO
amount of main meals (ie, breakfast, lunch, and dinner)
and snacks and the time between consecutive main meals.
We also derived an SVM model to predict the probability
that a snack will be consumed in a future time window,
based on predictors collected back in time and linked to
time and CHO amount of previous meal intakes, CGM,
time of the day, and the subject’s demographic data. The
models developed were incorporated into the recent T1D-
PDS as two sub-modules. The first one, describing the
main meals, is a population model; thus it is based on the
assumption that the distribution of CHO amount ingested
as main meals is the same for every virtual patient. The
second one, triggering the snacks during the day, consid-
ers subject-specific covariates; thus it allows to create dif-
ferences in the total daily ingested CHO amount between
virtual subjects. The reliability of the newly developed
model was assessed by comparing the simulated meals of
100 virtual subjects to the meals collected in the study
used in this work. The comparison highlighted good
agreement between the metrics calculated on real and on
simulated data.

Of course, the characteristics of the dataset available to
us made it clear that there is room for improvement. For
instance, using the same methodology that we proposed
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Figure 2. Histograms (blue) and final PDF models (red) of the following data: breakfast CHO amount (a), lunch CHO amount (b),
dinner CHO amount (c), snack CHO amount (d), time between breakfast and lunch (e), time between lunch and dinner (f), breakfast
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Table 4. Ranking of Candidate Predictors According to the Borda Score. Selected Predictors Reported in Bold.

Candidate predictors

Borda score

Time of the observation window
Time from the last meal intake
Patient’s age

Patient’s BW

CHO amount of the last meal intake
CHO consumed in the previous six hours
Mean CGM in the previous one hour
CHO consumed in the previous four hours
First CGM of the observation window
Mean CGM in the previous six hours

CHO consumed in the previous one hour
Rate-of-change in the previous one hour
Mean CGM in the previous four hours

214
209
196
194
126
119
116
99
79
71
57
49
31

Abbreviations: BW, body weight; CHO, carbohydrates; CGM, continuous glucose monitoring.
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Figure 5. Performance curves for snack classification. Panel (a) AUROC values resulting from SVM models with different numbers

of features. The average classification performance curve (red) is obtained by averaging the AUROC values over the 20-fold CV. The
maximum value of the curve reflects the optimal number of features (blue dot). Panel (b) ROC curve of final SYVM model (blue) and of
the random classifier (dashed black line). The red dot indicates the sensitivity and specificity values at the maximum accuracy. AUROC,

receiving operating characteristic curve; SVM, support vector machine.

on a much larger dataset would make it possible to link
meal habits to the cultural eating habits of the country
of reference of the subject. Then, the models could be
refined by capturing the temporal patterns of patients’
meal behavior at various time scales (eg, working days vs
weekend, different seasons, etc.). Future developments
could also include developing personalized models for
main meal CHO amount and timing, modelling meal dura-
tion, and determining the probability of missed main
meals. Finally, when absorption models of complex CHO

intakes will be developed and embedded in the T1D-PDS,
behavioral model to realistically simulate the meal com-
position could also be investigated. In conclusion, the
T1D-PDS, enhanced with the models developed in this
work, is expected to allow investigators to perform more
reliable and insightful ISCTs. For instance, part of
our work currently underway in the Hypo-RESOLVE
project*! concerns the use of the TID-PDS to quantify
the impact of different behavioral factors in inducing
hypoglycemia.
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Figure 6. Boxplot representation of the distributions of CHO_/day (a), CHO, /day (b), CHO/day (c), CHO(/day (d), #snack/day (e),
A, (), CHO/day (g), obtained on real data (label “Data”) and simulated data (label “Sim”). The red horizontal line represents median,
the blue box marks the interquartile range, dashed black lines are the whiskers and the red stars indicate outliers. CHO, carbohydrates.

Table 5. Meal Outcomes of Real Data Versus Simulated Data.

Metric Real data Simulated data P value
CHOy/day [g] 36 [30-50] 38 [28-50] .3752
CHO, /day [g] 50 [37-68] 46 [33-68] .3530
CHOp/day [g] 50 [40-70] 53 [38-72] 4416
CHOy/day [g] 0[21-48] 0 [20.0-48] .3098
#snack/day 0[I-2] 0[I-2] 4708
A s [Min] 190 [125-250] 182 [112-275] 4618
CHO/day [g] 190 [159-231] 191 [147-234] .2488

Abbreviation: CHO, carbohydrates.

Appendix

The strategy used to classify meal data as main meal or
snack was based on the CHO amount and the time regis-
tered by subjects during the trial: when two or more meals
(eg, lunch and snack) fell into the same time window, the
meal with the biggest CHO amount among them was clas-
sified as main meal, while the others were considered
snacks. Even if sometimes this classification rule might
mistake a small meal for a snack, having an exact meal
labeling was not crucial for the final purpose of allowing

the T1D-PDS to simulate CHO intakes during the hours of
the day in a plausible way, which reflects what is observed
in real data.

Anyway, a sensitivity analysis was performed to quantify
the impact of the possible labeling errors. Specifically, as
confusing one main meal with another main meal (e.g., a
lunch with a dinner) is very unlikely, the analysis was focused
on assessing the impact of the initial choice of selecting the
main meal in each time window as the one with the biggest
CHO amount among the meals in that time window. The pro-
cedure of the sensitivity analysis is described as follows.

For each time window including more than one meal, if
the absolute difference between two largest meals was lower
than or equal to a fixed threshold (ACHO = 10%, 20%,
30%), the two meal labels were willingly exchanged, ie, the
second largest meal became the “main meal” and the largest
meal was labeled as a “snack.” This was performed for the
10%, 50%, and 100% of the snacks, randomly selected.
Then, the PDF models selected in the work for the snack
CHO amount (gamma), breakfast CHO amount (gamma),
lunch CHO amount (lognormal), dinner CHO amount
(loglogistic), time between breakfast and lunch (GEV), and
time between lunch and dinner (GEV) were re-trained on
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the dataset with the new labels, and the newly obtained dis-
tributions were compared against those obtained with the
original labeling, both by visual inspection (Supplemental
Figures 1-3) and by comparison of their mean and standard
deviation. Supplemental Figure 1 reports the PDF models
obtained with the original labeling (black), the ones obtained
with misclassification of 10% (dashed blue), 50% (dashed
green), 100% (dashed red) of the snacks, for CHO amount
of snack (panel A), breakfast (panel B), lunch (panel C),
dinner (panel D), and the time between breakfast-lunch
(panel E) and lunch-dinner (panel F), using ACHO = 10%.
Similar figures are obtained for the scenarios ACHO = 20%
(Supplemental Figure 2) and ACHO =30% (Supplemental
Figure 3).

As expected, a limited number of errors in the labeling
step does not significantly impact on the PDF models shape.
Slight differences can be appreciated in the ACHO =30%
scenario: the mean of the snack CHO amount increases and
the mean of lunch CHO amount decrease, thus not affecting,
on average, the CHO amount consumed in the time window.
The distributions of time between breakfast-lunch and lunch-
dinner are, expectedly, the least affected by the mislabeling.

Quantitative considerations can be drawn from Supplemental
Table 1, reporting mean and standard deviation of the distribu-
tions obtained after the mislabeling and, in the last column,
mean and standard deviation of the original distributions. In the
ACHO=30% scenario, with 100% mislabeled snacks, the
mean of the snack CHO amount only differs of about 5g from
the original mean, as well as the mean of the dinner CHO
amount. The mean values of time between breakfast-lunch and
lunch-dinner differ of less than five minutes from the original
distributions. Therefore, we can conclude that labeling errors do
not affect the distributions shape and, consequently, the results
of the ISCT are insensitive to this kind of error.
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